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Abstract

Reducing time-to-market, reducing development and production costs and
increasing acoustic comfort, means less physical prototyping and more
predictive modeling. However, predictive acoustic and vibro-acoustic models
using FEM and BEM methods have often had limited usefulness, partly due to
the long times taken to get the substantial amounts of results needed for
engineering design optimization.

In this paper, recently-developed technologies are presented which
accelerate acoustic solutions. An array of approaches is presented, using finite,
infinite and boundary element methods, which are based on re-usable Modal
Acoustic Transfer Vectors, Padé methods for rapid frequency-sweep solutions,
domain decomposition, finite element iterative solvers and multi-processor
‘netsolvers’. These technologies make for timely and effective acoustic
predictions, which are also accurate. They tackle a wide range of applications,
such as engine acoustics and other machinery noise radiation, interior vehicle
acoustics and component vibro-acoustics. They enable the design of practical
solutions and are effective in reducing time-to-market and development costs.
The fundamentals of various methods, their deployment in software and a
selection of practical applications, timing benchmarks and case studies are
presented.

1 Introduction

The economic drivers of reduced time to market, improved product quality and
reduced risks and costs, mean that virtual prototyping has become essential in
many industries. Optimising a product by 'testing’ virtual prototypes requires
multiple calculations of functional performance, including vibro-acoustics.
During the past two decades, Finite Element Methods (FEM) and Boundary
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Element Methods (BEM) have been extensively used, made possible by
advances in computer performance. Nevertheless, the analyst wants answers
about his design within hours, even minutes, to be able to steer the design:
calculations only for verification purposes may take days or weeks, but that is
not acceptable in virtual prototyping processes. Furthermore, there is a clear
need for advanced tools in the mid-frequency range. Unlike some high-
frequency methods, the useful frequency ranges for FEM and BEM are not
limited theoretically, but by the capabilities of the computer and the solution
time.

Successful deployment of FEM and BEM for vibro-acoustic simulation thus
demands faster and more effective solutions. This paper presents state-of-the-art
speed-up methods for FEM and BEM:

s ATV technology for multi-frequency and multi-RHS BEM
computations

Padé expansion for multi-frequency BEM computations

Iterative Solvers for acoustic FEM computations

Domain Decomposition for acoustic FEM computations

Network Solvers for acoustic FEM and BEM computations (coupled or
uncoupled).

The commercial packages LMS SYSNOISE Rev 5.5 [1] and Rev 5.6 (beta
release) have been used to compute the numerical examples which are shown.

2 ATV™ Technology (BEM and FEM)

2.1 Acoustic Transfer Vectors

The Acoustic Transfer Vector (ATV) method, and its extension to Modal
Acoustic Transfer Vectors, provides a huge speed-up for vibro-acoustic
computations when there are multiple frequencies and multiple structural
vibration load-cases (such as from an engine run-up). Furthermore, once
computed, the ATVs or MATVs can be re-used efficiently with revised
vibration load-cases or for structural optimization.

Acoustic Transfer Vectors are input-output relations between the normal
structural velocity of the radiating surface and the sound pressure level at a
specific field point. They can be interpreted as an ensemble of Acoustic Transfer
Functions from the surface nodes to a single field point. ATVs only depend on
the configuration of the acoustic domain, i.e. geometry and properties (sound
velocity and mass density), the acoustic surface treatment (local impedance or
admittance), the frequency and the field point location. They do not depend on
the loading. A highly-efficient formulation and implementation in SYSNOISE
Rev 5.5 [1] limits the calculation effort for evaluating a single ATV to the
computational cost of a single load case response calculation.
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2.2 ATY for multi-load-case acoustic forced response

Because the calculation cost is relatively low, and ATVs are (by definition)
independent of the acoustic loading conditions, ATVs can be used efficiently in
multi-load-case acoustic response analyses. Basic theory and an industrial
application are in [2] and the use of ATVs in Panel Acoustic Contribution
Analysis in [3] and in Inverse Acoustic Numerical Analysis in [4] and [5]. A
very-useful data reduction can be had from using Modal ATVs, the modal
counterpart of the ATVs, expressing the acoustic transfer from the radiating
structure to a field point in modal coordinates.

