Radial and non-radial positive solutions to a system with critical growth on \mathbb{R}^N

Christophe Troestler

(in collaboration with F. Gladiali & M. Grossi)

Département de Mathématique Université de Mons

<u>U</u>MONS

First days of Nonlinear Elliptic PDE in Hauts-de-France

A straightforward generalization...

$$\begin{cases} -\Delta u_i = \sum_{j=1}^k a_{ij} u_j^{2^*-1} & \text{in } \mathbb{R}^N, \\ u_i > 0 & \text{in } \mathbb{R}^N, \\ u_i \in D^{1,2}(\mathbb{R}^N), \end{cases}$$

where $i=1,\ldots,k$ and $N\geqslant 3$. As usual, $2^*=\frac{2N}{N-2}$ denotes the critical exponent and $D^{1,2}(\mathbb{R}^N)=\left\{u\in L^{2^*}(\mathbb{R}^N)\ \middle|\ |\nabla u|\in L^2(\mathbb{R}^N)\right\}$.

- $(a_{ij}) \in \mathbb{R}^{k \times k}$ is symmetric; $\sum_{i=1}^{k} a_{ij} = 1$ for any $i = 1, \dots, k$.

A straightforward generalization...

$$\begin{cases} -\Delta u_i = \sum_{j=1}^k a_{ij} u_j^{2^*-1} & \text{in } \mathbb{R}^N, \\ u_i > 0 & \text{in } \mathbb{R}^N, \\ u_i \in D^{1,2}(\mathbb{R}^N), \end{cases}$$

where i = 1, ..., k and $N \ge 3$. As usual, $2^* = \frac{2N}{N-2}$ denotes the critical exponent and $D^{1,2}(\mathbb{R}^N) = \{u \in L^{2^*}(\mathbb{R}^N) \mid |\nabla u| \in L^2(\mathbb{R}^N)\}.$

- $(a_{ii}) \in \mathbb{R}^{k \times k}$ is symmetric;
- $\sum_{i=1}^k a_{ij} = 1 \text{ for any } i = 1, \ldots, k.$

Characteristics:

- translation and dilation invariance:
- family of *trivial* (radial) solutions u = (U, ..., U).

... of the critical Sobolev equation

$$\begin{cases} -\Delta u = u^{\frac{N+2}{N-2}} & \text{in } \mathbb{R}^N, \\ u > 0 & \text{in } \mathbb{R}^N, \\ u \in D^{1,2}(\mathbb{R}^N). \end{cases}$$

possesses the (N+1)-parameter family of solutions:

$$U_{\delta,y}(x) := \frac{\left[N(N-2)\delta^2\right]^{\frac{N-2}{4}}}{(\delta^2 + |x-y|^2)^{\frac{N-2}{2}}}$$

Let

$$U(x) := U_{1,0}(x) = \frac{\left[N(N-2)\right]^{\frac{N-2}{4}}}{(1+|x|^2)^{\frac{N-2}{2}}}.$$

The case of 2 equations

For
$$k=2$$
, parametrize $(a_{ij}) = \binom{\alpha}{1-\alpha} \frac{1-\alpha}{\alpha}$. So
$$\begin{cases} -\Delta u_1 = \alpha u_1^{2^*-1} + (1-\alpha)u_2^{2^*-1} & \text{in } \mathbb{R}^N, \\ -\Delta u_2 = (1-\alpha)u_1^{2^*-1} + \alpha u_2^{2^*-1} & \text{in } \mathbb{R}^N, \\ u_1 > 0, \ u_2 > 0 & \text{in } \mathbb{R}^N, \\ u_1, u_2 \in D^{1,2}(\mathbb{R}^N). \end{cases}$$

Question: Does there exist *non-trivial* solutions, possibly non-radial, for some $\alpha \in \mathbb{R}$?

Gross-Pitaevskii System

$$\begin{cases} -\Delta u_1 = \alpha u_1^{2^*-1} + (1-\alpha) u_1^{\frac{2}{N-2}} u_2^{\frac{N}{N-2}} & \text{in } \mathbb{R}^N, \\ -\Delta u_2 = \alpha u_2^{2^*-1} + (1-\alpha) u_2^{\frac{2}{N-2}} u_1^{\frac{N}{N-2}} & \text{in } \mathbb{R}^N, \\ u_1 > 0, \ u_2 > 0, \quad u_1, u_2 \in D^{1,2}(\mathbb{R}^N), \end{cases}$$

For this system, Y. Guo, B. Li, and J. Wei proved in 2014 via a perturbative argument, that, for $N \in \{3, 4\}$ and $\alpha > 1$ (non-cooperative case), the system possesses infinitely many non-radial solutions.

The General System

$$\begin{cases} -\Delta u_1 = F_1(\alpha, u_1, u_2) & \text{in } \mathbb{R}^N, \\ -\Delta u_2 = F_2(\alpha, u_1, u_2) & \text{in } \mathbb{R}^N, \\ u_1 > 0, \ u_2 > 0 & \text{in } \mathbb{R}^N, \\ u_1, u_2 \in D^{1,2}(\mathbb{R}^N), \end{cases}$$

where $F_i: \mathbb{R} \times (0, +\infty)^2 \to \mathbb{R}: (\alpha, u) \mapsto F_i(\alpha, u), i = 1, 2$ satisfy

- smoothness and integrability assumptions;
- $F_i(\alpha, 1, 1) = 1;$
- $F_i(\alpha, \lambda u_1, \lambda u_2) = \lambda^{2^*-1} F_i(\alpha, u_1, u_2)$ for all $\lambda > 0$
- $F_1(\alpha, u_1, u_2) = F_2(\alpha, u_2, u_1)$ for all $(u_1, u_2) \in (0, +\infty)^2$;
- for all α , $\partial_{\alpha}\beta(\alpha) > 0$ where $\beta(\alpha) := \partial_{u_1} F_1(\alpha, 1, 1) - \partial_{u_2} F_1(\alpha, 1, 1).$

Christophe Troestler (UMONS) Radial and non-radial positive solutions to a critical system June 28, 2017 6/47

Existence of non-trivial radial solutions (1/4)

Theorem (F. Gladiali, M. Grossi, C. T.)

