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We describe classes of existentially closed ordered difference fields and rings. We show an Ax-Kochen type
result for a class of valued ordered difference fields.
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1 Existentially closed real-closed difference fields

In the first part of this paper we will consider on one hand totally ordered difference fields (a difference field is a
field with a distinguished automorphism σ) and on the other hand preordered difference fields.

By a well-known theorem of A. Tarski, the theory RCF of real-closed fields is the model-companion of the
theory of totally ordered fields and a direct consequence of results of H. Kikyo and S. Shelah is that the theory of
real-closed totally ordered difference fields, RCFσ , does not have a model-companion (see [17]).

Note that in a difference field (K,σ) one has automatically a pair of fields, namely (K,Fix(σ)), where Fix(σ)
denotes the subfield of elements of K fixed by σ, and if K is real-closed, then so is Fix(σ). W. Baur showed that
the theory of all pairs of real-closed fields (K,L) with a predicate for a subfield is undecidable ([1]). However,
he also showed that, adding to the language of ordered rings a new function symbol for a valuation v, the theory
of the pairs (K,L) such that v is convex, the residue field of L is dense in the residue field of K and each finite-
dimensional L-vector space ofK has a basis a1, . . . , an satisfying v(

∑
i bi ·ai) = mini{v(bi ·ai)} for all bi ∈ L,

becomes decidable ([1]).
First, we describe a class of existentially closed totally ordered difference fields (even though it is not an

elementary class). We also consider the case of a proper preordering, using former results of A. Prestel and
L. van den Dries (see Section 1.3).

Then we consider valued totally-ordered fields and we assume on one hand that σ is strictly increasing on the
set of elements of strictly positive valuation and on the other hand that in the pair (K,Fix(σ)) the residue field
of K and the residue field of Fix(σ) coincide (and so we are trivially in the Baur setting).

We proceed as for the case of valued difference fields with an ω-increasing automorphism treated by E. Hru-
shovski ([6]) and we show an Ax-Kochen-Ersov type result.

In the second part, we consider commutative von Neumann regular lattice-ordered rings with a distinguished
automorphism σ which fixes the set of the maximal `-ideals and we use transfer results due to S. Burris and
H. Werner ([4]) in certain Boolean products in order to describe the class of existentially closed such lattice-
ordered rings.

In [15], we showed certain undecidability results for Bezout difference rings. One of the consequences
was that any commutative lattice-ordered ring with a distinguished automorphism σ with an infinite orbit on
the set of its maximal `-ideals has an undecidable theory, whenever the subring fixed by σ is an infinite field
([15, Corollary 8.1]). On the positive side, we also showed that the theory of von Neumann regular commutative
f -rings with a pseudo-inverse and a distinguished automorphism was a Robinson theory and so we obtained the
existence of a universal domain for its subclass of existentially closed models.

Let us motivate our study of difference totally ordered fields by the following two well-known examples.
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240 F. Point: Existentially closed ordered difference fields and rings

By a classical result due to A.I. Malcev, H. Hahn and B.H. Neumann, any totally ordered field K embeds in a
power series field of the form k((G)), where k is a totally ordered archimedean field (and so a subfield of R) and
G is a totally ordered abelian group whose underlying set is the set of archimedean classes of elements of K. An
automorphism of K induces an automorphism of G. More generally, we consider power series fields of the form
F ((G)), where G is any totally ordered abelian group and F any totally ordered field. The elements of F ((G))
are formal sums of the form s :=

∑
g∈G cg · xg , where cg ∈ F and supp(s) := {g ∈ G : cg 6= 0} is a well-

ordered subset of G. There is a natural valuation v on F ((G)) which sends s 6= 0 to gs := min(supp(s)) ∈ G,
the ordering on F ((G)) is defined by s > 0 if cgs > 0 (see [13, Chapter 8, Section 5]). Assume now that (K, τ)
is an ordered difference field with automorphism τ and that % is an automorphism of the totally ordered
abelian groupG, then we can define the following automorphism σ ofK((G)): σ(s) :=

∑
g∈G τ(cg) · x%(g). Let

d ∈ N − {0}, let %d be the automorphism of G sending g to d · g. Then define σd on K((G)) which sends∑
g∈G cg · xg to

∑
g∈G cg · xd·g . Consider the ultraproduct

∏
U (K((G)), σd), where U is a non principal ultra-

filter on ω. Let σ := [σd]U and % := [%d]U , then % is an automorphism on GωU which is ω-increasing (see
Notation 2.1).

Our second example is the field R((t))LE of real exponential-logarithmic series (see [11]) constructed as
follows: One starts with the field R0 := R((x−1)) of Laurent series ordered by x > R of elements f(x)
of the form rn · xn + · · · + r1 · x + r0 + r−1 · x−1 + r−2 · x−2 + · · · , consisting of an infinite part
f1 := rn · xn + · · · + r1 · x, a standard part r0 and an infinitesimal part f−1 := r−1 · x−1 + r−2 · x−2 + · · · .
The field K = R0 can be decomposed as a direct sum of an additive subgroup K∞ = K −OK consisting of its
elements of valuation > 1, and a multiplicative (convex) subgroup consisting of its elements of valuation ≤ 1.
One defines the exponentiation operation E on finite elements r0 + f−1 as follows:

E(r0 + f−1) := er0 ·
∑∞
m=0

1

m!
· fm−1,

where e is the usual exponentiation operation on R. Then, taking a strictly increasing homomorphism E1

from the additive group of K into the multiplicative subgroup of its strictly positive elements, one defines
E(f(x)) := E1(f1) · E(r0 + f−1). Then one considers the field R1 := R0((E1(K∞))) and iterate this con-
struction in ω steps, obtaining the field R((x−1))E and then one closes off by the logarithmic function, obtain-
ing R((x−1))LE as a countable union of exponential fields. This last construction uses the substitution map
Φ : RE −→ RE defined (informally) by Φ(f(x)) := f(E(x)), and so is the identity on R. This is used to
define a logarithm operation for the elements in its image (see [11, Section 2.6]). Then one can verify that Φ is
an automorphism of R((t))LE and that it is ω-increasing [11].

1.1 Preliminaries

Let K := (K,+,−, · , <, σ, 0, 1) be a totally ordered difference field and let K+ denote the strictly positive
elements of K. Let L := {+,−, · , 0, 1} (respectively L< := {+,−, · , <, 0, 1}) be the language of rings (re-
spectively ordered rings) and Lσ (respectively L<,σ) be its expansion by two unary function symbols σ, σ−1.
Let L be a difference field and let A be a subset of L, we will denote by 〈A〉σ the Lσ-substructure of L generated
by A; we will denote by aclσ(A) the model-theoretic algebraic closure of A in L.

In the following, we will also consider the reduct of K to its difference field structure. To ease the notation,
we will distinguish the two cases by denoting K by (K,<, σ) and its reduct as a difference field by (K,σ).
Let Kac be the algebraic closure of K and Krc its real closure.

A field is formally real if −1 is not a sum of squares; it can be endowed with a total order if and only if it is
formally real.

Recall that RCF denotes the theory of real-closed fields (F,+, ·, <, 0, 1); it can be axiomatized by the scheme
of axioms expressing that F is a totally ordered commutative field where every monic polynomial with coeffi-
cients in F of odd degree has a root and every positive element of F is a square. A. Tarski showed that RCF is a
complete theory and that it admits quantifier elimination in the language L<.

Let us quickly review some basic facts on definable subsets. One has a cell decomposition result for models
of RCF. Namely any non-empty definable subset A of Fn is a finite union of disjoint (i1, . . . , in)-cells, where
i1, . . . , in is a sequence of zeroes and ones (see [10, 2.11]). Moreover, if A is defined over a finitely generated
subfield F0, then the cells occurring in the above decomposition are also F0-definable. The dimension of a
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(i1, . . . , in)-cell is by definition i1 + · · · + in and the dimension of A is the maximum of the dimensions of the
cells that it contains (see [10, Chapter 4, 1.1]).

Equivalently, one can define the dimension of A over F0 as the maximum of the dimension of the tuples
ā ∈ A over F0, where dim(ā/F0) is the cardinality of any maximal algebraically independent subtuple of ā
([21, Lemma 1.4 and Note p. 244]). We have the following equivalence: dim(A) = ` ≤ n if and only if some
projection of A onto F ` has interior in F ` (see [21, Lemma 1.4]). Therefore, we can tell in a first-order way what
the dimension of A is. The tuple ā is called a generic point of A if its dimension is equal to the dimension of A
([21, Note (ii)]).

Let f̄ := (f1, . . . , fn) be a generic point of A. Let τ be a permutation of the indices 1, . . . , n. Then there
exists an invertible matrix M over F0 such that the tuple t̄ = (t1, . . . , tr) = M · (fτ(1), . . . , fτ(r)) is such that
t1, . . . , tr is a transcendence basis for F0(f̄) and the ti’s (as well as the fi’s) are integral over F0[t1, . . . , tr]. So,
there exist n− r monic polynomials qi ∈ F0[t1, . . . , tr][X] such that qi(fi) = 0 for n− r + 1 ≤ i ≤ n.

With f̄ we will associate the ideal I(f̄) = 〈q1, . . . , qn−m〉 of F0[x1, . . . , xn]. Note that

(∗) ∂qi
∂xm+i

(f̄) 6= 0, for 1 ≤ i ≤ n−m.

We will call any such tuple f̄ satisfying these conditions (∗) non-singular. Michaux and Rivière showed that in
any neighbourhood of a non-singular point one can find a generic point of A (see [20, Proposition 1.6] ).

Now, we will assume in addition that F is a difference field, i.e., a field with a distinguished automorphism σ.
We will denote by FixF (σ) := {x ∈ F : σ(x) = x} the subfield of F consisting of the elements fixed by σ.

Note that since F is a model of RCF, then so is Fix(σ) (see Corollary 2.2 below).
If we forget the order, it is now well-known that the class of existentially closed models of the theory of

difference fields is elementary and has a recursive axiomatization called ACFA (see for instance [5, 1.1]). Let
ACFA0 denotes the theory ACFA plus the scheme of axioms expressing the field has characteristic 0. Both
theories ACFA and ACFA0 are decidable (see for instance [5, 1.4, 1.6]).

