Radial and non-radial positive solutions to a system with critical growth on \mathbb{R}^{N}

Christophe Troestler
(in collaboration with F. Gladiali \& M. Grossi)

Département de Mathématique
Université de Mons

UMONS

First days of Nonlinear Elliptic PDE in Hauts-de-France

A straightforward generalization...

$$
\begin{cases}-\Delta u_{i}=\sum_{j=1}^{k} a_{i j} u_{j}^{2^{*-1}} & \text { in } \mathbb{R}^{N} \\ u_{i}>0 & \text { in } \mathbb{R}^{N} \\ u_{i} \in D^{1,2}\left(\mathbb{R}^{N}\right), & \end{cases}
$$

where $i=1, \ldots, k$ and $N \geqslant 3$. As usual, $2^{*}=\frac{2 N}{N-2}$ denotes the critical exponent and $D^{1,2}\left(\mathbb{R}^{N}\right)=\left\{u \in L^{2^{*}}\left(\mathbb{R}^{N}\right)| | \nabla u \mid \in L^{2}\left(\mathbb{R}^{N}\right)\right\}$.
$\square\left(a_{i j}\right) \in \mathbb{R}^{k \times k}$ is symmetric;
$\sum_{j=1}^{k} a_{i j}=1$ for any $i=1, \ldots, k$.

A straightforward generalization...

$$
\begin{cases}-\Delta u_{i}=\sum_{j=1}^{k} a_{i j} u_{j}^{2^{*}-1} & \text { in } \mathbb{R}^{N}, \\ u_{i}>0 & \text { in } \mathbb{R}^{N}, \\ u_{i} \in D^{1,2}\left(\mathbb{R}^{N}\right), & \end{cases}
$$

where $i=1, \ldots, k$ and $N \geqslant 3$. As usual, $2^{*}=\frac{2 N}{N-2}$ denotes the critical exponent and $D^{1,2}\left(\mathbb{R}^{N}\right)=\left\{u \in L^{2^{*}}\left(\mathbb{R}^{N}\right)| | \nabla u \mid \in L^{2}\left(\mathbb{R}^{N}\right)\right\}$.
$\square\left(a_{i j}\right) \in \mathbb{R}^{k \times k}$ is symmetric;

- $\sum_{j=1}^{k} a_{i j}=1$ for any $i=1, \ldots, k$.

Characteristics:
mint translation and dilation invariance;
n+4 family of trivial (radial) solutions $u=(U, \ldots, U)$.

... of the critical Sobolev equation

$$
\begin{cases}-\Delta u=u^{\frac{N+2}{N-2}} & \text { in } \mathbb{R}^{N}, \\ u>0 & \text { in } \mathbb{R}^{N}, \\ u \in D^{1,2}\left(\mathbb{R}^{N}\right) . & \end{cases}
$$

possesses the $(N+1)$-parameter family of solutions:

$$
U_{\delta, y}(x):=\frac{\left[N(N-2) \delta^{2}\right]^{\frac{N-2}{4}}}{\left(\delta^{2}+|x-y|^{2}\right)^{\frac{N-2}{2}}}
$$

Let

$$
U(x):=U_{1,0}(x)=\frac{[N(N-2)]^{\frac{N-2}{4}}}{\left(1+|x|^{2}\right)^{\frac{N-2}{2}}}
$$

The case of 2 equations

For $k=2$, parametrize $\left(a_{i j}\right)=\left(\begin{array}{cc}\alpha & 1-\alpha \\ 1-\alpha & \alpha\end{array}\right)$. So

$$
\begin{cases}-\Delta u_{1}=\alpha u_{1}^{2^{*}-1}+(1-\alpha) u_{2}^{2^{*}-1} & \text { in } \mathbb{R}^{N}, \\ -\Delta u_{2}=(1-\alpha) u_{1}^{2^{*}-1}+\alpha u_{2}^{2^{*}-1} & \text { in } \mathbb{R}^{N} \\ u_{1}>0, u_{2}>0 & \text { in } \mathbb{R}^{N},\end{cases}
$$

Question : Does there exist non-trivial solutions, possibly non-radial, for some $\alpha \in \mathbb{R}$?

Gross-Pitaevskii System

$$
\begin{cases}-\Delta u_{1}=\alpha u_{1}^{2^{*}-1}+(1-\alpha) u_{1}^{\frac{2}{N-2}} u_{2}^{\frac{N}{N-2}} & \text { in } \mathbb{R}^{N} \\ -\Delta u_{2}=\alpha u_{2}^{2^{*-1}}+(1-\alpha) u_{2}^{\frac{2}{N-2}} u_{1}^{\frac{N}{N-2}} & \text { in } \mathbb{R}^{N} \\ u_{1}>0, u_{2}>0, \quad u_{1}, u_{2} \in D^{1,2}\left(\mathbb{R}^{N}\right), & \end{cases}
$$

For this system, Y. Guo, B. Li, and J. Wei proved in 2014 via a perturbative argument, that, for $N \in\{3,4\}$ and $\alpha>1$ (non-cooperative case), the system possesses infinitely many non-radial solutions.