Let $n \ge 2$ and α_n^* be the solution to

$$\beta(\alpha^*) = \frac{(2n+N)(2n+N-2)}{N(N-2)}.$$

Then there exists a \mathcal{C}^1 curve $\varepsilon \mapsto (\alpha(\varepsilon), u_1(\varepsilon), u_2(\varepsilon))$: $(-\varepsilon_0, \varepsilon_0) \to \mathbb{R} \times (D^{1,2}_{rad}(\mathbb{R}^N))^2$ such that, for all $\varepsilon \in (-\varepsilon_0, \varepsilon_0)$, $(u_1(\varepsilon), u_2(\varepsilon))$ is a radial solution to

$$\begin{cases} -\Delta u_1 = F_1(\alpha, u_1, u_2) & \text{in } \mathbb{R}^N, \\ -\Delta u_2 = F_2(\alpha, u_1, u_2) & \text{in } \mathbb{R}^N, \\ u_1 > 0, \ u_2 > 0 & \text{in } \mathbb{R}^N, \end{cases}$$

with $\alpha = \alpha(\varepsilon)$. Moreover,

Existence of non-trivial radial solutions (2/4)

Theorem (cont'd)

$$\begin{cases} u_1(\varepsilon) = U + \varepsilon W_{n,0}(|x|) + \varepsilon \varphi_{1,\varepsilon}(|x|), \\ u_2(\varepsilon) = U - \varepsilon W_{n,0}(|x|) + \varepsilon \varphi_{2,\varepsilon}(|x|), \end{cases}$$

with $W_{n,0}$ being the function

$$W_{n,0}(|x|) := \frac{1}{\left(1+|x|^2\right)^{\frac{N-2}{2}}} P_n^{\left(\frac{N-2}{2}, \frac{N-2}{2}\right)} \left(\frac{1-|x|^2}{1+|x|^2}\right)$$

where $\varphi_{1,\varepsilon}$, $\varphi_{2,\varepsilon}$ are functions uniformly bounded in $D^{1,2}(\mathbb{R}^N)$ with respect to $\varepsilon \in (-\varepsilon_0, \varepsilon_0)$, and such that $\varphi_{i,0} = 0$ for i = 1, 2. Finally the bifurcation is global and the Rabinowitz alternative holds.

8 / 47

Existence of non-trivial radial solutions (3/4)

For the system

$$\begin{cases} -\Delta u_1 = \alpha u_1^{2^*-1} + (1-\alpha)u_2^{2^*-1} & \text{in } \mathbb{R}^N, \\ -\Delta u_2 = (1-\alpha)u_1^{2^*-1} + \alpha u_2^{2^*-1} & \text{in } \mathbb{R}^N, \\ u_1 > 0, \ u_2 > 0 & \text{in } \mathbb{R}^N, \end{cases}$$

the bifurcations occur at (α_n^*, U, U) where

$$\alpha_n^* = \frac{2n^2 + 2(N-1)n + N^2}{N(N+2)}$$
 $(n \ge 2).$

Note that $1 < \alpha_2^* < \alpha_3^* < \cdots < \alpha_n^* \xrightarrow[n \to \infty]{} +\infty$.

Existence of non-trivial radial solutions (4/4)

For N=3.

Existence of non-trivial *non-radial* solutions (1/4)

Theorem (F. Gladiali, M. Grossi, C. T.)

The point (α_n^*, U, U) , $n \ge 2$, is a non-radial bifurcation point — meaning there is a continuum $\mathcal C$ of nontrivial non-radial solutions emanating from (α_n^*, U, U) — if $n \in \mathcal N$ where $\mathcal N \subseteq \mathbb N$ is infinite.

Moreover, for any sequence of $(\alpha_k, u_{1,k}, u_{2,k}) \in \mathcal{C}$ converging to (α_n^*, U, U) , one has (up to a subsequence):

$$\begin{cases} u_{1,k} = U + \varepsilon_k Z_n(x) + o(\varepsilon_k), \\ u_{2,k} = U - \varepsilon_k Z_n(x) + o(\varepsilon_k), \end{cases}$$

as $k \to \infty$, where $\varepsilon_k \to 0$ and $Z_n \not\equiv 0$ is non-radial.

マロナスタナスミナスミナ ミ かくぐ

Existence of non-trivial non-radial solutions (2/4)

For example, $\mathcal{N} = \{ n \in \mathbb{N}^{\geq 2} \mid n \mod 4 \in \{1, 2\} \}$ and

$$Z_{n}(x) = \sum_{h=1, h \text{ odd}}^{n} a_{h} \frac{r^{h}}{(1+r^{2})^{h+\frac{N-2}{2}}} P_{n-h}^{\left(h+\frac{N-2}{2}, h+\frac{N-2}{2}\right)} \left(\frac{1-r^{2}}{1+r^{2}}\right) \cdot P_{h}^{\left(\frac{N-3}{2}, \frac{N-3}{2}\right)} (\cos \theta_{N-2})$$

for some coefficients $a_h \in \mathbb{R}$, where $(r, \varphi, \theta_1, \dots, \theta_{N-2}) \in [0, +\infty) \times [0, 2\pi) \times [0, \pi)^{N-2}$ are the spherical coordinates.

Existence of non-trivial non-radial solutions (2/4)

For example, $\mathcal{N} = \{ n \in \mathbb{N}^{\geq 2} \mid n \mod 4 \in \{1, 2\} \}$ and

$$Z_{n}(x) = \sum_{h=1, h \text{ odd}}^{n} a_{h} \frac{r^{h}}{(1+r^{2})^{h+\frac{N-2}{2}}} P_{n-h}^{\left(h+\frac{N-2}{2}, h+\frac{N-2}{2}\right)} \left(\frac{1-r^{2}}{1+r^{2}}\right) \cdot P_{h}^{\left(\frac{N-3}{2}, \frac{N-3}{2}\right)} (\cos \theta_{N-2})$$

for some coefficients $a_h \in \mathbb{R}$, where $(r, \varphi, \theta_1, \dots, \theta_{N-2}) \in [0, +\infty) \times [0, 2\pi) \times [0, \pi)^{N-2}$ are the spherical coordinates.

Note that $P_h^{\left(\frac{N-3}{2},\frac{N-3}{2}\right)}(\cos\theta_{N-2})$ are the spherical harmonics that are O(N-1)-invariant and is odd w.r.t. x_N iff h is odd.

Existence of non-trivial *non-radial* solutions (3/4)

Another example: $\mathcal{N} = \mathbb{N}^{\geq 2}$ and

$$Z_n(r, \varphi, \theta_1, \dots, \theta_{N-2}) = \frac{r^n}{\left(1 + r^2\right)^{n + \frac{N-2}{2}}} \sin(n\varphi) (\sin \theta_1)^n \cdots (\sin \theta_{N-2})^n.$$

Thus there exist at least a non-radial bifurcation branch for each $n \ge 2$.

