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The problem Results Critical Sobolev eq. Linearization Bifurcation Radial solutions Non-radial solutions

A straightforward generalization...

K
2¢_1
—Au; = Za,-juj in RV,
uj > 0 in RN,
uj € D2(RN),
wherei=1,...,kand N> 3. As usual, 2* = NZN denotes the
critical exponent and DV2(RV) = {u € L2"(RV) | [Vu] € L2(RN)}.
m (aj) € Rk is symmetric;
K

[ Za,-,-:lforanyi:l,...,k.
j=1
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A straightforward generalization...

k
—Auj = Za;juj.z*_l in RN,

uj > 0 in RN,
uj € DY2(RN),

whereji=1,...,kand N = 3. As usual, 2* = NZN denotes the
critical exponent and DY2(RV) = {u € L2 (RN) | |Vu| € L2(RM)}.

m (aj) € Rk is symmetric;
K

[ Za;j: lforanyi=1,...,k.
j=1
Characteristics:
w translation and dilation invariance;
w family of trivial (radial) solutions u= (U, ..., U).
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... of the critical Sobolev equation

—Au=uv? inRV,
u>0 in RN,
u € DV2(RN),
possesses the (N + 1)-parameter family of solutions:

N=2
4

[N(N—2)&°]

U5r,V (X ) ) N—2

(824 Ix—yP
Let

IN(N—2)] %
UX) :=Uro(X) = ———=
(1+1x12) =
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The case of 2 equations

For k = 2, parametrize (aj;) = (;%, 13%). So

—Auy=ou? "1+ (1-au2""! inRV,
—Auy =(1—a)u? "t +auz™ inRV,
up>0, u;>0 in RN,

ui,ur € Dl’z(RN).

Question : Does there exist non-trivial solutions, possibly
non-radial, for some a € R ?
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Gross-Pitaevskii System

2 N

—Auy =au? 7t (1—a)uf~ul™  inRY,
2 N

—Auy =aud’ "+ (1—ajuy?uf”  inRY,

uy >0, up >0, u1,ux; eDY?(RN),

For this system, Y. Guo, B. Li, and J. Wei proved in 2014 via a
perturbative argument, that, for N e {3,4} anda>1
(non-cooperative case), the system possesses infinitely many
non-radial solutions.
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The General System

—Auy =Fi(a,u1, uz) inRN,
—Aup = Fy(a, U, uz) in RN,
up >0, up>0 in RN,
ui, u; € D2(RN),
where F;: R x (0, +00)2 —» R: (a, u) = Fi(a, u), i = 1, 2 satisfy
m smoothness and integrability assumptions;
®mFi(a,1,1)=1;
m Fi(a, Auy, Auz) = A2 "1Fi(a, uy, up) forall A > 0
m Fi(a, U1, Uz) = F2(a, uz, uy) for all (uy, u2) € (0, +00)?;

m for all a, 94B(a) > 0 where
B(a) :=dy,F1(a,1,1)—ay,Fi(a,1,1).

Christophe Troestler (UMONS)



The problem Results Critical Sobolev eq. Linearization Bifurcation Radial solutions Non-radial solutions

Existence of non-trivial radial solutions (1/4)

Theorem (F. Gladiali, M. Grossi, C. T.)
Letn>=2 and or be the solution to
(2n+N)(2n+N—2)
N(N — 2)
Then there exists a C* curve € — (a(g), u1(€), uz(€)) :

(—&0, €0) = R x (Dracl RN ) such that, for all € € (—&o, &),
(u1(€), u2(€)) is a radial solution to

Bla*) =

—Auy =Fi(a, uy, uz) in RN,
—Aup = Fa(a, U, uz) in RN,
up >0, up >0 in RN,

with a = a(g). Moreover,
Christophe Troestler (UMONS)
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Existence of non-trivial radial solutions (2/4)

Theorem (cont’d)

{ul(s) = U+ €W, o(IX]) + €@1,¢(Ix]),
u2(€) =U—&eWhn,o(Ix]) + €p2,e(Ix1),

with Wp,o being the function

I Gy (TS
Wio(IX) i= ——— P

(1+|X|2)¥ 1+ |x|?

where @1, ¢2,¢ are functions uniformly bounded in D%?(RN)
with respect to € € (—&o, €0), and such that ¢;o =0 fori=1, 2.
Finally the bifurcation is global and the Rabinowitz alternative
holds.
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Existence of non-trivial radial solutions (3/4)

For the system

—Aur=au? "4+ (1—a)u3™t inRY,
—Auy =(1—o)u? "t +au2™"! inRV,
up >0, u, >0 in RN,

the bifurcations occur at (a7, U, U) where

., 2n?+2(N—1)n+N?
a =
n N(N +2)

nz2).