The General System

$$
\begin{cases}-\Delta u_{1}=F_{1}\left(\alpha, u_{1}, u_{2}\right) & \text { in } \mathbb{R}^{N}, \\ -\Delta u_{2}=F_{2}\left(\alpha, u_{1}, u_{2}\right) & \text { in } \mathbb{R}^{N}, \\ u_{1}>0, u_{2}>0 & \text { in } \mathbb{R}^{N}, \\ u_{1}, u_{2} \in D^{1,2}\left(\mathbb{R}^{N}\right), & \end{cases}
$$

where $F_{i}: \mathbb{R} \times(0,+\infty)^{2} \rightarrow \mathbb{R}:(\alpha, u) \rightarrow F_{i}(\alpha, u), i=1,2$ satisfy
smoothness and integrability assumptions;

- $F_{i}(\alpha, 1,1)=1$;

■ $F_{i}\left(\alpha, \lambda u_{1}, \lambda u_{2}\right)=\lambda^{2^{*}-1} F_{i}\left(\alpha, u_{1}, u_{2}\right)$ for all $\lambda>0$
$\square F_{1}\left(\alpha, u_{1}, u_{2}\right)=F_{2}\left(\alpha, u_{2}, u_{1}\right)$ for all $\left(u_{1}, u_{2}\right) \in(0,+\infty)^{2}$;

- for all $\alpha, \partial_{\alpha} \beta(\alpha)>0$ where
$\beta(\alpha):=\partial_{u_{1}} F_{1}(\alpha, 1,1)-\partial_{u_{2}} F_{1}(\alpha, 1,1)$.

Existence of non-trivial radial solutions (1/4)

Theorem (F. Gladiali, M. Grossi, C. T.)

Let $n \geqslant 2$ and α_{n}^{*} be the solution to

$$
\beta\left(\alpha^{*}\right)=\frac{(2 n+N)(2 n+N-2)}{N(N-2)} .
$$

Then there exists a \mathcal{C}^{1} curve $\varepsilon \mapsto\left(\alpha(\varepsilon), u_{1}(\varepsilon), u_{2}(\varepsilon)\right)$:
$\left(-\varepsilon_{0}, \varepsilon_{0}\right) \rightarrow \mathbb{R} \times\left(D_{\mathrm{rad}}^{1,2}\left(\mathbb{R}^{N}\right)\right)^{2}$ such that, for all $\varepsilon \in\left(-\varepsilon_{0}, \varepsilon_{0}\right)$,
$\left(u_{1}(\varepsilon), u_{2}(\varepsilon)\right)$ is a radial solution to

$$
\begin{cases}-\Delta u_{1}=F_{1}\left(\alpha, u_{1}, u_{2}\right) & \text { in } \mathbb{R}^{N}, \\ -\Delta u_{2}=F_{2}\left(\alpha, u_{1}, u_{2}\right) & \text { in } \mathbb{R}^{N} \\ u_{1}>0, u_{2}>0 & \text { in } \mathbb{R}^{N}\end{cases}
$$

with $\alpha=\alpha(\varepsilon)$. Moreover,

Existence of non-trivial radial solutions (2/4)

Theorem (cont'd)

$$
\left\{\begin{array}{l}
u_{1}(\varepsilon)=U+\varepsilon W_{n, 0}(|x|)+\varepsilon \varphi_{1, \varepsilon}(|x|), \\
u_{2}(\varepsilon)=U-\varepsilon W_{n, 0}(|x|)+\varepsilon \varphi_{2, \varepsilon}(|x|),
\end{array}\right.
$$

with $W_{n, 0}$ being the function

$$
W_{n, 0}(|x|):=\frac{1}{\left(1+|x|^{2}\right)^{\frac{N-2}{2}}} P_{n}^{\left(\frac{N-2}{2}, \frac{N-2}{2}\right)}\left(\frac{1-|x|^{2}}{1+|x|^{2}}\right)
$$

where $\varphi_{1, \varepsilon}, \varphi_{2, \varepsilon}$ are functions uniformly bounded in $D^{1,2}\left(\mathbb{R}^{N}\right)$ with respect to $\varepsilon \in\left(-\varepsilon_{0}, \varepsilon_{0}\right)$, and such that $\varphi_{i, 0}=0$ for $i=1,2$. Finally the bifurcation is global and the Rabinowitz alternative holds.

Existence of non-trivial radial solutions (3/4)

For the system

$$
\begin{cases}-\Delta u_{1}=\alpha u_{1}^{2^{*}-1}+(1-\alpha) u_{2}^{2^{*}-1} & \text { in } \mathbb{R}^{N} \\ -\Delta u_{2}=(1-\alpha) u_{1}^{2^{*}-1}+\alpha u_{2}^{2^{*}-1} & \text { in } \mathbb{R}^{N} \\ u_{1}>0, u_{2}>0 & \text { in } \mathbb{R}^{N}\end{cases}
$$

the bifurcations occur at $\left(\alpha_{n}^{*}, U, U\right)$ where

$$
\alpha_{n}^{*}=\frac{2 n^{2}+2(N-1) n+N^{2}}{N(N+2)} \quad(n \geqslant 2)
$$

Note that $1<\alpha_{2}^{*}<\alpha_{3}^{*}<\cdots<\alpha_{n}^{*} \xrightarrow[n \rightarrow \infty]{ }+\infty$.

