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Higher-derivative corrections to cosmological effective actions in string theory are largely constrained
by T-duality, but have been computed hitherto only to the first few orders in the string scale α0. The
functional renormalization group, in conjunction with the strong constraints imposed by T-duality, allows
us to derive cosmological effective actions to all orders in α0 while avoiding “truncations” of the theory
space. We show that the resulting higher-derivative α0-corrections forbid the existence of de Sitter vacua, at
least in regimes where string-loop corrections can be neglected. Our findings thus support the no-de Sitter
swampland conjecture in the presence of all-order effects in α0.
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I. INTRODUCTION

Effective actions in quantum field theories (QFTs)
embody quantum fluctuations on all scales in a single
functional of the degrees of freedom of the theory. Their
knowledge is thus paramount to shed light on a variety of
phenomena that could be compared with observations.
Whenever a field theory remains weakly coupled at all
scales, perturbative methods generally provide adequate
computational control. However, in the case of gravity,
all-order (and possibly nonperturbative) effects appear
necessary to capture all of the relevant physics.
In asymptotically safe gravity [1–4] these effects ought

to arise from a non-Gaussian ultraviolet fixed point,
whose existence would make the theory “asymptotically
safe,” i.e., nonperturbatively renormalizable in the
Wilsonian sense [1,2]. In (perturbative) string theory,
these effects arise from a double expansion involving the
string scale α0 and the string coupling gs. Although well
defined in principle, the computation in general settings
is highly involved, and all-order computations in the
absence of supersymmetry can be carried out only in
specific backgrounds, such as the linear dilaton back-
ground and the ones studied in [5,6].
In contrast, phenomenologically relevant settings, such as

de Sitter (dS) vacua for both early- and late-time cosmology,

have proven much subtler since the supersymmetry algebra
cannot be (linearly) realized in dS, and their existence in
string theory remains under detailed scrutiny [7–15]. Some
supersymmetry-breaking mechanisms appear to naturally
yield other types of cosmologies [16], whose implications
for cosmic microwave background anomalies have been
explored in [17–19], while the associated instabilities
suggest the possibility of dS braneworlds [20]. At present,
however, the consistency of a number of dS constructions is
unsettled, and a deeper understanding could require the
inclusion of all-order effects.
In an attempt to shed some light on whether dS vacua

are allowed in the presence of all-order effects, in this
paper we employ functional renormalization group (FRG)
techniques [21] to resum α0 corrections and investigate the
resulting string cosmologies. In the context of the FRG,
the object of interest is the effective average action (EAA)
[22] since its flow allows us, at least in principle, to infer
the existence of an asymptotically safe regime, granting
nonperturbative renormalizability [1], and/or to recover
the exact quantum effective action via its RG flow in
the IR. One of the major practical limitations of this
approach is typically the need to truncate the theory space
in order to feasibly solve the flow equations [21].
However, the remarkable constraints that string theory
entails on its low-energy theory space, which arises from
integrating out its higher-spin massive modes, may
partially circumvent this issue. Concretely, in cosmologi-
cal settings T-duality constrains the minisuperspace1
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1Despite its limitations, the minisuperspace approach has proven
useful in quantum cosmology, as for instance in [23–27]. In the
present setting, it allows us to exploit the classification of [28–31] in
order to obtain all-order curvature corrections [32].
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effective action to a large extent [28–31,33,34]2 and could
therefore go hand in hand with FRG methods to capture
all-order effects in α0. In this paper we provide a proof of
principle of this idea, applying the FRG to resum α0

corrections to all orders in cosmological backgrounds,
neglecting gs string loop corrections. Based on two
closed-form solutions to the (minisuperspace) flow equa-
tions, we show that dS vacua are not compatible with the
resulting quantum-corrected cosmologies, thus providing
support for the no-dS swampland conjecture [35–38] and
highlighting a tension between de Sitter vacua and
curvature corrections in string theory.