2.3  Interpolation Technique

In the case of sound wave propagation in an .open space, the fluid domain
around the radiating object usually exhibits no resonances. Therefore, ATVs are
rather smooth functions of the frequency, and coefficients can be accurately
evaluated at any intermediate (slave) frequency, using a mathematical
interpolation scheme based on a discrete number of master frequencies. (Note
that the structural normal velocities cannot be similarly interpolated, since these
directly depend upon the highly-resonant dynamics of the structure).

For large problems, computation time is dominated by the factorization time
of the matrix. ATV interpolation does not required a factorization at the slave
frequency, so frequency interpolation in an ATV-based forced response gives a
huge time gain. Additional gains can come from using Netsolvers (Section 5.5).

It is shown elsewhere [6] that a safe choice for the master frequencies is such
that Af < ¢/4r, where c¢ is the speed of sound and r is the maximum distance
between the mesh nodes and the field points.

2.4 ATV Example
An acoustic BEM mesh of 7504 nodes ( Figure 1) is used for an engine.

Both the radiated acoustic power and the pressure at 19 specific locations were
computed (Figure 2).

Figure 1: V6 Engine Figure 2: Sound pressure level above engine.

The response was computed from 1000 to 6000 RPM, with a step of 50
RPM, and from 0 to 2000Hz with a frequency step ranging from 4.2Hz at 1000
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RPM to 25Hz at 6000 RPM (21400 frequency solutions in total). Different
frequency steps were used at different RPMs, to identify the orders.

The complete run took approximately 13.5 hours. A conventional BEM
approach would need about 223 days to perform the same computation!

3  Padé expansions
3.1 Background

The aim of Padé expansion is to solve the Helmholtz integral equation for a
complete frequency band, using factorization of the matrix at selected
frequencies (called master frequencies). For large problems, the computation
time is dominated by the factorization time of the matrix. Therefore, avoiding
multiple factorizations gives large time savings.

Conventionally, a linear (BEM) system has to be solved for each frequency:

A =b(f) (1)

The coefficients of the matrix A depend on the frequency, so A must be
calculated and factorized for each frequency of interest. An alternative is to
approximate the frequency response function by a Padé Approximation (see
[7.8]). Using Padé Approximation rather than more-classical Taylor expansions
is justified by the fact that p(f) can have singular points (poles or eigen
frequencies) and is usually not holomorphic but only meromorphic, so that its
Taylor series does not converge everywhere.

The calculation of a Padé Approximation requires the knowledge of the
successive derivatives of the acoustic quantities with respect to frequency,

evaluated at the central frequency f0 . The first derivative of the surface
potential p is the solution of :
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The derivative of p is obtained by solving the same system of equations that
was solved to obtain the potentials g but with a different right-hand side

involving the derivative of the matrix A, the derivative of the original right-
hand side vector b and the potentials g .

The second- and higher-order derivatives of p with respect to f are the
solution of ;

"p 0" & 0'A "y 3
A—n__n_zcn i pen—i ‘ @
o" o ia o' of



éﬁj Transactions on the Built Environment vol 69, © 2003 WIT Press, www.witpress.com, ISSN 1743-3509

Modelling and Experimental Measurements in Acoustics III 363

The most important property of this recurrence scheme is that the calculation
of the successive derivatives of p requires the factorization of a single matrix

A . The right-hand side vectors associated with the higher-order derivatives of
B are based on the successive derivatives of A.

The coefficients of A are explicit functions of the frequency f which
appears only as a parameter of the Green function G. In a given frequency
range, we compute several matrices A(f;) for different frequencies f;. The

higher-order derivatives of A are computed from these different evaluations of
A . For increased performance, it is assumed here that A varies smoothly with
frequency.

3.2  Practical Issues

The practical value of the methodology depends on three issues: accuracy, speed
(the speed-up can be 10 times) and memory and disk requirements (several
matrices A need to be stored). The approach is also limited to free field
radiation without resonances. Master frequencies and the order of derivatives are
selected automatically based on an accuracy level specified by the user.