Existence of non-trivial radial solutions (4/4)

For $N=3$.

Trivial solution $\left(u_{1}, u_{2}\right)=(U, U)$

Existence of non-trivial non-radial solutions (1/4)

Theorem (F. Gladiali, M. Grossi, C. T.)

The point (α_{n}^{*}, U, U), $n \geqslant 2$, is a non-radial bifurcation point meaning there is a continuum \mathcal{C} of nontrivial non-radial solutions emanating from (α_{n}^{*}, U, U) - if $n \in \mathcal{N}$ where $\mathcal{N} \subseteq \mathbb{N}$ is infinite.
Moreover, for any sequence of $\left(\alpha_{k}, u_{1, k}, u_{2, k}\right) \in \mathcal{C}$ converging to $\left(\alpha_{n}^{*}, U, U\right)$, one has (up to a subsequence):

$$
\left\{\begin{array}{l}
u_{1, k}=U+\varepsilon_{k} Z_{n}(x)+o\left(\varepsilon_{k}\right), \\
u_{2, k}=U-\varepsilon_{k} Z_{n}(x)+o\left(\varepsilon_{k}\right),
\end{array}\right.
$$

as $k \rightarrow \infty$, where $\varepsilon_{k} \rightarrow 0$ and $Z_{n} \not \equiv 0$ is non-radial.

Existence of non-trivial non-radial solutions (2/4)

For example, $\mathcal{N}=\left\{n \in \mathbb{N}^{\geqslant 2} \mid n \bmod 4 \in\{1,2\}\right\}$ and

$$
\begin{array}{r}
Z_{n}(x)=\sum_{h=1, h \text { odd }}^{n} a_{h} \frac{r^{h}}{\left(1+r^{2}\right)^{h+\frac{N-2}{2}}} P_{n-h}^{\left(h+\frac{N-2}{2}, h+\frac{N-2}{2}\right)}\left(\frac{1-r^{2}}{1+r^{2}}\right) \\
\cdot P_{h}^{\left(\frac{N-3}{2}, \frac{N-3}{2}\right)}\left(\cos \theta_{N-2}\right)
\end{array}
$$

for some coefficients $a_{h} \in \mathbb{R}$, where $\left(r, \varphi, \theta_{1}, \ldots, \theta_{N-2}\right) \in[0,+\infty) \times[0,2 \pi) \times[0, \pi)^{N-2}$ are the spherical coordinates.

Existence of non-trivial non-radial solutions (2/4)

For example, $\mathcal{N}=\left\{n \in \mathbb{N}^{\geqslant 2} \mid n \bmod 4 \in\{1,2\}\right\}$ and

$$
\begin{array}{r}
Z_{n}(x)=\sum_{h=1, h \text { odd }}^{n} a_{h} \frac{r^{h}}{\left(1+r^{2}\right)^{h+\frac{N-2}{2}}} P_{n-h}^{\left(h+\frac{N-2}{2}, h+\frac{N-2}{2}\right)}\left(\frac{1-r^{2}}{1+r^{2}}\right) \\
\cdot P_{h}^{\left(\frac{N-3}{2}, \frac{N-3}{2}\right)}\left(\cos \theta_{N-2}\right)
\end{array}
$$

for some coefficients $a_{h} \in \mathbb{R}$, where $\left(r, \varphi, \theta_{1}, \ldots, \theta_{N-2}\right) \in[0,+\infty) \times[0,2 \pi) \times[0, \pi)^{N-2}$ are the spherical coordinates.
Note that $P_{h}^{\left(\frac{N-3}{2}, \frac{N-3}{2}\right)}\left(\cos \theta_{N-2}\right)$ are the spherical harmonics that are $O(N-1)$-invariant and is odd w.r.t. x_{N} iff h is odd.

Existence of non-trivial non-radial solutions (3/4)

Another example: $\mathcal{N}=\mathbb{N}^{\geqslant 2}$ and

$$
\begin{aligned}
& Z_{n}\left(r, \varphi, \theta_{1}, \ldots, \theta_{N-2}\right) \\
& \quad=\frac{r^{n}}{\left(1+r^{2}\right)^{n+\frac{N-2}{2}}} \sin (n \varphi)\left(\sin \theta_{1}\right)^{n} \cdots\left(\sin \theta_{N-2}\right)^{n} .
\end{aligned}
$$

Thus there exist at least a non-radial bifurcation branch for each $n \geqslant 2$.

Existence of non-trivial non-radial solutions (4/4)

Putting our results together, we have the following multiplicity of non-trivial solutions (1 radial, the other ones non-radial):

	$N=3$	$N=4$	$N=5$
$n=2$	4	4	4
$n=3$	4	4	4
$n=4$	4	5	5
$n=5$	4	5	6
$n=6$	3	4	5
$n=7$	2	3	3

Cooperative system \& radial solutions (1/3)

We believe that, if all entries of $\left(a_{i j}\right)$ are positive, all positive solutions are radial.

