
On the Interaction of Relational Database Access

Technologies in Open Source Java Projects

Alexandre Decan?, Mathieu Goeminne?† and Tom Mens?

?Software Engineering Lab, University of Mons, Belgium
Email: { first . last } @ umons.ac.be

†Center of Excellence in Information and Communication Technologies, Belgium
Email: mathieu.goeminne@cetic.be

Abstract

This article presents an empirical study of
how the use of relational database access tech-
nologies in open source Java projects evolves
over time. Our observations may be useful
to project managers to make more informed
decisions on which technologies to introduce
into an existing project and when. We se-
lected 2,457 Java projects on GitHub using
the low-level JDBC technology and higher-
level object relational mappings such as Hi-
bernate XML configuration files and JPA an-
notations. At a coarse-grained level, we anal-
ysed the probability of introducing such tech-
nologies over time, as well as the likelihood
that multiple technologies co-occur within the
same project. At a fine-grained level, we anal-
ysed to which extent these different technolo-
gies are used within the same set of project
files. We also explored how the introduction
of a new database technology in a Java project
impacts the use of existing ones. We ob-
served that, contrary to what could have been
expected, object-relational mapping technolo-
gies do not tend to replace existing ones but
rather complement them.

Copyright c© 2016 by the paper’s authors. Copying permitted
for private and academic purposes. This volume is published
and copyrighted by its editors.

In: A.H. Bagge, T. Mens (eds.): Postproceedings of SATToSE
2015 Seminar on Advanced Techniques and Tools for Software
Evolution, University of Mons, Belgium, 6-8 July 2015,
published at http://ceur-ws.org

1 Introduction

As software systems become more and more complex,
the effort required for creating new systems and main-
taining existing ones increases over time. This ef-
fort can be reduced by embedding code in reusable
libraries that offer services for supporting a particular
aspect of the developed system. For example, for soft-
ware systems that strongly interact with a relational
database, numerous technologies (libraries, APIs and
frameworks) exist for connecting the program code to
the database. Understanding how database technolo-
gies tend to replace or complement existing ones in
software projects can help project managers in choos-
ing the most appropriate technology, and the most ap-
propriate moment of introducing this technology.

The program code can be connected to the database
in various ways. In the simplest case, the code will
contain embedded database queries (e.g., SQL state-
ments) that will be interpreted by the database man-
agement system. In more complex cases, especially
for object-oriented programs, object-relational map-
pings (ORM) will be provided to translate program
concepts (e.g., classes, methods and attributes) into
database concepts (e.g., tables, columns and values),
so that database elements can be created, read, up-
dated or deleted (CRUD) directly by manipulating
object-oriented views. Despite the fact that ORMs
abstract away from technical connection details in or-
der to facilitate software development, some evolution-
related problems remain.

The high level of dynamic of current database ac-
cess technologies makes it hard for a programmer to
figure out which SQL queries will be executed at a
given location of the program source code, or which
source code methods actually access a given database
table or column. Conversely, the high level of ab-

straction provided by the ORMs makes it hard to de-
termine the impact on the program code of changes
in the database schema. In addition, co-evolving the
database and the program requires to master multiple
languages and technologies.

This paper examines how popular technologies are
used in open source Java projects for connecting the
source code to a relational database. To do so, we
focus on three research questions:

RQ1 – When and in which order are database tech-
nologies introduced in a project? We observe that they
tend to be introduced very early in the project’s life-
time. This is expected, since those technologies are
typically central components of the projects in which
they occur. We also observe that multiple database ac-
cess technologies are used in many projects, and that
they tend to be used simultaneously. Finally, we study
which technologies tend to be complemented by other
technologies.

RQ2 – How does the introduction of a new technol-
ogy in a project affect the already included ones? With
this question we wish to understand whether technolo-
gies tend to replace existing ones, or rather comple-
ment them. In the former case, the introduction of a
new technology would decrease the use of the already
included technology. In the latter case, the new tech-
nology may serve as a catalyst, leading to an increased
of the already included technology.

RQ3 – To which extent does the introduction of a
new technology impact the way in which a project ac-
cesses the database? This question focuses on the evo-
lution of project files that use a particular technol-
ogy, after introducing a new database technology in
the project: are these files modified in order to bene-
fit from the newly introduced technology? For certain
pairs of technologies, we found this to be the case. For
most pairs of technologies however, existing database-
related files do not substantially adopt the latest in-
troduced technology.

