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Abstract.
We give some extremal properties on the number B(G) of non-equivalent ways of coloring a given
graph G, also known as the (graphical) Bell number of G. In particular, we study bounds on B(G)
for graphs with a maximum degree constrained. First, an upper bound on B(G) is given for graphs
with fixed order n and maximum degree ∆. Then, we give lower bounds on B(G) for fixed order n
and maximum degree 1, 2, n− 2 and n− 1. In each case, the bound is tight and we describe all graphs
that reach the bound with equality.

Keywords: non-equivalent colorings, graphical Bell numbers, chromatic polynomial.

1 Introduction

A question which probably sounds familiar for many researchers in graph theory is: what
is the number of ways of coloring a given graph G? In the literature, the common answer
to this question is related to the notion of chromatic polynomial which was introduced by
Birkhoff [1] in 1912 in an attempt to prove the four-color theorem. The chromatic polynomial
of a graph G of order n is the (unique) polynomial of degree n passing by points (k,Π(G, k))
for k = 0, 1, . . . , n, where Π(G, k) is the number of ways of coloring G with at most k colors,
counting two colorings as distinct when they are obtained by a permutation from the other.
For example, for the path P3 we have

Π(P3, k) = k(k − 1)2.

Indeed, Π(P3, 0) = Π(P3, 1) = 0; Π(P3, 2) = 2 (take for instance the first two colorings in
the left column of Figure 1) and Π(P3, 3) = 12 as shown in Figure 1. The number of vertex
colorings of a graph G is nowadays commonly interpreted as Π(G,n), where n is the number
of vertices in G, meaning that P3 has 12 colorings according to this interpretation. However,
for P3, another answer to the above question that makes sense is two as depicted in Figure 2:
there is only one coloring with two colors (the two extremities share the same color while the
central vertex has its own color), and only one coloring with three colors (each vertex has its
own color).

More generally, we are interested in this paper by the number B(G) of non-equivalent
colorings of a graph G. This way of counting colorings is especially meaningful when a set
∗GERAD and Ecole Polytechnique de Montréal.
†Algorithms Lab, Université de Mons, Place du parc 20, B-7000 Mons, Belgium.
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c b c
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b a c

b c a

c a b

c b a

Figure 1: The 12 colorings of P3 (using 3 colors) as defined by the chromatic polynomial.

a b a a b c

Figure 2: The 2 non-equivalent colorings of P3 (using any number of colors).

of elements has to be partitioned into a given number of non-empty subsets, subject to some
constraints. Indeed, B(G) is the number of partitions of the vertex set of G whose blocks are
stable sets. This invariant has been studied by several authors in the last few years [7–10]
under the name of (graphical) Bell number of G. However, historically, this invariant is related
to the σ-polynomial introduced by Korfhage [11] in 1978. Indeed, the σ-polynomial of a graph
G is a polynomial in x such that the coefficient of xk is the number of non-equivalent ways
of properly coloring G using exactly k colors. It follows from that definition that B(G) is the
value of the σ-polynomial at x = 1. The σ-polynomial was studied intensively by Brenti [3]
and Brenti et al. [4] in the early nineties. It appears that several results on B(G) published
later (including results in [7–9]) are special cases of results from [3,4].

It is interesting to note that while B(G) and Π(G,n) might appear as similar concepts
(since they both count colorings with at most n colors), they differ in several ways. We
have already mentioned that only non-equivalent colorings are counted in B(G), which means
that B(G) corresponds to the number of partitions of the vertex set of G, taking into account
constraints that prevent some pairs of vertices of belonging to the same subset of the partition.
Also, observe that if Π(G,n) < Π(H,n) for two graphs G and H of order n, this does not
necessarily imply that B(G) < B(H) (and conversely) as shown in Figure 3.

Similarly, there exist pairs of graphs (G, H) such that B(G) = B(H) but Π(G,n) 6=
Π(H,n), and conversely (see examples in Figure 4).

In the next section we fix some notations, give a formal definition of the number B(G) of
non-equivalent vertex colorings of a graph G and recall some basic properties of B(G). Then,
in Sections 3 and 4, we prove some bounds on B(G) for graphs of bounded maximum degree
and let other bounds as open problems.

2



• •

••
• •

B(G) = 18

Π(G, 6) = 8520

• •
•

••

•
B(H) = 17

Π(H, 6) = 9000

Figure 3: Two graphs G and H with 6 vertices such that Π(G, 6) < Π(H, 6) and B(G) > B(H).