II. EFFECTIVE ACTIONS AND COSMOLOGY

The existence of dS solutions is a relevant open
question in quantum gravity, in particular, within the
context of string theory and the swampland program at
large [10]. Whether they can be realized relies crucially on
the form of the gravitational quantum effective action.
In any metric approach to quantum gravity based on QFT
(e.g., quantum unimodular gravity, asymptotically safe
gravity, Hořava-Lifshitz gravity, etc.), if diffeomorphism
invariance holds at high energies and no additional
symmetries constraining the gravitational interaction
arise, the Einstein-Hilbert term ought to be complemented
by all possible curvature invariants. Deriving the effective
action exactly, at least within a minisuperspace scheme
[39–43], requires summing over all quantum fluctuations
at the level of a gravitational functional integral or,
equivalently, solving the FRG equations [21]. While these
computations are generally unfeasible in the untruncated
space of diffeomorphism-invariant theories (even in min-
isuperspace), the additional symmetries of string theory
make it an ideal candidate in which to determine cosmo-
logical effective actions with FRG methods [32] and
investigate the existence of dS solutions.
Gravitational effective actions in string theory can be

derived, at least at leading order in the string coupling gs,
from the world-sheet formulation, and their form in cosmo-
logical backgrounds is strongly constrained by T-duality.
Specifically, inD ¼ dþ 1 dimensions, T-duality emerges as
an Oðd; d;RÞ symmetry on the low-energy degrees of
freedom [28–30], namely, the dilaton ϕ, the metric G,
and the Kalb-Ramond two-form B2. Focusing on cosmo-
logical backgrounds of the type

ds2 ¼ −n2ðtÞ dt2 þ e2σðtÞ dx2;

B2 ¼ 0; Φ ¼ ΦðtÞ; ð1Þ

where we have defined ΦðtÞ in terms of ϕ as in
[29–31,33,34], the tree-level action reduces to

Sred ¼
Vold
16πGN

Z
dt

1

n
e−Φð− _Φ2 þ d _σ2Þ; ð2Þ

where GN is the D-dimensional Newton constant, Vold
is the volume of d-dimensional spatial slices, and H ¼ _σ
is the Hubble parameter. All α0-corrections are encoded in the
higher-derivative part of the Meissner-Hohm-Zwiebach
effective action [29–31,33,34]. On cosmological back-
grounds, T-duality requires that the effective action be even
in H. Specifically, it can be shown [29–31,33,34] that its
all-order expression reads3

SHD ∼
Vold
16πGN

Z
dt

e−Φ

n

×

�
− _Φ2 þ 2d n2

X∞
m¼0

ð−4Þm cm α0m−1
�
H
n

�
2m
�
: ð3Þ

In string perturbation theory, obtaining the coefficients cm is
typically a daunting task, even for low-order coefficients.
In this work, we shall attempt to overcome these issues and
compute all the cm at once via FRG techniques [21]. The
latter allow one to determine the flow of the EAA Γk via the
exact flow equation [22,44,45]

k∂kΓk ¼
1

2
STr

n
ðΓð2Þ

k þRkÞ−1k∂kRk

o
: ð4Þ

The supertrace on the right-hand side denotes a sum over
internal indices and an integral over continuum spacetime
coordinates or momenta.4 The function Rk is a regulator
which implements the Wilsonian shell-by-shell integration of
fluctuating modes: At a scale k, all quantum fluctuations with
momenta p2 > k2 are integrated out, and the quantum
effective action ought to be recovered in the IR limit
k → 0. To wit, the regulator Rk has to vanish as k → 0,
where indeed Γk→0 reduces to the standard quantum effective
action. On the other hand, a UV-complete theory ought to
flow to a fixed point as k → ∞, while trajectories off the UV
critical surface correspond to theories which are inconsistent
and thus belong to the “swampland,” as shown in Fig. 1. Let
us also remark that nonlocality, which is an expected feature
of quantum gravity, can be treated within the FRG (see [46]
for examples in the context of asymptotically safe gravity).
Specifically, the formalism could, in principle, account for

2The swampland program also purports constraining the low-
energy theory space from the high-energy vantage point of string
theory [10,35] and could potentially further simplify FRG
computations.

3Note that the effective action in Eq. (3) is only valid for
gs ¼ eϕ ≪ 1, whereby string-loop corrections are expected to be
negligible. In this limit, T-duality is indeed realized as a
continuous Oðd; d;RÞ symmetry, whereas gs-corrections gener-
ally break it to Oðd; d;ZÞ.