The remainder of this paper is structured as follows.
Section 2 presents attempts to methodically analyse
and compare similar technologies that can be found in
the scientific literature and puts our research in per-
spective. Section 3 presents the approach we followed
for collecting the data required for our empirical study
as well as the methodology for analysing it. The next
three sections address our research questions. Sec-
tion 7 discusses the threats to validity of our study.
Section 8 discusses possible extensions of the presented
study, and Section 9 concludes.

2 State of the Art

While the literature on database schema evolution is
very large [1], few authors have proposed approaches
to systematically observe how developers cope with
database evolution in practice. Sjoberg [2] presented a
study where the database schema evolution of a large-
scale medical application is measured and interpreted.
Vassiliadis et al. [3] studied the evolution of individual
database tables over time in eight different software
systems.

Several researchers have tried to identify, extract
and analyse database usage in application programs.
The purpose of the proposed approaches ranges from
error checking [4, 5, 6], over SQL fault localisa-
tion [7], to fault diagnosis [8]. More recently, Linares-
Vasquez et al. [9] studied how developers document
database usage in source code. Their results show
that a large proportion of database-accessing methods
is completely undocumented.

Several empirical studies have analysed the evolu-
tion of library and technology usage. Bauer and Heine-
mann [10] were able to identify distinct evolution sce-
narios for API dependencies in software projects. The
gained knowledge may be useful for evaluating oppor-
tunities in API migration and evolution. Teyton et
al. [11] identified sets of similar libraries in a large
corpus of software projects. The obtained results can
be used for suggesting alternative libraries to project
managers who want to migrate from a library to an-
other one. In [12] they investigate how and why library
migrations occur. They found that library migrations
are relatively rare, and projects that have witnessed
more than one migration are exceptional. They also
observed that migration is generally an atomic change
performed by a single developer in a single commit.

3 Methodology and Data Extraction

The empirical study in this paper focuses on open
source Java systems. Java is among the most popular
programming languages today, and a large number of
technologies and frameworks are available to facilitate
relational database access from within Java code. The
choice for open source systems is motivated by the ac-
cessibility of the entire history of the source code in
freely accessible version control repositories.

3.1 Considered Database Access Technologies

In previous work [13, 14], we considered 26 Java rela-
tional database technologies that offer a direct means
of accessing a relational database and whose presence
in a project is identifiable through static analysis. By
analysing the import statements in Java files as well
as the presence of specific configuration files, we deter-

mined the presence of each of these technologies. We
performed a survival analysis of the technologies used
in order to determine their relative importance over
time in the considered projects.

This paper provides a more in-depth study, by look-
ing at the interaction between object-oriented source
code and relational databases at a more fine-grained
level. We have selected three popular technologies that
are representative of a particular way to connect the
source code to a database (embedded SQL, external
mapping files, and Java annotations):

JDBC

jdbc1 is a low-level technology for connecting Java pro-
grams to a database by sending SQL queries directly
from within the source code. While version 1.1 was
released in 1997, there have been regular version up-
grades to cope with the evolution of the Java language.
This technology is still intensively used in numerous
projects [13], despite the inherently close coupling that
is required between the source code and the database
schema.

In our study we consider this technology as being
associated to a Java source code file if entities belong-
ing to java.sql are imported in this file.

Hibernate

ORM technologies rely on a mapping description for
associating (object-oriented) source code elements to
database elements. They aim to reduce the so-called
object-relational impedance mismatch [15]. The map-
ping description can take the form of configuration
files, placed aside source code files, to express the re-
lations between the considered entities. Hibernate is
a popular open source Java framework adopting this
solution. It was first released in 2001, and provides an
abstraction layer on top of jdbc. Hibernate has been
criticised by many of not being a 100% transparent
data persistence solution.

In our study we analyse Hibernate2 XML config-
uration files (denoted by hbm hereafter), and con-
sider that a Java file relies on Hibernate technology
if at least one Hibernate configuration file mentions
the Java file as a code entity resource.

JPA

Annotation-based mapping descriptions offer an in-
creasingly popular means to express the relations re-
quired by ORM engines. With such mappings, Java
annotations are used to mark program elements as

1oracle.com/technetwork/java/javase/jdbc/
2hibernate.org/

counterparts of database entities. The Java Persis-
tence API 3 (denoted by jpa hereafter) is the de facto
Java standard for annotation-based mappings. jpa was
first released in 2006, and relies on the Java annota-
tion mechanism that was first introduced in Java 5.
We consider this technology as representative for this
kind of mapping description.

In our study we consider that a Java file relates to
jpa if the Entity, Embeddable, or MappedSuperclass

annotations from package javax.persistence can be
found in this file.

Discussion

As witnessed by many discussions on Stack Overflow4,
there is no consensus on which of these three technolo-
gies is the most appropriate for any given project, as
it may depend on many project-related characteristics,
technological choices or even personal preferences.