Notethat1<orz* <a¥<..<qg* — 400,

3 n nooo
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Existence of non-trivial radial solutions (4/4)
For N = 3.

1 a;:5/3 a;:2.6 a::3.8
| | | | o
Trivial solution (u1, u2) = (U, U)
solutions from or; solutions from a;‘
Uy (e>0) Uy (e>0)
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Existence of non-trivial non-radial solutions (1/4)

Theorem (F. Gladiali, M. Grossi, C. T.)

The point (a, U, U), n> 2, is a non-radial bifurcation point —
meaning there is a continuum C of nontrivial non-radial
solutions emanating from (a*,U,U) — if n € N where N'€ N is
infinite.

Moreover, for any sequence of (ak, Uik, Uz,k) € C converging to
(a>,U,U), one has (up to a subsequence):

Uik = U+ &kZn (X) + 0(&k),
uzk = U—&Zn (X) + 0(&k),

as k — oo, where gx — 0 and Z, # 0 is non-radial.
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Existence of non-trivial non-radial solutions (2/4)

For example, N'= {n €N*2 |nmod 4 € {1,2}} and

n rh hil=2 pon=2y (1—r?
Zn(Xx) = Z ahﬁprg—h ’ ) 2
h=1, hodd (L+r?)"" =z 1+r
("2.5%2)
- Py 27 %/ (cosOn—2)

for some coefficients an € R, where

(r,,01,...,0n—2) €0, +00) x [0, 2m) x [0, m)"~2 are the
spherical coordinates.
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Existence of non-trivial non-radial solutions (2/4)

For example, N'= {n €N*2 |nmod 4 € {1,2}} and

n rh hil=2 pon=2y (1—r?
Zn(Xx) = Z ahﬁprg—h ’ ) 2
h=1, hodd (L+r?)"" =z 1+r
=
- Py 27 % /(cosOn—2)

for some coefficients ap € R, where
(r, 9, 01,...,0N_2) €[0,+00) x [0, 2m) x [0, m)N—2 are the
spherical coordinates.

(2.52) . :
Note that P, * * ? “(cos@n_2) are the spherical harmonics that
are O(N — 1)-invariant and is odd w.r.t. xy iff h is odd.

Christophe Troestler (UMONS)




The problem Results Critical Sobolev eq. Linearization Bifurcation Radial solutions Non-radial solutions

Existence of non-trivial non-radial solutions (3/4)

Another example: A" =N>? and

Z,,(r, Q, 91, Caey 9N—2)
rn
= (ngn(n(p)(gn 61)” oo (Sin ON_z)”.
1+r 2

Thus there exist at least a non-radial bifurcation branch for
each n= 2.
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Existence of non-trivial non-radial solutions (4/4)

Putting our results together, we have the following multiplicity
of non-trivial solutions (1 radial, the other ones non-radial):

N=3 N=4 N=5

35S 33333
Il
NoubhwN

NWhrSMbBD
whuubb
wuuo ul b~ b
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Cooperative system & radial solutions (1/3)

We believe that, if all entries of (aj) are positive, all positive
solutions are radial.

Theorem (M. Chipot, I. Shafrir, G. Wolansky, '97)

All entire solutions u to
Kk
—Aui=pexp(Dagy), inR%,  1<i<k,
=1

where uj > 0, (ajj) is invertible and all aj; = 0, then all u; are
necessarily radially symmetric. If (ajj) is irreducible, the u; are
radially symmetric around the same point.
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Cooperative system & radial solutions (2/3)

Theorem (Y. Guo, J. Liu, '08)

IfVi,je{1,2}, a; >0 and ai> = a1, then solutions to the
Gross-Pitaevskii’s system

2 N

—Auy =anud Tt +anuul” in RV,
2 N

—Aup = a22u2 == a21u Ul in RN,

uy >0, u >0, uy,up;eDY?(RNY),

are radially symmetric around the same point (they actually
are multiples of the same Us,y).