Theorem (M. Chipot, I. Shafrir, G. Wolansky, '97)

All entire solutions u to

$$
-\Delta u_{i}=\mu_{i} \exp \left(\sum_{j=1}^{k} a_{i j} u_{j}\right), \quad \text { in } \mathbb{R}^{2}, \quad 1 \leqslant i \leqslant k
$$

where $\mu_{i}>0,\left(a_{i j}\right)$ is invertible and all $a_{i j} \geqslant 0$, then all u_{i} are necessarily radially symmetric. If $\left(a_{i j}\right)$ is irreducible, the u_{i} are radially symmetric around the same point.

Cooperative system \& radial solutions (2/3)

Theorem (Y. Guo, J. Liu, '08)

If $\forall i, j \in\{1,2\}, a_{i j}>0$ and $a_{12}=a_{21}$, then solutions to the Gross-Pitaevskii's system

$$
\begin{cases}-\Delta u_{1}=a_{11} u_{1}^{2^{*}-1}+a_{12} u_{1}^{\frac{2}{N-2}} u_{2}^{\frac{N}{N-2}} & \text { in } \mathbb{R}^{N}, \\ -\Delta u_{2}=a_{22} u_{2}^{2^{*}-1}+a_{21} u_{2}^{\frac{2}{N-2}} u_{1}^{\frac{N}{N-2}} & \text { in } \mathbb{R}^{N}, \\ u_{1}>0, u_{2}>0, \quad u_{1}, u_{2} \in D^{1,2}\left(\mathbb{R}^{N}\right), & \end{cases}
$$

are radially symmetric around the same point (they actually are multiples of the same $U_{\delta, y}$).

Cooperative system \& radial solutions (3/3)

Theorem (O. Druet, E. Hebey, '09)

When all $a_{i j}=1$, the components u_{i} of any nonnegative entire solution u to

$$
-\Delta u_{i}=\left(\sum_{j=1}^{k} a_{i j} u_{j}^{2}\right)^{\frac{2^{*}-2}{2}} u_{i} \quad \text { on } \mathbb{R}^{N}, \quad i=1, \ldots, k,
$$

are all radially symmetric around the same point (actually, all u_{i} multiples of the same $U_{\delta, y}$).

The critical Sobolev equation

The equation

$$
\begin{cases}-\Delta u=u^{\frac{N+2}{N-2}} & \text { in } \mathbb{R}^{N}, \\ u>0 & \text { in } \mathbb{R}^{N} \\ u \in D^{1,2}\left(\mathbb{R}^{N}\right) . & \end{cases}
$$

is invariant under translations and dilations:

$$
\begin{array}{ll}
u \mapsto u\left(\cdot-x_{0}\right), & x_{0} \in \mathbb{R}^{N}, \\
u \mapsto \delta^{-\frac{N-2}{2}} u\left(\frac{\cdot}{\delta}\right), & \delta>0 .
\end{array}
$$

Linearization of the critical Sobolev equation

Thus the linearization at U,

$$
-\Delta w=\lambda U^{2^{*}-2} w, \quad w \in D^{1,2}\left(\mathbb{R}^{N}\right) .
$$

has the eigenvalue

$$
\lambda_{1}:=2^{*}-1=\frac{N+2}{N-2}
$$

with the $N+1$-dim. eigenfunction space generated by

$$
\begin{gathered}
\frac{\partial U}{\partial x_{i}^{\prime}}, \quad i=1, \ldots, N, \\
W(|x|):=\text { const. }\left(x \cdot \nabla U+\frac{N-2}{2} U\right)=\frac{1-|x|^{2}}{\left(1+|x|^{2}\right)^{N / 2}} .
\end{gathered}
$$

Linearization of the critical Sobolev equation

Thus the linearization at U,

$$
-\Delta w=\lambda U^{2^{*}-2} w, \quad w \in D^{1,2}\left(\mathbb{R}^{N}\right) .
$$

has the eigenvalue

$$
\lambda_{1}:=2^{*}-1=\frac{N+2}{N-2}
$$

with the $N+1$-dim. eigenfunction space generated by

$$
\begin{gathered}
\frac{\partial U}{\partial x_{i}^{\prime}}, \quad i=1, \ldots, N, \\
W(|x|):=\text { const. }\left(x \cdot \nabla U+\frac{N-2}{2} U\right)=\frac{1-|x|^{2}}{\left(1+|x|^{2}\right)^{N / 2}} .
\end{gathered}
$$

Also, $\lambda_{0}:=1$ with eigenfunction U.

Spectrum (1/2)

Theorem (F. Gladiali, M. Grossi, C. T.)