One should also note that the use of these technolo-
gies is not exclusive. A project may use all of these
technologies simultaneously. These technologies may
even be used together within the same Java source
code files.

3.2 Selected Projects

In order to obtain a representative project sample, we
based our empirical analyses on Java projects belong-
ing the GitHub project corpus proposed by Allamanis
and Sutton [16]. Among these projects, 13,307 still
had an available Git repository on 24 March 2015.

In order to carry out our empirical study, we se-
lected 2,457 projects from this project corpus for which
at least one of the commits contained a reference to
either jdbc, jpa or hbm. For each selected project, we
extracted the existing relations between source code
and database entities from the first commit of each
week, and we obtained an historical view of all the
files that can be related to a particular technology or
to a particular framework.

mean stdev median max.

duration (in weeks) 76 121 23 812
commits 1317 6013 126 174,618
contributors 12 31 4 1091
files in HEAD 1058 3549 213 103,493
Java files in HEAD 512 1793 88 46,661

Table 1: Characteristics of the selected projects.
HEAD refers to the latest extracted version.

Table 1 shows some of the characteristics of the se-
lected projects. The distribution of metrics values is

3oracle.com/technetwork/java/javaee/tech/

persistence-jsp-140049.html
4see for example stackoverflow.com/questions/Q

with Q = 1607819, 2397016, 2560500 or 530215.

Figure 1: Number of projects per considered technol-
ogy.

highly skewed, suggesting evidence of a Pareto princi-
ple [17]. The duration is expressed in weeks between
the first and the last commit.

Figure 1 reports the number of projects per con-
sidered technology, taking the entire lifetime of each
project into account. We observe that the project sam-
ple is relatively unbalanced with respect to the pres-
ence of each technology, but each pair of technologies
is still represented in a quite a number of projects.

4 RQ1 When and in which order are
database technologies introduced in
a project?

Introducing a new technology in a software project
comes with a certain cost. A common policy is there-
fore to introduce such a technology only if the expected
benefits outweigh the expected cost.

For each project, we analysed at what moment in
the projects’ lifetime each considered technology got
introduced. The answer appears to depend on the du-
ration of the considered projects. To minimise the
effect of project duration, we normalised the lifetime
of each project into a range between 0 (the start of the
project) and 1 (the last considered commit).

True False

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
is

ed
 p

ro
je

ct
 d

ur
at

io
n

jdbc

True False
First introduced technology?

jpa

True False

hbm

Figure 2: Violin plot (using a kernel density estimate)
of the distribution of the introduction time of a tech-
nology in the Java project corpus.

Figure 2 compares, for each considered technology,

two distributions of the introduction time of the tech-
nology in a project. The first distribution (left) con-
siders the first time a technology gets introduced in
a project. The second distribution (right) considers
the introduction of the technology in a project that
already had a technology before. As expected, we ob-
serve that more than 50% of the introductions
of a first technology are done in the first 10%
of the project’s lifetime. For technologies intro-
duced after an existing one, the distribution tends to
be flatter.

We also observe that the two distributions for jdbc
present less differences than the ones related to jpa or
hbm. To achieve this, we performed a Kolmogorov-
Smirnov statistical test for each pair of distributions
related to jdbc, jpa and hbm. The tests show that the
two distributions associated to each technology
are significantly different (p-values are lower than
10−6). This may indicate that for jdbc, the moment
of introduction is less affected by the presence
of another technology than for hbm and jpa.

We saw that the time at which a technology is in-
troduced in a project varies depending on the presence
of another technology in this project. What are the
technologies that are more likely to be succeeded by
another one?

To answer this question, we use the statistical tech-
nique of survival analysis to estimate the probability
that a technology does not remain the last introduced
one in a project lifetime. Survival analysis [18] creates
a model estimating the survival rate of a population
over time, considering the fact that some elements of
the population may leave the study, and for some other
elements the event of interest does not occur during the
observation period. In our case, the observed event is
the introduction in a project of another technology af-
ter an existing one.

0.0 0.2 0.4 0.6 0.8 1.0
proportional delay

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

pr
ob

ab
ili

ty

jdbc
jpa
hbm

Figure 3: Probability that a technology remains the
last introduced technology over time.

Figure 3 shows the survival rates for each consid-
ered technology. We observe that hbm has a much
lower survival rate (i.e., a lower probability of staying
the last introduced technology for a long time) than
the other technologies. We also observe that, during
the first 10% of the projects’ lifetime, the survival rates

of hbm decrease by 30%, representing a more impor-
tant decrease than for the other two technologies. This
implies that hbm is usually quickly replaced or
complemented by another technology.

