TransProof: Computer assisted graph transformations

Gauvain Devillez
Joint work with P. Hauweele, A. Hertz and H. Mélot
UMONS
Computer Science Department
Algorithm Lab

Isomorphism

- We work on simple undirected graphs.
- For a graph $G=(V, E)$, we denote

■ its order $|V|$ by n,

- its size $|E|$ by m.

■ We consider two graphs as equivalent if they are isomorphic.

Graph invariants

■ A graph invariant is a function on graphs constant by isomorphism.

- Examples : average distance (\bar{d}), diameter (D), chromatic number (χ), planarity,

$$
\bar{d}=1.5, D=2, \chi=3, \text { planarity }=\text { true }, \ldots
$$

This talk

■ Context: Computer-assisted Proofs in Extremal Graph Theory.

- Objective of this talk:
- Presentation of TransProof, a module of PHOEG
- use of an illustrative problem (EMD).

■ Remarks :

- TransProof is currently a prototype
- The problem about EMD is still open

Conjectures

■ Extremal Graph Theory tries to define bounds on these invariants with respect to some constraints.

- The constraints are usually of two forms :
- restricting to a class of graphs,
- fixing or restricting some other invariant.
- Since tight bounds are even better, we search for graphs that realize these bounds : the extremal graphs.

Distances

Definition

The eccentricity of a vertex $u(\epsilon(u))$ is the maximal distance between u and any other vertex.

Definition

The transmission of a vertex $u(\sigma(u))$ is the sum of the distances between u and all the other vertices.

Average eccentricity - average distance

■ We denote by $(\bar{\epsilon}-\bar{d})(G)$ the difference between the average eccentricity and the average distance (EMD).

$$
\begin{aligned}
& (\bar{\epsilon}-\bar{d})(G)= \\
= & \frac{\sum_{v \in V(G)} \epsilon(v)}{n}-\frac{\sum_{v \in V(G)} \sigma(v)}{n \cdot(n-1)} \\
n \cdot(n-1) & \left(\sum_{v \in V(G)}(n-1) \cdot \epsilon(v)-\sigma(v)\right)
\end{aligned}
$$

Conjecture (Aouchiche, 2006)

Let \mathcal{G} be the set of connected graphs of order n,

$$
\forall G \in \mathcal{G},(\bar{\epsilon}-\bar{d})(G) \leq(\bar{\epsilon}-\bar{d})\left(P_{n}\right)
$$

Proofs by Transformation

Metagraph of Transformations

- The idea of a proof by transformation can be represented as a directed multi graph.
- We call this graph the metagraph of transformations.
- It can be used to study transformations but also to help define proofs by transformation.

Graph Database

- TransProof can compute the metagraph and store it in a graph database.
- This database allows for easy queries about the transformations.

MATCH (n)-[r:edgeRemove]->(m) where n.invariant < m.invariant return n, r, m;

MATCH (n id:42)-[r:edgeRemove*..]->(m id:65536) return r;

Limitations

- The number of graphs of some order n increases exponentially.
- The number of possible transformations is even bigger.

Basis of Transformations

■ Most transformations can be described as combination of simpler transformations.

- Why not use a subset of simple transformation to generate more complex ones?

Commonly used transformations

Specific language

- To help with the writing of queries, we could define a specific language.

■ This language could also provide some optimization.

```
MATCH (n)-[r:rotation]->(m) where
not edge(n.sig,r.b,r.c) with n,r,m rotation(a,b,c):
match (m)-[s:addEdge]->(o)
where s.a = r.b && and s.b = r.c
    !edge(b,c);
addEdge(b,c);
return n,r,m,s,o;
```


Still Incomplete

- This language is not yet complete.
- It cannot describe transformations with unfixed number of edges

■ As an example, consider a set of cliques joined to form a path.

Some Numbers

- The problem is that only considering simple transformations still produces a huge amount.

order	\# graphs	\# arcs
1	1	0
2	2	4
3	4	36
4	11	362
5	34	3188
6	156	34376
7	1044	468936
8	12346	10143824
9	274668	380814904

Symmetries

- Some of these transformations are symmetries.
- They actually come from automorphisms.

