On the sets of n points forming n + 1 directions

Cédric Pilatte

Department of Mathematics University of MONS (UMONS) Place du Parc, 20 7000 Mons, Belgium

cedric.pilatte@umons.ac.be

Submitted: Nov 11, 2018; Accepted: Dec 22, 2019; Published: Jan 24, 2020 © The author. Released under the CC BY-ND license (International 4.0).

Abstract

Let S be a set of $n \ge 7$ points in the plane, no three of which are collinear. Suppose that S determines n + 1 directions. That is to say, the segments whose endpoints are in S form n + 1 distinct slopes. We prove that S is, up to an affine transformation, equal to n of the vertices of a regular (n + 1)-gon. This result was conjectured in 1986 by R. E. Jamison.

Mathematics Subject Classifications: 52C10, 52C30, 52C35

1 Introduction

In 1970, inspired by a problem of Erdős, Scott [15] asked the following question, now known as the slope problem: what is the minimum number of directions determined by a set of n points in \mathbb{R}^2 , not all on the same line? By the number of directions (or slopes) of a set S, we mean the size of the quotient set $\{PQ \mid P, Q \in S, P \neq Q\}/\sim$, where \sim is the equivalence relation given by parallelism: $P_1Q_1 \sim P_2Q_2 \iff P_1Q_1 \parallel P_2Q_2$.

Scott conjectured that n points, not all collinear, determine at least $2\lfloor \frac{n}{2} \rfloor$ slopes. This bound can be achieved, for even n, by a regular n-gon; and for odd n, by a regular (n-1)-gon with its center. After some initial results of Burton and Purdy [2], this conjecture was proven by Ungar [16] in 1982, using techniques of Goodman and Pollack [5]. His beautiful proof is also exposed in the famous *Proofs from the Book* [1, Chapter 11]. Recently, Pach, Pinchasi and Sharir solved the tree-dimensional analogue of this problem, see[12, 13].

A lot of work has been done to determine the configurations where equality in Ungar's theorem is achieved. A *critical set* (respectively *near-critical set*) is a set of n non-collinear points forming n - 1 slopes (respectively n slopes). Jamison and Hill described four infinite families and 102 sporadic critical configurations [6, 7, 10]. It is conjectured

that this classification is accurate for $n \ge 49$. No classification is known in the near-critical case. See [8] for a survey of these questions, and other related ones.

In this paper, we suppose that no three points of S are collinear (we say that S is in general position). This situation was first investigated by Jamison [9], who proved that S must determine at least n slopes. As above, equality is possible with a regular n-gon. It is a well-known fact that affine transformations preserve parallelism. Therefore, the image of a regular n-gon under an affine transformation also determines exactly nslopes.¹ Jamison proved the converse, i.e. that the affinely regular polygons are the only configurations forming exactly n slopes.

A much more general statement is believed to be true: for some constant c_1 , if a set of n points in general position forms $m = 2n - c_1$ slopes, then it is affinely equivalent to n of the vertices of a regular m-gon (see [9]). This would imply, in particular, that for every $c \ge 0$ and n sufficiently large, every simple configuration of n points determining n + c slopes arises from an affinely regular (n + c)-gon, after deletion of c points. Jamison's result thus shows it for c = 0. Here, we will prove the case c = 1. The general conjecture is still open. In fact, for $c \ge 2$, it is not even known whether the points of S form a convex polygon.

Every affinely regular polygon is inscribed in an ellipse. Conics will play an important role in our proof. Another problem of Elekes [3] is the following: for all $m \ge 6$ and C > 0, there exists some $n_0(m, C)$ such that every set $S \subset \mathbb{R}^2$ with $|S| \ge n_0(m, C)$ forming at most C|S| slopes contains m points on a (possibly degenerate) conic. It is still unsolved, even for m = 6.

2 Preliminary Remarks

Let S be a set of n points in the plane, in general position, that determines exactly n + 1 slopes. If S had a point lying strictly inside its convex hull, there would be at least n + 2 slopes, as was proved by Jamison [9, Theorem 7]. Therefore, we know that we can label the points of S as A_1, \ldots, A_n , such that $A_1A_2 \ldots A_n$ is a convex polygon.

For every point $A_i \in S$, there are n-1 segments, with distinct slopes, joining A_i to the other points of S. We will say that a slope is *forbidden* at A_i if it is not the slope of any segment A_iA_j , for $j \neq i$. Since S determines n+1 slopes, there are exactly two forbidden slopes at each point of S.

