An Empirical Comparison of the Development History
of CloudStack and Eucalyptus

Ahmed Zerouali
Software Engineering Lab
University of Mons - Belgium
ahmed.zerouali@umons.ac.be

ABSTRACT

Open source cloud computing solutions, such as CloudStack and Eu-
calyptus, have become increasingly popular in recent years. Despite
this popularity, a better understanding of the factors influencing
user adoption is still under active research. For example, increased
project agility may lead to solutions that remain competitive in a
rapidly evolving market, while keeping the software quality under
control. Like any software system that is subject to frequent evolu-
tion, cloud computing solutions are subject to errors and quality
problems, which may affect user experience and require frequent
bug fixes. While prior comparisons of cloud platforms have focused
most often on their provided services and functionalities, the cur-
rent paper provides an empirical comparison of CloudStack and
Eucalyptus, focusing on quality-related software development as-
pects. More specifically, we study the change history of the source
code and its unit tests, as well as the history of bugs in the Jira
issue tracker. We found that CloudStack has a high and more rapidly
increasing test coverage than Eucalyptus. CloudStack contributors
are more likely to participate in development and testing. We also
observed differences between both projects pertaining to the bug
life cycle and bug fixing time.

CCS CONCEPTS

« Software and its engineering — Software testing and debug-
ging; Software defect analysis; General and reference — Empir-
ical studies;

KEYWORDS

Software Analysis, Cloud Computing, Open Source, Empirical Anal-
ysis, Unit Testing, Bug reports

ACM Reference format:

Ahmed Zerouali and Tom Mens. 2017. An Empirical Comparison of the
Development History of CloudStack and Eucalyptus. In Proceedings of ICSDE
’17, Rabat, Morocco, July 21-23, 2017, 6 pages.
https://doi.org/10.1145/3128128.3128146

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSDE ’17, July 21-23, 2017, Rabat, Morocco

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5281-9/17/07...$15.00
https://doi.org/10.1145/3128128.3128146

Tom Mens
Software Engineering Lab
University of Mons - Belgium
tom.mens@umons.ac.be

1 INTRODUCTION

Due to market pressure, the use of open source solutions to deploy
cloud computing as a new service concept has grown dramatically
in recent times, which made it gain a significant attention from
industry and researchers. This service paradigm provides virtu-
alized computing resources as a service on demand, and allows
companies focus on their business issues rather than conceiving
and managing complex infrastructures. In order to improve service
quality infrastructure planning, and selection of the right software
solutions, users and cloud creators need to evaluate and compare
the performance of the features offered by competing platforms.

Trust is the main challenge of open source and commercial cloud
computing solutions. Cloud users need assurance about the avail-
ability and maintainability of the solution they are adopting, while
cloud creators need to understand how their competitors are main-
taining and improving their product.

This article focuses on the quality aspects of cloud computing
solutions in Java. Like any other software system, cloud solutions
are subject to frequent evolution, and may suffer from bugs and
other quality problems that may affect the user experience. An
historical analysis and comparison of how competing cloud solu-
tions are developed and maintained over time is therefore useful for
their creators and users. For this reason, we study and compare two
popular Java-based open source cloud computing systems: Cloud-
Stack and Eucalyptus. Other popular open source cloud computing
solutions such as OpenStack and OpenNebula are not considered
in this study. As they are not developed in Java, comparing their
software development history with Java-based solution would be
unfair and not meaningful.

Lehman’s laws of software evolution [9] describe forces driving
new development and forces that slow down this progress. The
most popular of these laws are “Continuing Change", “Continuing
Growth" and “Declining Quality". Based on these laws we identified
three research questions:

RQ1: How do open source cloud systems grow and evolve?

RQ2: How thoroughly are cloud systems tested and how does this
evolve over time?

RQ3: How do cloud system contributors manage their issue and
bug reports?

https://doi.org/10.1145/3128128.3128146
https://doi.org/10.1145/3128128.3128146

ICSDE ’17, July 21-23, 2017, Rabat, Morocco

2 RELATED WORK

Many studies have been conducted to evaluate the performance im-
provement of open source cloud solutions such as Eucalyptus'[11],
CloudStack?[8] and OpenStack®[14]. As discussed below, there have
been many studies about open source cloud computing solutions
that enable to set up private and hybrid clouds, with as main fo-
cus the analysis and comparison of middleware platform features,
architectures and performance.