The eigenvalues of

$$
-\Delta w=\lambda U^{2^{*}-2} w, \quad w \in D^{1,2}\left(\mathbb{R}^{N}\right) .
$$

are the numbers

$$
\lambda_{n}=\frac{(2 n+N-2)(2 n+N)}{N(N-2)}, \quad n \geqslant 0 .
$$

Each eigenvalue λ_{n} has multiplicity

$$
m\left(\lambda_{n}\right)=\frac{(N+2 n-1)(N+n-2)!}{(N-1)!n!}
$$

Spectrum (2/2)

Theorem (cont'd)

and the corresponding eigenfunctions are, in radial coordinates (r, Θ), linear combinations of

$$
W_{n, h}(r) Y_{h}(\Theta) \text { for } h=0, \ldots, n,
$$

where

$$
W_{n, h}(r):=\frac{r^{h}}{\left(1+r^{2}\right)^{h+\frac{N-2}{2}}} P_{n-h}^{\left(h+\frac{N-2}{2}, h+\frac{N-2}{2}\right)}\left(\frac{1-r^{2}}{1+r^{2}}\right)
$$

$Y_{h}(\theta)$ are spherical harmonics related to the eigenvalue $h(h+N-2)$ and $P_{j}^{(\beta, \gamma)}$ are the Jacobi polynomials.

Note: $W_{0,0}=$ const. U and $W_{1,0}=\frac{N}{2} W$.

Spectrum: sketch of the proof (1/2)

Let $\Pi: S^{N} \rightarrow \mathbb{R}^{N}$ be the stereographic projection and define $\Phi: S^{N} \rightarrow \mathbb{R}^{N}: y \rightarrow \Phi(y)$ as

$$
\Phi(y):=w(\Pi(y)) \cdot\left(\frac{2}{1+|\Pi(y)|^{2}}\right)^{-\frac{N-2}{2}}
$$

Then

$$
-\Delta_{\mathcal{S}^{N}} \Phi=(\lambda-1) \frac{N(N-2)}{4} \phi
$$

The eigenvalues of the Laplace-Beltrami operator on S^{N} are well known:

$$
(\lambda-1) \frac{N(N-2)}{4}=n(N-1+n), \quad \text { for some } n \in \mathbb{N} \text {. }
$$

Spectrum: sketch of the proof (2/2)

For the eigenfunctions w, express the eigenfunctions Φ in cylindrical coordinates

$$
y=\left(\Theta \sqrt{1-z^{2}}, z\right) \in \mathbb{S}^{N}
$$

where $\Theta \in \mathbb{S}^{N-1}$ and $z \in[-1,1]$. This yields

$$
\Phi(y)=\left(1-z^{2}\right)^{h / 2} p_{n-h}^{\left(h+\frac{N-2}{2}, h+\frac{N-2}{2}\right)}(z) Y_{h}(\Theta), \quad h=0, \ldots, n .
$$

To go back to $w(x)$ with $x=\Pi(y)$, remark that

$$
r \Theta=\Pi\left(\Theta \sqrt{1-z^{2}}, z\right) \Rightarrow z=\frac{r^{2}-1}{r^{2}+1} \text { and } \sqrt{1-z^{2}}=\frac{2 r}{r^{2}+1} .
$$

Let's go back to the system...

$$
\begin{aligned}
& \begin{cases}-\Delta u_{1}=F_{1}\left(\alpha, u_{1}, u_{2}\right) & \text { in } \mathbb{R}^{N} \\
-\Delta u_{2}=F_{2}\left(\alpha, u_{1}, u_{2}\right) & \text { in } \mathbb{R}^{N} \\
u_{1}, u_{2} \in D^{1,2}\left(\mathbb{R}^{N}\right),\end{cases} \\
& \left\{\begin{array}{ll}
\begin{cases}z_{1} & =u_{1}+u_{2}-2 U, \\
z_{2} & =u_{1}-u_{2},\end{cases} \\
\begin{cases}-\Delta z_{1}=f_{1}\left(|x|, z_{1}, z_{2}\right) & \text { in } \mathbb{R}^{N} \\
-\Delta z_{2} & =f_{2}\left(|x|, z_{1}, z_{2}\right) \\
\text { in } \mathbb{R}^{N} \\
z_{1}, z_{2} \in D^{1,2}\left(\mathbb{R}^{N}\right),\end{cases}
\end{array}>\left\{\begin{array}{l}
\end{array}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \begin{cases}-\Delta u_{1}=F_{1}\left(\alpha, u_{1}, u_{2}\right) & \text { in } \mathbb{R}^{N}, \\
-\Delta u_{2}=F_{2}\left(\alpha, u_{1}, u_{2}\right) & \text { in } \mathbb{R}^{N}, \\
u_{1}, u_{2} \in D^{1,2}\left(\mathbb{R}^{N}\right),\end{cases} \\
& \left\{\begin{array}{l}
z_{1}=u_{1}+u_{2}-2 U, \\
z_{2}=u_{1}-u_{2},
\end{array}\right. \\
& \begin{cases}-\Delta z_{1}=f_{1}\left(|x|, z_{1}, z_{2}\right) & \text { in } \mathbb{R}^{N}, \\
-\Delta z_{2}=f_{2}\left(|x|, z_{1}, z_{2}\right) & \text { in } \mathbb{R}^{N}, \\
z_{1}, z_{2} \in D^{1,2}\left(\mathbb{R}^{N}\right),\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{cc}
-\Delta u_{1}=F_{1}\left(\alpha, u_{1}, u_{2}\right) & \text { in } \mathbb{R}^{N}, \\
-\Delta u_{2}=F_{2}\left(\alpha, u_{1}, u_{2}\right) & \text { in } \mathbb{R}^{N}, \\
u_{1}, u_{2} \in D^{1,2}\left(\mathbb{R}^{N}\right), & F_{1}\left(\alpha, u_{1}, u_{2}\right)=F_{2}\left(\alpha, u_{2}, u_{1}\right) \\
\Downarrow
\end{array}\right. \\
& \left\{\begin{array}{cc}
z_{1}=u_{1}+u_{2}-2 U, & f_{1}\left(|x|, z_{1},-z_{2}\right)=f_{1}\left(|x|, z_{1}, z_{2}\right), \\
z_{2}=u_{1}-u_{2}, & f_{2}\left(|x|, z_{1},-z_{2}\right)=-f_{2}\left(|x|, z_{1}, z_{2}\right) .
\end{array}\right. \\
& \left\{\begin{array}{ll}
-\Delta z_{1}=f_{1}\left(|x|, z_{1}, z_{2}\right) & \text { in } \mathbb{R}^{N}, \\
-\Delta z_{2}=f_{2}\left(|x|, z_{1}, z_{2}\right) & \text { in } \mathbb{R}^{N}, \\
z_{1}, z_{2} \in D^{1,2}\left(\mathbb{R}^{N}\right),
\end{array} \quad \text { trivial sol }\left(z_{1}, z_{2}\right)=(0,0)\right.
\end{aligned}
$$