We will denote by $\nabla A_i A_j$ the slope of the line $A_i A_j$. Thus, an equality like $\nabla A_{i_1} A_{i_2} = \nabla A_{i_3} A_{i_4}$ is equivalent to $A_{i_1} A_{i_2} \parallel A_{i_3} A_{i_4}$. Throughout our main proof, we will repeatedly make use of the next lemma. It will be particularly useful to prove that a slope is forbidden at a point or that two slopes are equal. As an obvious corollary, we have that $\nabla A_{i-1} A_{i+1}$ is forbidden at A_i for all $i \in \mathbb{Z}$. Throughout the paper, when we say "for all $i \in \mathbb{Z}$ ", we consider the indices modulo n, so that $A_{n+1} := A_1$, and so on.

 $^{^{1}}$ A polygon obtained as the image of a regular polygon by an affine transformation is sometimes called an *affine-regular* or *affinely regular* polygon.

Lemma 1. Let $1 \leq i < j < k \leq n$. Exactly one of the following is true:

- the slope of A_iA_k is forbidden at A_j ;
- $\exists p, i .$

Moreover, in the second case, $\nabla A_j A_p \notin \{\nabla A_i A_l \mid l \neq j, k\} \cup \{\nabla A_l A_j \mid l \neq i, k\}$.

Proof. This is almost immediate from the definition of a forbidden slope. In the second case, if $p \in \{1, \ldots, n\}$ were not between i and k, the segments A_iA_k and A_jA_p would intersect. Finally, if ∇A_jA_p were equal to some ∇A_iA_l , then $A_iA_k \parallel A_jA_p \parallel A_iA_l$, so A_i, A_k and A_l would be aligned, a contradiction. The same is true for the segments A_lA_j .

We will also need the following result, which can be found in [14, Chapter 1].

Proposition 2. Let C be a non-degenerate conic and O a point on C. If P, Q are two points on C, define P + Q to be the unique point R on C such that $RO \parallel PQ$ (with the convention that XX is the tangent to C at X, for $X \in C$). This addition turns C into an abelian group, of which O is the identity element.

In particular, for P, Q, R, S four points on C, we have P + Q = R + S if and only if $PQ \parallel RS$. Lemma 3 will enable us to introduce conics in the proof, in order to use proposition 2.

Lemma 3. Suppose P_1, \ldots, P_6 are points in the plane such that $P_1P_6 \parallel P_2P_5$, $P_2P_3 \parallel P_1P_4$ and $P_4P_5 \parallel P_3P_6$. Then P_1, \ldots, P_6 lie on a common conic.

Proof. This follows immediately from Pascal's theorem applied to the hexagon $\mathcal{H} = P_1 P_4 P_5 P_2 P_3 P_6$. Indeed, the intersections of the opposite sides of \mathcal{H} are collinear on the line at infinity.

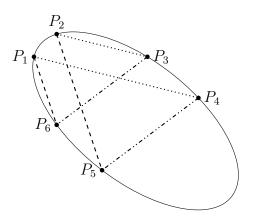


Figure 1: Illustration of lemma 3.

For the reader's convenience, we reproduce here a result of Korchmáros [11] (which is also discussed in [4]), that we will use twice in the proof.

Lemma 4. Let P_1, \ldots, P_n be distinct points on a non-degenerate conic. Suppose that, for all $j \in \mathbb{Z}$, $P_{i+1}P_{i+2} \parallel P_iP_{i+3}$. Then, P is affinely equivalent to a regular n-gon.

3 Main Theorem

In this section, we prove the following theorem, using the results from section 2.

Theorem 5. Any set S of $n \ge 7$ points in the plane, in general position, that determines exactly n + 1 slopes, is affinely equivalent to n of the vertices of a regular (n + 1)-gon.

Proof. We use the notations of section 2: $S = \{A_1, A_2, \ldots, A_n\}$ where $A_1A_2 \ldots A_n$ is a convex polygon. We will split the proof into two cases. In the first case, we suppose that, for every $i \in \mathbb{Z}$, $A_{i+1}A_{i+2} \parallel A_iA_{i+3}$. If this fails for some i, we can assume that this i is 1.

<u>**Case 1**</u> For every $i \in \mathbb{Z}$, $A_{i+1}A_{i+2} \parallel A_iA_{i+3}$.