Figure 1 showed that around 23% of the projects
use two or more database technologies in their lifetime,
but these are not necessarily used simultaneously. We
therefore identified which combinations of technologies
actually co-occur in the selected Java projects. Fre-
quent co-occurrences would reveal which technologies
are complementary, and which technologies are used
as supporting technologies of other ones. For each
pair of technologies, we counted the number of projects
in which these technologies actually co-occur, and in
which order they were introduced in these projects.
The results are summarised in Table 2.

(A,B)→ (jdbc, jpa) (jdbc, hbm) (jpa, hbm)
projects 497 152 84

co-occurrences 488 148 77
% co-occurrences 98.2% 97.4% 91.7%
startA < startB 157 50 19
startA > startB 151 27 37
startA = startB 189 75 28

Table 2: Projects characteristics by pairs (A,B) of co-
occurring technologies

Among all projects that use multiple tech-
nologies during their lifetime we observe a
very high proportion of co-occurring technolo-
gies. More specifically, in 97.3% (488+148+77 out of
497+152+84) of all the situations in which two dis-
tinct technologies were used during a project’s life-
time, they were used simultaneously. Around 41%
(189+75+28 out of 488+148+77) of all pairs of co-
occurring technologies were introduced simultaneously
(startA = startB), implying that around 59% of all
pairs of co-occurring technologies concern projects in
which the technologies were introduced at different
moments (startA 6= startB).

Considering the number of projects in which the
introduction of a technology A was observed before
the use of a technology B, it seems that jpa tends to
succeed to hbm more often than the contrary
(37 versus 19 observations). Similarly, hbm tends to
succeed to jdbc more often than the contrary
(50 versus 27 observations). We did not identify such
an order for jpa and jdbc (151 versus 157 observations).

Summary. All considered technologies are in-
troduced early in the projects’ lifetimes, even for
projects that already use another technology. The
number of projects in which multiple technologies
co-occur is proportionally important. The order
in which these technologies are introduced sug-
gests that hbm is often succeeded by jdbc or jpa.

5 RQ2 How does the introduction of
a new technology in a project affect
the already included ones?

As multiple database access technologies are used in
many projects, either simultaneously or one after the
other, it is useful to study how the introduction of a
new technology can impact the use of an already in-
cluded one. This impact, if it occurs, could result in an
increased or decreased usage of the already included
technology. We therefore identified and counted for
which projects the introduction of a new technology
causes an increasing use of the older technology, a de-
creasing use, or no observable change in the use of the
already included technology.

To qualify the impact, we rely on the first derivative
of the number of files related to an existing technology.
We computed and compared the mean of this deriva-
tive for two 8-week periods: the first period strictly
precedes the moment of introduction of the new tech-
nology, and the second period immediately follows the
moment of introduction.

In the following, we will use the term variation to
denote the difference between the mean of the second
period and the mean of the first period. The variation
of a technology is easy to interpret: a positive value
indicates an increasing use of the existing technology
while a negative value indicates a decreasing use of the
existing technology

jpa hbm
15

10

5

0

5

10

15

va
ria

tio
n

Impact of jdbc

jdbc hbm

Impact of jpa

jdbc jpa

Impact of hbm

Figure 4: Impact of the introduction of a new technol-
ogy on the activity of an already included technology.

Figure 4 shows the distribution of the variation for
each pair of technologies. We observe that jdbc and
hbm cause a slight positive impact on the use of
existing technologies (since the variation tends to
be positive in 75% of all cases). Notice the important
variation induced by introducing hbm in projects using
jpa. The converse is not true: introducing jpa in a
project that already uses hbm implies a negative
variation for hbm.

Figure 4 only identifies global trends in our project
corpus. It does not allow to identify trends within
individual projects. Figure 5 therefore distinguishes
the projects that exhibit a positive variation (blue

curve), a negative variation (red curve) or no varia-
tion (green curve) for several time intervals after the
introduction of the new technology.

0

120
jpa after jdbc

0

35
hbm after jdbc

increasing stable decreasing

0

120
jdbc after jpa

0

16
hbm after jpa

2 4 6 8 10 12 14
delay (in weeks)

0

20
jdbc after hbm

2 4 6 8 10 12 14
delay (in weeks)

0

18
jpa after hbm

Figure 5: Number of projects with an increasing, de-
creasing or stable activity of an already included tech-
nology, as observed x weeks after introducing another
technology.