Notation 1.1 Let K be a difference field and let X = (X1, . . . , Xm) be a finite tuple of indeterminates and
let Xσ be the tuple (Xσ

1 , . . . , X
σ
m). Let K[X]σ be the σ-polynomial ring, i.e., the polynomial ring in infinitely

many indeterminates X,Xσ, . . . , Xσn , . . ., n ∈ N. Let P ∈ K[X]σ and suppose that, for some 1 ≤ j ≤ m,
Xσn

j occurs non trivially in P , then the order of P in Xj is greater than or equal to n ([8, p. 65]); it is equal to n
if n is the highest such natural number. The effective order of Xj in P is n1 − n2, where n1 is the order of Xj

in P and n2 is the lowest natural number such that Xσn2

j occurs non trivially in P .
As usual we can write “P (X) ∈ K[X]σ of order n, as P ∗(X1, . . . , Xm, X

σ
1 , . . . , X

σn

m ) for some element

P ∗(Y1, . . . , Ym·(n+1)) ∈ K[Y1, . . . , Ym·(n+1)], and we define
∂

∂Xσj
i

P := (
∂

∂Yi·(j+1)
P ∗)(X1, . . . , X

σn

m ).

Let (K̃, σ̃) � ACFA containing (K,σ) and let (F, σ) be a difference subfield containing (K,σ). We recall
below certain facts about difference algebras which can be found either in [8] or [5]. We will use the term σ-ideal
for an ideal which is closed under σ; it is reflexive if whenever σ(a) ∈ I , then a ∈ I; it is perfect if whenever a
product of images of a by powers of σ belongs to I , then a belongs to I .

Let A be a subset of Fn and let ΦF (A) ⊂ F [X]σ (respectively IF (A) ⊂ F [X]) be the set of difference
polynomials (respectively ordinary polynomials) in n variables annulled by all elements of A. The ideal IF (A)
is prime and ΦF (A) is a σ-ideal which is reflexive and perfect. The perfect σ-ideals of F [X]σ satisfy the
ascending chain condition ([8, Chapter 3]). Therefore, a perfect σ-ideal I is the perfect closure of a finite set S
of σ-polynomials (see [8, Chapter 3]); we will use the notation I = {S}. If we want to stress in which difference
polynomial ring we are taking the closure, we add a subscript as follows: IK̃ = {S}K̃[X]σ

is the perfect closure
of S in K̃[X]σ .

As usual, we will say that a subset V ⊂ Fn is a difference variety (respectively an irreducible variety) if it
is the set of zeros of some perfect reflexive σ-ideal of F [X]σ (respectively some prime ideal of F [X]). Recall
that a variety V is absolutely irreducible if IF ac(V ) is a prime ideal of F ac[X]. We will denote by V σ(F ) the
set of zeroes of IσF (V ), where IσF (V ) denotes the ideal of F [X] obtained by applying σ to the coefficients of the
elements of IF (V ).
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242 F. Point: Existentially closed ordered difference fields and rings

By the above there exists a finite set SV such that Φ(V ) = {SV }. We will denote the perfect closure of SV
in K̃[X]σ by ΦV,K̃ = {SV }K̃[X]σ

and the corresponding set of zeros in K̃n by V (K̃).
The difference variety V is irreducible (over F ) if ΦV,F = ΦF (V ) is prime and it is absolutely irreducible

(over K̃) if ΦK̃(V (K̃)) is a σ-ideal of K̃[X]σ which is prime.
Finally, we will say that a variety V ⊂ Fn is defined over K if IV can be generated by a subset of K[X]σ .
A tuple c̄ ∈ K̃ with c̄ ∈ V (K̃) is σ-generic (with respect to K̃) if Φ(V (K̃)) is equal to Φ({c̄}) (we will also

say that c̄ is a σ-K̃-generic point).
A (difference) variety V defined over K has a σ-K̃-generic point c̄ in some intermediate field K ⊂ F ⊂ K̃ if

c̄ ⊂ F and Φ(V (K̃)) is equal to Φ({c̄}).
Let V be a difference variety defined over K and let S be a finite subset of K[X]σ whose perfect clo-

sure is equal to Φ(V ). For sake of simplicity assume that X is a single variable. Let m be the maximal
effective order of the elements of S. Let π1 be the projection from Km+1 onto K, sending a tuple to its
first component. Let S∗ be the set of ordinary polynomials in m + 1 variables such that if p(X) ∈ S, then
p(X) = p∗(X,Xσ, . . . , Xσm) ∈ S∗. Let V ∗ := {(x, xσ, . . . , xσm) : x ∈ V }. We embed Ṽ in K2m by
adding to the equations Xσ = X1, . . . , X

σ
m−1 = Xm and so setting Y := (X,X1, . . . , Xm−1) and re-writing

p∗(X,X1, . . . , Xm) as p∗∗(Y, Y σ) we get that π1(Ṽ ) = V , where

Ṽ := {(Y, Y σ) : p∗∗(Y, Y σ) = 0 ; Xσ = X1, . . . , X
σ
m−1 = Xm ; p ∈ S}.

The axiom scheme ACFA tells us that whenever there exists an absolutely irreducible (algebraic) varietyU ⊂ Km

into which Ṽ projects generically, then V has a point in K̃.

1.2 Virtual points

In this section K := (K,+,−, · , <, σ, 0, 1) will always denote a totally ordered real-closed difference field of
cardinality κ.

There are two extensions of σ to Kac = K(i) with i2 = −1, one sending the element i to itself and the other
to −i. We will still denote by σ the first extension and we will denote the second one by σ−. Then we embed
(Kac, σ) (respectively (Kac, σ−)) into a model (K̃, σ) (respectively (K̃, σ−)) of ACFA. We will distinguish
those two cases by saying in the first case that (K̃, σ) satisfies ACFA+ and in the second one that (K̃, σ−)
satifies ACFA−.

Recall that the extension L ofK is called regular ifK is relatively algebraically closed in L and L is separable
over K.

Remark 1.2 Let (K̃1, σ1) and (K̃2, σ2) be two κ+-saturated models of ACFA0 in which (K,<, σ) embeds.
Then K̃1 ≡K K̃2 if and only if σ1(i) = σ2(i).

P r o o f. Indeed, the algebraic closure of K in K̃1 is equal to K(i). Either σ1(i) = σ2(i) in which case
K̃1 ≡K(i) K̃2 (see [5, Theorem 1.3]), or σ1(i) = −σ2(i) in which case K̃1 6≡K K̃2 (indeed, the sentence
∃x (x2 = −1 & σ(x) = −x) distinguishes them).

Lemma 1.3 Assume that (K̃, σ) is a κ+-saturated model of ACFA+ in which (Kac, σ) embeds as a differ-
ence field. Then there is a unique, up to K-isomorphism, maximal difference totally ordered real-closed subfield
(L,<, σ) of cardinality κ in (K̃, σ) extending (K,<, σ).

P r o o f. Note that the condition that (L,<) is an ordered field extension of (K,<) is equivalent to
¬(−1 =

∑
j aj · α2

j ) with aj ∈ K+ and αj ∈ L.
By Zorn’s lemma, there is a maximal difference totally ordered real-closed subfield of cardinality κ in (K̃, σ̃)

extending (K,<, σ).
Now, given two ordered real-closed difference field extensions of cardinality κ, (K1, <1, σ1) and (K2, <2, σ2)

of (K,<, σ) in K̃, we will show that we can embed them in a third one by aK-isomorphism. SinceK is relatively
algebraically closed in K1, K1 is a regular extension of K. So, K1 ⊗K K2 is an integral domain and its field of
fractions L0 is a regular extension of K2. We endow K1⊗KK2 with an order extending the order of K1 and K2.
Indeed, the subset {

∑
j(k1j ⊗ k2j) · y2

j : k1j ∈ K+
1 , k2j ∈ K+

2 , yj ∈ K1 ⊗ K2} is a preorder extending the
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orders on respectivelyK1 andK2 (see [22, (0.5)]). So, this preorder extends to an order and this order to the field
of fractions L0.

Then we show that L0 is a difference field extension of K. Given a typical element of K1 ⊗K K2, we
define σ3(k1 ⊗ k2) = σ1(k1) ⊗ σ2(k2). Finally, one extends σ3 on L0 and then to its real closure Lrc

0 . Since
K̃ � ACFA+, we further extend σ3 on the algebraic closure of Lac

0 = Lrc
0 (i) by setting σ3(i) = i. We then

embed Lac
0 in a κ+-saturated model L̃ of ACFA+. Since L̃ ≡Kac K̃ and K̃ is κ+-saturated, we may embed Lrc

0

inside K̃, using a K-isomorphism f . Finally we embed K1 and K2 inside f(L0) using a K-isomorphism.

Corollary 1.4 The subfield FixL(σ) is a proper real-closed subfield of FixK̃(σ).

P r o o f. First, notice that FixL(σ) is a proper subfield of FixK̃(σ). By [5, Proposition 1.2], FixK̃(σ) is a
pseudo-finite field, in particular it is a PAC field and so every element is the sum of two squares, so FixK̃(σ) is
never formally real ([12, Theorem 10.12]).

Now, let us show that FixL(σ) is real-closed. Let P [X] ∈ FixL(σ)[X] and suppose it has a root b ∈ L. Then
σ(b) is also a root of P [X] and so whenever σ(b) 6= b, the polynomial P [X] would have infinitely many roots.
Therefore σ(b) = b.

Remark 1.5 Note that the above corollary implies thatL(i), which is a difference algebraically closed subfield
of K̃, is not a model of ACFA. (Its fixed subfield is algebraically closed if K̃ � ACFA+ and real-closed if
K̃ � ACFA−).

P r o o f. Let a + b · i ∈ FixL(i)(σ̃). If σ(i) = i, then a, b ∈ FixL. If σ(i) = −i, then a ∈ Fix(σ) and
σ(b) = −b, which implies that b = 0 since L is an ordered field. So, FixL(i)(σ) = FixL(σ).

Let (K,<, σ) ⊂ (L1, <, σ) and (K,<, σ) ⊂ (L2, <, σ). If any existential formula with parameters in K
which holds in L1, holds in L2 and conversely, we will use the notation: (L1, <, σ) ≡∃,K (L2, <, σ).

Proposition 1.6 Let K̃1, K̃2 be two κ+-saturated models of ACFA+ containing K. Let L1 (respectively L2)
be a maximal difference totally ordered real-closed subfield of K1 (respectively K2) of cardinality κ containing
K as an ordered difference subfield. Then (L1, <, σ) ≡∃,K (L2, <, σ).