We will distinguish subcases according to which segments are parallel to A_iA_{i+5} . As we will see, none of the subcases are actually possible.

<u>Case 1.1</u> For all $i \in \mathbb{Z}$, $A_i A_{i+5} \parallel A_{i+1} A_{i+4}$.

Let A_{k+1}, \ldots, A_{k+6} be any six consecutive points of S. We have $A_{k+1}A_{k+6} \parallel A_{k+2}A_{k+5}$, $A_{k+2}A_{k+3} \parallel A_{k+1}A_{k+4}$ and $A_{k+4}A_{k+5} \parallel A_{k+3}A_{k+6}$ from our two assumptions. Thus, lemma 3 implies that the six points lie on a common conic. As this is true for any six consecutive points, and since five points in general position determine a unique conic, all the A_i 's lie on the same conic. Together with the fact that $\forall i, A_{i+1}A_{i+2} \parallel A_iA_{i+3}$, this implies that $A_1A_2\ldots A_n$ is affinely equivalent to a regular *n*-gon, by lemma 4. Therefore, *S* determines exactly *n* directions, which is a contradiction.

<u>Case 1.2</u> For some $i \in \mathbb{Z}$, we have $A_i A_{i+5} \parallel A_{i+2} A_{i+4}$.

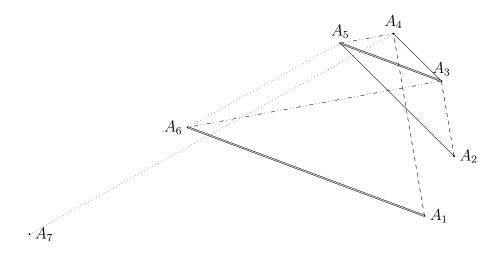


Figure 2: Case 1.2.

Say i = 1, meaning $A_1A_6 \parallel A_3A_5$. By lemma 1 applied three times, we see that ∇A_2A_6 is forbidden at A_3, A_4 and A_5 (here, we have used that $A_2A_6 \not\parallel A_3A_5$ and, for A_4 , that $A_3A_4 \parallel A_2A_5$ and $A_4A_5 \parallel A_3A_6$). For l = 3, 4, 5, we know that ∇A_2A_6 and $\nabla A_{l-1}A_{l+1}$ are exactly the two forbidden slopes at A_l . Therefore, ∇A_1A_5 is not forbidden

at A_4 , hence, by lemma 1 again, we conclude that $A_1A_5 \parallel A_2A_4$. Similarly, ∇A_3A_7 is not forbidden at A_4 , so $A_3A_7 \parallel A_4A_6$. As the slope of A_2A_7 is not forbidden at A_5 , we conclude $A_2A_7 \parallel A_4A_5(\parallel A_3A_6)$. We have $A_3A_4 \parallel A_2A_5$, $A_3A_6 \parallel A_2A_7$ and we just showed that $A_2A_7 \parallel A_3A_6$. By lemma 3, A_2, A_3, \ldots, A_7 lie on a common conic.

We will equip this conic with the group structure described in lemma 2, with A_7 the zero element. We will write $A_7 = 0$ and $A_6 = x$. Then, $A_5A_6 \parallel A_4A_7$, $A_4A_5 \parallel A_3A_6$ and $A_4A_6 \parallel A_3A_7$ together imply $A_5 = 2x$, $A_4 = 3x$ and $A_3 = 4x$. Also, $A_3A_4 \parallel A_2A_5$ gives $A_2 = 5x$. Let B be the point on the conic with B = 6x. We thus have $A_2A_3 \parallel BA_4$ and $A_2A_4 \parallel BA_5$. However, there can only be one point P with $A_2A_3 \parallel PA_4$ and $A_2A_4 \parallel PA_5$. As A_1 is such a point, $A_1 = B = 6x$. This contradicts $A_1A_6 \parallel A_3A_5$, as $A_1 + A_6 = 6x + x \neq 4x + 2x = A_3 + A_5$.

<u>Case 1.3</u> For some $i \in \mathbb{Z}$, we have $A_i A_{i+5} \parallel A_{i+1} A_{i+3}$.

This is exactly the previous case after having relabelled every A_i as A_{n+1-i} .

<u>Case 1.4</u> The previous cases do not apply.