3.3 Example

The engine example of Section 2 can also show the benefit of the Padé
expansion. The acoustic response was computed at 80 frequencies from 700Hz
to 1500Hz on HP C3600. The computation using a conventional BEM approach
took 11 hours 36 minutes, whereas the computation using Padé expansion took 1
hour 12 minutes: a speed-up factor of 9.6. A comparison of the pressure above
the engine is so close that the curves appear completely superimposed.

4 Iterative Solvers (FEM)

4.1 Krylov subspace iterative methods

For FEM problems, as model size increases the total computation time is
dominated by the solution of the linear system. An iterative solver circumvents
this and also reduces memory requirements. The iterative solver is based on two
Krylov subspace iterative methods, the restarted generalized minimal residual
(GMRES) method [9] and the quasi-minimal residual (QMR) method [10].
These two methods are known to be robust: theoretical and numerical evidence
of their efficiency can be found in [11-13].

The GMRES method is the most robust but also most expensive, as it
requires the storage of the whole sequence of vectors to be orthogonalized. In
practice, restarted or truncated versions are used to alleviate this drawback. The
QMR method is less expensive in terms of computation time and memory
requirements but also less robust. Therefore, the iterative solver we use is based
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on the QMR method with an automatic shift to GMRES in case of breakdowns.
(In fact, this automatic shift never occurred during the validation and testing).
4.2  The approximate factorization technique

The convergence of Krylov subspace methods is strongly influenced by the
conditioning of the matrix. It is therefore recommended to use a preconditioning
that transforms the original system into a better-conditioned equivalent one by a
pre-multiplication. Theoretical and numerical descriptions of the approximate
factorization technique are given in [13].

Finally, a parallel version of this iterative solver can be used, for additional
time gains. (See Domain Decomposition, below). The parallelization strategy is
based on the concept of pseudo-overlapped sub-domains described in [14].

4.3  Examples
Two examples are presented with velocity and impedance boundary conditions.

A cube is shown in Figure 3 and contains 91126 elements and 97336 nodes.
The test looks trivial, but is often used in validations: it gives the densest FEM
matrix. Comparison of memory and CPU time using the direct and the iterative
solvers is given in Table 1 for one frequency on SGI Origin 3000 computer.

An air intake is shown in Figure 4 and contains 117608 elements and 37593
nodes. Table 2 shows results for a single frequency on the SGI Origin 3000.

Figure 3: Cube (97336 nodes) Figure 4 : Air Intake (37593 nodes)

Solver Memory (MB) CPU time (sec)
Direct 3400 3563
QMR 200 59

(52 iterations)

Table 1: Direct and iterative solver for the cube.

Solver Memory (MB) CPU time (sec)
Direct 538 633
QMR 15 17

(117 iterations)

Table 2: Direct and iterative solver for Air Intake
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5 Domain Decomposition and Network Solvers
5.1  General principles of domain decomposition

A domain decomposition method decomposes the entire domain into sub-
domains and solves the problem on each sub-domain separately. Because of the
de-coupling of the sub-domains, domain decomposition is well-suited for
parallel computing, when each sub-domain is allocated to a single processor. In
order to restore the connection between the sub-domains, continuity conditions
are imposed along the interfaces between the sub-domains. This leads to a so-
called interface problem that describes the coupling of the sub-domains. The
solution of the interface problem readily produces the solution of the global
domain. Whereas the solution of the problem on each sub-domain happens
without communication, the solution of the interface problem requires
communication between neighbouring sub-domains. The amount of
communication depends mostly on the size of the interface between the sub-
domains. In this paper, we consider two specific domain decomposition
methods, called the Finite Element Tearing and Interconnecting method for the
Helmholtz equation (FETI-H method) and the parallel Approximate
Factorization Technique introduced in the previous section.