Linearization of the system (1/3)

Solutions are zeros of

$$
T\left(\alpha, z_{1}, z_{2}\right):=\binom{z_{1}-(-\Delta)^{-1}\left(f_{1}\left(|x|, z_{1}, z_{2}\right)\right)}{z_{2}-(-\Delta)^{-1}\left(f_{2}\left(|x|, z_{1}, z_{2}\right)\right)} .
$$

Linearization of the system (1/3)

Solutions are zeros of

$$
T\left(\alpha, z_{1}, z_{2}\right):=\binom{z_{1}-(-\Delta)^{-1}\left(f_{1}\left(|x|, z_{1}, z_{2}\right)\right)}{z_{2}-(-\Delta)^{-1}\left(f_{2}\left(|x|, z_{1}, z_{2}\right)\right)} .
$$

Look at the kernel of the linearization at $\left(z_{1}, z_{2}\right)=(0,0)$: $\partial_{\left(z_{1}, z_{2}\right)} T(\alpha, 0,0)\left[\left(w_{1}, w_{2}\right)\right]=0$ is equivalent to

$$
\begin{cases}-\Delta w_{1}=\frac{N+2}{N-2} U^{2^{*}-2} w_{1} & \text { in } \mathbb{R}^{N}, \\ -\Delta w_{2}=\beta(\alpha) U^{2^{*}-2} w_{2} & \text { in } \mathbb{R}^{N}, \\ w_{1}, w_{2} \in D^{1,2}\left(\mathbb{R}^{N}\right) .\end{cases}
$$

Linearization of the system (2/3)

Theorem (F. Gladiali, M. Grossi, C. T.)

Recall that the eigenvalues of the single equation are

$$
\lambda_{n}=\frac{(2 n+N-2)(2 n+N)}{N(N-2)}, \quad n \geqslant 0
$$

- When $\beta(\alpha) \neq \lambda_{n}$ for all $n \in \mathbb{N}$, all solutions in the kernel are given by

$$
\left(w_{1}, w_{2}\right)=\left(\sum_{i=1}^{N} a_{i} \frac{\partial U}{\partial x_{i}}+b W, 0\right)
$$

for some real constants a_{1}, \ldots, a_{N}, b, where W is the radial function defined above.

Linearization of the system (3/3)

Theorem (cont'd)

- When $\beta(\alpha)=\lambda_{n}$ for some $n \in \mathbb{N}$, all solutions in the kernel are given by

$$
\left(w_{1}, w_{2}\right)=\left(\sum_{i=1}^{N} a_{i} \frac{\partial U}{\partial x_{i}}+b W, \sum_{h=0}^{n} A_{h} W_{n, h}(r) Y_{h}(\Theta)\right)
$$

for some real constants $a_{1}, \ldots, a_{N}, b, A_{0}, \ldots, A_{n}$, where $W_{n, h}$ are defined above.

Proniennsto apoly oifurcation theorenns

We would like to apply bifurcation results to

$$
\begin{aligned}
& T: \mathbb{R} \times\left(D^{1,2}\left(\mathbb{R}^{N}\right)\right)^{2} \rightarrow\left(D^{1,2}\left(\mathbb{R}^{N}\right)\right)^{2} \\
& T\left(\alpha, z_{1}, z_{2}\right):=\binom{z_{1}-(-\Delta)^{-1}\left(f_{1}\left(|x|, z_{1}, z_{2}\right)\right)}{z_{2}-(-\Delta)^{-1}\left(f_{2}\left(|x|, z_{1}, z_{2}\right)\right)} .
\end{aligned}
$$

- When $\left(z_{1}, z_{2}\right)$ belongs to a continuum emanating from $(0,0)$, we want the $u_{1}>0$ and $u_{2}>0$ where

$$
\left\{\begin{array}{l}
u_{1}=U+\frac{z_{1}+z_{2}}{2}, \\
u_{2}=U+\frac{z_{1}-z_{2}}{2} .
\end{array}\right.
$$

■ The problem is degenerate for all α.