Existence of non-trivial *non-radial* solutions (4/4)

Putting our results together, we have the following multiplicity of non-trivial solutions (1 radial, the other ones non-radial):

	<i>N</i> = 3	N = 4	N = 5
n = 2	4	4	4
n=3	4	4	4
n = 4	4	5	5
<i>n</i> = 5	4	5	6
<i>n</i> = 6	3	4	5
n = 7	2	3	3

Cooperative system & radial solutions (1/3)

We believe that, if all entries of (a_{ii}) are positive, all positive solutions are radial.

Theorem (M. Chipot, I. Shafrir, G. Wolansky, '97)

All entire solutions u to

$$-\Delta u_i = \mu_i \exp\left(\sum_{j=1}^k a_{ij} u_j\right), \quad \text{in } \mathbb{R}^2, \qquad 1 \leq i \leq k,$$

where $\mu_i > 0$, (a_{ii}) is invertible and all $a_{ii} \ge 0$, then all u_i are necessarily radially symmetric. If (a_{ii}) is irreducible, the u_i are radially symmetric around the same point.

Cooperative system & radial solutions (2/3)

Theorem (Y. Guo, J. Liu, '08)

If $\forall i,j \in \{1,2\}$, $a_{ii} > 0$ and $a_{12} = a_{21}$, then solutions to the Gross-Pitaevskii's system

$$\begin{cases} -\Delta u_1 = a_{11}u_1^{2^*-1} + a_{12}u_1^{\frac{2}{N-2}}u_2^{\frac{N}{N-2}} & \text{in } \mathbb{R}^N, \\ -\Delta u_2 = a_{22}u_2^{2^*-1} + a_{21}u_2^{\frac{2}{N-2}}u_1^{\frac{N}{N-2}} & \text{in } \mathbb{R}^N, \\ u_1 > 0, \ u_2 > 0, \quad u_1, u_2 \in D^{1,2}(\mathbb{R}^N), \end{cases}$$

are radially symmetric around the same point (they actually are multiples of the same $U_{\delta,\nu}$).

Cooperative system & radial solutions (3/3)

Theorem (O. Druet, E. Hebey, '09)

When all $a_{ii} = 1$, the components u_i of any nonnegative entire solution u to

$$-\Delta u_i = \left(\sum_{i=1}^k a_{ij} u_j^2\right)^{\frac{2^*-2}{2}} u_i \quad \text{on } \mathbb{R}^N, \qquad i = 1, \ldots, k,$$

are all radially symmetric around the same point (actually, all u_i multiples of the same $U_{\delta,v}$).

The critical Sobolev equation

The equation

$$\begin{cases} -\Delta u = u^{\frac{N+2}{N-2}} & \text{in } \mathbb{R}^N, \\ u > 0 & \text{in } \mathbb{R}^N, \\ u \in D^{1,2}(\mathbb{R}^N). \end{cases}$$

is invariant under translations and dilations:

$$u \mapsto u(\cdot - x_0), \qquad x_0 \in \mathbb{R}^N,$$

 $u \mapsto \delta^{-\frac{N-2}{2}} u\left(\frac{\cdot}{\delta}\right), \qquad \delta > 0.$

Linearization of the critical Sobolev equation

Thus the linearization at U.

$$-\Delta w = \frac{\lambda}{\lambda} U^{2^*-2} w, \qquad w \in D^{1,2}(\mathbb{R}^N).$$

has the eigenvalue

$$\lambda_1 := 2^* - 1 = \frac{N+2}{N-2}$$

with the N+1-dim. eigenfunction space generated by

$$\frac{\partial U}{\partial x_i}$$
, $i=1,\ldots,N$,

$$W(|x|) := \text{const.}\left(x \cdot \nabla U + \frac{N-2}{2}U\right) = \frac{1-|x|^2}{(1+|x|^2)^{N/2}}.$$

Linearization of the critical Sobolev equation

Thus the linearization at *U*,

$$-\Delta w = \frac{\lambda}{\lambda} U^{2^*-2} w, \qquad w \in D^{1,2}(\mathbb{R}^N).$$

has the eigenvalue

$$\lambda_1 := 2^* - 1 = \frac{N+2}{N-2}$$

with the N + 1-dim. eigenfunction space generated by

$$\frac{\partial U}{\partial x_i}$$
, $i=1,\ldots,N$,

$$W(|x|) := \text{const.}\left(x \cdot \nabla U + \frac{N-2}{2}U\right) = \frac{1-|x|^2}{(1+|x|^2)^{N/2}}.$$

Also, $\lambda_0 := 1$ with eigenfunction U.

The problem Results Critical Sobolev eq. Linearization Bifurcation Radial solutions Non-radial solutions

Spectrum (1/2)

Theorem (F. Gladiali, M. Grossi, C. T.)

The eigenvalues of

$$-\Delta w = \lambda U^{2^*-2}w, \qquad w \in D^{1,2}(\mathbb{R}^N).$$

are the numbers

$$\lambda_n = \frac{(2n+N-2)(2n+N)}{N(N-2)}, \quad n \geqslant 0.$$

Each eigenvalue λ_n has multiplicity

$$m(\lambda_n) = \frac{(N+2n-1)(N+n-2)!}{(N-1)! \, n!}$$

Spectrum (2/2)

Theorem (cont'd)

and the corresponding eigenfunctions are, in radial coordinates (r, Θ) , linear combinations of

$$W_{n,h}(r) Y_h(\Theta)$$
 for $h = 0, \ldots, n$,

where

$$W_{n,h}(r) := \frac{r^h}{(1+r^2)^{h+\frac{N-2}{2}}} P_{n-h}^{\left(h+\frac{N-2}{2},h+\frac{N-2}{2}\right)} \left(\frac{1-r^2}{1+r^2}\right),$$

 $Y_h(\theta)$ are spherical harmonics related to the eigenvalue h(h+N-2) and $P_i^{(\beta,\gamma)}$ are the Jacobi polynomials.

Note: $W_{0,0} = \text{const. } U \text{ and } W_{1,0} = \frac{N}{2} W.$

Spectrum: sketch of the proof (1/2)

Let $\Pi: S^N \to \mathbb{R}^N$ be the stereographic projection and define $\Phi: S^N \to \mathbb{R}^N : v \mapsto \Phi(v)$ as

$$\Phi(y) := w(\Pi(y)) \cdot \left(\frac{2}{1 + |\Pi(y)|^2}\right)^{-\frac{N-2}{2}}$$

Then

$$-\Delta_{\mathbb{S}^N}\Phi=(\lambda-1)rac{N(N-2)}{4}\Phi$$

The eigenvalues of the Laplace-Beltrami operator on S^N are well known:

$$(\lambda-1)\frac{N(N-2)}{4}=n(N-1+n),$$
 for some $n\in\mathbb{N}$.