4Let us remark that functional traces ought to be defined via
the inner product induced by the kinetic terms of the classical
action.
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UV/IR mixing by constraining the IR physics via nontrivial
requirements stemming from UV completeness.
Since T-duality imposes strong constraints on the form of

the effective action in cosmological backgrounds, the flow
of a scale-dependent Meissner-Hohm-Zwiebach EAA can
be computed analytically, avoiding truncations of the
theory space.5 To this end, the first step is to promote
all couplings in Eq. (3) to scale-dependent quantities

cm → cmðkÞ; GN → Gk ≡ gk
k1−d

16π
; ð5Þ

where the factor of 16π is introduced for convenience. All
α0-corrections are thus conveniently encoded in an even,
dimensionless, scale-dependent function Fk, according to

Γk ¼ Vold

Z
dt
e−Φ

n

�
−
kd−1

gk
_Φ2 þ kdþ1n2Fk

�
H2

n2

��
: ð6Þ

In what follows we shall gauge-fix n ¼ 1, so that ghosts
trivially decouple.
Given a solution Γk, one can send k → 0 and extract the

corresponding coefficients cm ≡ cmð0Þ. This procedure
would then yield α0-corrections for the Meissner-
Hohm-Zwiebach action [29–31,33,34] to all orders, a
task that would appear, at present, out of reach in
perturbative string theory. In addition, the effective action
Γ0 gives access to a number of observable quantities and
allows one, at least in principle, to compute solutions to
the quantum-corrected field equations and address a

number of interesting challenges, such as the puzzling
apparent lack of dS solutions [36–38].

III. EXISTENCE OF DE SITTER VACUA

Resumming α0-corrections to all orders entails solving
Eq. (4) for the scale-dependent Meissner-Hohm-Zwiebach
effective action in Eq. (6). To this end, one has to derive
the beta functions for the coupling gk and the function Fk.
This amounts to replacing the scale-dependent Meissner-
Hohm-Zwiebach effective action of Eq. (6) in Eq. (4). The
flow equations for gk and FkðH2Þ have been derived in
[32]. They admit a particular solution for any d given by

gk ¼
g0g�

g�kd−10 þ g0ðkd−1 − kd−10 Þ k
d−1; ð7Þ

FkðH2Þ ¼ k−d−1 ðc0 þ c1
ffiffiffiffiffiffi
H2

p
Þ; ð8Þ

where c0, c1, and g0 are integration constants, k0 is a
reference scale, and g� ¼ 2ddðd − 1Þπ1þd

2Γðd
2
Þ is the position

of the non-Gaussian UV fixed point for gk. Interestingly,
despite T-duality, the running of the Newton coupling in
Eq. (7) matches the one found in asymptotically safe gravity
[47]. This suggestive result is nontrivially consistent with our
scenario, where the string effective action arises in the IR
from a UV fixed-point action that is closely approached by
the RG trajectory of string theory. In particular, this resonates
with the intriguing possibility that asymptotically safe gravity
sits in a corner of the theory space of string theory [48], thus
realizing a scenario similar to that advocated by Weinberg in
[49].6 The resulting effective action reads

Γstring ¼
Vold
16πGN

Z
dt n e−Φ

�
−

_Φ2

n2
þ
�
Λþ c̃

ffiffiffiffiffiffiffiffi
H2

n2Λ

r ��
;

ð9Þ

where we have restored the lapse n, we have introduced the

effective coupling c̃ ¼
ffiffiffi
Λ

p
16πGN

c1, and we have identified

c0 ≡ Λ
16πGN

, where Λ ≈ 1=α0 is the (leading contribution to
the) string-frame cosmological constant.7 The corresponding
cosmological field equations take the simple form

_Φ2 ¼ −Λ; Φ̈ ¼ c̃
2

ffiffiffiffiffiffi
H2

Λ

r
;

c̃
Λ2

jHj
H

_Φ ¼ 0; ð10Þ

and it is straightforward to see that if c̃ ≠ 0 no dS solution
with H ¼ const is allowed, not even with a time-varying

FIG. 1. Pictorial representation of the “landscape” of low-
energy theories which admit a UV completion as a UV critical
surface. The trajectories off the critical surface (green curves)
belong to the “swampland” of inconsistent theories.

5Although T-duality constrains the effective action, the pres-
ence of a regulator could induce deviations from the hypersurface
of T-duality-invariant theories. Nevertheless, since T-duality
ought to reemerge in the limit k → 0 [30,31,33,34], we expect
these deviations to be small, and we neglect T-duality-breaking
terms.

6See also [50] for a study on the compatibility between
swampland conjectures and asymptotically safe gravity.