Christophe Troestler (UMONS)
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Cooperative system & radial solutions (3/3)

Theorem (O. Druet, E. Hebey, '09)

When all aj = 1, the components u; of any nonnegative entire
solution u to

2% -2

o) 2 N ;
—Au,-:( a,-juj) ui onR", i=1,...,k
j=1

are all radially symmetric around the same point (actually, all
uj multiples of the same Us ).
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The critical Sobolev equation

The equation
N2
—Au=uvz inRV,

u>0 in RV,
u € DL2(RV),

is invariant under translations and dilations:
N
u— u(-—Xxo), Xo €RY,

U 5—%u(é), 5> 0.
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Linearization of the critical Sobolev equation

Thus the linearization at U,

—Aw=AU?""2w, weDY?RN).

has the eigenvalue

N+2
A =2"—1=——
N—2
with the N + 1-dim. eigenfunction space generated by
ou
—, i=1,...,N,
0X;

W(|x| t( U N_zu) 1= X
X|):=Const.| X - + — =
(Ix1) 2 (1 + x12)V2
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Linearization of the critical Sobolev equation

Thus the linearization at U,

—Aw=AU?""2w, weDY?RN).

has the eigenvalue

N+2
A =2"—1=——
N—2
with the N + 1-dim. eigenfunction space generated by
ou
—, i=1,...,N,
0X;

W(|x| t( U N_zu) 1= X
X|):=Const.| X - + — =
(Ix1) 2 (1 + x12)V2

Also, Ao := 1 with eigenfunction U.
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Spectrum (1/2)

Theorem (F. Gladiali, M. Grossi, C. T.)
The eigenvalues of
—Aw=AU?>""2w, weD¥?RN).
are the numbers
_(2n+N—=2)(2n+N)

n — ’

N(N —2)

\
o

Each eigenvalue A, has multiplicity

_(N+2n—1)(N+n—2)

) (N—1)!n!
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The problem Results Critical Sobolev eq.

Spectrum (2/2)

Linearization Bifurcation Radial solutions Non-radial solutions

Theorem (cont’d)

and the corresponding eigenfunctions are, in radial
coordinates (r, ©), linear combinations of

Wnn(r)Yn(©) forh=0,...,n,

where

= 1+r2

Win,h(r) = LT pmtgtagy (10
n,h o= (1+r2)h+72 n—h ’

Yn(0) are spherical harmonics related to the eigenvalue
h(h+N—2) and P/(m') are the Jacobi polynomials.

Note: Wp,0 =const.U and Wi o = g w.
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Spectrum: sketch of the proof (1/2)

Let N: SN — RN be the stereographic projection and define
®:SV RNy od(y)as

2 42
®(y) :==w(N(y)) - (m)
Then N(N=2)

The eigenvalues of the Laplace-Beltrami operator on SV are
well known:

N(N—2)
(A—I)T:n(N—lJrn), for some neN.
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Spectrum: sketch of the proof (2/2)

For the eigenfunctions w, express the eigenfunctions ¢ in
cylindrical coordinates

=(ev1=22,2z)esN
(

where © € SN and z € [-1, 1]. This yields

¢(y):(1—z2)h/2p,(,h7, S ) vn©),  h=o0,....n.

To go back to w(x) with x =M(y), remark that

-1
ro=nevi-z2z = z_: and v1

r2+1'

Christophe Troestler (UMONS)
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Let’s go back to the system...

hristophe Troestler
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Change of variables

—Auy = Fi(a,u1, uz) inRN,
—Aup; =F3(a, ug, uz) in RN,
ui, Uz e Dl’z(RN),

Z1=U1+Uz;—2U,
Zy = Uy —up,

—Az1 = (x|, z1,22) inRN,
—Az; = (x|, z1,22) inRN,
Z1,22 € Dl'z(RN),

Christophe Troestler (UMONS)
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Change of variables

—Auy = Fi(a,u1, uz) inRN,
—Aup; =F3(a, ug, uz) in RN,
ui, Uz e Dl’z(RN),

trivial sol (u1, u2) = (U, U)