Regardless of the considered pair of technologies,
with the notable exception of the pairs (jpa after hbm)
and (hbm after jpa), both the number of projects hav-
ing no variation and the number of projects having a
positive variation are systematically greater than the
number of projects exhibiting a negative variation.

Figure 6 shows survival curves, using a Kaplan-
Meier estimator, of the probability that a project keeps
more than a threshold of 25% of its files related to an
already included technology after the introduction of
new one. We tried different threshold values and they
all lead to the same conclusions.

Again, we observe that the most distinct be-
haviours are exhibited by jpa and hbm: the prob-
ability to keep more than 25% of files related to hbm
drops below 0.55 about 20 weeks after introducing jpa,
while the probability for jpa files drops to a little more
than 0.6 about 19 weeks after introducing hbm. This
analysis corroborates our previous observations: in-
troducing jpa or hbm does not negatively im-
pact the use of jdbc, and conversely. We also ob-
serve from Figures 5 and 6 that most of the impact
happens in the first weeks after introducing the
new technology.

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

pr
ob

ab
ili

ty

Introduction of jdbc

files related to
jpa hbm

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

pr
ob

ab
ili

ty

Introduction of jpa

files related to
jdbc hbm

0 5 10 15 20
Delay (in weeks)

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

pr
ob

ab
ili

ty

Introduction of hbm

files related to
jdbc jpa

Figure 6: Probability that at least 25% of files related
to a technology remain after the introduction of an-
other technology.

Summary. Introducing a new technology gen-
erally induces, in the short term, an increase of
the presence of the already included technology,
with the notable exception of the introduction of
jpa on a project that already makes use of hbm.
This suggests that, contrary to the promises of
ORM technologies, new technologies do not tend
to replace existing ones but rather complement
them.

6 RQ3 To which extent does the intro-
duction of a technology impact the
way in which a project accesses the
database?

From the results of RQ1 we observed that, if a project
uses multiple database access technologies over its life-
time, these technologies tend to co-occur. At a more
fine-grained level, we are interested in the impact of
the introduction of a technology on the files that al-
ready relate to a previously used technology.

6.1 Do different technologies co-occur at file
level?

Let us first study the co-occurrences of different tech-
nologies at file level without taking the evolutionary
aspect into account. Figure 7 shows, for each pair of
technologies, the distribution across projects of the ra-
tio between the number of files that relate to each, or
both, technologies, and the number of files that relate
to any of these technologies. For each pair of tech-

nologies, only projects in which both technologies have
been used at some point in their lifetime have been re-
tained as elements of the distribution.

Figure 7: Relative number of files relating to pairs of
technologies.

It turns out that pairs of technologies including jdbc
present similar profiles: most projects contain a small
proportion of files using both technologies. A two-
sided Kolmogorov-Smirnov test confirms this similar-
ity between distributions: we cannot reject the null hy-
pothesis that states that the distributions associated
to the proportion of files using a single technology are
identical (p = 0.877 and 0.287, respectively). We con-
clude that jdbc is generally not used in the same
files as jpa and hbm.

The pair of technologies jpa and hbm presents a dif-
ferent behaviour. The three distributions of the pro-
portion of files that only relate to these technologies
are significantly different (we reject the null hypothesis
with p < 0.001). This result, combined with the form
of the distributions, suggests that, for projects having
used jpa and hbm, a file is likely to relate either
to jpa only or to both jpa and hbm. In addition to
this, the proportion of files that use both hbm and jpa
is more important than for the other considered pairs
of technologies.

Summary. There is a clear separation between
files using jdbc and files using the two other tech-
nologies. For the combination of hbm and jpa,
a partial, asymmetric overlap exists at file level:
hbm is often used in the same files as jpa, while jpa
is rarely used in combination with another tech-
nology in the same file.

6.2 How does the co-occurrence of technolo-
gies at file level evolve over time?

Let us now look at the same question from an evo-
lutionary point of view, by assessing the impact, at
file-level, of introducing a new technology in a project
that already uses another technology to access the
database. To do this, we study how the files related to
an existing technology get changed after introduction
of the new technology.

Let us associate a migration profile to each project
at different points in time after the introduction of the
new technology. This migration profile reflects how
the files related to the old technology are impacted. It
is computed as follows:

Let P be a project and T = {jdbc, hbm, jpa} the
considered technologies. For each point in time t for
P and each technology A ∈ T we define relatedP (A, t)
as the (possibly empty) subset of (fully qualified) file-
names of P in which technology A was detected at
time t.