If none of the previous cases is possible, there must be some i, say i = 1, for which A_1A_6 is not parallel to any of A_2A_5 , A_3A_5 and A_2A_4 . Then, ∇A_1A_6 is forbidden at A_2, A_3, A_4 and A_5 . Once again, we deduce that the forbidden slopes at $A_l, 2 \leq l \leq 5$, are ∇A_1A_6 and $\nabla A_{l-1}A_{l+1}$. We use lemma 1 to find $A_2A_6 \parallel A_3A_5$ (applied with $A_k = A_4$) and $A_1A_5 \parallel A_2A_4$ ($A_k = A_2$).

Let C be the conic passing through A_1, A_2, \ldots, A_5 . We use lemma 2 to define a group structure on C, with $A_1 = 0$. Let $A_2 = x$ and $A_3 = y$. From $A_2A_3 \parallel A_1A_4$ and $A_3A_4 \parallel A_2A_5$, we have $A_4 = x + y$ and $A_5 = 2y$. But $A_2A_4 \parallel A_1A_5$ implies y = 2x, so $A_i = (i - 1)x$ for $1 \leq i \leq 5$. We use the same argument as before. Let B = 5x, then $A_4A_5 \parallel A_3B$ and $A_3A_5 \parallel A_2B$, so $B = A_6 = 5x$. We deduce $A_1A_6 \parallel A_2A_5$, a contradiction.

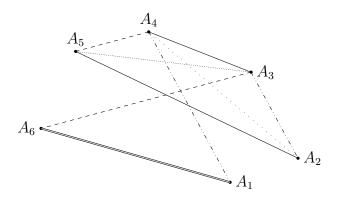


Figure 3: Case 1.4.

<u>**Case 2**</u> We have $A_2A_3 \not\models A_1A_4$ (without loss of generality).

Without loss of generality, we can also suppose that the point A_4 is closer to the line A_2A_3 than is A_1 . In this situation, the line parallel to A_2A_3 passing through A_4 intersects the segment $[A_1A_2]$ in its relative interior, and the line parallel to A_2A_3 passing through A_1 does not intersect the segment $[A_3A_4]$.

From $A_2A_3 \not\models A_1A_4$, we deduce that the forbidden slopes at A_2 and A_3 are ∇A_1A_3 , ∇A_1A_4 and ∇A_2A_4 , ∇A_1A_4 , respectively. Thus, $A_1A_2 \parallel A_nA_3$ and $A_2A_5 \parallel A_3A_4$. We now show that A_2A_3 is forbidden at A_4 . Suppose, for some k, that $A_2A_3 \parallel A_4A_k$. Then, k has to be between 5 and n, so $A_1A_2A_3A_4A_k$ must be a convex polygon, with $A_2A_3 \parallel A_4A_k$. We can see that this contradicts the fact that A_4 is closer than A_1 to the line A_2A_3 .

<u>Case 2.1</u> $A_{n-1}A_2 \parallel A_nA_1.$

We want to show that this case is impossible. From lemma 1, we find $A_{n-1}A_3 \parallel A_nA_2$. When we apply this lemma again with the slope of A_nA_4 , we find that A_nA_4 is parallel to A_1A_3 , because A_2A_3 is forbidden at A_4 . In the same way, we get $A_{n-1}A_4 \parallel A_nA_3$.

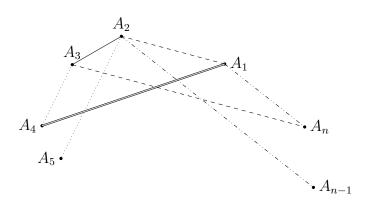


Figure 4: Case 2.1.

Let C be the conic passing through A_3, A_2, A_1, A_n and A_{n-1} . Again, we use proposition 2, setting $A_{n-1} = 0$. Let $A_n = x$ and $A_2 = y$. From $A_{n-1}A_3 \parallel A_nA_2$ we deduce $A_3 = x+y$, and from $A_{n-1}A_4 \parallel A_nA_3$ we get $A_4 = y+2x$. Let B = 2x. Then $A_nA_4 \parallel BA_3$ and $A_nA_3 \parallel BA_2$. This means that B belongs to the line parallel to A_nA_4 through A_3 and to the line parallel to A_nA_3 through A_2 . So $B = A_1$, i.e. $A_1 = 2x$. On the one hand, the relation $A_{n-1}A_2 \parallel A_nA_1$ gives 0+y=x+2x. On the other hand, $A_2A_3 \not\models A_1A_4$ yields $y + (y+x) \neq 2x + (y+2x)$. This is a contradiction.