The problem Results Critical Sobolev eq. Linearization Bifurcation Radial solutions Non-radial solutions

Spectrum: sketch of the proof (2/2)

For the eigenfunctions w, express the eigenfunctions Φ in cylindrical coordinates

$$y = (\Theta \sqrt{1 - z^2}, z) \in \mathbb{S}^N$$

where $\Theta \in \mathbb{S}^{N-1}$ and $z \in [-1, 1]$. This yields

$$\Phi(y) = (1-z^2)^{h/2} P_{n-h}^{\left(h+\frac{N-2}{2},h+\frac{N-2}{2}\right)}(z) Y_h(\Theta), \qquad h = 0,\ldots,n.$$

To go back to w(x) with $x = \Pi(y)$, remark that

$$r\Theta = \Pi(\Theta\sqrt{1-z^2}, z) \implies z = \frac{r^2-1}{r^2+1} \text{ and } \sqrt{1-z^2} = \frac{2r}{r^2+1}.$$

Let's go back to the system...

Radial and non-radial positive solutions to a critical system June 28, 2017

Change of variables

$$\begin{cases} -\Delta u_1 = F_1(\alpha, u_1, u_2) & \text{in } \mathbb{R}^N, \\ -\Delta u_2 = F_2(\alpha, u_1, u_2) & \text{in } \mathbb{R}^N, \\ u_1, u_2 \in D^{1,2}(\mathbb{R}^N), \end{cases}$$

$$\begin{cases} z_1 = u_1 + u_2 - 2U, \\ z_2 = u_1 - u_2, \end{cases}$$

$$\begin{cases} -\Delta z_1 = f_1(|x|, z_1, z_2) & \text{in } \mathbb{R}^N, \\ -\Delta z_2 = f_2(|x|, z_1, z_2) & \text{in } \mathbb{R}^N, \\ z_1, z_2 \in D^{1,2}(\mathbb{R}^N), \end{cases}$$

Change of variables

$$\begin{cases} -\Delta u_1 = F_1(\alpha, u_1, u_2) & \text{in } \mathbb{R}^N, \\ -\Delta u_2 = F_2(\alpha, u_1, u_2) & \text{in } \mathbb{R}^N, \\ u_1, u_2 \in D^{1,2}(\mathbb{R}^N), \end{cases} \text{trivial sol } (u_1, u_2) = (U, U)$$

$$\begin{cases} z_1 = u_1 + u_2 - 2U, \\ z_2 = u_1 - u_2, \end{cases}$$

$$\begin{cases} -\Delta z_1 = f_1(|x|, z_1, z_2) & \text{in } \mathbb{R}^N, \\ -\Delta z_2 = f_2(|x|, z_1, z_2) & \text{in } \mathbb{R}^N, \\ z_1, z_2 \in D^{1,2}(\mathbb{R}^N), \end{cases}$$

trivial sol $(z_1, z_2) = (0, 0)$

Change of variables

$$\begin{cases} -\Delta u_1 = F_1(\alpha, u_1, u_2) & \text{in } \mathbb{R}^N, \\ -\Delta u_2 = F_2(\alpha, u_1, u_2) & \text{in } \mathbb{R}^N, \\ u_1, u_2 \in D^{1,2}(\mathbb{R}^N), \end{cases} \text{trivial sol } (u_1, u_2) = (U, U)$$

$$\begin{cases} z_1 = u_1 + u_2 - 2U, \\ z_2 = u_1 - u_2, \end{cases} f_1(|x|, z_1, -z_2) = f_1(|x|, z_1, z_2), \\ f_2(|x|, z_1, -z_2) = -f_2(|x|, z_1, z_2). \end{cases}$$

$$\begin{cases} -\Delta z_1 = f_1(|x|, z_1, z_2) & \text{in } \mathbb{R}^N, \\ -\Delta z_2 = f_2(|x|, z_1, z_2) & \text{in } \mathbb{R}^N, \\ z_1, z_2 \in D^{1,2}(\mathbb{R}^N), \end{cases} \text{ trivial sol } (z_1, z_2) = (0, 0)$$

Linearization of the system (1/3)

Solutions are zeros of

$$T(\alpha, z_1, z_2) := \begin{pmatrix} z_1 - (-\Delta)^{-1} (f_1(|x|, z_1, z_2)) \\ z_2 - (-\Delta)^{-1} (f_2(|x|, z_1, z_2)) \end{pmatrix}.$$

Linearization of the system (1/3)

Solutions are zeros of

$$T(\alpha, z_1, z_2) := \begin{pmatrix} z_1 - (-\Delta)^{-1} (f_1(|x|, z_1, z_2)) \\ z_2 - (-\Delta)^{-1} (f_2(|x|, z_1, z_2)) \end{pmatrix}.$$

Look at the kernel of the linearization at $(z_1, z_2) = (0, 0)$: $\partial_{(z_1,z_2)}T(\alpha,0,0)[(w_1,w_2)]=0$ is equivalent to

$$\begin{cases} -\Delta w_1 = \frac{N+2}{N-2} U^{2^*-2} w_1 & \text{in } \mathbb{R}^N, \\ -\Delta w_2 = \frac{\beta(\alpha)}{\beta(\alpha)} U^{2^*-2} w_2 & \text{in } \mathbb{R}^N, \\ w_1, w_2 \in D^{1,2}(\mathbb{R}^N). \end{cases}$$

The problem Results Critical Sobolev eq. Linearization Bifurcation Radial solutions Non-radial solutions

Linearization of the system (2/3)

Theorem (F. Gladiali, M. Grossi, C. T.)

Recall that the eigenvalues of the single equation are

$$\lambda_n = \frac{(2n+N-2)(2n+N)}{N(N-2)}, \quad n \geqslant 0$$

■ When $\beta(\alpha) \neq \lambda_n$ for all $n \in \mathbb{N}$, all solutions in the kernel are given by

$$(w_1, w_2) = \left(\sum_{i=1}^N a_i \frac{\partial U}{\partial x_i} + bW, 0\right)$$

for some real constants a_1, \ldots, a_N , b, where W is the radial function defined above.

Linearization of the system (3/3)

Theorem (cont'd)

When $\beta(\alpha) = \lambda_n$ for some $n \in \mathbb{N}$, all solutions in the kernel are given by

$$(w_1, w_2) = \left(\sum_{i=1}^N a_i \frac{\partial U}{\partial x_i} + bW, \sum_{h=0}^n A_h W_{n,h}(r) Y_h(\Theta)\right)$$

for some real constants $a_1, \ldots, a_N, b, A_0, \ldots, A_n$, where $W_{n,h}$ are defined above.