• •

••
•

B(G) = 4

Π(G, 5) = 420

• • •
•

•

B(H) = 4

Π(H, 5) = 480

• •

••
•

B(G′) = 6

Π(G′, 5) = 600

• • •
•

•

B(H ′) = 5

Π(H ′, 5) = 600

Figure 4: Two pairs of graphs with 5 vertices showing that equality for one way to counts the
colorings does not imply equality for the other.

2 Basics and notations

For basic notions of graph theory that are not defined here, we refer to Diestel [5]. Let
G = (V,E) be a simple undirected graph. We denote by n = |V | the order of G and by
m = |E| its size. Also, Ḡ is the complement of G and we write G ' H if G and H are two
isomorphic graphs.

Let Kn (resp. Cn and Pn) be the complete graph (resp. the cycle and the path) of order
n. The wheel Wn is the graph of order n obtained by connecting a vertex to all vertices of
Cn−1. Also, we write Ka,b for the complete bipartite graph where a and b are the cardinalities
of the two sets of vertices of the bipartition. Finally, Sn denotes the star on n vertices, that
is K1,n−1.

Let N(v) denote the neighbors of a vertex v in G. The degree of a vertex v is denoted
d(v) (i.e., d(v) = |N(v)|). A vertex v is isolated if d(v) = 0 and is dominating if d(v) = n− 1.
The maximum degree of G is denoted ∆(G).

Let u and v be two vertices in a graph G of order n, we denote G \ uv the graph (of order
n− 1) obtained by identifying (merging) the vertices u and v and, if uv ∈ E(G), by removing
edge uv. Also, if uv ∈ E(G), we note G − uv the graph obtained from G by removing edge
uv, while if uv /∈ E(G), the graph G + uv is the graph obtained by adding uv in G. For a
vertex v of G, we denote G− v the graph obtained from G by removing v and all its incident
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edges.
A vertex coloring (or simply a coloring in the sequel) is an assignment of colors to the

vertices of G. A proper coloring is a coloring such that adjacent vertices have different colors.
The chromatic number χ(G) of a graph G is the minimum numbers of colors in a proper
coloring of G. Two colorings are equivalent if they induce the same partition of the vertex
set. One defines S(G, k) as the number of proper non-equivalent colorings of a graph G that
use exactly k colors. The total number B(G) of non-equivalent colorings of a graph G is then
defined as:

B(G) =
n∑

k=χ(G)

S(G, k). (1)

Given a graph G with a dominating vertex v, the following property (stated in a more
general form in [8]) states that the computation of B(G) can be reduced to that of B(G− v).

Property 1. If a graph G has a dominating vertex v, then B(G) = B(G− v).

The following property shows how to compute the number of colorings of the disjoint
union of two graphs.

Property 2 ([7]). Let G = G1 ∪ G2 be a graph that is the disjoint union of two graphs G1

and G2. Then,

B(G) =
n∑
k=1

k∑
i=1

i∑
j=0

S(G1, i)S(G2, k − j)
(

i

i− j

)(
k − j
i− j

)
(i− j)!

Given two graphs G and H of order n, we note G >S H and say that G strictly dominates
H for the number of non-equivalent colorings if S(G, k) ≥ S(H, k) for all k = 1, 2, . . . , n,
and there exists some integer k such that S(G, k) > S(H, k). By Property 2, the following
corollary is straightforward.

Corollary 3. Let G, G′ and H be three graphs such that G and G′ have the same order. If
G >S G

′, then, B(G ∪H) > B(G′ ∪H).

As for several other algorithms in graph coloring, the deletion-contraction rule (also often
called the Fundamental Reduction Theorem[6]) is a well known method to compute B(G)
([8, 10]). More precisely, let u and v be any pair of distinct vertices of G, we have,

S(G, k) = S(G− uv, k)− S(G \ uv, k), (2)

if uv ∈ E(G), and
S(G, k) = S(G+ uv, k) + S(G \ uv, k), (3)

if uv /∈ E(G). Similarly, if uv ∈ E(G), we have,

B(G) = B(G− uv)− B(G \ uv), (4)

and
B(G) = B(G+ uv) + B(G \ uv), (5)

if uv /∈ E(G).
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Since there is only one possible coloring for Kn (using exactly n colors), we have