P r o o f. Let ϕ(ȳ, x̄) be a quantifier-free L<,σ-formula and ψ(x̄) := ∃ȳ ϕ(ȳ, x̄) be an existential formula.
Let ā be parameters in K and suppose that ψ(ā) holds in L1. In difference real-closed fields, the formula ϕ(x̄, ȳ)
is equivalent to an existential Lσ-formula, say θ(x̄, ȳ), replacing atomic formulas of the form t(x̄, ȳ) ≥ 0 by
∃u t(x̄, ȳ) = u2.

Let c̄ ∈ L1 such that L1 � θ(c̄, ā). Let tp(c̄/K) be the Lσ-type of c̄ over K in L1. This type is finitely
satisfiable in K̃2 since K̃1 ≡K(i) K̃2. Since K̃2 is κ-saturated, there is a tuple d̄ ∈ K̃2 realizing this type. So,
K〈d̄〉σ is formally real and K̃2 � θ(d̄, ā). So, by the proof of Lemma 1.1, there is a K-isomorphism f sending
K〈d̄〉σ in L2 fixing K. Therefore, L2 � θ(f(d̄), ā), or equivalently, L2 � ϕ(f(d̄), ā) and so L2 � ψ(ā).

Definition 1.7 Let (L,<, σ) be a maximal ordered real-closed field extension of (K,<, σ) of cardinality κ
with (L, σ) ⊂ (K̃, σ). Let V be a difference variety defined over K and let S be a finite subset of K[X]σ whose
perfect closure is equal to ΦK(V ). We will say that V has a virtual point if V (L) 6= ∅, equivalently, if K〈c̄〉σ is
formally real, for some generic point c̄ in V (K̃).

Namely, V has a virtual difference point if there is a generic point c̄ in V (K̃) such that the difference subfield
generated by K and this tuple can be endowed with an ordering extending the ordering of K. We will abbreviate
the formula

∧
s∈S s(x̄) = 0 by S(x̄) = 0. We can express that property by the following infinite conjunction:

K̃ � ∃c̄ [S(c̄) = 0 &
∧
aj∈K+ and pj ,q∈K[X̄]σ̃

(q(c̄) 6= 0→ −1 6=
∑
j aj ·

pj(c̄)
2

q(c̄)2
)].

Since K is real-closed, this is equivalent to:

K̃ � ∃c̄ [S(c̄) = 0 &
∧
pj ,q∈K[X̄]σ

(q(c̄) 6= 0→ q(c̄)2 +
∑
j pj(c̄)

2 6= 0)].
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Since K̃ is κ+-saturated, this is equivalent to require that any finite system in x̄ of the form

S(x̄) = 0 &
∧
i∈I(qi(x̄) 6= 0→ qi(x̄)2 +

∑
j∈Ji pij(x̄)2 6= 0),

has a solution in K̃, where I, Ji are finite and pij , qi ∈ K[X̄]σ ,

Remark 1.8 Let (K̃1, σ1) and (K̃2, σ2) be two κ+-saturated models of ACFA+ containing (K,<, σ). Let
c̄1 be a virtual point of V in K̃1. By Remark 1.2, any finite subset of formulas satisfied in K̃1, is also satisfied
in K̃2. So the above type is finitely satisfiable in K̃2 and since K̃2 is κ+-saturated it is satisfied in K̃2. So, the
variety V has a virtual point c̄2 in K̃2.

Remark 1.9 Assume the difference variety V defined over K has a virtual point c̄. Then, using model-
completeness of RCF, K � ∃(ā, ā1, . . . , ān) ∈ V ∗ ∩ (O×Oσ × · · · ×Oσn) for any open set O defined over K
containing c̄, where (ā, ā1, . . . , ān) is a non singular point of V ∗.

Definition 1.10 Let Cpra be the class of totally-ordered commutative difference fields (K,<, σ) satisfying the
following properties:

1. K � RCF.
2. σ is an automorphism of K.
3. For every absolutely irreducible (algebraic) variety U ⊂ (Ωac)

n defined over K, where Ω is a model of
RCF containing K and κ+-big, and for every absolutely irreducible algebraic variety V defined over K with
V ⊆ U × Uσ projecting generically onto U and onto Uσ , the following holds: Assume that for any finite index
set I and pi[X,Y ] ∈ K[X,Y ], i ∈ I , X = (X1, . . . , Xn), Y = (Y1, . . . , Yn), we have that

(∗)
∑
i∈I p

2
i ∈ IK(V )→

∧
i∈I pi ∈ IK(V ).

Then there exists an element r̄ in K such that (r̄, r̄σ) ∈ V .
Note that the condition on V is expressed by an infinite conjunction, since each condition (∗) is an elementary

statement.
Lemma 1.11 Any real-closed difference field embeds in an element of Cpra. Moreover, given any two elements

K1, K2 of Cpra with K1 ⊂ K2, then K1 ⊂ec K2.

P r o o f. First, let K := (K,<, σ) be a real-closed difference field, we will show that it embeds in an element
of Cpra. Since we can embed K in an existentially closed real-closed difference field containing K, w.l.o.g. we
may assume that K is itself existentially closed and we will show that then K belongs to Cpra.

So, let V be an absolutely irreducible variety defined over K satisfying the condition stated in scheme 3 and
let us show that it has a point in K. This condition we put on V implies that the fraction field of K[X,Y ]/IK(V )
is formally real. So there exists a generic point (ā, b̄) of V in Ω. Since V projects generically on U and on Uσ ,
ā (respectively b̄) is a generic point of U (respectively Uσ). Since Frac(K[X,Y ]/IK(V )) is formally real, we
have also that Frac(K[X]/IK(U)) is formally real, so K(ā) can be endowed with an ordering extending the
ordering < on K (see [22, (0.4)]). Since σ is an automorphism of K, we similarly get that if b̄ is a generic point
in Uσ(Ω), thenK(b̄) can be endowed with an ordering extending the ordering< onK. Moreover, we can choose
the ordering in such a way that the L<-type of ā over K is equal to the L<-type of b̄ in K. We have a partial
isomorphism of Ω extending σ and sending ā to b̄ and preserving the order on K(ā), respectively K(b̄). Since
Ω is κ+-big and so κ+-strongly homogeneous ([14, p. 487]) and since (Ω,K(ā)) ≡ (Ω,Kσ(b̄)), there is an
automorphism of Ω extending σ and taking ā to b̄. Let K〈ā〉σ be the difference ordered subfield of Ω generated
by K and ā, where V has a point of the form (ā, āσ). Finally, we extend σ to the real-closure of K〈ā〉σ , and
since K is existentially closed, V has also a point in K of the form (c̄, c̄σ).

Second, let K1 ⊂ K2 ∈ Cpra and let us show that K1 ⊂ec K2. Let ϕ(x1, . . . , xn) be a quantifier-free formula
with parameters in K1 satisfied by a tuple ā ⊂ K2. Then there exists k ∈ N such that ϕ(x̄) is a finite disjunction
over I of formulas of the form

ϕi(x̄) := f(x̄, σ(x̄), . . . , σk(x̄)) = 0 & f1(x̄, σ(x̄), . . . , σk(x̄)) > 0 & · · ·& fs(x̄, σ(x̄), . . . , σk(x̄)) > 0,

with f(X), fj(X) ∈ K1[X]σ , i ∈ I .
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Note that if k = 0, we simply apply the model-completeness of the theory RCF. In RCF, each formula ϕi(x̄)
is equivalent to a finite disjunction of existential formulas of the form

∃ȳ ∃z̄ ψj(x̄, ȳ, z̄) := ∃ȳ ∃z̄ f(x̄, σ(x̄), . . . , σk(x̄)) = 0

& f1(x̄, σ(x̄), . . . , σk(x̄)) = y2
1 & · · · & fs(x̄, σ(x̄), . . . , σk(x̄)) = y2

s

&
∧s
j=1 fj(x̄, σ(x̄), . . . , σk(x̄)) · zj − 1 = 0.

Assume that ϕj(ā) holds in K2. So, there exists c̄, d̄ such that ψ(ā, c̄, d̄) holds in K2. Let us put this tuple
in the form (b̄, b̄σ). Let U be an absolutely irreducible (algebraic) variety whose b̄ is a generic point and let V
be an absolutely irreducible variety whose (b̄, b̄σ) is a generic point. Since 〈K1, b̄〉σ ⊂ K2 � RCF, we have
that the fraction field of K1[X,Y ]/IK1

(V ) is formally real. The difference variety V projects generically on
U × Uσ . So, since K1 satisfies scheme 3, there is an element (r̄, r̄σ) ∈ V (K1). So, there exists r̄0 ⊂ r̄ such that
K1 � ϕ(r̄0).

1.3 Properly preordered fields

(We will follow the presentation of [23]). Let (K,S) be a field with a preordering S, i.e., with a subset S
satisfying S + S ⊂ S, S · S ⊂ S, K2 ⊂ S. Note that such a subset S is closed under −1 since s−1 = s · s−2.
Let K× (respectively S×) denote the multiplicative group of non-zero elements of K (respectively S).

The preordering S is proper if −1 /∈ S, in which case K is formally real. A preordered field L extending K is
said to be totally real if all orderings of K extend to L.

Let XK(S) be the set of orderings P extending S, i.e., the proper preorderings P containing S such that
K = P ∪ (−P ). The set XK(S) can be endowed with an Hausdorff topology generated by the sets
H(a) := {P : a ∈ P}; we will denote the corresponding topological space by XK(S).

A preordered field (K,S) is called SAP if for any a, b, there is an element c such that H(a) ∩H(b) = H(c).
Let LS := L ∪ {S} be the language of preordered rings, where S is a unary predicate and LS,σ its expansion

to the language of difference rings.

Definition 1.12 (See [23]). Let Tn, n ∈ N ∪ {+∞}, be the following theories:
(1) S = K2;
(2) K does not admit a totally real algebraic extension;
(3) K is pseudo-real-closed, i.e., every absolutely irreducible variety V defined over K which has a simple

point in the real closure of (K,P )
rc with respect to any ordering P , has a K-rational point;

(4)n |K×/S×| = 2n, where n ∈ N, or (4)∞ XK(S) is non-empty and has no isolated points.

For n ∈ N, a model of Tn has exactly n orderings and is the model companion of the theory of pre-
ordered fields (K,S) such that |K×/S×| = 2n and such that for all a, b ∈ K× there exists c ∈ K× such that
H(a) ∩H(b) = H(c) ([23]).