<u>Case 2.2</u> $A_{n-1}A_2 \not\models A_nA_1$.

This is the last case of the proof, and the only case that produces valid configurations of points. As $A_{n-1}A_2 \not\models A_nA_1$, $\nabla A_{n-1}A_2$ is forbidden at A_1 . With ∇A_0A_2 , those are the two forbidden slopes at A_1 . Therefore, none of ∇A_2A_i , $3 \leq i \leq n-2$ is forbidden at A_1 . So, every ∇A_2A_i , $3 \leq i \leq n-2$, corresponds to a unique ∇A_1A_j for some j.

The electronic journal of combinatorics 27(1) (2020), #P1.24

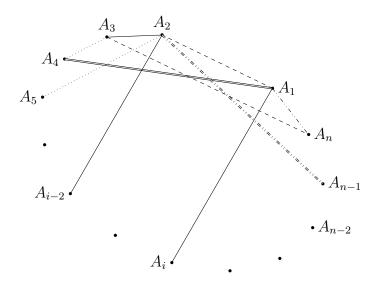


Figure 5: Case 2.2.

A simple but important observation is that, for all $3 \leq i_1, i_2 \leq n-2$ and $4 \leq j_1, j_2 \leq n$,

$$\begin{cases} A_2 A_{i_1} \parallel A_1 A_{j_1} \\ A_2 A_{i_2} \parallel A_1 A_{j_2} \end{cases} \implies (i_1 < i_2 \iff j_1 < j_2).$$

That is, the assignment f that maps every $3 \leq i \leq n-2$ to the unique $4 \leq j \leq n$ such that $A_2A_i \parallel A_1A_j$ must be strictly increasing. Moreover, it has to satisfy $f(3) \neq 4$ as we assumed $A_2A_3 \not\parallel A_1A_4$. The unique possibility is then f(i) = i + 2 for every i. We have proven that, for $5 \leq i \leq n$, $A_2A_{i-2} \parallel A_1A_i$.

<u>Claim 2.2.1.</u> For every $i \in \{5, ..., n\}$,

- 1. $A_{i-2}A_i$ and A_2A_{i-2} are the two forbidden slopes at A_{i-1} , and;
- 2. $\forall k \in \{3, \dots, i-2\}, A_{i-1}A_k \parallel A_iA_{k-1}$.

Proof of claim. For i = 5, we have already proven those two statements. We will prove them for i = j, assuming it has already been proven for all $5 \le i \le j - 1$.

- 1. We have to show that A_2A_{j-2} is forbidden at A_{j-1} . This is clear as $A_2A_{j-2} \parallel A_1A_j$ and there is no point of S between A_1 and A_2 .
- 2. Since we know the forbidden slopes at A_{j-1} , we can use lemma 1 at the point A_{j-1} several times, with different slopes. First, $\nabla A_j A_{j-3}$ is not forbidden, so $A_j A_{j-3}$ and $A_{j-1}A_{j-2}$ are parallel. Then $\nabla A_j A_{j-4}$ is not forbidden, and is distinct from $\nabla A_{j-1}A_{j-2} = \nabla A_j A_{j-3}$, so $A_j A_{j-4} \parallel A_{j-1}A_{j-3}$. We can continue this way, until we get $A_j A_2 \parallel A_{j-1} A_3$. This concludes the proof of the claim.

In particular, for every $i \in \{6, \ldots, n-1\}$, we have $A_3A_i \parallel A_2A_{i+1}, A_5A_i \parallel A_4A_{i+1}$. As $A_3A_4 \parallel A_2A_5$, we can use lemma 1, which shows that A_2, A_3, A_4, A_5, A_i and A_{i+1} lie on a conic. As this is true for every $6 \leq i \leq n-1$, we know that the A_i 's, for $2 \leq i \leq n$, all lie on a common conic (because there is a unique conic passing through five points in general position).