S(Kn, k) =
{

1 if k = n,
0 otherwise,

and B(Kn) = 1. This constitutes a base case for a straightforward recursive algorithm to com-
pute B(G) for any graph G using relation (5). Another recursive procedure can be obtained
from (4) using the empty graph Kn to define the base case. Indeed, we have ([7, 8])

S(Kn, k) =

{ {
n
k

}
∀k ≤ n,

0 ∀k > n,

where {
n

k

}
=

1
k!

k∑
j=1

(−1)k−j
(
k

j

)
jn

is a Stirling number of the second kind, that is the number of ways to partition a set of n
elements into k non-empty subsets. It follows that

B(Kn) =
n∑
k=1

{
n

k

}
= Bn,

where Bn is the nth Bell number (sequence A000110 in OEIS [13]). This is not surprising
since Bn represents the number of partitions of a set of n elements which is obviously the
same as the number of non-equivalent colorings in a graph without any edge. This is also the
reason why B(n) is known as the (graphical) Bell number of G, while S(G, k) is called the
(graphical) Stirling number of G (see for example [8–10]).

Generalized Stirling and Bell numbers have been defined and studied in [2] and are also
linked to B(G). More precisely, let

Sr(n, k) =
1
k!

k∑
j=r

(−1)k−j
(
k

j

)(
j!

(j − r)!

)n
.

Consider n sets E1, E2, . . . , En of r elements. The generalized Stirling number Sr(n, k) is the
number of different partitions of these nr elements into k non-empty subsets such that each
subset contains at most one element of each Ei. In other words, Sr(n, k) = S(nKr, k). The
Generalized Bell numbers Br,n are then defined as follows:

Br,n =
rn∑
k=r

Sr(n, k).

They represent the number of partitions of the nr elements so that each subset contains at
most one element of each Ei. Hence, Br,n = B(nKr).

The number of non-equivalent colorings is known for several classes of graphs. We mention
some of these values from [8–10]:

• Let T be a tree of order n ≥ 1. Then, B(T ) = Bn−1.
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• Let Cn be a cycle of order n ≥ 3. Then,

B(Cn) =
n−1∑
j=1

(−1)j+1Bn−j .

• Let Wn be a wheel of order n ≥ 4. Then,

B(Wn) =
n−2∑
j=1

(−1)j+1Bn−j−1.

• Let P̄n be the complement of a path of order n ≥ 1. Then, B(P̄n) = Fn+1 where Fn
denotes the nth Fibonacci number.

• Let C̄n be the complement of a cycle of order n ≥ 4. Then, B(C̄n) = Ln where Ln
denotes the nth Lucas number.

However, there are not many results in the literature about the extremal properties of
B(G) and this is the subject of the two next sections where we study upper and lower bounds
on B(G) for graphs G with bounded maximum degree. We note that the following results
were first conjectured with the help of the conjecture-making system GraPHedron [12].

3 Upper bound on the number of colorings of graphs with
fixed maximum degree

The upper bound on B(G) for graphs G with bounded maximum degree is straightforward.
We define G>n,∆ to be the graph of order n and with a maximum degree ∆ that is composed
of a star S∆+1 and n−∆− 1 isolated vertices (see Figure 5 for an example).

•

•

•

•
•

•
•
•

Figure 5: The graph G>8,4.

Theorem 4. Let G be a graph of order n and maximum degree ∆. Then,

B(G) ≤
∆∑
i=0

(−1)i
(

∆
i

)
Bn−i,

with equality if and only if G is isomorphic to G>n,∆.

Proof. The graph G>n,∆ is clearly the graph minimizing the number of edges among all graphs
of order n with maximum degree ∆. Adding edges to G>n,∆ (in such a way that the maximum
degree is not increased) will add new constraints between pairs of vertices, and this will
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therefore strictly decrease the number of colorings. Hence B(G) ≤ B(G>n,∆), with equality if
and only G is isomorphic to G>n,∆. It remains to prove that

B(G>n,∆) =
∆∑
i=0

(−1)i
(

∆
i

)
Bn−i for all n and ∆.

The equality holds for ∆ = 0 since B(G>n,∆) is then isomorphic to Kn and we have already
recalled that B(Kn) = Bn. For larger values of ∆, we proceed by induction using the following
equality obtained from (4):

B(G>n,∆) = B(G>n,∆−1)− B(G>n−1,∆−1).