Z1=U1+Uz;—2U,
Zy = Uy —up,

—Az1 = (x|, z1,22) inRN,
—Az; = (x|, z1,22) inRN,
Z1,22 € Dl'z(RN),

trivial sol (z1, z2) = (0, 0)

Christophe Troestler (UMONS)
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Change of variables

—Auy = Fi(a,u1, uz) inRN,
—Aup; =F3(a, ug, uz) in RN,
ui, Uz e Dl’z(RN),

trivial sol (u1, u2) = (U, U)

Fi(a, uy, u2) = Fa(a, uz, uy)
U
{21:u1+uz—2U, f1(Ixl, z1, —z2) = f1(Ix|, 21, 22),
2=U1—Uz, (x|, 21, —22) = =2 (||, Z1, Z2).

—Az1 = (x|, z1,22) inRN,
—Az; = (x|, z1,22) inRN,
Z1,22 € Dl'z(RN),

trivial sol (z1, z2) = (0, 0)

Christophe Troestler (UMONS)
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Linearization of the system (1/3)

Solutions are zeros of

71— (—A)Y(fi(Ix], z1, 22)))

T(a,z1,22) = (22 — (=AY (F2(1x], 21, 22))

Christophe Troestler (UMONS)
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Linearization of the system (1/3)

Solutions are zeros of

T(a, 21, 22) = (21_ R 21’22)))
121, 22) = 22_(_A)—1(f2(|X|,21,22)) .

Look at the kernel of the linearization at (z1, z2) = (0, 0):
9(z1,z)T(a, 0, 0)[(w1, w2)] = 0 is equivalent to

—Aw; = N+2 U2 2w1 inRV,

—Aw» :,B(G) u? —2w, inRN,

w1, wp € DL2(RN),

Christophe Troestler (UMONS)
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Linearization of the system (2/3)

Theorem (F. Gladiali, M. Grossi, C. T.)

Recall that the eigenvalues of the single equation are

(2n+N—2)(2n +N)
n= , h=0

N(N —2)

m When B(a) # An for all n €N, all solutions in the kernel are

given by
1 2) = NE —+bW, O
wi, W aj ,
( ) ) IGX,'

for some real constants a1, ..., an, b, where W is the radial
function defined above.

Christophe Troestler (UMONS)
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Linearization of the system (3/3)

Theorem (cont’d)

m When B(a) = Ap for some n € N, all solutions in the kernel
are given by

N aU n
(w1, wp) = (Z ai— + bW, Z AhWn,h(r)Yh(@))
izl OXi h=0

for some real constants a1,...,an, b, Ao, ..., An, Wwhere
Wp,n are defined above.

Christophe Troestler (UMONS)
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Problems to apply bifurcation theorems

We would like to apply bifurcation results to

T:Rx (DY2(RV))* - (DY2(RM))
21— (A" YA (Ix], z1, Zz)))
22— (=0)"Y(fa(IXl, 21, 22)))

T(a,z1,22) ::(

m When (21, z) belongs to a continuum emanating from
(0, 0), we want the u; > 0 and u; > 0 where

{Ul U+ Zl+22

21—22

u=U+

m The problem is degenerate for all a.
m Lack of compactness to apply degree theory.

Christophe Troestler (UMONS)
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Positiveness of solutions (1/3)

m The D2 topology is not strong enough.
m The trick u; — u,.+ does not work. For example:

K
—Auj=>. a,-j(uj*)2 -
=1

In the non-cooperative regime, no maximum principle is
expected.

Christophe Troestler (UMONS)
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Positiveness of solutions (2/3)
Define

uix
D:= {U € LOO(RN) | ”U”D < 00} where ||U||D = sup | ( )l
xeRN U(X)
and
X:=DY2R"YnD,  |lullx :=max{llullprz, llullp}.
and let

X = {(21,22) € X? | 36 >0, |z2] < (2_5)U+21}

Christophe Troestler (UMONS)
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Positiveness of solutions (2/3)

Define

u(x
D:= {u € LOO(RN) | llullp < 00} where ||u||p := sup uel

xerV U(X)
and
X:=D"®RYYnD,  |lullx :=max{llullpr2, llullp}.
and let
X={(z21,22)€X?|36 > 0, |z2| S (2—8)U + 21}
Consequences:

w (21,22) € X => Ui > %U fori=1,2,
w X is an open neighborhood of (0, 0) in X2.