This extends the result of van den Dries that Tn is the model-companion of the theory of rings with exactly n
orderings (in the language of rings expanded with n unary predicates) ([9]). Whereas T∞ is the model compan-
ion of the theory of properly preordered fields (namely preordered fields (K,S) where S is a proper preorder)
([23, Theorem 2]).

Now, we will consider a preordered difference field (K,S, σ). Let Kac be the algebraic closure of K and
denote by σ1 an extension of σ to Kac. We fix a |K|+-saturated model (K̃, σ̃) of ACFA into which we fix an
embedding of Kac.

Lemma 1.13 Let (K,S, σ) be a preordered difference field; assume that whenever [K× : (S2)×] = 2n,
K has exactly n orderings and that K has no totally real algebraic extension. Then there is a unique, up to
K-isomorphism, maximal difference preordered subfield (L, S̃, σ) � Tn of cardinality κ in (K̃, σ̃) extending
(K,S, σ), n ∈ N ∪ {+∞}.

P r o o f. First, we note that if (K∗, S∗, σ) is an existentially closed extension of (K,S, σ), which we may
assume to be of cardinality κ, with |K×/S×] = 2n if this index is finite and it is a model of Tn, or of T∞ if this
index is infinite. This verification is analogous to the proof of [23, Lemma 2]. We check that (K∗, S∗, σ) satisfies
properties (1) – (3) and either (4)n or (4)∞ of Definition 1.12.
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Indeed, one considers either (i) algebraic extensions of K∗ and so the automorphism σ extends in a natural
way, or (ii) extensions where one adds points to absolutely irreducible varieties defined over K∗, or (iii) exten-
sions where one adds a transcendental element over K∗. First all these extensions can take place in K̃. In the
second case, we have to check that the difference field extension is still a formally real field, and in the third
case – in order to show that XK∗ has no isolated point – that we can choose a transcendental element over K∗

in Fix(σ).
Let us examine more closely the second case. Let f(X1, . . . , Xm, Y ) ∈ K∗[X̄, Y ] be absolutely irreducible

and monic in Y such that for each P ∈ XK∗ there exists (x̄, y) ∈ (K∗, P ) with f(x̄, y) = 0 and
∂f

∂Y
(x̄, y) 6= 0.

Then each P extends to the fraction field of K∗[X̄, Y ]/(f). Equivalently, the fraction field of K∗[X̄, Y ]/(f) is
formally real. So, if we choose a generic point b̄ of f = 0 in K̃, the field K∗(b̄) is formally real and is a regular
extension of K∗. Since σ is an automorphism of K∗, the same property holds for the polynomial fσ and b̄σ is
the corresponding generic point of fσ = 0. The extension K∗(b̄)⊗K∗(b̄σ) of K∗ is a domain and it is formally
real. Iterating the same reasoning we get a chain of formally real fields of the form

⊗
−n≤i≤nK

∗(b̄σ
i

). Taking
the union we have a formally real difference field extension of K∗, where f = 0 has a generic point. Since K∗

is existentially closed, f = 0 has a point in K∗.
Then, by Zorn’s lemma, there is a maximal difference preordered model of Tn of cardinality κ, (L, S̃, σ) in

(K̃, σ̃) extending (K,S, σ).
Given two preordered difference field extensions of (K,S, σ) of cardinality κ in K̃, models of Tn, say

(K1, S1, σ1) and (K2, S2, σ2), which we may assume to be linearly disjoint over K, we form K1 ⊗K K2. This
latter ring is an integral domain since K1 is a regular extension of K and so it has a field of fractions L0, which
is a regular extension of K1 and K2. Using the same reasoning as in Lemma 1.3, we may assume that L0 is a
subfield of K̃.

For each preorder S1 on K1, respectively S2 on K2, one shows that one can endow K1 ⊗K K2 with a
preorder T extending the preorder S1 of K1 and the preorder S2 of K2. Indeed, one shows that the subset
{
∑
j(k1j ⊗ k2j) · y2

j : k1j ∈ S1, k2j ∈ S2, yj ∈ K1 ⊗K2} is a preorder extending the preorders S1 on K1 and
S2 on K2 ([22, (0.5)]). Finally, one extends this preorder to the field of fractions L0.

Then one has to show that it is a difference field extension of K. Given a typical element of K1 ⊗K K2, one
defines σ3(k1 ⊗ k2) = σ1(k1)⊗ σ2(k2) and one extends σ3 on L0.

Then we consider the existential closure of L0 inside K̃ and so we get a difference preordered field extension
of K of cardinality κ which is a model of Tn (see [9, Theorem 1.2], [23] and the above) into which both K1 and
K2 embed by an endomorphism fixing K.

Definition 1.14 Let Cpran , n ∈ N∪{+∞}, be the class of preordered commutative difference fields (K,S, σ)
satisfying the following properties:

1. K � Tn.
2. σ is an automorphism of K.
3. For every absolutely irreducible varietyU defined overK and every absolutely irreducible variety V defined

over K with V ⊆ U ×Uσ ⊂ K̃2n, where K̃ � ACFA, projecting generically onto U and onto Uσ , the following
holds:

If for all q[X,Y ] /∈ IK(V ) and any finite number of difference polynomials pi[X,Y ], i ∈ I , we have that
q2 +

∑
i∈I p

2
i /∈ IK(V ), then there exists an element r̄ in K such that (r̄, r̄σ) ∈ V .

Lemma 1.15 Let C be the class of preordered difference fields. Then any element of C embeds in an element
of Cpra∞ and given two elements of Cpra∞ , K1 ⊂ K2, then K1 ⊂ec K2.

P r o o f. First, let (K,S, σ) be a preordered difference field of cardinality κ and (K∗, S∗, σ) an existentially
closed extension of the same cardinality inside a κ+-saturated extension of (K,σ), model of ACFA+.

Let us show that (K∗, S∗, σ) embeds in an element of Cpra∞ .
By the proof of Lemma 1.13, we have that (K∗, S∗, σ) is a model of T∞. So, S∗ = (K∗)2.
Let V be an absolutely irreducible variety defined over K∗. Assume that for all q[X,Y ] /∈ IK(V ) and all

finite set of pi[X,Y ], i ∈ I , we have that q2 +
∑
i∈I p

2
i /∈ IK(V ). Namely −1 is not a sum of squares in the

fraction field of K∗[X,Y ]/IK∗(V ), so it is formally real. Since V is absolutely irreducible, the fraction field
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of K∗[X,Y ]/IK∗(V ) is a regular extension of K∗ which is a SAP field. So all orderings of K∗ extends to it
(Proposition in [23, Section 2]). Similarly as in the proof of Lemma 1.11, we wish to get a difference preordered
field extension of K∗, where V has a point of the form (b̄, b̄σ). We proceed as follows. Let Ω is a model of RCF
containingK∗ and κ+-big. Let (ā, b̄) be a generic point of V in Ω. Since V projects generically on U and on Uσ ,
ā (respectively b̄) is a generic point of U (respectively Uσ) in Ω. So these two tuples have the same L-type over
K∗. Since Frac(K∗[X,Y ]/IK(V )) is formally real, we have also that Frac(K∗[X]/IK(U)) is formally real.
Let S1 (similarly S2) be the set of squares in Frac(K∗[X]/IK(U)) (similarly in Frac(K∗[X]/IK(Uσ))).

We have a partial isomorphism of Ω extending σ and sending ā to b̄ and S1 to S2. Since Ω is κ+-big and so
κ+-strongly homogeneous ([14, p. 487]) and since (Ω,K∗(ā), S1) ≡ (Ω, (K∗)

σ
(b̄), S2), there is an automor-

phism of Ω extending σ and taking ā to b̄. Let (K∗〈ā〉σ, S) be the difference preordered subfield of Ω generated
by K∗ and ā, where S is the set of squares and V has a point of the form (ā, āσ). Since (K∗, S∗) is existentially
closed, V has also a point in K∗ of the form (c̄, c̄σ).

Second, let (K1, S1) ⊂ (K2, S2) ∈ Cpra∞ and let us show that (K1, S1) ⊂ec (K2, S2). So, we have to show
that any existential formula ϕ(b̄) := ∃x̄θ(x̄, b̄), where b̄ ⊂ K1 and θ is a conjunction of basic formulas in the
language LS,σ satisfied in K2, is already satisfied in K1.

Let θ(x1, . . . , xn, b̄) be of the form

f(x̄, σ(x̄), . . . , σk(x̄)) = 0 & g(x̄, σ(x̄), . . . , σk(x̄)) 6= 0

& f1(x̄, σ(x̄), . . . , σk(x̄)) ∈ S & · · · & fs(x̄, σ(x̄), . . . , σk(x̄)) ∈ S
& g1(x̄, σ(x̄), . . . , σk(x̄)) /∈ S & · · · & gt(x̄, σ(x̄), . . . , σk(x̄)) /∈ S,

where f, g, fi, gj are polynomials with coefficients in K1, i ∈ I, j ∈ J .
As in the proof of [23, Lemma 3], we replace the basic subformulas fi(x̄, ȳ) ∈ S by ∃zi fi(x̄, ȳ) = z2

i , and
gj(x̄, ȳ) /∈ S by ∃zj gj(x̄, ȳ) · z2

j = cj , where cj is some element of K1 such that −cj ∈ K1 − K2
1 . We call

the obtained (difference field) formula θ̃(x̄, z̄, b̄). To check the equivalence between ϕ(b̄) and ∃x̄∃z̄θ̃(x̄, z̄, b̄) one
considers a finitely generated subfield of K2 containing K1 and algebraic over it.

Suppose the formula θ̃ is satisfied by a tuple d̄ in K2; put it in the form (d̄0, d̄
σ
0 ). Let U be an absolutely

irreducible (algebraic) variety whose d̄0 is a generic point and let V be an absolutely irreducible variety whose
(d̄0, d̄

σ
0 ) is a generic point. Let S′ := S2 ∩ 〈K1, d̄0〉σ of K2. Then S′ is proper and so the fraction field

of K1[X]σ/IK1
(V ) is formally real. The variety V projects generically on U × Uσ . So, since K1 satisfies

scheme 3, there is an element (r̄, r̄σ) ∈ V (K1). So, there exists r̄0 ⊂ r̄ such that K1 � ϕ(r̄0).
Note that g /∈ I(V ), whereas gj(x̄, b̄) · z2

j − cj ∈ I(V ), j ∈ J , and fi(x̄, b̄)− z2
i ∈ I(V ).

Therefore, the variety V satisfies the hypothesis of scheme 3 and so we may find a tuple ā in K1 in V and
satisfying θ(ā, b̄). Therefore, K1 � ϕ(b̄).