5.2  The Finite Element Tearing and Interconnecting method

The FETI-H method is a non-overlapping domain decomposition method for
solving linear systems arising from the finite element discretization of the
Helmholtz equation on a bounded domain.

The FETI method introduced in [15] is a domain decomposition technique
that uses a direct method on the sub-domains but an iterative one for solving the
interface problem. It aims at combining the robustness of a direct method with
the ease of the parallel implementation of an iterative procedure. The main
features of the methods from both the numerical analysis and the distributed
parallel implementation points of view are presented in [15].

5.3 The Parallel Approximation Factorization Technique

Whereas the FETI approach is based on a direct resolution for each subdomain,
the Parallel Approximation Factorization Technique is a fully iterative
approach. The parallelization of the Approximate Factorization Technique
introduced in Section 4.2 is based on the concept of pseudo-overlapped
subdomains described in reference [14] where the continuity at the domain
interface is enforced at the end of each Krylov subspace iteration.

5.4 Example of domain decompostion

Table 3 compares the performance of the FETI and AFT methods on SGI Origin
2000 computer for the air intake shown in Figure 4.
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Number of | FETI(sec) | AFT(sec) Ratio
CPU’s FETVAFT
1 633 17 37
4 162 4 39
8 70 2 33
16 54 1.6 33

Table 3 : Computation time for the air intake using FETI and AFT approaches.

5.5 Network solvers

5.5.1 General principles A "Netsolver” aims to solve very large jobs by means
of parallel processing (splitting tasks over multiple processors). As well as using
Domain Decomposition, three 'netsolving' techniques are possible: Frequency
Level, Matrix Level and Thread Level Distribution. The Netsolver supports
various types of parallel platform architecture: Shared or distributed memory
parallel computers, homogeneous or inhomogeneous clusters of workstations.
Three standards for data exchange are used: Public Domain MPI (Message
Passing Interface) for data exchange between homogeneous or heterogeneous
computers linked through a LAN network or between CPUs of parallel solvers,
native MPI for data exchange between the CPUs of parallel solvers, and
OpenMP for shared-memory parallel solvers.

5.5.2 Frequency Level Distribution assigns to each processor a subset of the
total set of frequencies to be computed. Each processor runs its own executable
and performs its own independent analysis. A BEM example (similar to the
engine shown earlier, but with 4532 nodes) was solved at 48 frequencies on four
machines, defining subsets of frequencies and merging the final results database
automatically. The speed-up is about linear (2 machines, 2 times; 4 machines, 4
times): the overheads for merging etc are negligible.

5.5.3 Matrix Level Distribution assigns to each processor a subset of the
global matrix to be computed (partitioning in blocks). Since each node processes
only a sub-part of the matrix, the memory requirement is divided by the number
of nodes. This is an advantage when compared to the Frequency Level
Distribution, for large problems, but the speed-up is not linear: 4 processors, 2.9
times (on an SGI Origin 3000).

5.5.4 Thread Level Distribution assigns the operations within computations,
to several processors. This requires shared-memory parallel computers and
compilers accepting OpenMP directives. The memory required is the same as a
sequential version. On the same SGI Origin 3000, with parallel operations in
both assembling and solving, the speed-up was 3.2 times.
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5.5.5 Combined Levels Frequency and thread levels can be combined: The
previous example was solved for 100 frequencies using 80 CPUs. 20 CPUs were
used for the frequency level (5 frequencies per CPU) and for each frequency 4
threads (slave CPUs) were used. The sequential run took 9h 43min on SGI
Origin 3000, the combined MPI-OpenMP parallel solution took 9min 15 sec, a
speed-up of 63 times.

6 Conclusions

There are several new speed-up technologies - modal acoustic transfer vectors,
Padé methods, domain decomposition, iterative solvers and netsolvers - for
FEM/BEM acoustic solutions. Domain decomposition and iterative solvers are
very efficient for acoustic FEM; ATVs are very useful for multi-frequency and
multi-RHS BEM; and Padé expansion is effective for multi-frequency BEM.
Netsolvers are very efficient for all computations (Acoustic FEM and BEM) and
can be combined with other technologies.
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