Al-Mukhtar et al. [1] evaluated the performance of Eucalyptus
and CloudStack cloud virtual machines covering versatile parame-
ters including the performance of the cloud management platform.
Performance of VMs in term of CPU usage, memory bandwidth,
disk I/O speed and networking performance is rated as key points in
their evaluation. Chilipirea et al. [4] and Vogel et al. [15] performed
a similar comparative analysis for the OpenStack, OpenNebula and
CloudStack platforms.

To date, and to our knowledge, there has been no study that has
compared the technical development history of the available open
source cloud computing solutions. However, few researchers have
already analysed bug reports in open source cloud systems. Jenk-
ins et al. [6] suggested an intelligent framework for testing cloud
platforms and infrastructures and they demonstrated its applicabil-
ity on a prototype framework for testing the Google App Engine.
Frattini et al. [5] presented an empirical analysis tailored to open
source clouds in which they studied 146 bug reports from Apache
Virtual computing. Empirical bug analysis has been demonstrated
to be beneficial for several software systems, such as desktop [12],
mobile operating systems [10] and mobile apps [2]. Moreover, many
studies have shown how the analysis of bug discovery over time
can be useful to predict the residual number of bugs in the code
[13, 16].

In contrast to these related works, this paper compares the de-
velopment and testing history of two open source cloud computing
solutions for Java and analyses their issue reports.

3 METHODOLOGY

To determine the most appropriate cloud solutions for our analysis
we searched for the most popular open source projects that use
the same programming language for their development, that use
the same issue and bug tracker, and that are hosted on the same
version control system. We selected the most competitive Java-
based open source cloud computing projects that are using the Jira
issue for their bug and issue tracking and that are hosted on GitHub:
CloudStack and Eucalyptus.

To enable historical analysis of the co-evolution of the source
code and unit test code in the considered projects, we created a local
clone of their GitHub repository. We extracted the added, removed
and modified Java files as well as the number of committers that
participate in the development in each commit since the creation of
the project. In order to analyse the issue reports of the considered
projects, we extracted all available information that is reported in
Jira, a commercial software product that provides bug tracking,
issue tracking, and project management functions.

!https://www.eucalyptus.com/wiki
Zhttps://cloudstack.apache.org/
3https://www.openstack.org/

Ahmed Zerouali and Tom Mens

Source code is the main artefact affecting the quality of a soft-
ware project throughout its development history. However, many
other technical artefacts should be considered when producing
high quality software. Software testing (e.g., integration testing,
unit testing, functional testing, ...) is a generally acknowledged
way to increase the quality of software.

To evaluate unit test coverage in each project, for each month, we
analysed the first snapshot of each considered project, by looking
at the import statements in each Java file of the project in order to
identify the ones in which we can find the usage of popular unit
testing libraries such as JUnit, TestNG and Spring [17]. To identify
which Java classes are targeted by the unit test cases we parsed
the test Java files and extracted the classes that some or all of their
methods have been tested.

A descriptive summary of the two considered Java cloud projects
is provided in Table 1. The last considered commit of both projects
in our study was 30 March 2017.

Table 1: Descriptive statistics about Java-based cloud solu-
tions CloudStack and Eucalyptus.

CloudStack | Eucalyptus
First commit 2010-08-11 | 2009-01-06
Contributors 241 45
Analysed issues 9,773 15,822
Commits 30,466 26,225

4 EMPIRICAL EVALUATION

We address each research question in a separate subsection by
means of tables, visualisations and statistical tests.

4.1 How do open source cloud projects grow
and evolve?

To answer this question, we analysed the commit history on GitHub
for both considered projects since their first commit and until 30
March 2017.

o - - cloudstack java files
— cloudstack all files

eucalyptus java fil
— eucalyptus all fil

2010 2011 2012 2013 2014 2015 2016 2017
date

Figure 1: Growth evolution of cloud solutions

Figure 1 shows the evolution of the size of both projects in terms
of total number of files and total number of Java files. CloudStack
appears to be twice as big as Eucalyptus, even if the latter is older
than the first. Eucalyptus started with a limited number of files,
while CloudStack started with a big number of files since the first

An Empirical Comparison of the Development History
of CloudStack and Eucalyptus

0.6
' — all modified files

05 — all added files
0.4 modified java files
. - - added java files

2011 .2012 2013 2014 2015 2016 2017

Figure 2: Proportional number of added and modified files
in CloudStack at each point in time.

commit, which can be explained by the fact that CloudStack was
already in development before coming to GitHub in August 2010.
Indeed, its GPLv3 version was released in May 2010. Eucalyptus
was split into two editions, open-core and open source. But after
FJuly 2011, when Citrix purchased Cloud.com, the number of files
of the CloudStack system decreased, to start increasing again after
the donation of the project to the Apache Software Foundation in
April 2012.