For every pair of distinct technologies (A,B) ∈
T × T , we write M = (P,A,B) if P is a project in
which technology B gets introduced while a technol-
ogy A is already in use. Let tM denote the point in
time of this introduction and FM = relatedP (A, tM)
the set of filenames associated to technology A. For
each t ≥ tM we associate to each f ∈ FM a label
in L = {residual, removed, complemented, replaced} as
follows:

residual if f ∈ relatedP (A, t) \ relatedP (B, t)
removed if f /∈ relatedP (A, t) ∪ relatedP (B, t)
complemented if f ∈ relatedP (A, t) ∩ relatedP (B, t)
replaced if f ∈ relatedP (B, t) \ relatedP (A, t)
Given M , we also associate to each t ≥ tM a set of

labels mpM(t) ⊆ L. A label L ∈ L belongs to mpM(t)
if, among the labels associated to each f ∈ FM at time
t, no other label occurs more frequently than L.

Finally, the migration profile of M at time t is a
unique label from mpM(t) selected based on the total
order replaced > complemented > removed > residual.
This total order privileges migration profiles that cor-
respond to the adoption of the new technology.

As the choice of a total order could have altered
the results of our analysis, we compared the results
obtained with several total orders, and we observed
only slight local variations. This is not surprising as
there are only 72 pairs (M, t) such that |mpM(t)| > 1,
representing 1.78% of all the considered pairs.

Figure 8 shows the evolution of the proportion of
projects with a given migration profile. For the sake of
readability, we only present results for complemented ,
replaced , and removed . The results for residual can
be deduced from these, by taking the complement of
complemented , replaced and removed .

We observe that, for each considered pair of tech-
nologies, and for each time delay (expressed in weeks)
after the introduction of the new technology, most
projects relate to the residual migration profile, im-
plying that projects tend not to adapt their existing
database access files to make use of the newly intro-
duced technology. This is especially true for projects
introducing jdbc after jpa or hbm.

The second dominant migration profile is removed .
Regardless of the considered pair of technologies, more

0.0

0.1

0.2

0.3

0.4

jpa after jdbc

replaced complemented removed

jdbc after jpa jdbc after hbm

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

hbm after jdbc

0 2 4 6 8 10
delay (in weeks)

hbm after jpa

0 2 4 6 8 10

jpa after hbm

Figure 8: Proportion (stacked) of projects for each
migration profile. The complement corresponds to re-
placed .

and more projects are associated to this migration pro-
file. Over time, an increasing number of projects tend
to reduce the number of files relating to the first con-
sidered technology. The predominance of residual and
removed migration profiles seems to convey that, in
many cases, files that related to the existing
technology are not prone to use the newly in-
troduced technology. Instead, they either continue
to use the first technology or they tend to lose any
relation to database access management.

The two other migration profiles, complemented
and replaced , indicate an effective file migration from
the existing technology to the newly introduced one.
Such cases appear to be much less represented in our
corpus, with the exception of projects in which jpa or
jdbc is introduced after hbm. This is especially the
case when jpa is introduced in a project using
hbm: the files that were related to hbm become
(sometimes exclusively) related to jpa.

Summary. Different technologies generally do
not tend to co-occur in the same set of files, ex-
cept, to some extent, when jpa and hbm are used
together. We do not observe a true migration in
technology usage: files that are related to a given
technology do not tend to adopt the newly in-
troduced technology, except for projects that mi-
grate from hbm to another technology.

7 Threats to validity

Our research suffers from the same threats as other
research relying on Git and GitHub [19, 20].

The selected Java projects potentially suffer from
the same generalisability constraints as in [16]. The
open source GitHub Java project corpus was curated
to exclude low-quality projects (by ignoring projects
that were never forked) and project duplicates.

While our corpus contained 2,457 projects, the
number of projects involved in some pairs of database
technologies were sometimes much lower. For example,
only 19 projects were concerned by a migration from
jpa to hbm (cf. Table 2). The accuracy of our obser-
vations could be increased by using a larger project
corpus.

The detection of a technology is based on the static
analysis of code and project-specific artefacts (e.g.,
Java annotations, import statements and XML files).
This approach can lead to false positives: the presence
of these artefacts does not necessarily reflect the actual
use of the related technology.

Some of our analyses are based on arbitrarily chosen
thresholds and on weekly time intervals. Because our
results may depend on these thresholds and intervals,
we repeated our experiments with different parameters
but did not observe any major differences.

8 Future Work

The results presented in this article, possibly com-
bined with more traditional project quality metrics,
could be integrated in a managerial dashboard. Such
a dashboard could be used to compare the character-
istics and the evolution of a particular project against
those belonging to the analysed project corpus. This
would support project managers in evaluating and ex-
ploiting the expected benefits and disadvantages from
introducing a new technology, as well as in assessing
the impact of how this technology will become used
in the project over time. Any ensuing managerial de-
cisions will obviously depend on project-specific rules
and guidelines that could hardly be generalized.