- Lack of compactness to apply degree theory.

Positiveness of solutions (1/3)

- The $D^{1,2}$ topology is not strong enough.
- The trick $u_{i} \mapsto u_{i}^{+}$does not work. For example:

$$
-\Delta u_{i}=\sum_{j=1}^{k} a_{i j}\left(u_{j}^{+}\right)^{2^{*}-1}
$$

In the non-cooperative regime, no maximum principle is expected.

Positiveness of solutions (2/3)

Define

$$
D:=\left\{u \in L^{\infty}\left(\mathbb{R}^{N}\right) \mid\|u\|_{D}<\infty\right\} \quad \text { where }\|u\|_{D}:=\sup _{x \in \mathbb{R}^{N}} \frac{|u(x)|}{U(x)}
$$

and

$$
X:=D^{1,2}\left(\mathbb{R}^{N}\right) \cap D, \quad\|u\|_{x}:=\max \left\{\|u\|_{D^{1,2}},\|u\|_{D}\right\} .
$$

and let

$$
\mathcal{X}:=\left\{\left(z_{1}, z_{2}\right) \in X^{2}\left|\exists \delta>0,\left|z_{2}\right| \leqslant(2-\delta) U+z_{1}\right\}\right.
$$

Positiveness of solutions (2/3)

Define

$$
D:=\left\{u \in L^{\infty}\left(\mathbb{R}^{N}\right) \mid\|u\|_{D}<\infty\right\} \quad \text { where }\|u\|_{D}:=\sup _{x \in \mathbb{R}^{N}} \frac{|u(x)|}{U(x)}
$$

and

$$
X:=D^{1,2}\left(\mathbb{R}^{N}\right) \cap D, \quad\|u\|_{x}:=\max \left\{\|u\|_{D^{1,2}},\|u\|_{D}\right\} .
$$

and let

$$
\mathcal{X}:=\left\{\left(z_{1}, z_{2}\right) \in X^{2}\left|\exists \delta>0,\left|z_{2}\right| \leqslant(2-\delta) U+z_{1}\right\}\right.
$$

Consequences:

UNI $\left(z_{1}, z_{2}\right) \in \mathcal{X} \Rightarrow u_{i}>\frac{\delta}{2} U$ for $i=1,2$,
m" \mathcal{X} is an open neighborhood of $(0,0)$ in X^{2}.

Positiveness of solutions (3/3)

Lemma

The operator $T: \mathbb{R} \times \mathcal{X} \rightarrow X^{2}$ is well defined and continuous. Moreover, $\partial_{\alpha} T, \partial_{z} T$ and $\partial_{\alpha z} T$ exist and are continuous.

Positiveness of solutions (3/3)

Lemma

The operator $T: \mathbb{R} \times \mathcal{X} \rightarrow X^{2}$ is well defined and continuous. Moreover, $\partial_{\alpha} T, \partial_{z} T$ and $\partial_{\alpha z} T$ exist and are continuous.

Idea of the proof. $\left(T\left(\alpha, z_{1}, z_{2}\right)\right)_{i}=z_{i}-(-\Delta)^{-1}\left(f_{i}\left(|x|, z_{1}, z_{2}\right)\right)$.

$$
\begin{aligned}
\left(z_{1}, z_{2}\right) \in \mathcal{X} \subseteq D^{2} & \Rightarrow\left|z_{i}\right| \leqslant C U \\
& \Rightarrow\left|f_{i}\right| \leqslant C U^{2^{*}-1} \\
& \Rightarrow\left|(-\Delta)^{-1} f_{i}\right| \leqslant C(-\Delta)^{-1} U^{2^{*}-1}=C U .
\end{aligned}
$$

Compactness (1/2)

Lemma

For all α, the operator

$$
\mathcal{X} \rightarrow X^{2}:\left(z_{1}, z_{2}\right) \mapsto\binom{(-\Delta)^{-1} f_{1}\left(|x|, z_{1}, z_{2}\right)}{(-\Delta)^{-1} f_{2}\left(|x|, z_{1}, z_{2}\right)}
$$

is compact.
Relies on some decay estimates.

Lemma (D. Siegel, E. Talvila, '99)

If $0<p<N$ and $h \geqslant 0$, radial function belonging to $L^{1}\left(\mathbb{R}^{N}\right)$, then

$$
\int_{\mathbb{R}^{N}} \frac{h(y)}{|x-y|^{p}} \mathrm{~d} y=O\left(\frac{1}{|x|^{p}}\right) \quad \text { as }|x| \rightarrow+\infty .
$$

Compactness (2/2)

Consequence

The operator

$$
x \rightarrow X: w \rightarrow(-\Delta)^{-1}\left(\frac{w}{\left(1+|x|^{2}\right)^{2}}\right)
$$

is compact.

Consequence: $\partial_{z} T(\alpha, 0,0): X^{2} \rightarrow X^{2}$ is a compact perturbation of the identity. Thus, it is a Fredholm operator of index 0 .