We then have

B(G>n,∆) =
∑∆−1

i=0 (−1)i
(

∆−1
i

)
Bn−i −

∑∆−1
i=0 (−1)i

(
∆−1
i

)
Bn−1−i

=
∑∆−1

i=0 (−1)i
(

∆−1
i

)
Bn−i +

∑∆
i=1(−1)i

(
∆−1
i−1

)
Bn−i

= Bn +
∑∆−1

i=1 (−1)i(
(

∆−1
i

)
+
(

∆−1
i−1

)
) + (−1)∆Bn−∆

=
∑∆

i=0(−1)i
(

∆
i

)
Bn−i.

4 Lower bound on the number of colorings of graphs with
fixed maximum degree

A lower bound on B(G) for graphs of order n and bounded maximum degree ∆ is easy to
obtain for some values of ∆, but more intricate or still open for the other ones. In the rest
of this section, we say that a graph G∗ is extremal if B(G∗) ≤ B(G) for all graphs G of order
n such that ∆(G) = ∆(G∗). The following property will be used intensively in the ongoing
proofs.

Property 5. Let G be a graph with two vertices v and w such that vw /∈ E and

max(d(v), d(w)) < ∆(G).

Then, G is not extremal.

Proof. Adding the edge vw will not change the value of ∆(G) but will strictly decrease the
number of colorings of G.

We start by defining a graph of order n and with maximum degree equal to 1. If n is
even, then G<n,∆=1 is the disjoint union of n

2 copies of K2; if n is odd, it is the disjoint union
of G<n−1,∆=1 and an isolated vertex. The graph G<7,∆=1 is drawn on the left-hand side of
Figure 6.
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• • • •

•

• •

••

•

• •

•

••
•

Figure 6: The graphs G<7,∆=1, G<7,∆=2 and K6 ∪ K1 (from left to right).

Theorem 6. Let G be a graph of order n such that ∆(G) = 1. Then,

B(G) ≥
bn/2c∑
i=0

(−1)i
(
bn/2c
i

)
Bn−i,

with equality if and only if G is isomorphic to G<n,∆=1.

Proof. Since ∆(G) = 1, G is a disjoint union of several copies of K2 and isolated vertices.
If G has at least two isolated vertices v and w, we know from Property 5 that it cannot be
extremal. Thus, if G is extremal it must be isomorphic to G<n,∆=1.
Consider now the disjoint union of p K2 and q K1. We prove that

B(pK2 ∪ qK1) =
p∑
i=0

(−1)i
(
p

i

)
B2p+q−i.

The equality holds for p = 0 since the graph is then isomorphic to Kq and we have B(Kq) = Bq.
For larger values of p, we proceed by induction using the following equality obtained from (4):

B(pK2 ∪ qK1) = B((p− 1)K2 ∪ (q + 2)K1)− B((p− 1)K2 ∪ (q + 1)K1).

We then have

B(pK2 ∪ qK1) =
∑p−1

i=0 (−1)i
(
p−1
i

)
B2p+q−i −

∑p−1
i=0 (−1)i

(
p−1
i

)
B2p+q−1−i

=
∑p−1

i=0 (−1)i
(
p−1
i

)
B2p+q−i +

∑p
i=1(−1)i

(
p−1
i−1

)
B2p+q−i

= B2p+q +
∑p−1

i=1 (−1)i(
(
p−1
i

)
+
(
p−1
i−1

)
) + (−1)pBp+q

=
∑p

i=0(−1)i
(
p
i

)
B2p+q−i.

To conclude, it is sufficient to observe that G<n,∆=1 is isomorphic to pK2 ∪ qK1 with p = bn/2c
and q = n− 2p.

We now consider graphs G with maximum degree ∆(G) = 2. Before giving a lower bound
on B(G) for such graphs, we prove some useful lemmas.