2 Ordered difference valued fields

In this section, we will consider ordered difference fields where the distinguished automorphism is ω-increasing.
Expanding the language with a valuation, will allow us to first-order axiomatize a class of existentially closed
such ordered difference valued fields (we will put the additional hypothesis that the fixed field is dense in the set
of elements of valuation zero). In view of Baur’s result on pairs of real-closed fields recalled in the introduction,
such hypothesis may be reasonable.

A field (K,+,−, · , <, v, 0, 1) is called a valued ordered field ([7, 1.2]) if
1. (K,+,−, · , <, 0, 1) is an ordered field,
2. (K,+,−, · , v, 0, 1) is a valued field,
3. the following compatibity relation holds between the valuation and the order:

(∀a > 0)∀b (0 < b < a→ v(b) ≥ v(a)).

As it was recalled in the introduction, any totally ordered field K embeds in a power series field of the form
k((G)), where k ⊆ R and G is the set of archimedean classes of K+. We define an order by setting that
a :=

∑
i∈supp(a) ki · xgi > 0, where the support supp(a) of a is a well-ordered subset of G, gi0 is the smallest
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element of supp(a) and ki0 > 0. One endows this power series field with a valuation sending an element to the
smallest element of its support and so we get in this way a valued ordered field as defined above.

More generally, we will consider power series fields k((G)), where k is not necessarily archimedean.
Denote by K̄ the residue field of (K, v), by OK the elements of positive value, by MK the maximal ideal

of OK and by ΓK the value group of v. We will use here the notation ā to denote the image of the
element a ∈ K in the residue field K̄. Let Γ+

K denote the strictly positive elements of ΓK .
Recall that OK is convex in K, MK is bounded by ±1. If K is a real-closed field, then K̄ is a real-closed

field, ΓK is a divisible group and (K, v) is Henselian (see [7, Lemmas 4, 5 and Theorem 3]).
Definition 2.1 We will say that (K,+,−, · , <, v, σ, 0, 1) is a valued ordered difference field if σ is an auto-

morphism of the structure (K,+,−, · , <,div, 0, 1), where

a div b if and only if v(a) ≤ v(b).

We will denote by L<,div (respectively by L<,div,σ) the language L< (respectively L<,σ) augmented by the
relation symbol div and we will consider the theories of valued ordered (difference) fields in these languages.

Therefore, in a valued ordered difference field (K,+,−, ·, <, v, σ, 0, 1), σ induces an endomorphism σ̃ on the
value group (ΓK ,+, 0, <); indeed the map σ̃(v(a)) := v(σ(a)) is well-defined and

v(σ(a · b)) = v(σ(a) · σ(b)) = v(σ(a)) + v(σ(b)).

So, ΓK is endowed with a structure of a Z[t]-module, the action of t being defined by v(a) · t = v(aσ) and
extended by linearity on Z[t]. Let q(t) =

∑n
j=0 zj · tj with zj ∈ Z, then

v(a) · q(t) =
∑n
j=0 v(a) · zj · tj =

∑n
j=0 v((azj )

σj
) = v(

∏n
j=0 (azj )

σj
).

For a ∈ K, we will use the notation aq(σ) :=
∏n
j=0 (azj )

σj .
Recall that the model-completion of the theory of torsion-free Z[t]-modules is the theory of divisible torsion-

free Z[t]-modules. Further, we will endow Z[t] with the following order extending the order on Z: Let∑n
i=0 zi · ti be in Z[t], then∑n

i=0 zi · ti > 0 if and only if zn > 0.

Denote by Z[t]+ the set of strictly positive elements of Z[t].
Recall that the theory Tdo of divisible ordered torsion-free Z[t]-modules admits quantifier elimination and is

the model-companion of the theory of the ordered torsion-free Z[t]-modules satisfying in addition the following
axiom scheme:

(∀m > 0) (m · p(t) > 0), for p(t) ∈ Z[t]+.

Moreover, Tdo is an o-minimal theory (see [6], [10]).
Definition 2.2 Let Tvod be the L<,div,σ-theory of valued ordered difference fields. Let Tvod,inc be the theory

Tvod together with:
1. σ is strictly increasing on the set of strictly positive elements of the value group, i.e.,

∀a (v(a) > 0→ v(σ(a)) > v(a)).

2. (∀a ∈ K) (∃b ∈ Fix(σ)) (v(a) = 0→ v(a− b) > 0).
Let Tvod,ωinc be the theory Tvod,inc together with the scheme of axioms
3. ∀a (v(a) > 0→ v(σ(a)) > n · v(a)), for each n ∈ N, n ≥ 2.
Note that (for clarity sake) we have written the above axioms in a language with the valuation v, but this can

easily be translated into the L<,div,σ-language.
Note that in any model K of Tvod,inc, σ induces the identity automorphism on the residue field, i.e.,

∀a (v(a) = 0→ v(a− aσ) > 0).

Indeed, if a ∈ K with v(a) = 0, then by axiom 2 there exists b ∈ Fix(σ) such that v(a − b) > 0. Applying
axiom 1, we get v((a− b)σ) > v(a− b), and so since v(a− aσ) ≥ min{v(a− b), v(aσ − b)}, we get the result.
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Notation 2.3 For a, b ∈ K with 1 < a < b (respectively a < b < 1) we will denote by a � b that for any
positive natural number n one has an < b (respectively a < bn). We will say that σ is ω-increasing if for any
a ∈MK − {0}, σ(a)� a.

Lemma 2.4 Assume that K is a model of Tvod,inc. Then FixK(σ) ∼= K̄.

P r o o f. First, note that by axiom 1, we have that Fix(σ) ⊂ {x ∈ K : v(x) = 0}. Indeed, if a is an element
of Fix(σ) − {0} and v(a) 6= 0, then either v(a) > 0 or v(a−1) > 0. W.l.o.g. let v(a) > 0, which implies by
axiom 1, v(σ(a)) > v(a) which contradicts the fact that σ(a) = a.

Conversely, let ā ∈ K̄ and let a ∈ OK with a +MK = ā. By axiom 2, there exists b ∈ Fix(σ) such that
v(a − b) > 0, and such element b is unique. Indeed, suppose that v(a − b1) > 0 and v(a − b2) > 0, with
b1, b2 ∈ Fix(σ). Then v(b1 − b2) > 0 with b1 − b2 ∈ Fix(σ). So, by the first part, b1 = b2.

Remark 2.5 Let (K, v, σ) ⊂ec (L, v, σ) be two valued ordered difference fields models of Tvod,inc. Then
K̄ ⊂ec L̄.

P r o o f. Indeed, FixK(σ) ⊂ec FixL(σ) since these are quantifier-free definable in K respectively L.

Lemma 2.6 Let K be a model of Tvod,ωinc. Then ΓK is a torsion-free Z[t]-module. If K is real-closed, then
ΓK is Q-divisible.

P r o o f. Since σ is increasing on the elements of positive values,Mσ
K ⊆MK . By induction on the degree of

f(t) ∈ Z[t]+, we show that (∀γ ∈ Γ+
K)(γ · f(t) > 0).

Indeed, it is the content of axiom scheme 3 for f(t) monic of degree 1, and it is easily seen that it also holds
for all polynomials of degree 1.

Now, let us assume that for elements g(t) of Z[t]+ of degree less than or equal to m ≥ 1 and all γ ∈ Γ+
K ,

γ · g(t) > n.γ, for every n ∈ N. Let us prove it for elements f(t) of degree m+ 1 of Z[t]+.
Write f(t) = t · (zm+1 · tm +

∑m
i=1 zi · ti−1) + z0) with zm+1 ∈ N− {0} and zi ∈ Z for i = 0, . . . ,m. For

γ ∈ Γ+
K we have γ · t ∈ Γ+

K and by induction hypothesis we have (γ · t) · (zm+1 · tm+
∑m
i=1 zi · ti−1) > (γ · t) ·n

for all n ∈ N. By the casem = 1 of the induction, we have that γ · t ·n > γ ·(n′−z0), for any n′ ∈ N. Therefore,
for any n′ ∈ N we get γ · (f(t)− z0) > γ · (n′ − z0).

In particular, ΓK is a torsion-free Z[t]-module. Moreover, since K is real-closed, ΓK is divisible as a
Z-module and so it can be endowed with a structure of Q-module.

Notation 2.7 For p(X) ∈ OK [X]σ we denote by p̄(X) the σ-polynomial where the coefficients of p(X) have
been replaced by their images in the residue field of K. For b ∈ OK let b̄ be the image of b in K̄.

Definition 2.8 Let K � Tvod. The valued ordered difference field K satisfies the σ-Hensel Lemma if,
for any difference polynomial p(X) ∈ OK [X]σ of effective order n such that p̄(X) 6= 0 and there exists b ∈ OK

with p̄(b̄) = 0 and
∂p∗

∂X0
(b, bσ, . . . , bσ

n

) 6= 0, there exists a ∈ OK such that p(a) = 0 and v(a−b) = v(p(b)) > 0.

Lemma 2.9 Let K � Tvod satisfying axiom 1 in Definition 2.2. Assume that K is a complete valued field.
Then K satisfies the σ-Hensel Lemma.

P r o o f. We will prove a slightly stronger version of σ-Hensel Lemma. Namely we will replace the hypothesis
that the derivative with respect to X0 is of valuation zero by (?) below. Let p(X) ∈ OK [X]σ of effective order n,
let a0, . . . , an, η0, . . . , ηn ∈ K and write

p∗(a0 + η0, a1 + η1, . . . , an + ηn) = p∗(a0, a1, . . . , an) +
∑n
j=0

∂p∗

∂Xj
(a0, a1, . . . , an) · ηj

+ O(‖(η0, . . . , ηn)‖2).
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By hypothesis, there is an element b ∈ OK such that v(p(b)) > 0 and v(
∂p∗

∂Xi
(b)) = 0 for some 0 ≤ i ≤ n,

where b := (b, bσ, . . . , bσ
n

), and moreover

(?) there exists only one j0 such that v((

∂p∗

∂Xj0
(b)

p(b)
)σ
−j0

) = min{v((

∂p∗

∂Xj
(b)

p(b)
)σ
−j

) : 0 ≤ j ≤ n}

(note that j0 ≤ i).
We will build a Cauchy sequence indexed by ordinal numbers, starting with a0 := b. Suppose we have con-

structed aβ for all β < α with the following properties: for all γ < β we have that v(p(aβ)) > v(aβ − aγ) > 0

and v(aγ+1 − aγ) ≥ v(p(aγ)σ
−n

).
Assume that α is a successor ordinal, i.e. of the form β + 1. Then, by assumption,

v((
p(aβ)
∂p∗

∂Xj0
(b)

)σ
−j0

) ≥ v((p(aβ))σ
−i

),

and so it is strictly positive. Let

ε := (
p(aβ)
∂p∗

∂Xj0
(aβ)

)σ
−j0 ∈MK and ε := (ε, εσ, . . . , εσ

n

).