Automorphisms

Using automorphisms

- To avoid these automorphisms, we have to :
- Compute the orbits of the automorphism group.
- Order them based on the lowest index.
- Simply take one vertex from each.
- When a vertex is fixed, the orbits can change.

Avoiding Symmetries

(12)(3)(45)

Avoiding Symmetries

$(1)(2)(3)(45)$

Avoiding Symmetries

$(1)(2)(3)(45)$

Avoiding Symmetries

$(1)(2)(3)(45)$

Avoiding Symmetries

$(1)(2)(3)(45)$

Avoiding Symmetries

$(1)(2)(3)(45)$

Avoiding Symmetries

$(1)(2)(3)(45)$

Avoiding Symmetries

(1 2)(3)(45)

Avoiding Symmetries

$(12)(3)(45)$

Avoiding Symmetries

(12)(3)(4)(5)

Avoiding Symmetries

1

$(12)(3)(4)(5)$

Avoiding Symmetries

$(12)(3)(45)$

Effect of symmetries

■ Without symmetries, we greatly reduce the size of the metagraph.

order	\# graphs	$\#$ arcs	now
1	1	0	0
2	2	4	2
3	4	36	12
4	11	362	78
5	34	3188	617
6	156	34376	6717
7	1044	468936	108022
8	12346	10143824	2776023
9	274668	380814904	119430801

Using TransProof

■ Now, we can try to use this metagraph for the EMD conjecture.

Conjecture (EMD)

Let \mathcal{G} be the set of connected graphs of order n,

$$
\forall G \in \mathcal{G},(\bar{\epsilon}-\bar{d})(G) \leq(\bar{\epsilon}-\bar{d})\left(P_{n}\right)
$$

Example of use of TransProof

■ For our problem, we could try removing an edge.

■ Some problematic graphs appear because of some "symmetry".

- These graphs have (almost) twin nodes.

Example of use of TransProof

■ For our problem, we could try removing an edge.

■ Some problematic graphs appear because of some "symmetry".

- These graphs have (almost) twin nodes.

Example of use of TransProof

■ For our problem, we could try removing an edge.

■ Some problematic graphs appear because of some "symmetry".

- These graphs have (almost) twin nodes.

Example of use of TransProof

■ For our problem, we could try removing an edge.

■ Some problematic graphs appear because of some "symmetry".

- These graphs have (almost) twin nodes.

A more complex transformation

■ Choose two vertices x and y such that y has at least the same neighbors as x.

- Choose a vertex z with maximal transmission.
- Make x a pending vertex to z.

$$
(\bar{\epsilon}-\bar{d})(G)=0.5
$$

A more complex transformation

■ Choose two vertices x and y such that y has at least the same neighbors as x.

- Choose a vertex z with maximal transmission.

■ Make x a pending vertex to z.

$$
(\bar{\epsilon}-\bar{d})(G)=0.5
$$

A more complex transformation

■ Choose two vertices x and y such that y has at least the same neighbors as x.

- Choose a vertex z with maximal transmission.
- Make x a pending vertex to z.

$$
(\bar{\epsilon}-\bar{d})(G)=0.5
$$

A more complex transformation

■ Choose two vertices x and y such that y has at least the same neighbors as x.

- Choose a vertex z with maximal transmission.
- Make x a pending vertex to z.

Remaining graphs

- There are still situations where this transformation does not apply.

- Choose an edge $x y$ and remove all vertices between x and all other vertices that are parts of a cycle.
- These two transformations are sufficient for all connected graphs up to order 10.

Remaining graphs

- There are still situations where this transformation does not apply.

- Choose an edge $x y$ and remove all vertices between x and all other vertices that are parts of a cycle.
- These two transformations are sufficient for all connected graphs up to order 10.

Remaining graphs

- There are still situations where this transformation does not apply.

- Choose an edge $x y$ and remove all vertices between x and all other vertices that are parts of a cycle.
- These two transformations are sufficient for all connected graphs up to order 10.