Christophe Troestler (UMONS)
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Positiveness of solutions (3/3)

Lemma

The operator T : R x X — X? is well defined and continuous.
Moreover, 34T, 9-T and 94T exist and are continuous.

Christophe Troestler (UMONS)
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Positiveness of solutions (3/3)

Lemma
The operator T : R x X — X? is well defined and continuous.
Moreover, 34T, 9-T and 94T exist and are continuous.

Idea of the proof. (T(a, z1, 22)); = zi— (—A)7L(fi(Ix|, z1, 22)).
(z1,22) € X CD? = |z| < CU
<

= |fil <CU?" 1
= |(=A)7Hil < C(=2)TtUP T = CU.

Christophe Troestler (UMONS)
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Compactness (1/2)

Lemma
For all a, the operator

(—=A)"Ha(Ixl, 21, 22)
X — X2 Z1,22 '—>(
( ) (—=A)" (1, 21, 22)
is compact.
Relies on some decay estimates.

Lemma (D. Siegel, E. Talvila, '99)
If0 < p <N and h >0, radial function belonging to L*(RV), then

h(y) 1
dy=0l—] as |x|— +oo.
RN [X—y[P | x|P

Christophe Troestler (UMONS)
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Compactness (2/2)

Consequence
The operator
X=X w—( A)_l( d )
' (1 +Ix]2)?

is compact.

Consequence: 3,T(a, 0,0): X? — X? is a compact perturbation
of the identity. Thus, it is a Fredholm operator of index 0.

Christophe Troestler (UMONS)
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Degenerate solution for all o

Use the Kelvin transform k(z) of z:

1 X
k(z)(x) := X2 Z(W)

Define
Xe ={zeX|k(z)=z} and X :={zeX|k(z)=-z}.

mUeX,

— U
mWeXy, 5 €Xk

Christophe Troestler (UMONS)
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Degenerate solution for all o

Use the Kelvin transform k(z) of z:

1 X
k(z)(x) := X2 Z(W)

Xe ={zeX|k(z)=z} and X :={zeX|k(z)=-z}.

Define

mUeX]
N— N=2
— W _ oyt _ i (+T' T)(l—fz)
mWeXy, 5 €Xx Wan(r):= Lty Prh 1112
m in general

m Wph GX: if n— h is even;
u Wph € X, if n—hisodd.
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Invariance of T under Kelvin transform

Lemma

The operator T : R x X — X? maps R x (X n (X x X)) to
X\ x Xi.

Need to show

_ _ g1 = (A LA (IX], 21, 22)) € X,
k(z1) =21, k(z22) =xz2 = {92 - (—A)_l(fZ(lxlr 21, 22)) GX:

Christophe Troestler (UMONS)
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Invariance of T under Kelvin transform

Lemma
The operator T : R x X — X? maps R x (X n (X x X)) to
X\ x Xi.

Need to show

_ _ g1 := (A Y(f(Ix], 21, 22)) € X,
k(z1) =21, k(z22) =xz2 = {92 - (—A)_l(fZ(lxlr 21, 22)) GX:

This stems from
u _Ak(g) |X|N+2 Ag(iz)
m k(U)=U;

f ’ y — f , , ,
m Critical growth and 1(Ixl, 21, =22) = fu(Ix|, 21, 22)
2(1x1, z1, —22) = —F(Ix|, z1, 22).
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Radial solutions (1/3)

Restrict T:Rx (XN Zrad) — Z*  where

rad

zE ={zeXg x X; | VxeRY, z(x)=z(Ix|)}.

Christophe Troestler (UMONS)
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Radial solutions (1/3)
Restrict T:Rx (XN Zrad) — Z*  where

rad
zE ={zeXg x X; | VxeRY, z(x)=z(Ix|)}.
Kernel 0,T(a, 0, 0)[(w1, w2)] =0

BU
i=

Christophe Troestler (UMONS)
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Radial solutions (1/3)
Restrict T:Rx (XN Zrad) — Z*  where

rad
zE ={zeXg x X; | VxeRY, z(x)=z(Ix|)}.