Note that v(ε) ≥ v(p(aβ)σ
−j

) > 0 for any 0 ≤ j ≤ n. Evaluate p(aα − ε) = p∗(aα − ε). We get

p(aβ − ε) = p(aβ)−
∑n
j=0

∂p∗

∂Xj
(aβ) · (εσj ) + O(‖(ε, εσ, . . . , εσn)‖2)

= p(aβ) · (−
∑n
j=0, j 6=j0

∂p∗

∂Xj
(aβ)

p(aβ)
· (εσj ) +

1

p(aβ)
·O(‖(ε, εσ, . . . , εσn)‖2).

So,

v(p(aβ−ε)) = v(p(aβ))+v(
∑n
j=0, j 6=j0

∂p∗

∂Xj
(aβ)

p(aβ)
·(εσj )+ 1

p(aβ)
·O(‖(ε, εσ, . . . , εσn)‖2)) > v(p(aβ)).

Assume now that α is a limit ordinal. Since K is a complete valued field, there exists aα such that for
all β1 < β2 < α we have v(aα − aβ1

) < v(aα − aβ2
). By replacing in the above equation ε by aα − aβ

with β < α, we obtain that v(p(aα)) ≥ min{v(p(aβ)), v(aα − aβ)}. By induction hypothesis we have that
v(p(aβ)) > v(aβ − aδ) for all δ < β. Moreover, we have v(aβ − aδ) = v(aα − aδ). So, we get that
v(p(aα)) > v(aα − aδ).

Let a := limα aα.

Lemma 2.10 LetK be a model of Tvod satisfying the σ-Hensel Lemma. Then for each irreducible polynomial
q(t) ∈ Z[t] and u ∈ OK with ū = 1 ∈ K̄ there exists a ∈ OK −MK such that aq(σ) = u.

P r o o f. Write q(t) = n · (p1(t) − p2(t)) with p1(t), p2(t) ∈ N[t] and such that the gcd of the coefficients
of both polynomials p1(t), p2(t) is equal to 1 and, for each i ∈ N, ti occurs in at most one of them. For
i = 1, 2, set pi(t) =

∑ni
j=0mj · tj . Then, for z ∈ K, zq(σ) = znp1(σ)/znp2(σ) and we look for such an ele-

ment for which zq(σ) = u, e.g. znp1(σ) = u · znp2(σ). So, we apply the σ-Hensel Lemma to the σ-polynomial
q̃(X) :=

∏n1

j=0 (Xmj )
σj−u·

∏n2

j=0 (Xmj )
σj . We have that q̃∗(X0, . . . , Xn) =

∏n1

j=0 (X
mj
j )−u·

∏n2

j=0 (X
mj
j ).

The element 1 is a residual root of q̃(X) = 0 and for i ∈ {0, . . . ,max{n1, n2}} with mi 6= 0,
∂q̃∗(X0, . . . , Xn)

∂Xi

is equal tomi ·Xmi−1
i ·

∏n1

j=0, j 6=i (X
mj
j ) or to−u ·mi ·Xmi−1

i ·
∏n2

j=0, j 6=i (X
mj−1
j ), and so when it is evaluated

at 1, it is non zero.
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Notation 2.11 Let Tvod,ωinc,h be the theory Tvod,inc together with RCF and σ-Hensel Lemma.

Given an element a ∈ K satisfying a σ-polynomial belonging to K[X]σ . We choose among all the polynomi-
als p(X,Xσ, . . . , Xσn) that it satisfies the ones with minimal effective order n (which we assume to coincide with
the order), and among these, that we can write as

∑d
j=0(Xσn)j · q∗j (X, . . . ,Xσ(n−1)

) with qj ∈ K[X]σ − {0},
we choose the ones with d minimal. We will call such polynomial a minimal σ-polynomial satisfied by a and of
effective order n and degree d.

We would like an Ax-Kochen-Ershov result for the models of Tvod,ωinc,h, analogous to the classical AKE-
Theorem (see for instance [18, Appendix]).

Definition 2.12 ([16]) Recall that a well-ordered subset of elements a% ∈ K, % ∈ On, without a last element
is said to be pseudo-convergent (p.c.) if v(a%1 − a%2) < v(a%2 − a%3) with %1 < %2 < %3.

Recall that if (a%) is p.c., then either v(a%1) < v(a%2) for all %1 < %2, or for some µ we have that for all
µ < %1 < %2 it holds v(a%1) = v(a%2) (see [16, Lemma 1]). Moreover, v(a% − a%1) = v(a%1+1 − a%1) for any
% > %1 (see [16, Lemma 2]).

Definition 2.13 An element a is a limit of the p.c. set (a%) if v(a− a%1) = v(a%1 − a%2) with %1 < %2.

Note that, since σ is a valued field automorphism, if (a%) is p.c., then (aσ% ) is also p.c. Further if a is a limit of
a p.c. set (a%), then aσ

m

is a limit of the p.c. set (aσ
m

% ), m ∈ Z.

Lemma 2.14 (See [16, Theorem 1]) If L is an immediate ordered field extension of K, then any element
a ∈ L−K is a limit of a p.c. strictly monotone sequence (a%) ⊂ K without a limit in K.

P r o o f. For convenience of the reader, we reproduce the proof of this Lemma below. Let a ∈ L−K and let
S = {v(a−k) : k ∈ K}. This set S does not contain +∞ and it has no greatest element since L is an immediate
extension of K. From S we select a well-ordered set of cofinal elements γ% and we choose elements a% in K
with v(a− a%) = γ%. Suppose that a0 > a, then we may choose a < a1 < a0 and v(a− a1) = γ1. By induction
on %, we may assume that this sequence a% is decreasing to a. The other case when a0 < a is similar and we
obtain an increasing sequence.

Denote by aK+
(respectively aK− ) the set of elements of K which are bigger (respectively smaller) than a in

L We claim that (a%) is cofinal in aK+
. Suppose not, namely that there is an element c in aK+

which is strictly
smaller than (a%). By construction, v(a − c) = v(a − aµ) for some µ. So, v(a − aµ+1) > v(a − c); however
0 < c− a < aµ+1 − a, so by the compatibility relation between v and <, we get that v(c− a) ≥ v(aµ+1 − a),
which is a contradiction.

In [16, p. 306], Kaplansky defines p.c. sets of algebraic and transcendental types, and as in [5], we will adapt
the definitions for σ-polynomials, using the fact (adapted to σ-polynomials and proved by A. Ostrowski for
ordinary polynomials) that if p[X] ∈ K[X]σ , then there exists an index µ ∈ On such that (p(a%))%>µ is p.c.

Definition 2.15 We will say that a p.c. sequence (a%) is of
1. σ-transcendental type with respect to a field K, if for all p[X] ∈ K[X]σ there exists µ such that

v(p(a%1)) = v(p(a%2)) for all µ < %1 < %2;
2. σ-n-algebraic type with respect to a field K, if for some p[X] ∈ K[X]σ of order n there exists µ such that

v(p(a%1)) < v(p(a%2)) for all µ < %1 < %2.

Proposition 2.16 Let (K, v, σ), (L, v, σ) be two valued ordered difference fields models of Tvod,ωinc,h. Sup-
pose that L is an |K|+-saturated L<,div,σ-extension of K, that K̄ ⊂ec L̄ as ordered fields, and that ΓK ⊂ec ΓL
as Z[t]-modules. Then K ⊂ec L in L<,div,σ .

P r o o f. Using the classical Ax-Kochen-Ershov Theorem (see for instance [18]), the hypotheses imply that
K ⊂ec L in L<,div. In particular K is a relatively algebraically closed subfield of L. We use Frayne’s Lemma
and so we can embed L into a non principal ultrapower K∗ of K, that we may choose to be |L|+-saturated and
such that this embedding respects the L<,div-structures and is fixed on K. In particular, the induced embedding
sending ΓL in ΓK∗ is the identity on ΓK ; we have that ΓK∗ ∼= Γ∗K as Z-modules.

Note that since ΓK ⊂ec ΓL as Z[t]-modules, it implies that ΓL/ΓK is a torsion-free Z[t]-module. Indeed, let
γ ∈ ΓL and suppose there exists q(t) ∈ Z[t] such that γ · q(t) ∈ ΓK . So, ΓL � ∃x x · q(t) = γ0 with γ0 ∈ ΓK .
Since ΓK ⊂ec ΓL, ΓK � ∃x (x · q(t) = γ0). But ΓL is torsion-free (see Lemma 2.6), so γ ∈ ΓK .
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Throughout the proof, we will use the following fact:

(?) Let a be an element of L which is σ-algebraic over K of σ-degree n, then its value v(a) belongs to ΓK .

Indeed, let p[X] ∈ K[X]σ and assume that p(a) = 0. Then for some q(t) ∈ Z[t] we have v(a) · q(t) ∈ ΓK with
degree of q(t) less than or equal to n (one expresses that the values of two σ-monomials in a with coefficients in
K are equal). By the above, v(a) ∈ ΓK .

We will denote in the same way σ (respectively the valuation v) and its extension to K∗.

(1) The first step consists in showing that any maximal difference subfield L0 of L which embeds in K∗ with
ΓL0

= ΓK and FixK(σ) ⊆ FixL0
(σ) ⊆ FixK∗(σ) has the property that L̄0

∼= L̄.

(2) Second, we consider, more generally, maximal difference subfields L0 of L which embeds in K∗, with
the two properties that L̄ = L̄0 and ΓL/ΓL0

is a torsion-free Z[t]-module, and we show that this implies that
ΓL = ΓL0

.

(3) Finally, we show that any maximal difference subfieldL0 ofLwith the property that ΓL0 = ΓL and L̄0 = L̄
which embeds in K∗ is equal to L.