7More precisely, Λ ∝ Dcrit−D
α0 encodes the deviation from the

critical dimension, namely, Dcrit ¼ 26, 10 for bosonic strings and
superstrings, respectively [28,51,52].
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dilaton ϕ. If instead c̃ ¼ 0, the above cosmological equations
admit a unique solution with constant H and

ΦðtÞ ¼ C�
ffiffiffiffi
Λ

p
t; ð11Þ

C being an integration constant. However, this quasi-dS
solution is only realized in an unphysical regime since c̃ ¼ 0
entails trivial gravitational dynamics at the level of the
effective action Γstring. Let us remark that the solution above,
while exact, might not be unique. A proper analysis of the
flow equations, including the space of initial conditions
compatible with UV fixed points, appears prohibitive in
general, but, as we shall now discuss, it is feasible in 2þ ϵ
dimensions.
The effective action of Eq. (9) is neither analytic in the

curvatures (thus, it is unable to reproduce string theory in
the UV or general relativity in the IR) nor expected to be
unique. We are therefore led to seek analytic, and possibly
general, solutions to the RG equations. To this end, it is
useful to employ an ϵ-expansion of the effective action
about D ¼ 2, along the lines of [2,53–59], and then try to
extend the results to D ¼ 4. The rationale behind this
approach rests on the observation that the Newton coupling
is classically marginal in D ¼ 2 dimensions, and therefore,
the RG flow dramatically simplifies expanding D ¼ 2þ ϵ
for ϵ ≪ 1. Since one expects a UV fixed point for gk of
order OðϵÞ, our starting point is the ansatz gk ¼ ϵγk, with
γk ¼ Oð1Þ, while the ansatz

FkðH2Þ ¼ vkðH2Þ
ϵ γk

þ wkðH2Þ; ð12Þ

with vkðH2Þ; wkðH2Þ ¼ Oð1Þ, is motivated by the expected
IR behavior of Fk, whose corrections ought to be sublead-
ing in ϵ. The resulting flow equations simplify dramatically
at leading order in ϵ. As a result, the dimensionless Newton
coupling flows according to γk ¼ γ�ð1þ ck−ϵÞ−1, with c a
constant. This flow mirrors that of Eq. (7) for d ¼ 1þ ϵ,
and in particular, it starts from γ� ¼ 3

2
π2 in the UVand ends

at zero in the IR for c > 0, where γk ∼
γ�
c k

ϵ. The corre-
sponding IR value of the dimensionful Newton coupling is
then Gk ∼ 3π

32
ϵ
c. The next step involves the subleading

corrections, where _γk ∼ ϵ γk can be neglected with respect
to the other contributions. The subleading flow equations
can be solved in closed form, and in the IR, one obtains
higher-derivative corrections to the low-energy effective
action to all orders in H, and thus in α0, since the k
dependence correctly disappears.
The most general analytic solution to the exact flow

equation in 2þ ϵ dimensions compatible with a UV fixed
point leads to the OðϵÞ effective action [32]

Γstring ¼
Vol1þϵ

16πGN

Z
dt ne−Φ

×

�
Λ −

_Φ2

n2
þH2

n2
þ 8GNΛ

3π
L

�
H2

n2Λ

��
; ð13Þ

where the relevant deformation Λ from the UV fixed point
controls the validity of the low-energy expansion, and

LðsÞ≡ −1 −
23

12
sþ

�
3

2
þ s

�
log

�
1þ s

2

�

þ ð1þ sÞ32
ffiffiffi
2

s

r
arctanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s

2ð1þ sÞ
r �

ð14Þ

is depicted in Fig. 2. As expected, quadratic corrections to
the classical action dominate at low curvatures (H ≪ Λ).
The effective cosmological equations in (2þ ϵ) dimensions
read

_Φ2 ¼ H2

�
1þ 16G

3π
L0
�
H2

Λ

��
− Λ

�
1þ 8G

3π
L

�
H2

Λ

��
;

Φ̈ ¼ H2

�
1þ 8G

3π
L0
�
H2

Λ

��
;

_H
H

¼ _Φ −
8G
3π

L0
�
H2

Λ

��
_H
H

− _Φ
�
−
16GH _H
3πΛ

L00
�
H2

Λ

�
;

ð15Þ

where we have omitted the dependence on t for brevity.
Specializing Eq. (15) to the case of constant H yields the
existence conditions for nonperturbative dS solutions dis-
cussed in [33,60]. It is straightforward to see that dS
solutions are not allowed by Eq. (15) since the conditions of

FIG. 2. Function LðsÞ (purple curve) encoding higher-
derivative α0 corrections to the classical action. As expected,
terms proportional to s2 ∼ R2 (black dashed line) dominate the
α0-expansion of the effective action at low curvatures.
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[33] cannot be met by the all-order α0-corrections encoded
in the (monotone increasing) LðsÞ of Eq. (14). Even in the
Einstein frame, the Hubble parameter satisfies [33]

HE ∼ϵ→0 d
dt

e
1
ϵðσþΦÞ; ð16Þ

which entails H ∼ − _Φ for an Einstein-frame dS solution.
This is also nontrivially incompatible with Eq. (15). Even in
the Einstein frame, the Hubble parameter satisfies [33]