The problem Results Critical Sobolev eq. Linearization Bifurcation Radial solutions Non-radial solutions

Problems to apply bifurcation theorems

We would like to apply bifurcation results to

$$T: \mathbb{R} \times (D^{1,2}(\mathbb{R}^N))^2 \to (D^{1,2}(\mathbb{R}^N))^2$$

$$T(\alpha, z_1, z_2) := \begin{pmatrix} z_1 - (-\Delta)^{-1}(f_1(|x|, z_1, z_2)) \\ z_2 - (-\Delta)^{-1}(f_2(|x|, z_1, z_2)) \end{pmatrix}.$$

■ When (z_1, z_2) belongs to a continuum emanating from (0,0), we want the $u_1 > 0$ and $u_2 > 0$ where

$$\begin{cases} u_1 = U + \frac{z_1 + z_2}{2}, \\ u_2 = U + \frac{z_1 - z_2}{2}. \end{cases}$$

- The problem is degenerate for all α .
- Lack of compactness to apply degree theory.

Positiveness of solutions (1/3)

- The $D^{1,2}$ topology is not strong enough.
- The trick $u_i \mapsto u_i^+$ does not work. For example:

$$-\Delta u_i = \sum_{j=1}^k a_{ij} (u_j^+)^{2^*-1}$$

In the non-cooperative regime, no maximum principle is expected.

Positiveness of solutions (2/3)

Define

$$D := \left\{ u \in L^{\infty}(\mathbb{R}^N) \mid ||u||_D < \infty \right\} \quad \text{where } ||u||_D := \sup_{x \in \mathbb{R}^N} \frac{|u(x)|}{U(x)}$$

and

$$X := D^{1,2}(\mathbb{R}^N) \cap D, \qquad \|u\|_X := \max\{\|u\|_{D^{1,2}}, \|u\|_D\}.$$

and let

$$\mathcal{X} := \{(z_1, z_2) \in X^2 \mid \exists \delta > 0, |z_2| \leq (2 - \delta)U + z_1\}$$

Positiveness of solutions (2/3)

Define

$$D := \left\{ u \in L^{\infty}(\mathbb{R}^N) \mid ||u||_D < \infty \right\} \quad \text{where } ||u||_D := \sup_{x \in \mathbb{R}^N} \frac{|u(x)|}{U(x)}$$

and

$$X := D^{1,2}(\mathbb{R}^N) \cap D, \qquad \|u\|_X := \max\{\|u\|_{D^{1,2}}, \|u\|_D\}.$$

and let

$$\mathcal{X} := \{ (z_1, z_2) \in X^2 \mid \exists \delta > 0, \ |z_2| \le (2 - \delta)U + z_1 \}$$

Consequences:

- $(z_1, z_2) \in \mathcal{X} \Rightarrow u_i > \frac{\delta}{2}U$ for i = 1, 2,
- \rightarrow \mathcal{X} is an open neighborhood of (0,0) in X^2 .

The problem Results Critical Sobolev eg. Linearization Bifurcation Radial solutions Non-radial solutions

Positiveness of solutions (3/3)

Lemma

The operator $T: \mathbb{R} \times \mathcal{X} \to X^2$ is well defined and continuous. Moreover, $\partial_{\alpha}T$, $\partial_{z}T$ and $\partial_{\alpha z}T$ exist and are continuous.

The problem Results Critical Sobolev eq. Linearization Bifurcation Radial solutions Non-radial solutions

Positiveness of solutions (3/3)

Lemma

The operator $T: \mathbb{R} \times \mathcal{X} \to X^2$ is well defined and continuous. Moreover, $\partial_{\alpha}T$, $\partial_{z}T$ and $\partial_{\alpha z}T$ exist and are continuous.

Idea of the proof.
$$(T(\alpha, z_1, z_2))_i = z_i - (-\Delta)^{-1}(f_i(|x|, z_1, z_2)).$$

$$(z_1, z_2) \in \mathcal{X} \subseteq D^2 \Rightarrow |z_i| \leqslant CU$$

$$\Rightarrow |f_i| \leqslant CU^{2^* - 1}$$

$$\Rightarrow |(-\Delta)^{-1} f_i| \leqslant C(-\Delta)^{-1} U^{2^* - 1} = CU.$$

Compactness (1/2)

Lemma

For all α , the operator

$$\mathcal{X} \to X^2 : (z_1, z_2) \mapsto \begin{pmatrix} (-\Delta)^{-1} f_1(|x|, z_1, z_2) \\ (-\Delta)^{-1} f_2(|x|, z_1, z_2) \end{pmatrix}$$

is compact.

Relies on some decay estimates.

Lemma (D. Siegel, E. Talvila, '99)

If $0 and <math>h \ge 0$, radial function belonging to $L^1(\mathbb{R}^N)$, then

$$\int_{\mathbb{R}^N} \frac{h(y)}{|x-y|^p} \, \mathrm{d}y = O\left(\frac{1}{|x|^p}\right) \quad as \ |x| \to +\infty.$$

The problem Results Critical Sobolev eq. Linearization Bifurcation Radial solutions Non-radial solutions

Compactness (2/2)

Consequence

The operator

$$X \to X : w \mapsto (-\Delta)^{-1} \left(\frac{w}{(1+|x|^2)^2} \right)$$

is compact.

Consequence: $\partial_z T(\alpha, 0, 0) : X^2 \to X^2$ is a compact perturbation of the identity. Thus, it is a Fredholm operator of index 0.

Degenerate solution for all α

Use the Kelvin transform $\mathbf{k}(z)$ of z:

$$\mathbf{k}(z)(x) := \frac{1}{|x|^{N-2}} z \left(\frac{x}{|x|^2}\right)$$

Define

$$X_{\mathbf{k}}^{+} := \{ z \in X \mid \mathbf{k}(z) = z \} \text{ and } X_{\mathbf{k}}^{-} := \{ z \in X \mid \mathbf{k}(z) = -z \}.$$

- $U \in X_{\mathbf{k}}^{+}$ $W \in X_{\mathbf{k}}^{-}, \ \frac{\partial U}{\partial x_{i}} \in X_{\mathbf{k}}^{+}$

Degenerate solution for all α

Use the Kelvin transform $\mathbf{k}(z)$ of z:

$$\mathbf{k}(z)(x) := \frac{1}{|x|^{N-2}} z \left(\frac{x}{|x|^2}\right)$$

Define

$$X_{\mathbf{k}}^{+} := \{ z \in X \mid \mathbf{k}(z) = z \} \text{ and } X_{\mathbf{k}}^{-} := \{ z \in X \mid \mathbf{k}(z) = -z \}.$$

- $U \in X_{\mathbf{k}}^+$

$$W \in X_{\mathbf{k}}^{-}, \ \frac{\partial U}{\partial x_{i}} \in X_{\mathbf{k}}^{+} \ W_{n,h}(r) := \frac{r^{h}}{(1+r^{2})^{h+\frac{N-2}{2}}} P_{n-h}^{\left(h+\frac{N-2}{2},h+\frac{N-2}{2}\right)} \left(\frac{1-r^{2}}{1+r^{2}}\right)$$

- in general
 - $W_{n,h} \in X_{\mathbf{k}}^+$ if n-h is even;
 - $W_{n,h} \in X_{\mathbf{k}}^-$ if n-h is odd.