Lemma 7. Consider a cycle Cn of order n ≥ 6. Then,

S(Cn, k) > S(Cn−3 ∪ C3, k) for k = 3, 4, . . . , n− 2;
S(Cn, k) = S(Cn−3 ∪ C3, k) for k = n− 1, n.
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Proof. The values in the following table show that the result holds for n = 6.

k 3 4 5 6
S(C6, k) 10 20 9 1
S(2C3, k) 6 18 9 1

For larger values or n, the following equalities are obtained from (2)and (3):

S(Cn−3 ∪ C3, k) = S(Pn−3 ∪ C3, k)− S(Cn−4 ∪ C3, k)

= S(Pn−3 ∪ P3, k)− S(Pn−3 ∪ P2, k)− S(Cn−4 ∪ C3, k)

= (S(Pn, k) + S(Pn−1, k))− (S(Pn−1, k) + S(Pn−2, k))
−S(Cn−4 ∪ C3, k)

= S(Pn, k)− S(Pn−2, k)− S(Cn−4 ∪ C3, k)

Clearly, S(Pn−2, k) > 0 for k = 3, 4, . . . , n − 2 and S(Pn−2, k) = 0 for k = n − 1, n. Also, by
induction, we have S(Cn−4∪C3, k) < S(Cn−1, k) for k = 3, 4, . . . , n−3, and S(Cn−4∪C3, k) =
S(Cn−1, k) for k = n − 2, n − 1. Moreover, S(Cn−4 ∪ C3, n) = S(Cn−1, n) = 0. Hence,
S(Cn−3 ∪ C3, k) ≤ S(Pn, k)− S(Cn−1, k), with equality only if k = n− 1, n. To conclude, we
observe from (2) that S(Pn, k)− S(Cn−1, k) = S(Cn, k).

Since S(Cn, 2) ≥ 0 while S(Cn−3 ∪C3, 2) = 0 for n ≥ 6, the following corollary is straight-
forward.

Corollary 8. Consider a cycle Cn of order n ≥ 6. Then Cn >S Cn−3 ∪ C3.

Lemma 9. Consider a cycle Cn of order n ≥ 3. Then,

S(Cn ∪ K1, k) = S(Pn+1, k) for k = 3, 4, . . . , n+ 1.

Proof. The result is valid for n = 3 since S(C3 ∪ K1, 3) = S(P4, 3) = 3 and S(C3 ∪ K1, 4) =
S(P4, 4) = 1. For larger values or n and k ≥ 3, we proceed by induction and apply (2) and
(3) to obtain:

S(Cn ∪ K1, k) = S(Pn ∪ K1, k)− S(Cn−1 ∪ K1, k)

= S(Pn+1, k) + S(Pn, k)− S(Cn−1 ∪ K1, k)

= S(Pn+1, k)

Corollary 10. Consider a cycle Cn of order n ≥ 4. Then

Cn ∪ K1 >S Cn+1 if n is even;
Cn ∪ K1 >S Cn−2 ∪ C3 if n is odd.

Proof. Since S(Pn+1, k) > S(Cn+1, k) for k = 3, 4, . . . , n, it follows from Lemma 9 that S(Cn∪
K1, k) > S(Cn+1, k) for k = 3, 4, . . . , n.

• If n is even, then S(Cn∪K1, 2) = 2 > 0 = S(Cn+1, 2) and S(Cn∪K1, n+1) = S(Cn+1, n+
1) = 1, which implies Cn ∪ K1 >S Cn+1.
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• If n is odd, then we know from Lemma 7 that S(Cn+1, k) ≥ S(Cn−2 ∪ C3, k) for k =
3, 4, . . . , n+ 1. Since S(Cn ∪ K1, 2) = S(Cn−2 ∪ C3, 2) = 0.

Lemma 11. Consider a cycle Cn of order n ≥ 5. Then, Cn−2 ∪ K2 >S Cn.

Proof. By applying (2) and (3), we obtain the following equalities which are valid for all k ≥ 2:

S(Cn−2 ∪ K2, k) = S(Pn−2 ∪ K2, k)− S(Cn−3 ∪ K2, k)

= S(Pn, k) + S(Pn−1, k)− S(Pn−3 ∪ K2, k)
+S(Cn−4 ∪ K2, k)

= S(Pn, k) + S(Pn−1, k)− S(Pn−1, k)− S(Pn−2, k)
+S(Cn−4 ∪ K2, k)

= S(Pn, k)− S(Pn−2, k) + S(Cn−4 ∪ K2, k). (6)

We now analyse three different cases.

• If k ≥ 4, we first show that S(Cn−2 ∪ K2, k) = S(Pn, k). This is true for n = 5, 6 since
S(C3∪K2, 4) = S(P5, 4) = 6, S(C3∪K2, 5) = S(P5, 5) = 1, S(C4∪K2, 4) = S(P6, 4) = 25,
S(C4 ∪K2, 5) = S(P6, 5) = 10, and S(C4 ∪K2, 6) = S(P6, 6) = 1. For larger values or n,
the equality is obtained by induction, using equation (6), since S(Cn−4 ∪ K2, k) is then
equal to S(Pn−2, k).
Since S(Cn, k) ≤ S(Pn, k) for all k, we have S(Cn, k) ≤ S(Cn−2∪K2, k) for k = 4, 5, . . . , n.