Remaining graphs

- There are still situations where this transformation does not apply.

- Choose an edge $x y$ and remove all vertices between x and all other vertices that are parts of a cycle.
- These two transformations are sufficient for all connected graphs up to order 10.

Remaining graphs

- There are still situations where this transformation does not apply.

- Choose an edge $x y$ and remove all vertices between x and all other vertices that are parts of a cycle.
- These two transformations are sufficient for all connected graphs up to order 10.

Adding Constraints

- While these transformations works on more than a million of graphs, there is no formal proof.
- There are still some cases where they do not increase the invariant.

Problem

Among all connected graphs of order n and diameter D, what are the graphs maximizing the difference between the average eccentricity and average distance ?

New extremal graphs (when $2 \cdot D(G) \leq n$)

■ When there is enough vertices, build a cycle of size $2 \cdot D(G)$.
■ Add remaining nodes as twins to adjacent nodes of the cycle.

New extremal graphs (when $2 \cdot D(G)>n$)

■ If there is not enough nodes, simply build a diametral path.
\square Again, add remaining nodes as twins but to the node of index $p=\frac{2 \cdot d-n+1}{4}$.

Notes

■ If the diameter is 2 , extremal graphs are complement of matchings.

- The cube is also extremal but not the square or other hypercubes.
- For a given n, the invariant strictly increases between extremal graphs when diameter increases.
■ If $D(G)=n-1$, the extremal graph is P_{n}.

Conclusion

- We are developing a system able to compute the metagraph

■ It allows exploring the metagraph and testing proofs by transformations

- We use some ideas to tackle the problem of the amount of data.

■ It could be used to speed up metaheuristics

- It is helpfull to define transformations.

■ Sometimes, adding constraints can give some insight.

Conclusion

- We are developing a system able to compute the metagraph
- It allows exploring the metagraph and testing proofs by transformations
- We use some ideas to tackle the problem of the amount of data.
- It could be used to speed up metaheuristics
- It is helpfull to define transformations.

■ Sometimes, adding constraints can give some insight.
Questions ?

Vertex index when $2 \cdot D(G)>n$

- Let G be a graph with n vertices and diameter d composed of a path $P=p_{0}, p_{1}, \ldots, p_{d}$ and $n-d$ vertices $\left(R=r_{0}, r_{1}, \ldots, r_{n-d-1}\right)$ each twin to a vertex of the path.
- We want to find the vertex p_{p} which, if used as a twin to the vertices r_{i}, would maximise the invariant.
- We can suppose that vertices r_{i} form a clique (or we could increase the invariant).

$$
\begin{gathered}
(\bar{\epsilon}-\bar{d})(G)=\frac{1}{n \cdot(n-1)} \cdot\left(\sum_{v \in V(G)}(n-1) \cdot \epsilon(v)-\sigma(v)\right) \\
=\frac{1}{n \cdot(n-1)} \cdot \sum_{v \in V} W(v)
\end{gathered}
$$

Vertex index when $2 \cdot D(G)>n$

- For the vertex of index p in the path :

$$
\begin{gathered}
W_{P}(p)=(n-1) \cdot \epsilon(p)-\sum_{u \in V} d p u \\
=(n-1) \cdot \max (d-p, p)-\left(\frac{(d-p) \cdot(d-p+1)}{2}+\frac{p \cdot(p+1)}{2}\right)
\end{gathered}
$$

- For a twin node to the vertex of index p :

$$
\begin{gathered}
W_{R}(p)=(n-1) \cdot \max (d-p, p) \\
-2 \cdot\left(\frac{(d-p) \cdot(d-p+1)}{2}+\frac{p \cdot(p+1)}{2}\right)-2-(n-d-1) \\
=-2 \cdot p^{2}+(2 \cdot d-n+1) \cdot p-d^{2}+(n-2) \cdot d
\end{gathered}
$$

- This polynomial of degree 2 is maximal when $p=\frac{2 \cdot d-n+1}{4}$