However, Java files are the main artefact affecting the growth of
both projects. For both systems, the number of Java files started
with 50% of all files, and ended up to 70%. Furthermore, we ex-
amined the growth evolution curve trend for Java files, and we
found that the trendline of the linear regression model was a good
fit for the project Eucalyptus with a coefficient of determination
R? = 0.92, where CloudStack’s trendline was superlinear fitting the
exponential model with a coefficient of determination R? = 0.85.

To understand how active is the community of both projects,
we calculated the number of added and changed files of any type,
and the Java files in particular, as well as the number of developers
participating in development in each month.

Figure 2 and Figure 3 show the proportional number of the added
and modified files, including Java files, to the size of both projects
at each point in time. For both systems we found that the edited
files in most times, are files related to programming (i.e., Java files).
However, we noticed that some unusual but expected activities
happened after some events, related to the project management.
For example, when Eucalyptus returned to be fully open source in
Fune 2012, a large number of files was added to the project, and
after CloudStack became a Top-Level Project of Apache in March
2013 and released the first stable version after graduation, a high
number of files, mostly Fava files, was edited.

In the other periods, where no special events happened, the per-
centage of the edited files was between 1% and 10% of all files in
both CloudStack and Eucalyptus, while the percentage of the added
files was between 0% and 6%.

For each month, we calculated the number of contributors partic-
ipating in the development of the considered projects. We found
that the mean number of contributors participating in CloudStack
development was twice as high as in Eucalyptus, which can be
explained by the obvious difference in the total number of con-
tributors between the two systems. For both projects, the highest
numbers of contributors were found in the period between 2012
and 2014.

ICSDE ’17, July 21-23, 2017, Rabat, Morocco

— all modified files
— all added files

modified java files
- - added java files

R M
2010 2011 2012 2013 2014 2015 2016 2017

Figure 3: Proportional number of added and modified files
in Eucalyptus at each point in time

4.2 How thoroughly are cloud systems tested
and how does this evolve over time?

In order to give an answer to such question, we focused on unit
tests only, and compared the presence and coverage of Java unit
tests in CloudStack and Eucalyptus. Both systems make use of soft-
ware libraries that support unit testing. While CloudStack uses the
frameworks Spring, TestNG and JUnit, Eucalyptus only uses FUnit.
To calculate the number of tested Java classes, for each Java file,
excluding Java files that contain test cases, we extracted the Java
classes inside and we analysed them.

The percentage of Java classes that are tested in each considered
system is shown in Figure 4. We observe that the number of tested
Fava classes in CloudStack is increasing over time. Until 2013, only
10% of Java classes were tested, but after the release of the first stable
version, this number changed consecutively to achieve 74% in 2017.
However, the change of the number of Java files that contain test
cases was not important. In 2013, 1.7% of all Java files in CloudStack
were test files, this number slightly changed to become 10% in 2017.
For Eucalyptus, only a small portion of Java classes were tested
across the system lifetime, the maximum was in December 2016
with 4% of all classes. However, the number of test files co-evolved
closely with the number of tested Java classes, the maximum was
in December 2016 with 2% of all Java files. These results reflect that
CloudStack is following a good test-driven development approach.

cloudstack
50 -~~~ eucalyptus

tested classes

10

0

g @0 g g g g @ @
date

Figure 4: Percentage of Java classes being tested in both
cloud solutions.

In order to know how many developers participated in unit
testing development, for each year we calculated for each Java
test file (i.e., each file containing JUnit test cases) the number of
developers that participated in its development. We observe that the

ICSDE ’17, July 21-23, 2017, Rabat, Morocco

number of CloudStack developers participating in test code is high,
the maximum number was in 2013 with 65 different developers. For
Eucalyptus, only a maximum of 8 different developers worked on
Java test files in 2014.