(1) Note that FixL(σ) ∼= L̄. Suppose that there exists a ∈ FixL(σ)−FixL0
(σ). First, assume that a is algebraic

over FixL0(σ). Let f [X] ∈ FixL0(σ)[X] be such that f [X] is the minimal polynomial of a over FixL0(σ). By
the classical Hensel’s Lemma, there exists a∗ ∈ OK∗ with f(a∗) = 0. Since fσ = f and FixK∗(σ) is totally
ordered, we obtain a∗ ∈ FixK∗(σ).

Moreover, since FixL(σ) is ordered, for some positive integer i less than the degree of f , the element a is the
ith root of f , it belongs to certain cut with respect to FixL0

(σ) and the polynomial f changes of signs within this
cut. So, since FixL0(σ) embeds in FixK∗(σ), we may choose a∗ ∈ FixK∗(σ) in the same cut as a is.

Suppose now that a ∈ FixL(σ) is transcendental over FixL0(σ). We will choose an element in FixK∗(σ)
which is transcendental over FixL0

(σ) and is in the same cut with respect to L0 than a. We use the
|L|+-saturation of K∗ and the fact that FixK(σ) ⊂ FixL0

(σ) ⊂ FixK∗(σ).
Therefore in neither cases, the subfield L0 is maximal with these properties.

(2) Now, we want to extend the embedding to a difference subfield with the same value group as L. Let L0

be a maximal difference subfield of L which embeds in K∗, such that L̄0
∼= L̄ and ΓL/ΓL0 is a torsion-free

Z[t]-module. If γ ∈ ΓL − ΓL0 , then ΓL0 ∩ γ · Z[t] = {0}. W.l.o.g., we will assume that γ > 0. Let a ∈ L+

be such that v(a) = γ. Note that since v(a) /∈ ΓL0
, it determines the cut of a with respect to L0. By (?) above,

a is not σ-algebraic over L0. By [3, Proposition 1, paragraph 10.1], we define in this way a unique valued field
extension of L0 to L0,0 := L0(a). Then we proceed by induction extending the valuation first from L0,0 to
L0,1 := L0,0(aσ

±1

) by setting v(aσ
±1

) := γ · t±1, and more generally from L0,n to L0,n+1 := L0,n(aσ
±n

)

setting v(aσ
±n

) := γ · t±n. Set L0(a)σ :=
⋃
n∈N L0,n; it is a valued field extension of L0. Then let L1 be the

real-closure of L0(a)σ inside L.
Now, if we take an element ã ∈ K∗ with v(ã) = γ, then as ordered difference valued fields, L0(a)σ and

L0(ã)σ are isomorphic, as well as their real-closures.
Then we have to extend this embedding to a σ-algebraic difference extension of L1 inside L in such a way

that ΓL/ΓL1 is Z[t]-torsion-free, which will contradict the maximality of L0.
Suppose that there is δ ∈ ΓL − ΓL1 such that δ · q(t) ∈ ΓL1 for some q(t) ∈ Z[t]. We may assume w.l.o.g.

that q(t) is irreducible, of minimal degree and such that the gcd of its coefficients is equal to 1.
Let b ∈ L be such that v(b) = δ. First, we show that we may choose b such that bq(σ) ∈ L1 (see Definition 2.1).
Let c ∈ L1 such that v(c) = δ · q(t), so v(bq(σ) · c−1) = 0. Since L̄ = L̄0, there exists e ∈ L0 with v(e) = 0

such that bq(σ) · c−1 · e−1 ≡ 1 (moduloML). We use the σ-Hensel Lemma (see Lemma 2.10) in order to find
z ∈ L such that bq(σ) · c−1 · e−1 = zq(σ) and with v(z) = 0. Therefore, (b · z−1)

q(σ)
= c · e ∈ L1. Set

b0 := b · z−1 and consider the extension L1(b0)σ , we have that v(b0) = δ. W.l.o.g. we may assume that b0 > 0.
Second, let d be the degree of q(t) and write it as q1(t)−q2(t) with q1(t), q2(t) ∈ N[t] and for any 0 ≤ m ≤ d,

the coefficient of tm is non-zero in at most one of q1(t), q2(t). Since σ is an automorphism, we may assume that
q(0) 6= 0; let nd be the coefficient of td and let n0 6= 0 be the constant term.

The extension L1(b0)σ is included in the real-closure of L1(b0, . . . , b
σd−1

0 ).
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The valuation on L1(b0, . . . , b
σd−1

0 ) is completely determined by v(b0) (see [3, Proposition 1, paragraph 10.1])
and the cut b0 belongs to with respect to L1 is determined by v(b0) since it belongs to ΓL − ΓL1 .

Note that (bσ
d

0 )nd ∈ L1(b0, . . . , b
σd−1

0 ) and further it is of degree nd over L1(b0, . . . , b
σd−1

0 ). Indeed, suppose
it is of degree smaller than nd, then we will contradict the minimality of q(t). Similarly, bσ

d+1

0 is of degree nd
over L1(bσ0 , . . . , b

σd

0 ). Also, (bσ
−1

0 )
n0 ∈ L1(b0, . . . , b

σd−1

0 ) and n0 is the degree of b0σ
−1

over that subfield (if
not this would contradict the minimality of q(t)).

Since in an ordered field a positive element has only one positive nth-root, the order type of bσ
d

0 is determined
over L1(b0, . . . , b

σd−1

0 ).
First, we embed L0(a)σ in K∗ sending a to ã; then L1 in the real-closure L̃1 of L0(ã)σ in K∗. Note that

δ ∈ ΓK∗ , and so there exists b′ ∈ K∗ with v(b′) = δ. Since K∗ satisfies the σ-Hensel Lemma, as before we
may assume that b′ is such that b′q(σ) ∈ L1. Then we claim that the field L̃1(b′)σ is isomorphic as a difference
ordered valued field to L1(b0)σ . Again, we take the real-closure of both ordered difference fields and we iterate
this construction.

(3) Finally, let L0 be a maximal difference subfield of L with the property that ΓL0
= ΓL and L̄0

∼= L̄

and which embeds in K∗. We will denote by L̃0 its image in K∗. Note that by Frayne’s Lemma we have an
embedding of Z[t]-modules of ΓL in ΓK∗ .

Let a ∈ L − L0, w.l.o.g. we may assume that v(a) = 0 (since ΓL = ΓL0 ). Moreover, there exists an
α ∈ FixL0(σ) such that v(a− α) > 0.

By [16, Theorem 1] and Lemma 2.14, a is a limit of a p.c. monotone sequence (a%) ⊂ L0 without a limit
in L0.

1. Suppose that this sequence is of σ-n-algebraic type with a minimal such n. This implies that for every
q[X] ∈ L0[X] of order < n, there exists µ such that for any µ < %1 < %2 we have v(q(a%1)) = v(q(a%2)). So,
the valued field structure of L0(a, aσ, . . . , aσ

n−1

) is determined, since each aσ
i

, 0 < i < n, is transcendental
over L0(a, . . . , aσ

i−1

) (see [16, Theorem 2]).
We have that the image (ãσ% ) in K∗ of sequence (aσ% ) has the same properties and so, since K∗ is |L|+-satu-

rated, it contains a maximal immediate extension of L̃0 and this sequence has a pseudo-limit ã1 in that extension,
and ãm is a pseudo-limit of (aσ

m

% ) for 1 ≤ m ≤ n. Note that ãm will be in the same cut with respect to L̃0

than it was aσ
m

with respect to L0. By [16, Theorem 2], we have an isomorphism of valued fields between
L2 = L0(aσ, . . . , aσ

n−1

) and L̃2 := L̃0(ã1, . . . , ãn−1) and by construction this isomorphism also respects the
order.

Now, a is algebraic overL2. This situation is described in [16, Theorem 3]. Let p[X] ∈ L2[X] be a polynomial
of minimal degree d with p(a) = 0. The roots of this polynomial are separated by elements of L2 and belong to
the real-closure of L2 inside L. Denote by p̃[X] the image of p[X] in L̃2[X].

Note that p̄[X] = X − α. So, ¯̃p[X] = X − α and we may apply Hensel’s Lemma, i.e., there is a unique
element a∗ in OK∗ with p̃(a∗) = 0 and v(a∗ − α̃) > 0. Moreover the sequence (ã%) is pseudo-convergent to a∗.

There is an isomorphism f of valued fields between L̃0(a∗, a1, . . . , an−1) and L̃0(a1, . . . , an) sending a∗ to
a1 and ai to ai+1, 1 ≤ i ≤ n − 1. We can extend f to the real-closure of both fields. But these real-closures
coincide, so f extends to an automorphism τ of these real-closures. Then by induction on i ≤ 0, one shows that
τ i(a∗) is the unique root of p̃τ

i

[X] satisfying v(τ i(a∗) − α̃) > 0. Moreover one shows that the sequence (ãσ
i

% )

is pseudo-convergent to τ i(a∗). Then the isomorphism type of the valued field L̃0(a∗)rc
τ is uniquely determined

by the fact that (ãσ
i

% ) is pseudo-convergent to τ i(a∗) and that pτ
i

(τ i(a∗)) = 0 for i ∈ Z.
2. Assume now that this sequence is of σ-transcendental type over L0. Again we use [16, Theorem 2] and so

the valued field structure of the extension L0(a)σ is determined. We consider the partial type

tp(x) := {v(x− d̃) = v(a− d) : d ∈ L0} ∪ {d̃1 < x < d̃2 : d1, d2 ∈ L0 and d1 < a < d2}.

The map sending a to a realization a∗ ∈ K∗ of that type, extends to a map from L0(a) to L̃0(a∗) and the value
group of that extension is still equal to ΓL (see [18, p. 194]). Then we have to show that σ(a∗) satisfies the type
{v(x− d̃) = v(aσ − d) : d ∈ L0} ∪ {d̃σ1 < x < d̃σ2 : d1, d2 ∈ L0 and d1 < a < d2}.

The same reasoning can be applied to L0(a)(aσ) and iterating this procedure, we obtain a difference field
which is a proper extension of L0 with the same properties, contradicting the maximality of L0.
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Notation 2.17 Let q(t) ∈ Q[t], we may assume that it is in the form q(t) =
1

n
· p(t), where p(t) ∈ Z[t] and

n ∈ N, then write p(t) = p1(t) − p2(t), where both p1(t), p2(t) ∈ N[t]. We denote by Pq(t)(x) the predicate

defined by ∃y ∃z (zσ = z &
yp1(σ)

yp2(σ)
= (x · z)n).