This paper used static analysis techniques to de-
tect the presence of a particular technology. Using dy-
namic analysis techniques could reveal how database
technologies are actually used in running systems. The
analysis of queries submitted to the database at run-
time could be used for understanding to which extent
ORM technologies hide complexity to developers.

This paper focused on relational database access
technologies based on three representative technologies
(jdbc, Hibernate and jpa). It could be useful to include
other Java specifications for object persistence as well,
such as JDO. It would also be useful to consider other

kinds of databases (such as NoSQL, graph or object-
oriented databases), since these are becoming increas-
ingly more popular. A follow-up study could take into
account such alternative database technologies.

Other technological domains (beyond databases)
could be considered as well. Event loggers, graph-
ical user interfaces, and unit tests are examples of
features supported by multiple concurrent technolo-
gies. Since the identification of the technology used in
project files is the only part of our methodology that
depends on the considered technologies, our approach
could be easily adapted to study other technologies.

Section 7 mentioned the limitations of the selected
project corpus. We therefore intend to confirm our
research results by considering a larger project corpus,
including both open and closed source projects. We
also intend to study the effect of project quality and
project maturity on the obtained results. Finally, we
intend to include other programming languages than
Java in the project corpus in order to avoid any bias
introduced by language-specific characteristics.

While this paper only focused on technical aspects
of connecting source code to databases, we plan to
study the social aspects of systems involving such a
database connection. More precisely, we would like to
determine if the different technologies are introduced
and managed by different teams or persons. Inspired
by [21] we also aim to analyse the developer character-
istics in order to determine how these affect the take-
up, use, evolution and migration of technologies. Some
examples of developer characteristics are their degree
of specialisation, diversity, seniority, skills, and work-
load.

Finally, we plan to analyse software systems in or-
der to automatically identify library features used in
the source code, as well as feature similarities between
different technologies. In situations where developers
want to migrate from a given technology to another,
such a feature identification and mapping is a first step
towards better support for assisted or automatic mi-
gration [22].

9 Conclusions

Through static analysis of Java source code we carried
out a large-scale empirical study to understand how
database access technologies interact with one another.
We considered three popular technologies (jdbc, hbm
and jpa) that represent different means to connect Java
source code files to a relational database. We selected
data from 2,457 open source projects on GitHub that
used at least one of the considered technologies.

Our study revealed common behaviours in the use
of these three technologies. In spite of the promises
of ORM technologies, we found no evidence that the

low-level jdbc solution is massively replaced by hbm or
jpa. The only significant technology migration we ob-
served concerns the transition from hbm to jpa. More
specifically, we summarise our main observations be-
low.

We analysed the evolution and co-occurrences of
the technologies in order to get a high-level view of
their usage in the considered Java projects. It appears
that, most of the time, database technologies are in-
troduced early in the projects’ lifetime, whether they
are the first technology introduced or not. Once intro-
duced in a project, hbm tends to be complemented or
replaced by another technology more frequently and
more quickly than jpa and jdbc.

We also analysed how the technologies are used in
the source code files. The introduction of jdbc and
hbm tends to be followed by an increasing use of the
already present database technology. This increase is
particularly important when hbm is introduced after
jpa. Conversely, the introduction of jpa reduces the
use of hbm. jpa therefore appears to replace existing
hbm in the database-related source-code files, while the
converse is not true.

Furthermore, jdbc generally does not share source
code files with the two other considered database tech-
nologies. While jpa is used in isolation in a majority
of source code files, hbm tends to be used more often
in conjunction with jpa. The study of the evolution of
such co-occurrence reveals that a file migration from a
technology to another one is only observed from hbm
to jpa. In most projects, the introduction of a new
database technology is not followed by a massive adop-
tion of this technology by the existing database-related
files, until these files become database-unrelated or are
removed from the source code repository.

Exploiting all these results in a dashboard that sup-
ports managers in making project-specific decisions
with respect to the introduction, use or evolution of
database access technologies remains part of future
work.

Acknowledgment

This research was conduced as part of the FRFC
research project T.0022.13 “Data-Intensive Software
System Evolution” that was financed by the F.R.S.-
FNRS, Belgium.

References

[1] E. Rahm and P. A. Bernstein, “An online bib-
liography on schema evolution,” SIGMOD Rec.,
vol. 35, no. 4, pp. 30–31, Dec. 2006.