70
B cloudstack

BN cucalyptus
40
30
20
10 I

-
)
-
1=
xQ

developers

2009
|
2010

© ~
- —
1= 1=
x xQ

2013
2014

—]
— —
1= 1=
Q N

Figure 5: Number of Java test files touched by a specific num-
ber of developers.

4.3 How do cloud system contributors manage
their issue and bug reports?

To answer our third research question, we analysed the publicly
available issue reports of CloudStack and Eucalyptus found on the
Jira issue tracker® since 2012. Reports can be created and man-
aged by whoever uses the platform (e.g., developers, administrators,
consumers). Developers can report a bug during any stage of the
software life cycle (e.g., development, testing, ...).

4.3.1 Issue Report Analysis. Figure 6 shows pie charts exhibiting
the different issue priorities and their percentage in both considered
projects. In Eucalyptus, 72% of all issues have a “Major" priority.
49% of these issues and 58% of all issues are bugs. With 55%, the
percentage of the “Major" issues in CloudStack is less than in its
competitor, but the percentage of bugs of this proportion is higher
than in Eucalyptus with 67%, and 76% of all issues. For the other
priorities, for both projects, the percentage of bugs is higher than
70% (higher than 85% for “Blocker" and “Trivial" priorities).

cloudstack

Critical

eucalyptus

Blocker

Critical
Blocker
Major Trivial Trivial
8.6

: Minor
Minor

Figure 6: Percentages of issue priorities found across both
cloud projects

Figure 7 shows, for each issue type that is common between
CloudStack and Eucalyptus, a violin plot that compares between
the considered projects, the distribution of the time between the
creation date and the last update of a closed issue across all found

https://www.atlassian.com/software/jira

Ahmed Zerouali and Tom Mens

issues. For issues related to new features and improvements, we did
not find a significant difference between the time that CloudStack
and Eucalyptus issues take before being closed.

The bug issues in CloudStack take less time before closing them
than the bugs in Eucalyptus. To confirm our observations, we used
a one-sided Mann-Whitney U test to verify if there is a statistical
significance difference in the number of days between the creation
date and the closing date. We found a statistical significance at
p-value<0.01 between the two projects, where Eucalyptus bugs take
more days before closing them compared to the bugs of CloudStack.
We also found that, contrary to Eucalyptus, CloudStack has an issue
type related to “Tests” only.

I eucalyptus
[cloudstack

.

Figure 7: Distribution of the number of days between cre-
ation date and last update of each reported issue, classified

by type.

4.3.2 Bug Report Analysis. Figure 8 shows the evolution of the
number of bugs created over time for both Eucalyptus and Cloud-
Stack. We observe that for both projects, the number of bugs re-
ported over time tends to decrease. The highest number of bugs was
found in 2013 for CloudStack and in early 2014 for Eucalyptus. The
number of bugs decreased faster in CloudStack, from 600 created
bugs per month in 2013 to 50 bugs per month in 2016. This can
perhaps be explained by the testing approach that CloudStack has
pursued after 2013 (cf. Section 4.2).

eucalpytus

1
1
500 T \ ---cloudstack

2013 2014 2015 2016 2017

Figure 8: Number of bugs found over time

For each bug report, we extracted and calculated the number
of participants. Figure 9 presents the distribution per year, and
appears to reveal that the number of participants in bug handling for
Eucalyptus is higher than in CloudStack. We statistically tested this
hypothesis with a one-sided Mann-Whitney U test and confirmed
it with statistical significance (p-value<0.01).

An Empirical Comparison of the Development History
of CloudStack and Eucalyptus

I ecucalyptus
[cloudstack

diliis

2012 2013 2014 2015 2016 2017

participants

Figure 9: Number of participants in bug reports

4.3.3 Bug Life Cycle Analysis. The bug life cycle is a cyclic
process followed by reported bugs throughout their lifetime. It
begins when one of the contributors (e.g., tester, developer, ...)
reports the bug and ends when the bug is closed, typically after
a thorough verification to ensure that the bug is not reproduced.
Hence, the bug report has different states in its life cycle.