Definition 2.18 Let T ec
vod,ωinc,h be the theory Tvod,ωinc,h ∪ RCF plus the following scheme of axioms:

For each q(t) ∈ Q[t] − {0} of the form q(t) =
1

n
· (p1(t) − p2(t)), where p1(t), p2(t) ∈ N[t] − {0} and

n ∈ N− {0}, we add the axiom ∀xPq(t)(x).

In particular, a model K of Tvod,ωinc,h ∪ RCF is such that K̄ ∼= Fix(σ) is a model of RCF and ΓK is a
Q[t]-divisible module. (Note that the scheme of axioms we added, is equivalent to the fact that ΓK is a divisible
Q(t)-module, see the proof of case (2) in the above Proposition).

Corollary 2.19 The theory T ec
vod,ωinc,h is the model-companion of Tvod,ωinc,h.

P r o o f. We embedK in the power series field K̄((ΓK)) and we do it by sending FixK(σ) to K̄. Let γ ∈ ΓK .
Note that there exists k ∈ K such that v(k) = γ; the action of t on v(k) was defined as v(kσ) := v(k) · t. So, we
extend σ on K̄((ΓK)) by defining σ(

∑
γ kγ · xγ) :=

∑
γ kγ · xγ·t. Let us denote by Γdiv

K the divisible closure of
ΓK as a Q(t)-module.

Then we embed K̄((ΓK)) into K̄rc((Γdiv
K )), which is a complete valued field and so a model of σ-Hensel

Lemma by Lemma 2.9. By the preceding Proposition, this ordered valued difference field is existentially closed.
The fact that T ec

vod,ωinc,h is model-complete follows from Robinson’s criterium for model-completeness, the
preceding Proposition and the facts that Tdo admits quantifier elimination as well as RCF.

3 Difference lattice-ordered commutative rings

First, we will recall a few facts on lattice-ordered commutative rings (in short `-rings) ([2]). An `-ring R is a
commutative ring with two additional operations ∧ and ∨ such that

1. (R,∧,∨) is a lattice,
2. ∀a∀b∀c (a ≤ b→ a+ c ≤ b+ c),
3. ∀a∀b∀c (a ≤ b & c ≥ 0→ a · c ≤ b · c),

where ≤ is the lattice order, i.e., a ≤ b if and only if a ∧ b = a. In this section, R will always denote such a ring.
Let L` = Lrings ∪ {∧,∨} the language of `-rings.

An `-ideal I of R is a (ring) ideal which has the following property: (∀a ∈ I)(∀x ∈ R)(|x| ≤ |a| → x ∈ I).
In an `-ring any finitely generated `-ideal is principal (see [2, Corollary 8.2.9]). An `-ideal I of R is irreducible
if whenever a, b ∈ R are such that 〈a〉 ∩ 〈b〉 ⊂ I , then a ∈ I or b ∈ I .

An f -ring is an `-ring where (∀a, b, c > 0) (a ∧ b = 0 → a ∧ (b · c) = 0 & a ∧ (c · b) = 0). If R is an
f -ring, then Spec`(R) denotes the set of irreducible `-ideals of R with the spectral topology, i.e. an open set is
the set of ideals which do not contain a given element ([2, Chapter 10]). An f -ring without nilpotent elements
can be represented as a subdirect product of totally ordered integral domains (see [2, Corollary 9.2.5]), and in von
Neumann regular f -rings any irreducible ideal contains no non trivial idempotents and so the quotient of such a
ring to an irreducible `-ideal is a field (see [2, Chapter 10]).

Finally, a real-closed commutative von Neumann regular f -ring is a von Neumann commutative regular f -ring
where every monic polynomial of odd order has a root and every positive element is a square.

A.J. Macintyre proved that the theory Tf of commutative f -rings with no nonzero nilpotent elements has a
model-companion Tvrc, namely the theory of commutative real-closed von Neumann regular f -rings without
minimal idempotents (see [19]).

Let us consider now the difference `-rings. Recall that we have obtained undecidability results for any differ-
ence `-ring (R, σ) when the automorphism σ has an infinite orbit on the set of its maximal `-ideals
([15, Corollary 8.1]).

From now on, (R, σ) will denote a von Neumann regular difference f -ring where the automorphism σ fixes
Spec`(R). In particular, σ induces an automorphism on each quotient of the form Rx := R/x, where x is in
Spec`(R) and x is left invariant by σ.
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In a commutative von Neumann regular ring, it is often convenient to add a new unary function ∗, a pseudo-
inverse, sending an element a to the element b such that a · (a · b) = a and b · (b · a) = b; notice that a · b is an
idempotent, and we will call it the support of a. Let L`,∗ := L` ∪ {∗} and Lrings,∗ := Lrings ∪ {∗}.

In the class of difference von Neumann regular f -rings, we look for a result analogous to the following one
which holds in the class of commutative von Neumann regular rings. In [15, Proposition 6.8] we showed that any
such difference ring can be embedded in a model of Tatm,1,σ , where Tatm,1,σ is the Lrings,σ-theory expressing
the following properties of a model (R, σ):

1. R is a commutative von Neumann regular difference ring without minimal idempotents where any monic
polynomial has a root.

2. The Boolean algebra of idempotents is included in the set of fixed points of σ.
3. For each idempotent e, for every absolutely irreducible variety U on e, for every variety V ⊂ U × σ(U)

projecting generically onto U and σ(U), and for every algebraic set W properly contained in V , there is
a ∈ U(R) such that (a, σ(a)) ∈ V −W .

Definition 3.1 LetR be a commutative von Neumann regular difference f -ring and let S � Tatm,1,σ extending
R as a Lσ ∪ {∗}-structure and which is |R|+-saturated. Let X = Spec`(R). A subset U of Rn is said to be an
algebraic variety on an idempotent e if it is the set of all solutions of a finite conjunction of polynomial equations
where the support of each non zero coefficient is equal to the idempotent e.

We will denote by U(x) the subset of elements s̄ in Rxn such that there exists r̄ ∈ Rn∩U such that s̄ = r̄(x).
Recall that the property for a variety U for being irreducible (respectively absolutely irreducible) is a first-order
property of the set of coefficients, which can be expressed by a quantifier-free formula (see [9]). We define
the property of being irreducible (respectively absolutely irreducible) for a variety U on an idempotent e as the
property that U(x) is irreducible (respectively absolutely irreducible) for each x ∈ e. This last property can be
expressed in Lσ by a quantifier-free formula in the coefficients and the idempotent e. We will denote by σ(U)
the set {σ(r̄) · e : r̄ ∈ U}. Let U be an irreducible variety on e and let V be a variety included in U × σ(U).
Then V projects generically onto U if, for every x ∈ e, V (x) projects generically onto U(x).

Let V be a variety defined on e. We will denote by IR(V ) the set of difference polynomials in coefficients
in R which annihilate every tuple in V (R).

Now, we will try to describe a class of von Neumann regular `-rings such that each quotient to a maximal
`-ideal belongs to Cpra (see Definition 1.10).

Definition 3.2 Let Cvrca be the class of difference `-ring (R, σ) such that R � Tvrc and for each idempotent
e ∈ R, for every absolutely irreducible variety U on e, and for every variety V ⊂ U×σ(U) projecting generically
onto U and σ(U) such that for any finite set I and pi[X,Y ] ∈ R[X,Y ], i ∈ I , we have that∑

p2
i ∈ IR(V )→

∧
i∈I pi ∈ IR(V ).

Then there is a ∈ U(R) such that (a, σ(a)) ∈ V .
Using the construction of bounded Boolean powers, one can exhibit elements of Cvrca (see [4, p. 274]). LetX0

be a Cantor space, i.e., a Boolean space without isolated points. Let (F, σ) be an element of Cpra, let Γa(X0, F )
be the set of locally constant functions from X0 to F . Any element Γa(X0, F ) is of the form

∑
i∈I ei · fi, where

I is a finite set, fi ∈ F and ei is a characteristic function of a clopen subset of X0. Then Γa(X0, F ) belongs
to Cvrca.

Proposition 3.3 Let R,S be elements of Cvrca such that R ⊂ S, then R ⊂ec S.

P r o o f. Let ∃x1 . . . ∃xn ϕ(x1, . . . , xn, ā) be an existential formula with parameters ā ⊂ R, where ϕ is a
conjunction of basic formulas. As commutative von Neumann regular f -rings, R and S are Boolean prod-
ucts of totally ordered fields. So, S � ϕ(ū, ā) if and only if a conjunction of the form below holds, letting
ūσ := (ū, . . . , ūσ

n

):

(∀x ∈ X(S)) Sx �
∧
i fi(ūσ, ā(x)) ≥ 0 & g(ūσ, ā(x)) = 0,∧

j∈J(∃yj ∈ X(S)) Syj �
∧
i fi(ūσ, ā(yj)) ≥ 0 & g(ūσ, ā(yj)) = 0 &

∧
k∈Ij hk(ūσ, ā(yj)) 6= 0,

where J is finite, fi, g, hk ∈ Z[X,Y ]σ .
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Then we replace that system by a disjunction of systems (of the same form), where we may assume that all
the points yj are distinct. By [4, Lemma 9.6 (c)], given yj ∈ X(S), there exists xj ∈ X(R) such that Rxj
embeds in Syj . By Lemma 1.11, since both belong to Cpra, Rxj ⊂ec Syj . So, we may find ūj ∈ R with disjoint
supports ej such that

∏
k∈Ij hk(ūjσ , ā)∗ · ej = ej and

∧
i fi(ūjσ , ā)∗ · ej ≥ 0 & g(ūjσ , ā)∗ · ej = 0. Then we

consider the elements x ∈ X ′ := X(R)− (
⋃
j∈J ej) and we use the fact that for any x ∈ Spec`(R), there is an

element y of Spec`(S) such that Rx embeds in Sy ([4, Lemma 9.10]). But both Rx and Sy belong to Cpra and so
Rx ⊂ec Sy . So, for each x ∈ X ′ there will an idempotent ex disjoint from

⋃
j∈J ej and a tuple ūx ∈ R such that∧

i fi(ūxσ , ā)∗ · ex ≥ 0 & g(ūxσ , ā)∗ · ex = 0. From the covering of the space X(R) with the idempotents ex
and ej , j ∈ J , we extract a finite disjoint subcovering ej , j ∈ J , and e′x, x ∈ X0 with e′x · ex = e′x and consider
the tuple r̄ :=

∑
j ūj · ej +

∑
x∈X0

ūx · e′x. It belongs to R and satisfies the formula ϕ(r̄, ā).
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