[2] D. Sjoberg, “Quantifying schema evolution,” In-
formation and Software Technology, vol. 35, no. 1,
pp. 35 – 44, 1993.

[3] P. Vassiliadis, A. V. Zarras, and I. Skoulis, “How
is life for a table in an evolving relational schema?
Birth, death and everything in between,” in Int’l
Conf. Conceptual Modeling (ER), 2015, pp. 453–
466.

[4] A. S. Christensen, A. Møller, and M. I.
Schwartzbach, “Precise analysis of string expres-
sions,” in Int’l Conf. Static Analysis (SAS), 2003,
pp. 1–18.

[5] C. Gould, Z. Su, and P. Devanbu, “Static checking
of dynamically generated queries in database ap-
plications,” in Int’l Conf. Software Engineering.
IEEE Comp. Soc., 2004, pp. 645–654.

[6] M. Sonoda, T. Matsuda, D. Koizumi, and S. Hi-
rasawa, “On automatic detection of SQL injec-
tion attacks by the feature extraction of the single
character,” in Int’l Conf. Security of Information
and Networks (SIN), 2011, pp. 81–86.

[7] S. R. Clark, J. Cobb, G. M. Kapfhammer, J. A.
Jones, and M. J. Harrold, “Localizing SQL faults
in database applications,” in Int’l Conf. Auto-
mated Software Engineering (ASE), 2011, pp.
213–222.

[8] M. A. Javid and S. M. Embury, “Diagnosing
faults in embedded queries in database applica-
tions,” in EDBT/ICDT’12 Workshops, 2012, pp.
239–244.

[9] M. Linares-Vasquez, B. Li, C. Vendome, and
D. Poshyvanyk, “How do developers document
database usages in source code?” in Int’l Conf.
Automated Software Engineering (ASE), 2015.

[10] V. Bauer and L. Heinemann, “Understanding API
usage to support informed decision making in
software maintenance,” in European Conf. Soft-
ware Maintenance and Reengineering, 2012, pp.
435–440.

[11] C. Teyton, J. Falleri, and X. Blanc, “Mining li-
brary migration graphs,” in Working Conf. Re-
verse Engineering, 2012, pp. 289–298.

[12] C. Teyton, J. Falleri, M. Palyart, and X. Blanc,
“A study of library migrations in Java,” Jour-
nal of Software: Evolution and Process, vol. 26,
no. 11, pp. 1030–1052, 2014.

[13] M. Goeminne and T. Mens, “Towards a survival
analysis of database framework usage in Java
projects,” in Int’l Conf. Software Maintenance
and Evolution, 2015.

[14] M. Goeminne, A. Decan, and T. Mens,
“Co-evolving code-related and database-related
changes in a data-intensive software system,” in
CSMR-WCRE Software Evolution Week, 2014,
pp. 353–357.

[15] M. N. C. Ireland, D. Bowers and K. Waugh,
“A classification of object-relational impedance
mismatch,” in Intl Conf. Advances in Databases,
Knowledge, and Data Applications (DBKDA),
2009, pp. 36–43.

[16] M. Allamanis and C. Sutton, “Mining source code
repositories at massive scale using language mod-
eling,” in Int’l Conf. Mining Software Reposito-
ries. IEEE, 2013, pp. 207–216.

[17] M. Goeminne and T. Mens, “Evidence for the
Pareto principle in open source software activity,”
in Workshop on Software Quality and Maintain-
ability (SQM), ser. CEUR Workshop Proceedings,
vol. 701. CEUR-WS.org, 2011, pp. 74–82.

[18] I. Samoladas, L. Angelis, and I. Stamelos, “Sur-
vival analysis on the duration of open source
projects,” Information & Software Technology,
vol. 52, no. 9, pp. 902–922, 2010.

[19] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamil-
ton, D. M. Germán, and P. T. Devanbu, “The
promises and perils of mining Git,” in Int’l Conf.
Mining Software Repositories, 2009, pp. 1–10.

[20] E. Kalliamvakou, G. Gousios, K. Blincoe,
L. Singer, D. M. Germán, and D. Damian, “The
promises and perils of mining GitHub,” in Int’l
Conf. Mining Software Repositories, 2014, pp. 92–
101.

[21] B. Vasilescu, A. Serebrenik, M. Goeminne, and
T. Mens, “On the variation and specialisation of
workload: A case study of the Gnome ecosystem
community,” J. Empirical Software Engineering,
pp. 1–54, 2013.

[22] C. Teyton, J.-R. Falleri, and X. Blanc, “Auto-
matic discovery of function mappings between
similar libraries,” in Working Conf. Reverse En-
gineering, Oct 2013, pp. 192–201.