Kernel 0,T(a, 0, 0)[(w1, w2)] =0

wi = %—I— bw EXk rad
=1

[ g—)‘(j’ is not radially symmetric;
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Radial solutions (1/3)
Restrict T:Rx (XN Zrad) — Z*  where

rad
zE ={zeXg x X; | VxeRY, z(x)=z(Ix|)}.

Kernel 0,T(a, 0, 0)[(w1, w2)] =0

w1 2%4‘9”76)&@
=1

[ g—)‘(j’ is not radially symmetric;
m k(W) =—W thus W ¢ X,
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Radial solutions (1/3)
Restrict T:Rx (XN Zrad) — Z*  where

rad
zE ={zeXg x X; | VxeRY, z(x)=z(Ix|)}.

Kernel 0,T(a, 0, 0)[(w1, w2)] =0

w1 2%4‘9‘/‘76)&@
=1

[ g—fé is not radially symmetric;
m k(W) =—W thus W ¢ X,

Conclusion
9-T(a, 0,0) is invertible if a # a* for all n.
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Radial solutions (2/3)

For the second component:

n
Wy = ZAhWn,h(r)Yh(@) € X:,rad
h=0
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The problem Results Critical Sobolev eq. Linearization Bifurcation Radial solutions Non-radial solutions

Radial solutions (2/3)

For the second component:

n
Wy = ZAhWn,h(r)Yh(@) € X:,rad
h=0

wy radially symmetric = h =0. Thus
W2 = Wn,O GXI:i(:

Choose XI when n is even, X when n is odd.
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Radial solutions (2/3)

For the second component:

n
Wy = ZAhWn,h(r)Yh(@) € X:,rad
h=0

wy radially symmetric = h =0. Thus
W2 = Wn,O GXI:i(:
Choose XI when n is even, X, when n is odd.

Conclusion
9,T(a, 0,0) has a 1-dim kernel when a = a for some n.
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Radial solutions (3/3)

Consequences:

m There is a continuum in R x (anéd) bifurcating from
each (a*, 0,0) and Rabinowitz alternative holds.

m Crandall-Rabinowitz transversality condition can be
checked so in a neighborhood of (a, 0, 0), the continuum

is a Cl-curve.
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Non-radial solutions: general idea

Let S<KO(N)and 0:S — {—1,1} be a group morphism. Define
={z=(21,22) € X;{ x X | Vs €S, z1(s7 (X)) = z1(x) and
0(s)z2(s7(x)) = 22(x) }.

Idea: 0 # 1 = non-radial solutions.
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Non-radial solutions: general idea
Let S<KO(N)and 0:S — {—1,1} be a group morphism. Define
Z2:={z=(21,22) € X, x X | Vs €S, z1(s"}(x)) = z1(x) and
0(s)z2(s7H(x)) = z2(x) }.
Idea: 0 # 1 = non-radial solutions.

Lemma
The operator T maps R x (X n Z) into Z.

Again, the relations

f1(lx], z1, —2z2) = f1(Ix|, z1, 22),
f2(1xl, z1, —z2) = =Ff(Ix|, z1, 22).

are essential.
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Non-radial solutions: first case

81 :=(O(N —1), hy) where
hn(X', xn) == (X', —xn), where x" := (x1,..., XnN—1)

and 01 : 81 — {—1, 1} is the group morphism s.t. 01(s) ;=1 if
s€O(N—1) and oi1(hy) :=—1. Thus

zF ={zeX{ x X | 21X, xw) = z1(I¥'], —xn) and

ZZ(X/, XN) = —Zz(lX’l, _XN)}'
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Non-radial solutions: first case

Kernel 3,T(a, 0, 0)[(w1, w2)] = 0.

N—1 L
oU oU . O(N — 1)-invariant
wi= > ai—+an— +bW inX] and (N=1)
-1 90X XN even w.r.t. xy
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Non-radial solutions: first case

Kernel 3,T(a, 0, 0)[(w1, w2)] = 0.

<1 . .
ou . O(N — 1)-invariant
w1 = — +ay— + bW mX,‘(F and{ ( )
1 i Xy even w.r.t. xy

] g—)‘(” is odd w.r.t. x; thus not O(N — 1)-invariant;
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Non-radial solutions: first case

Kernel 3,T(a, 0, 0)[(w1, w2)] = 0.