In order to analyze the bug life cycle for both considered projects
in this study, for each bug we extracted the history of all state
transitions of the bug report. Using the Disco process mining tool®
we generated a generic bug life cycle with the mean time that a bug
takes to remain in each state, considering the most repeated life
cycles of 9,057 bugs in Eucalyptus and 6,235 bugs in CloudStack.

®

Open
6,535 (60.64)

847
13.6 mins

In Progress
1,166 (32.84)

3,162
31d

Resolved
5,957 (13.2mths)

2,317
44.4hrs

438

50.4hrs

Closed
4,241 (41.9 mths)

Reopened
741 (133 wks)

Figure 10: Bug life cycle of CloudStack.

We found that both cloud systems have different bug life cycles
even if they use the same issue tracker. As shown in Figure 10, Cloud-
Stack has a generic bug life cycle with a few number of states. Most

Shttps://fluxicon.com/disco/

ICSDE ’17, July 21-23, 2017, Rabat, Morocco

bugs in CloudStack follow the transition sequence: Open — Re-
solved — Closed.

@®

In Progress
5769 (639)

InQA

3474
5652 (400) e

Unconfirmed
8,144 (1774

Release Pending
5,114 (37649)

Resolved
7,745 (362 wks)

Confirmed
7,852 (185 wks)

®

Figure 11: Bug life cycle of Eucalyptus

As shown in Figure 11, a typical bug life cycle in Eucalyptus
adopts the following sequence:

Unconfirmed — Confirmed — In Progress — [In Review] — In
QA — Release Pending — Resolved — Closed.

This longer life cycle might explain why it takes longer, on aver-
age, for bug reports in Eucalyptus to reach the Closed status. It
also implies that the number of participants involved in a bug fix
in Eucalyptus tends to be higher than in CloudStack. While 92%
of the initially Unconfirmed bugs in Eucalyptus end up in the
Closed status, only 64% of the Opened bugs in CloudStack end
up in the Closed status. Nevertheless, the percentage of bugs that
reach the Resolved status is almost the same in both projects, 91%
in CloudStack and 95% in Eucalyptus. A possible reason is that
many CloudStack contributors consider the Resolved status as an
endpoint.

However, the number of bugs that were Reopened after being
Resolved or Closed in CloudStack is higher than in Eucalyptus,
which means that in order to resolve a bug and despite the effort
that this process can take, the long bug life cycle in Eucalyptus is a
better approach to follow.

5 THREATS TO VALIDITY

Our research suffers from the same threats as other research relying
on Git [3] and GitHub [7].

Our results may not be generalisable to non-java cloud solutions
or to closed-source industrial cloud solutions that are typically
subject to more restricted development rules. While we analysed
the development of two Java-based cloud solutions, the proposed
methodology is applicable to other Java-based open source projects.
In our approach we assume that a Java class is being tested if at

ICSDE ’17, July 21-23, 2017, Rabat, Morocco

least one of its methods is tested, which may lead to false positives,
since a Java class can have many methods that together provide
the functionality offered by this class. We also assume that there is
a strict separation between test code and production code, i.e., the
test files do not contain production code.

6 CONCLUSION AND FUTURE WORK

We analysed two popular and competitive open source cloud com-
puting solutions developed in Java, namely CloudStack and Eucalyp-
tus, based on data about their development history extracted from
the GitHub code versioning tool and its associated Jira issue tracker.
We studied three research questions related to the development
history of the considered cloud computing systems.

We observed that, initially, CloudStack was growing differently,
but in the last two years it started growing at the same rate as
Eucalyptus. We observed that events related to how both projects
are managed appear to affect their evolution of change and growth.
We also found that CloudStack has a good testing approach with a
better unit testing coverage than Eucalyptus. This approach helped
to reduce the number of bugs found over time. We also found that
the studied systems have different bug life cycles and take different
times to resolve and close a bug.

This analysis identifies when bugs are likely to be found in
future development of the cloud systems, the phases of the life
cycle during which such bugs may be resolved, closed or ignored,
as well as hints about the effort required to maintain and improve
these systems. These findings are potentially useful to the developer
communities responsible for these cloud solutions for improving
development and testing activities, as well as for researchers and
new contributors so they can learn from past experiences.

In future work, we will extend our comparison to include more
systems like OpenStack and OpenNebula, that use different program-
ming languages like Python and C++, and we will also take into
consideration the performance and feature aspects.