Invariance of T under Kelvin transform

Lemma

The operator $T: \mathbb{R} \times \mathcal{X} \to X^2$ maps $\mathbb{R} \times (\mathcal{X} \cap (X_{\mathbf{k}}^+ \times X_{\mathbf{k}}^\pm))$ to $X_{\mathbf{k}}^+ \times X_{\mathbf{k}}^\pm$.

Need to show

$$\mathbf{k}(z_1) = z_1, \ \mathbf{k}(z_2) = \pm z_2 \Rightarrow \begin{cases} g_1 := (-\Delta)^{-1}(f_1(|x|, z_1, z_2)) \in X_{\mathbf{k}}^+ \\ g_2 := (-\Delta)^{-1}(f_2(|x|, z_1, z_2)) \in X_{\mathbf{k}}^+ \end{cases}$$

Invariance of T under Kelvin transform

Lemma

The operator
$$T : \mathbb{R} \times \mathcal{X} \to X^2$$
 maps $\mathbb{R} \times (\mathcal{X} \cap (X_{\mathbf{k}}^+ \times X_{\mathbf{k}}^\pm))$ to $X_{\mathbf{k}}^+ \times X_{\mathbf{k}}^\pm$.

Need to show

$$\mathbf{k}(z_1) = z_1, \ \mathbf{k}(z_2) = \pm z_2 \Rightarrow \begin{cases} g_1 := (-\Delta)^{-1}(f_1(|x|, z_1, z_2)) \in X_{\mathbf{k}}^+ \\ g_2 := (-\Delta)^{-1}(f_2(|x|, z_1, z_2)) \in X_{\mathbf{k}}^+ \end{cases}$$

This stems from

$$-\Delta \mathbf{k}(g) = -\frac{1}{|x|^{N+2}} \Delta g\left(\frac{x}{|x|^2}\right);$$

$$\mathbf{k}(U) = U;$$

• $\mathbf{k}(U) = U$; • Critical growth and $\begin{cases} f_1(|x|, z_1, -z_2) = f_1(|x|, z_1, z_2), \\ f_2(|x|, z_1, -z_2) = -f_2(|x|, z_1, z_2). \end{cases}$

Christophe Troestler (UMONS) Radial and non-radial positive solutions to a critical system June 28, 2017

Restrict $T: \mathbb{R} \times (\mathcal{X} \cap \mathcal{Z}_{rad}^{\pm}) \to \mathcal{Z}_{rad}^{\pm}$ where

$$\mathcal{Z}_{\mathrm{rad}}^{\pm} := \big\{ z \in X_{\mathbf{k}}^{+} \times X_{\mathbf{k}}^{\pm} \ \big| \ \forall x \in \mathbb{R}^{N}, \ z(x) = z(|x|) \big\}.$$

Restrict $T: \mathbb{R} \times (\mathcal{X} \cap \mathcal{Z}_{rad}^{\pm}) \to \mathcal{Z}_{rad}^{\pm}$ where

$$\mathcal{Z}_{\mathsf{rad}}^{\pm} := \big\{ z \in X_{\mathbf{k}}^{+} \times X_{\mathbf{k}}^{\pm} \ \big| \ \forall x \in \mathbb{R}^{N}, \ z(x) = z(|x|) \big\}.$$

Kernel $\partial_z T(\alpha, 0, 0)[(w_1, w_2)] = 0.$

$$w_1 = \sum_{i=1}^N a_i \frac{\partial U}{\partial x_i} + bW \in X_{\mathbf{k}, \text{rad}}^+$$

Restrict $T: \mathbb{R} \times (\mathcal{X} \cap \mathcal{Z}_{rad}^{\pm}) \to \mathcal{Z}_{rad}^{\pm}$ where

$$\mathcal{Z}_{\mathsf{rad}}^{\pm} := \big\{ z \in X_{\mathbf{k}}^{+} \times X_{\mathbf{k}}^{\pm} \ \big| \ \forall x \in \mathbb{R}^{N}, \ z(x) = z(|x|) \big\}.$$

Kernel $\partial_z T(\alpha, 0, 0)[(w_1, w_2)] = 0.$

$$w_1 = \sum_{i=1}^{N} \frac{\partial V}{\partial x_i} + bW \in X_{\mathbf{k}, \text{rad}}^+$$

 $\frac{\partial U}{\partial x}$ is not radially symmetric;

Restrict $T: \mathbb{R} \times (\mathcal{X} \cap \mathcal{Z}_{rad}^{\pm}) \to \mathcal{Z}_{rad}^{\pm}$ where

$$\mathcal{Z}_{\mathsf{rad}}^{\pm} := \big\{ z \in X_{\mathbf{k}}^{+} \times X_{\mathbf{k}}^{\pm} \ \big| \ \forall x \in \mathbb{R}^{N}, \ z(x) = z(|x|) \big\}.$$

Kernel $\partial_z T(\alpha, 0, 0)[(w_1, w_2)] = 0.$

$$w_1 = \sum_{i=1}^{N} \frac{\partial \mathcal{U}}{\partial x_i} + b\mathcal{W} \in X_{\mathbf{k}, \text{rad}}^+$$

- $\frac{\partial U}{\partial x}$ is not radially symmetric;
- **k**(W) = -W thus $W \notin X_{\mathbf{k}}^+$.