• If k = 3, we first show that S(Cn−2 ∪ K2, 3) = S(Pn, 3) + (−1)n. This is true for
n = 5, 6 since S(C3 ∪ K2, 3) = 6, S(P5, 3) = 7, S(C4 ∪ K2, 3) = 16, and S(P6, 3) = 15.
For larger values or n, the equality is obtained by induction, using equation (6), since
S(Cn−4 ∪ K2, k) is then equal to S(Pn−2, 3) + (−1)n−2 = S(Pn−2, 3) + (−1)n.
Since S(Cn−1, 3) > 1 for all n ≥ 5, we conclude that S(Cn, 3) = S(Pn, 3)−S(Cn−1, 3) ≤
S(Pn, 3)− 2 < S(Pn, 3) + (−1)n = S(Cn−2 ∪ K2, 3).

• If k = 2 then S(Cn, 2) ≤ S(Cn−2 ∪ K2, 2) since both S(Cn, 2) and S(Cn−2 ∪ K2, 2) equal
0 if n is odd, while S(Cn, 2) = 1 < 2 = S(Cn−2 ∪ K2, 2) if n is even.

The graph G<n,∆=2 is defined as follows:
• it is the disjoint union of n

3 copies of K3 if n ≡ 0 (mod 3);
• it is the disjoint union of G<n−4,∆=2 and C4 if n ≡ 1 (mod 3);
• it is the disjoint union of G<n−5,∆=2 and C5 if n ≡ 2 (mod 3).

The graph G<7,∆=2 is illustrated in the middle of Figure 6. We now give a lower bound on
B(G) for graphs G with maximum degree ∆(G) = 2 and order n ≥ 5. This is not restrictive
because if n ≤ 4 and ∆ = 2, then ∆ = n− 2 or ∆ = n− 1 and these cases are treated later.

Theorem 12. Let G be a graph of order n ≥ 5 such that ∆(G) = 2. Then,

B(G<n,∆=2) ≤ B(G),

with equality if and only if G is isomorphic to G<n,∆=2.
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Proof. Suppose G is extremal. Since ∆(G) = 2, G is the disjoint union of cycles and paths.
It follows from Property 5 that at most one connected component of G is a path, and such a
path can only be K1 or K2.

Case 1 : K1 is a connected component of G.
Let Cr (r ≥ 3) be a longest cycle of G. If r = 3, then G is the disjoint union of K1 and at least
two copies of C3 (because n ≥ 5). Thus, G = 2C3 ∪ K1 ∪ H where H is a (possibly empty)
disjoint union of C3. The following table shows that G is not extreme since 2C3∪K1 >S C3∪C4,
a contradiction.

k 2 3 4 5 6 7
S(2C3 ∪ K1, k) 0 18 78 63 15 1
S(C3 ∪ C4, k) 0 18 66 55 14 1

If r ≥ 4, then we know from Corollary 10 that either Cr+1 (if r is even) or Cr−2 ∪ C3 (if r is
odd) is strictly dominated by Cr ∪ K1. Hence, G is not extremal, a contradiction.

Case 2 : K2 is a connected component of G.
Let Cr be any cycle in G. We know from Lemma 11 that Cr ∪K2 >S Cr+2, which means that
G is not extremal, a contradiction.

Case 3 : G is the disjoint union of cycles.
Since G is extremal, we know from Corollary 8 that these cycles are copies of C3, C4 or C5.
The following tables show that 2C5 >S 2C3 ∪ C4, C5 ∪ C4 >S 3C3, and 2C4 >S 2C5 ∪ C3.
Hence, since G is extremal, it contains no more than one C4 or one C5, which means that G
is isomorphic to G<n,∆=2.

k 2 3 4 5 6 7 8 9 10
S(2C5, k) 0 150 2250 6345 6025 2400 435 35 1
S(2C3 ∪ C4, k) 0 108 1908 5838 5790 2361 433 35 1

k 2 3 4 5 6 7 8 9
S(C5 ∪ C4, k) 0 90 750 1415 925 246 27 1
S(3C3, k) 0 36 540 1242 882 243 27 1

k 2 3 4 5 6 7 8
S(2C4, k) 2 52 241 296 126 20 1
S(C5 ∪ C3, k) 0 30 210 285 125 20 1

Since C3 = K3, we can link the above result with the generalized Bell numbers mentioned
in Section 2.