7 ACKNOWLEDGMENT

This research is part of FRFC research projects T.0022.13 and J.0023.16
financed by F.R.S.-FNRS, Belgium.

Ahmed Zerouali and Tom Mens

REFERENCES

[1] M. AL-Mukhtar and A. A. A. Mardan. Performance evaluation of private clouds
Eucalyptus versus CloudStack. Int’l J. Advanced Computer Science and Applica-
tions, 5(5):108—117, 2014.

[2] P.Bhattacharya, L. Ulanova, I. Neamtiu, and S. C. Koduru. An empirical analysis
of bug reports and bug fixing in open source Android apps. In European Conf.
Software Maintenance and Reengineering, pages 133-143. IEEE, 2013.

[3] C.Bird, P. C.Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and P. Devanbu. The
promises and perils of mining git. In Mining Software Repositories, 2009. MSR’09,
pages 1-10. IEEE, 2009.

[4] C. Chilipirea, G. Laurentiu, M. Popescu, S. Radoveneanu, V. Cernov, and C. Dobre.

A comparison of private cloud systems. In Advanced Information Networking and

Applications Workshops (WAINA), pages 139-143. IEEE, 2016.

F. Frattini, R. Ghosh, M. Cinque, A. Rindos, and K. S. Trivedi. Analysis of bugs in

Apache virtual computing lab. In Int’l Conf. Dependable Systems and Networks

(DSN), pages 1-6. IEEE, 2013.

[6] W. Jenkins, S. Vilkomir, P. Sharma, and G. Pirocanac. Framework for testing
cloud platforms and infrastructures. In Int’l Conf. Cloud and Service Computing
(CSC), pages 134-140. IEEE, 2011.

[7] E.Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and D. Damian.
The promises and perils of mining github. In Proceedings of the 11th working
conference on mining software repositories, pages 92-101. ACM, 2014.

[8] R.Kumar, K. Jain, H. Maharwal, N. Jain, and A. Dadhich. Apache CloudStack:
Open source infrastructure as a service cloud computing platform. Int’l J. Ad-
vancement in Engineering technology, Management and Applied Science, pages
111-116, 2014.

[9] M. M. Lehman. Programs, life cycles, and laws of software evolution. Proc. IEEE,
68(9):1060-1076, September 1980.

[10] A.K. Maji, K. Hao, S. Sultana, and S. Bagchi. Characterizing failures in mobile
OSes: A case study with Android and Symbian. In Int’l Symp. Software Reliability
Engineering (ISSRE), pages 249-258. IEEE, 2010.

[11] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and
D. Zagorodnov. The Eucalyptus open-source cloud-computing system. In Int’l
Symp. Cluster Computing and the Grid, pages 124-131. IEEE Computer Society,
2009.

[12] N.Palix, G. Thomas, S. Saha, C. Calves, J. Lawall, and G. Muller. Faults in Linux:
Ten years later. In ACM SIGPLAN Notices, volume 46, pages 305-318. ACM, 2011.

[13] S.Ramani, S.S. Gokhale, and K. S. Trivedi. Srept: software reliability estimation
and prediction tool. Performance evaluation, 39(1):37-60, 2000.

[14] O. Sefraoui, M. Aissaoui, and M. Eleuldj. OpenStack: toward an open-source
solution for cloud computing. Int’l . Computer Applications, 55(3), 2012.

[15] A. Vogel, D. Griebler, C. A. Maron, C. Schepke, and L. G. Fernandes. Private

Taa$S clouds: a comparative analysis of OpenNebula, CloudStack and OpenStack.

In Int’l Conf. Parallel, Distributed, and Network-Based Processing (PDP), pages

672-679. IEEE, 2016.

A. Wood. Predicting software reliability. Computer, 29(11):69-77, 1996.

A. Zerouali and T. Mens. Analyzing the evolution of testing library usage in open

source Java projects. In Int’l Conf. Software Analysis, Evolution and Reengineering

(SANER).

—
&

e
N

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	4 Empirical Evaluation
	4.1 How do open source cloud projects grow and evolve?
	4.2 How thoroughly are cloud systems tested and how does this evolve over time?
	4.3 How do cloud system contributors manage their issue and bug reports?

	5 Threats to Validity
	6 Conclusion and Future Work
	7 Acknowledgment
	References