Restrict $T: \mathbb{R} \times (\mathcal{X} \cap \mathcal{Z}_{rad}^{\pm}) \to \mathcal{Z}_{rad}^{\pm}$ where

$$\mathcal{Z}_{\mathsf{rad}}^{\pm} := \big\{ z \in X_{\mathbf{k}}^{+} \times X_{\mathbf{k}}^{\pm} \ \big| \ \forall x \in \mathbb{R}^{N}, \ z(x) = z(|x|) \big\}.$$

Kernel $\partial_z T(\alpha, 0, 0)[(w_1, w_2)] = 0.$

$$w_1 = \sum_{i=1}^{N} \frac{\partial \mathcal{U}}{\partial x_i} + b \mathcal{W} \in X_{\mathbf{k}, \text{rad}}^+$$

- $\frac{\partial U}{\partial x}$ is not radially symmetric;
- **k**(W) = -W thus $W \notin X_{\mathbf{k}}^+$.

Conclusion

 $\partial_z T(\alpha, 0, 0)$ is invertible if $\alpha \neq \alpha_n^*$ for all n.

For the second component:

$$W_2 = \sum_{h=0}^n A_h W_{n,h}(r) Y_h(\Theta) \in X_{\mathbf{k}, \text{rad}}^{\pm}$$

For the second component:

$$w_2 = \sum_{h=0}^n A_h W_{n,h}(r) Y_h(\Theta) \in X_{\mathbf{k}, \text{rad}}^{\pm}$$

 w_2 radially symmetric $\Rightarrow h = 0$. Thus

$$W_2=W_{n,0}\in X_{\mathbf{k}}^{\pm}$$

Choose $X_{\mathbf{k}}^+$ when n is even, $X_{\mathbf{k}}^-$ when n is odd.

For the second component:

$$w_2 = \sum_{h=0}^n A_h W_{n,h}(r) Y_h(\Theta) \in X_{\mathbf{k}, \text{rad}}^{\pm}$$

 w_2 radially symmetric $\Rightarrow h = 0$. Thus

$$W_2=W_{n,0}\in X_{\mathbf{k}}^{\pm}$$

Choose $X_{\mathbf{k}}^+$ when n is even, $X_{\mathbf{k}}^-$ when n is odd.

Conclusion

 $\partial_z T(\alpha, 0, 0)$ has a 1-dim kernel when $\alpha = \alpha_n^*$ for some n.

Results Critical Sobolev eg. Linearization Bifurcation Radial solutions Non-radial solutions

Radial solutions (3/3)

Consequences:

- There is a continuum in $\mathbb{R} \times (\mathcal{X} \cap \mathcal{Z}_{rad}^{\pm})$ bifurcating from each $(\alpha_n^*, 0, 0)$ and Rabinowitz alternative holds.
- Crandall-Rabinowitz transversality condition can be checked so in a neighborhood of $(\alpha_n^*, 0, 0)$, the continuum is a C^1 -curve.

Non-radial solutions: general idea

Let $S \leq O(N)$ and $\sigma: S \to \{-1, 1\}$ be a group morphism. Define

$$\mathcal{Z} := \{ z = (z_1, z_2) \in X_{\mathbf{k}}^+ \times X_{\mathbf{k}}^{\pm} \mid \forall s \in \mathcal{S}, \ z_1(s^{-1}(x)) = z_1(x) \text{ and }$$
$$\sigma(s) z_2(s^{-1}(x)) = z_2(x) \}.$$

Idea: $\sigma \not\equiv 1 \Rightarrow$ non-radial solutions.

Non-radial solutions: general idea

Let $S \leq O(N)$ and $\sigma : S \to \{-1, 1\}$ be a group morphism. Define

$$\mathcal{Z} := \{ z = (z_1, z_2) \in X_{\mathbf{k}}^+ \times X_{\mathbf{k}}^{\pm} \mid \forall s \in \mathcal{S}, \ z_1(s^{-1}(x)) = z_1(x) \text{ and }$$

$$\sigma(s) z_2(s^{-1}(x)) = z_2(x) \}.$$

Idea: $\sigma \not\equiv 1 \Rightarrow$ non-radial solutions.

Lemma

The operator T maps $\mathbb{R} \times (\mathcal{X} \cap \mathcal{Z})$ into \mathcal{Z} .

Again, the relations

$$f_1(|x|, z_1, -z_2) = f_1(|x|, z_1, z_2),$$

 $f_2(|x|, z_1, -z_2) = -f_2(|x|, z_1, z_2).$

are essential.

4 D > 4 A > 4 B > 4 B > B = 900

$$S_1 := \langle O(N-1), h_N \rangle$$
 where

$$h_N(x',x_N) := (x',-x_N),$$
 where $x' := (x_1,\ldots,x_{N-1})$

and $\sigma_1: S_1 \to \{-1, 1\}$ is the group morphism s.t. $\sigma_1(s) := 1$ if $s \in O(N-1)$ and $\sigma_1(h_N) := -1$. Thus

$$\mathcal{Z}_{1}^{\pm} = \left\{ z \in X_{k}^{+} \times X_{k}^{\pm} \mid z_{1}(x', x_{N}) = z_{1}(|x'|, -x_{N}) \text{ and } \right.$$

$$\left. z_{2}(x', x_{N}) = -z_{2}(|x'|, -x_{N}) \right\}.$$

Kernel $\partial_z T(\alpha, 0, 0)[(w_1, w_2)] = 0.$

$$w_1 = \sum_{i=1}^{N-1} a_i \frac{\partial U}{\partial x_i} + a_N \frac{\partial U}{\partial x_N} + bW$$
 in $X_{\mathbf{k}}^+$ and $\begin{cases} O(N-1) \text{-invariant} \\ \text{even w.r.t. } x_N \end{cases}$

Kernel $\partial_z T(\alpha, 0, 0)[(w_1, w_2)] = 0.$

$$w_1 = \sum_{l=1}^{N-1} a_l \frac{\partial U}{\partial x_l} + a_N \frac{\partial U}{\partial x_N} + bW \quad \text{in } X_{\mathbf{k}}^+ \text{ and } \begin{cases} O(N-1)\text{-invariant} \\ \text{even w.r.t. } x_N \end{cases}$$

 $\frac{\partial U}{\partial x_i}$ is odd w.r.t. x_i thus not O(N-1)-invariant;

Kernel $\partial_z T(\alpha, 0, 0)[(w_1, w_2)] = 0.$

$$w_1 = \sum_{l=1}^{N-1} a_l \frac{\partial U}{\partial x_l} + a_N \frac{\partial U}{\partial x_N} + bW$$
 in $X_{\mathbf{k}}^+$ and $\begin{cases} O(N-1)\text{-invariant} \\ \text{even w.r.t. } x_N \end{cases}$

- $\frac{\partial U}{\partial x_i}$ is odd w.r.t. x_i thus not O(N-1)-invariant;
- $\frac{\partial U}{\partial x_N}$ is odd w.r.t. x_N ;

Kernel $\partial_z T(\alpha, 0, 0)[(w_1, w_2)] = 0.$

$$w_1 = \sum_{l=1}^{N-1} a_l \frac{\partial \mathcal{U}}{\partial x_l} + a_N \frac{\partial \mathcal{U}}{\partial x_N} + b \mathcal{W} \quad \text{in } X_{\mathbf{k}}^+ \text{ and } \begin{cases} O(N-1)\text{-invariant} \\ \text{even w.r.t. } x_N \end{cases}$$

- $\frac{\partial U}{\partial x_i}$ is odd w.r.t. x_i thus not O(N-1)-invariant;
- $\frac{\partial U}{\partial x_N}$ is odd w.r.t. x_N ;
- **k**(W) = -W thus $W \notin X_{\mathbf{k}}^+$.