Corollary 13. Let G be a graph of order n such that n ≡ 0 (mod 3) and ∆(G) = 2. Then

B(G) ≥ B3,n
3

We now give a lower bound on B(G) for graphs G of order n and maximum degree n− 2.
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Theorem 14. Let G be a graph of order n ≥ 2 such that ∆(G) = n− 2. Then,

B(G) ≥ n

with equality if and only if G is isomorphic to Kn−1 ∪K1 when n 6= 4, and G is isomorphic to
K3 ∪ K1 or C4 otherwise.

Proof. The proof is by induction on n and the result is clearly valid for n = 2. Notice first
that B(Kn−1∪K1) = n because either the isolated vertex of K1 has its own color, or it uses one
of the n− 1 colors in Kn−1. So let G be an extremal graph of order n > 2 with ∆(G) = n− 2.
We then have B(G) ≤ B(Kn−1 ∪ K1) = n. Let x be any vertex of degree n − 2, and let y be
the unique vertex that is not adjacent to x. It follows from Property 5 that if two vertices v
and w distinct from x and y are non-adjacent, then they are both adjacent to y. Hence, if y
is an isolated vertex in G, then G is isomorphic to Kn−1 ∪ K1.

So suppose d(y) ≥ 1 and let v be one of its neighbors. Since v is not dominating, there
exists at least one vertex w not adjacent to v. As observed above, w is necessarily adjacent to
y. Let W be the set of vertices adjacent to y. We therefore have |W | ≥ 2 and, by Property 5,
every vertex non-adjacent to y has degree n − 2. Let G′ be the graph induced by W . No
vertex of G′ is dominating (else it would also be dominating in G), and since at least one of v
and w has degree n− 2 in G (and thus has degree |W | − 2 in G′), we have ∆(G′) = |W | − 2.
By induction, B(G′) ≥ |W |.

Given any coloring of G′, we can construct n − |W | non-equivalent colorings of G by
copying the colors on the vertices of W , assigning new colors to all vertices non-adjacent to
y, and either assigning one of these n− |W | − 1 new colors to y, or a new one not shared by
any other vertex. Hence,

n ≥ B(G) ≥ B(G′)(n− |W |) ≥ |W |(n− |W |). (7)

Then, n− |W | ≥ |W |(n− |W | − 1) ≥ 2(n− |W | − 1), which implies n− |W | ≤ 2. Since x and
y do not belong to W , we have n − |W | = 2. Hence, equation (7) becomes |W | + 2 ≥ 2|W |,
which is equivalent to |W | ≤ 2. Since v and w belong to W , we have |W | = 2. In summary,
B(G) = n = 4 and G is isomorphic to C4.

Finally, notice that the lower bound on B(G) for graphs G with ∆(G) = n − 1 is trivial
since Kn has clearly the minimum number of colorings among all graph of order n.

5 Concluding remarks

We have studied some properties of the Bell number of a graph that corresponds to the number
of non-equivalent proper vertex colorings. We have shown similarities and differences between
this invariant and the famous chromatic polynomial. We have given lower and upper bounds
on its value for graphs with bounded maximum degree.

It would be interesting to determine a lower bound on B(G) for graphs G of order n and
with maximum degree in {3, 4, . . . , n − 3}. The extremal graphs in this case do not seem to
have a simple structure, as was the case for ∆(G) = 1, 2, n − 2, n − 1. We have determined
some of them by exhaustive enumeration. For example, we have drawn in Figure 7 the only
graphs G of order n = 6, 7, 8, 9 with minimum value B(G) when ∆(G) = 3, 4, 5.
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Notice also that several graphs with minimum value B(G) are non-connected. It would
be interesting to determine these extremal graphs with the additional constraint that G must
be connected. Also, it could be interesting to characterize the graphs G that minimize or
maximize B(G) when the order and the size of G are fixed.
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Figure 7: Unique graphs G of order n = 6, 7, 8, 9 and maximum degree ∆(G) = 3, 4, 5 with
minimum value for B(G).
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