HE ∼ϵ→0 d
dt

e
1
ϵðσþΦÞ; ð17Þ

which entails H ∼ − _Φ for an Einstein-frame dS solution.
This is also nontrivially incompatible with Eq. (15).
Analogously, the nonanalytic effective action in Eq. (9)
does not allow dS solutions. Moreover, at least within
polynomial truncations up to order OðH10Þ, the effective
action in Eq. (13) does not extend to D ¼ 4 [32]. We are
thus led to conclude that, in this setting, insofar as only
minisuperspace cosmologies are included in the gravita-
tional functional integral, our results point to a tension
between dS solutions and curvature corrections in string
theory. Our findings thus support the no-dS swampland
conjecture [36–38] in the presence of all-order effects in α0.
Let us finally remark that, although a highly curved dS

spacetime cannot be described at the level of two-derivative
(super)gravity, it could have, in principle, arisen from our
infinite-derivative field equations. In this case, the resulting
cosmological constant would have most likely been of the
order of the string scale.

IV. CONCLUSIONS

Understanding higher-derivative corrections and all-order
effects appears of fundamental importance for high-energy
regimes of gravity. In particular, they could play a crucial
role in the resolution of singularities and in the structure of
the fundamental degrees of freedom and their interactions.
Moreover, they could be crucial to assess the existence of dS
solutions, in particular, in the context of string theory. In this
respect, while string theory provides, at least in some
regimes, well-defined algorithms to systematically compute
such corrections, earlier attempts to derive them in the
general case were met by intricate technical difficulties.
Therefore, we are compelled to investigate novel directions
in order to shed light on these relevant matters.
To this end, symmetries play a key role. Indeed, although

direct computations of all-order effects are extremely
involved in general, stringy symmetries such as T-duality
constrain their form substantially [29–31,33,34], thus
allowing us to investigate the existence of dS solutions in
string theory beyond tree level. Earlier works in this direction
[61–63] involved the leading curvature corrections to the
classical action and discovered that—to leading order in

α0—dS vacua are excluded by the simultaneous presence of
the dilaton and α0-corrections [61,62].
In this work we have taken a major step forward by

resumming all α0 corrections on cosmological back-
grounds. Specifically, combining the constraints on stringy
cosmological effective actions with FRG techniques [32],
in this paper we have derived the cosmological field
equations associated with two closed-form α0-corrected
effective actions, and we have investigated the existence of
dS solutions in the presence of all-order α0-corrections. No
dS solution seems to be allowed. Our findings thus support
the implications of the relevant swampland conjectures
[36–38] in the presence of curvature corrections to all
orders in α0.
All in all, within the framework of string theory, our

results appear to point at one (or more) of the following
possibilities:

(i) The existence of dS solutions in string theory
requires inhomogeneities and/or anisotropies, e.g.,
to generalize the minisuperspace ansatz to Bianchi-
like models.

(ii) dS solutions require the inclusion of string-loop
corrections.

(iii) No dS solution is allowed in string theory, and early/
late-time phases of accelerated expansion are driven
by quintessence (or analogous scenarios) [64–66].

Comparing the FRG approach presented in this work
with the results of perturbative string theory in its critical
dimension remains an important, if daunting, undertaking.
As pointed out in [32], it is currently challenging to test our
formalism due to the considerable difficulty of solving the
FRG equations in sufficient generality in higher dimen-
sions. The only setting in which this is currently feasible
is within an epsilon-expansion about D ¼ 2, where we
managed to obtain the most general flow compatible with a
UV fixed point. Comparing our results to bona fide string
perturbation theory computations would require, at least,
resumming this expansion or finding general UV-complete
surfaces in higher dimensions. Alternatively, one would
need to compute the α0-exact effective action in noncritical
dimensions in string theory, which is currently out of reach
(except for special—noncosmological—backgrounds).
At the same time, while difficult to test, the interplay

between the FRG and the symmetries of string theory
could open new doors, allowing us to investigate impor-
tant nonperturbative aspects of phenomenologically rel-
evant scenarios otherwise unaccessible with standard
perturbative methods. In particular, considerations similar
to those that we have put forth in this paper, as well as in
[32], could be applied to a number of scenarios where all-
order effects are expected to be important, for instance, the
cancellation of Weyl anomalies of the string world sheet
[67], thereby providing a new and rich avenue of research.
We would like to explore these intriguing ideas and
scenarios in future work.
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