As we have done several times in this proof, we use the group structure on the conic given by parallelism. Choose A_2 to be the identity element, let $A_3 = x$. Solving

$$\begin{cases} A_3 A_4 \parallel A_2 A_5 \\ A_3 A_6 \parallel A_4 A_5 \\ A_3 A_5 \parallel A_2 A_6 \end{cases}$$

gives $A_4 = 2x$, $A_5 = 3x$ and $A_6 = 4x$. Then, a simple induction (using $A_{i-1}A_3 \parallel A_iA_2$) gives $A_i = (i-2)x$ for all $i \in \{2, ..., n\}$. Let B be the point on the conic with B = -2x. Then $A_2A_3 \parallel BA_5$ and $A_2A_4 \parallel BA_6$. However, we proved before that $A_2A_3 \parallel A_1A_5$ and $A_2A_4 \parallel A_1A_6$, so $A_1 = B = -2x$.

To summarize, we know that all the *n* points of *S* are on a conic, $A_i = (i-2)x$ for $i \in \{2, ..., n\}$ and $A_1 = -2x$. We use the group structure one last time: $A_3A_n \parallel A_1A_2$ implies x + (n-2)x = -2x + 0, so (n+1)x = 0. Therefore, the subgroup generated by $A_3 = x$ is a finite cyclic group of order n + 1:

$$\langle A_3 \rangle = \Big\{ \underbrace{A_2}_{0}, \underbrace{A_3}_{x}, \underbrace{A_4}_{2x}, \dots, \underbrace{A_{n-1}}_{(n-3)x}, \underbrace{A_n}_{(n-2)x}, \underbrace{A_1}_{(n-1)x}, -x \Big\}.$$

To finish the proof, we use the more convenient notations $P_j := jx$ for $0 \leq j \leq n$ (so that every A_i is a P_j). If the indices are considered modulo n + 1, we have, for all $j \in \mathbb{Z}$, $P_{j+1}P_{j+2} \parallel P_jP_{j+3}$, because (j+1)x + (j+2)x = jx + (j+3)x. By lemma 4, $P_0P_1P_2 \dots P_n$ is, up to an affine transformation, a regular (n+1)-gon.

Acknowledgements

I would like to thank Christian Michaux, without whom this work would not have been possible.

References

- [1] Martin Aigner and Günter Ziegler. *Proofs from the Book*, volume 274. Springer, 2010.
- [2] G. R. Burton and G. B. Purdy. The directions determined by n points in the plane. Journal of the London Mathematical Society, 2(1):109–114, 1979.
- [3] György Elekes. On linear combinatorics III. Few directions and distorted lattices. Combinatorica, 19(1):43–53, 1999.
- [4] J. Chris Fisher and Robert E. Jamison. Properties of affinely regular polygons. Geometriae Dedicata, 69(3):241–259, 1998.
- [5] Jacob E. Goodman and Richard Pollack. A combinatorial perspective on some problems in geometry. *Congressus Numerantium*, 32(0981):383–394, 1981.

- [6] Robert E. Jamison. Planar configurations which determine few slopes. Geometriae Dedicata, 16(1):17–34, 1984.
- [7] Robert E. Jamison. Structure of slope-critical configurations. *Geometriae Dedicata*, 16(3):249–277, 1984.
- [8] Robert E. Jamison. A survey of the slope problem. Annals of the New York Academy of Sciences, 440(1):34–51, 1985.
- [9] Robert E. Jamison. Few slopes without collinearity. Discrete Mathematics, 60:199– 206, 1986.
- [10] Robert E. Jamison and Dale Hill. A catalogue of sporadic slope-critical configurations. Congressus Numerantium, 40:101–125, 1983.
- [11] G. Korchmáros. Poligoni affin-regolari dei piani di galois d'ordine dispari. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.(8), 56(5):690–697, 1974.
- [12] János Pach, Rom Pinchasi, and Micha Sharir. On the number of directions determined by a three-dimensional points set. Journal of Combinatorial Theory, Series A, 108(1):1–16, 2004.
- [13] János Pach, Rom Pinchasi, and Micha Sharir. Solution of scott's problem on the number of directions determined by a point set in 3-space. Discrete & Computational Geometry, 38(2):399–441, 2007.
- [14] Viktor V. Prasolov and Yuri P. Solovyev. Elliptic functions and elliptic integrals, volume 170. American Mathematical Soc., 1997.
- [15] Paul R. Scott. On the sets of directions determined by n points. The American Mathematical Monthly, 77(5):502–505, 1970.
- [16] Peter Ungar. 2n noncollinear points determine at least 2n directions. Journal of Combinatorial Theory, Series A, 33(3):343–347, 1982.