<1 . .
g . O(N — 1)-invariant
w1 = -—+a)V£+bW in X, and ( )
1 i Xy even w.r.t. xy

v
aX;
U
XN

is odd w.r.t. x; thus not O(N — 1)-invariant;

is odd w.r.t. xy;
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Non-radial solutions: first case

Kernel 3,T(a, 0, 0)[(w1, w2)] = 0.

(N—1)-invariant
Q,A n X, and
}{Z +W | {even w.r.t. xy

= 2 is odd w.r.t. x; thus not O(N — 1)-invariant;

n :)ﬁj is odd w.r.t. xu;

m k(W) =—W thus W ¢ X,
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Non-radial solutions: first case

Kernel 3,T(a, 0, 0)[(w1, w2)] = 0.

(N—1)-invariant
Q,A n X, and
% +W | {even w.r.t. xy

= 2 is odd w.r.t. x; thus not O(N — 1)-invariant;

n :)ﬁj is odd w.r.t. xu;

m k(W) =—W thus W ¢ X,

Conclusion
9,T(a, 0, 0) is invertible if o # a* for all n.
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Non-radial solutions: first case

For the second component:

O(N —1)-invariant

Wwyo =
odd w.r.t. xy

n
ApWn,n(r)Yna(©) in Xt and{
h=0
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Non-radial solutions: first case

For the second component:

O(N —1)-invariant
odd w.r.t. xy

n
wa = D> ApWnn(r)Ya(©) inX; and{
h=0

For all h, there is a single (up to a multiple) spherical harmonic
(NT—:% N-3

that is O(N— 1)-invariant: Y,(©) =P, 2" ? '(cos6n—2) where
(r, e, 01,...,0n—2) are the spherical coordinates.

Christophe Troestler (UMONS)
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Non-radial solutions: first case

For the second component:

O(N —1)-invariant
odd w.r.t. xy

n
wa = D> ApWnn(r)Ya(©) inX; and{
h=0

For all h, there is a single (up to a multiple) spherical harmonic
N=3 N-3

that is O(N — 1)-invariant: Y(©) :P,(7 202 )(cose,v_z) where

(r, e, 01,...,0n—2) are the spherical coordinates.

Moreover, this Y; is odd w.r.t. xy iff his odd .
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Non-radial solutions: first case

n
wa= > AnWpn(r) Ya(©) inXE
h=0, h odd
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Non-radial solutions: first case

n
wa= > AnWnn(r) Ya(©) inXE
h=0, h odd

Recall Wp p eXI(resp. X ) e n—nhis even (resp. odd). Thus

m if n is even, choose X, ;
m if n is odd, choose X .
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Non-radial solutions: first case

n
wa= > AnWpn(r) Ya(©) inXE
h=0, h odd

Recall Wp p eXI(resp. X ) e n—nhis even (resp. odd). Thus

m if n is even, choose X, ;
m if n is odd, choose X .

n 1=n/2 if n is even,

multiplicity = ZQ=0, h odd . o
tho hoddl =ndiv2+1 ifnisodd.

The multiplicity is odd iff nmod4 € {1,2} .
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Non-radial solutions: more odd symmetries

lLetl<m<N-1, §,=(ON—m), hy—m~+1, ..., hy) where
hm is the reflection w.r.t. x,, =0

and oy, : Sy — {—1, 1} be the group morphism defined by
Om(s) =1 fors€ O(N—m) and on(h;) =—1.

Proposition
Bifurcation with these symmetries occur from (a, U, U) if

(m1=

) is an odd integer.
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Non-radial solutions: highly oscillating

As before, let (r, ¢, 01, ..., On—2) be the spherical coordinates.
For m> 1, let R, be the rotation of angle % in @, and take
Sm={(Rm, hz, h3,..., hy) and oy : Sjm — {— 1 1} be the group
morphism defined by Om(Rm) =1, om(h2) =—1, and on(hj)) =1
fori=3,...,N.

Among the function in the second component of the kernel at

a*
m

m
Wz = ZAth,h(l’)Yh(CD, 01,...,6n-2),
h=0

these symmetries select

Wm,m(r)Ym(©)

1-dim = bifurcation.
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