Kernel $\partial_z T(\alpha, 0, 0)[(w_1, w_2)] = 0.$

$$w_1 = \sum_{i=1}^{N-1} a_i \frac{\partial U}{\partial x_i} + a_N \frac{\partial U}{\partial x_N} + bW$$
 in $X_{\mathbf{k}}^+$ and $\begin{cases} O(N-1)\text{-invariant} \\ \text{even w.r.t. } x_N \end{cases}$

- $\frac{\partial U}{\partial x_i}$ is odd w.r.t. x_i thus not O(N-1)-invariant;
- $\frac{\partial U}{\partial x_N}$ is odd w.r.t. x_N ;
- **k**(W) = −W thus $W \notin X_{\mathbf{k}}^+$.

Conclusion

 $\partial_z T(\alpha, 0, 0)$ is invertible if $\alpha \neq \alpha_n^*$ for all n.

For the second component:

$$w_2 = \sum_{h=0}^{n} A_h W_{n,h}(r) Y_h(\Theta)$$
 in $X_{\mathbf{k}}^{\pm}$ and $\begin{cases} O(N-1)\text{-invariant} \\ \text{odd w.r.t. } x_N \end{cases}$

For the second component:

$$w_2 = \sum_{h=0}^{n} A_h W_{n,h}(r) Y_h(\Theta)$$
 in $X_{\mathbf{k}}^{\pm}$ and
$$\begin{cases} O(N-1)\text{-invariant} \\ \text{odd w.r.t. } x_N \end{cases}$$

For all h, there is a single (up to a multiple) spherical harmonic that is O(N-1)-invariant: $Y_h(\Theta) = P_h^{(\frac{N-3}{2}, \frac{N-3}{2})}(\cos \theta_{N-2})$ where $(r, \varphi, \theta_1, \dots, \theta_{N-2})$ are the spherical coordinates.

For the second component:

$$w_2 = \sum_{h=0}^n A_h W_{n,h}(r) Y_h(\Theta)$$
 in $X_{\mathbf{k}}^{\pm}$ and
$$\begin{cases} O(N-1) \text{-invariant} \\ \text{odd w.r.t. } x_N \end{cases}$$

For all h, there is a single (up to a multiple) spherical harmonic that is O(N-1)-invariant: $Y_h(\Theta) = P_h^{(\frac{N-3}{2}, \frac{N-3}{2})}(\cos \theta_{N-2})$ where $(r, \varphi, \theta_1, \dots, \theta_{N-2})$ are the spherical coordinates. Moreover, this Y_h is odd w.r.t. x_N iff h is odd.

$$w_2 = \sum_{h=0, h \text{ odd}}^n A_h W_{n,h}(r) Y_h(\Theta) \text{ in } X_k^{\pm}$$

$$w_2 = \sum_{h=0, h \text{ odd}}^n A_h \frac{W_{n,h}(r)}{W_{n,h}(r)} Y_h(\Theta) \text{ in } X_k^{\pm}$$

Recall $W_{n,h} \in X_{\mathbf{k}}^+$ (resp. $X_{\mathbf{k}}^-$) \iff n-h is even (resp. odd). Thus

- if *n* is even, choose $X_{\mathbf{k}}^-$;
- \blacksquare if *n* is odd, choose $X_{\mathbf{k}}^+$.

$$w_2 = \sum_{h=0, h \text{ odd}}^n A_h W_{n,h}(r) Y_h(\Theta) \text{ in } X_k^{\pm}$$

Recall $W_{n,h} \in X_{\mathbf{k}}^+$ (resp. $X_{\mathbf{k}}^-$) \iff n-h is even (resp. odd). Thus

- if *n* is even, choose $X_{\mathbf{k}}^-$;
- \blacksquare if *n* is odd, choose $X_{\mathbf{k}}^+$.

$$\text{multiplicity} = \begin{cases} \sum_{h=0,\ h \text{ odd}}^{n} 1 = n/2 & \text{if } n \text{ is even,} \\ \sum_{h=0,\ h \text{ odd}}^{n} 1 = n \operatorname{div} 2 + 1 & \text{if } n \text{ is odd.} \end{cases}$$

The multiplicity is odd iff $n \mod 4 \in \{1, 2\}$.

Non-radial solutions: more odd symmetries

Let
$$1 \le m \le N-1$$
, $S_m = \langle O(N-m), h_{N-m+1}, \dots, h_N \rangle$ where h_m is the reflection w.r.t. $x_m = 0$

and $\sigma_m : \mathcal{S}_m \to \{-1, 1\}$ be the group morphism defined by $\sigma_m(s) = 1$ for $s \in O(N-m)$ and $\sigma_m(h_i) = -1$.

Proposition

Bifurcation with these symmetries occur from (α_n^*, U, U) if

$$\binom{m+\lfloor\frac{n-m}{2}\rfloor}{m}$$
 is an odd integer.

Non-radial solutions: highly oscillating

As before, let $(r, \varphi, \theta_1, \dots, \theta_{N-2})$ be the spherical coordinates.

For $m \ge 1$, let R_m be the rotation of angle $\frac{2\pi}{m}$ in φ , and take $S_m = \langle R_m, h_2, h_3, \dots, h_N \rangle$ and $\sigma_m : S_m \rightarrow \{-1, 1\}$ be the group morphism defined by $\sigma_m(R_m) = 1$, $\sigma_m(h_2) = -1$, and $\sigma_m(h_i) = 1$ for i = 3, ..., N.

Among the function in the second component of the kernel at α_m^*

$$w_2 = \sum_{h=0}^m A_h W_{m,h}(r) Y_h(\varphi, \theta_1, \ldots, \theta_{N-2}),$$

these symmetries select

$$W_{m,m}(r)Y_m(\Theta)$$

1-dim \Rightarrow bifurcation.

Thank you for your attention.