Degenerate solution for all α

Use the Kelvin transform $\mathbf{k}(z)$ of z :

$$
\mathbf{k}(z)(x):=\frac{1}{|x|^{N-2}} z\left(\frac{x}{|x|^{2}}\right)
$$

Define

$$
X_{\mathbf{k}}^{+}:=\{z \in X \mid \mathbf{k}(z)=z\} \quad \text { and } \quad X_{\mathbf{k}}^{-}:=\{z \in X \mid \mathbf{k}(z)=-z\} .
$$

$\square U \in X_{\mathbf{k}}^{+}$

- $W \in X_{\mathbf{k}}^{-}, \frac{\partial U}{\partial x_{i}} \in X_{\mathbf{k}}^{+}$

Degenerate solution for all α

Use the Kelvin transform $\mathbf{k}(z)$ of z :

$$
\mathbf{k}(z)(x):=\frac{1}{|x|^{N-2}} z\left(\frac{x}{|x|^{2}}\right)
$$

Define

$$
X_{\mathbf{k}}^{+}:=\{z \in X \mid \mathbf{k}(z)=z\} \quad \text { and } \quad X_{\mathbf{k}}^{-}:=\{z \in X \mid \mathbf{k}(z)=-z\} .
$$

$\square U \in X_{\mathbf{k}}^{+}$
$\square W \in X_{\mathbf{k}}^{-}, \frac{\partial U}{\partial x_{i}} \in X_{\mathbf{k}}^{+} \quad W_{n, h}(r):=\frac{r^{h}}{\left(1+r^{2}\right)^{h+\frac{N-2}{2}}} P_{n-h}^{\left(h+\frac{N-2}{2}, h+\frac{N-2}{2}\right)}\left(\frac{1-r^{2}}{1+r^{2}}\right)$
■ in general

- $W_{n, h} \in X_{\mathbf{k}}^{+}$if $n-h$ is even;
- $W_{n, h} \in X_{\mathbf{k}}^{-}$if $n-h$ is odd.

Invariance of T under Kelvin transform

Lemma

The operator $T: \mathbb{R} \times \mathcal{X} \rightarrow X^{2}$ maps $\mathbb{R} \times\left(\mathcal{X} \cap\left(X_{\mathbf{k}}^{+} \times X_{\mathbf{k}}^{ \pm}\right)\right)$to $X_{\mathbf{k}}^{+} \times X_{\mathbf{k}}^{ \pm}$.

Need to show

$$
\mathbf{k}\left(z_{1}\right)=z_{1}, \mathbf{k}\left(z_{2}\right)= \pm z_{2} \Rightarrow\left\{\begin{array}{l}
g_{1}:=(-\Delta)^{-1}\left(f_{1}\left(|x|, z_{1}, z_{2}\right)\right) \in X_{\mathbf{k}}^{+} \\
g_{2}:=(-\Delta)^{-1}\left(f_{2}\left(|x|, z_{1}, z_{2}\right)\right) \in X_{\mathbf{k}}^{ \pm}
\end{array}\right.
$$

Invariance of T under Kelvin transform

Lemma

The operator $T: \mathbb{R} \times \mathcal{X} \rightarrow X^{2}$ maps $\mathbb{R} \times\left(\mathcal{X} \cap\left(X_{\mathbf{k}}^{+} \times X_{\mathbf{k}}^{ \pm}\right)\right)$to $X_{\mathbf{k}}^{+} \times X_{\mathbf{k}}^{ \pm}$.

Need to show

$$
\mathbf{k}\left(z_{1}\right)=z_{1}, \mathbf{k}\left(z_{2}\right)= \pm z_{2} \Rightarrow\left\{\begin{array}{l}
g_{1}:=(-\Delta)^{-1}\left(f_{1}\left(|x|, z_{1}, z_{2}\right)\right) \in X_{\mathbf{k}}^{+} \\
g_{2}:=(-\Delta)^{-1}\left(f_{2}\left(|x|, z_{1}, z_{2}\right)\right) \in X_{\mathbf{k}}^{ \pm}
\end{array}\right.
$$

This stems from
$--\Delta \mathbf{k}(g)=-\frac{1}{\left|| |^{N+2}\right.} \Delta g\left(\frac{x}{|x|^{2}}\right) ;$

- $\mathbf{k}(U)=U$;
- Critical growth and $\left\{\begin{array}{l}f_{1}\left(|x|, z_{1},-z_{2}\right)=f_{1}\left(|x|, z_{1}, z_{2}\right), \\ f_{2}\left(|x|, z_{1},-z_{2}\right)=-f_{2}\left(|x|, z_{1}, z_{2}\right) .\end{array}\right.$

Radial solutions (1/3)

Restrict $T: \mathbb{R} \times\left(\mathcal{X} \cap \mathcal{Z}_{\text {rad }}^{ \pm}\right) \rightarrow \mathcal{Z}_{\text {rad }}^{ \pm}$where

$$
\mathcal{Z}_{\text {rad }}^{ \pm}:=\left\{z \in X_{\mathbf{k}}^{+} \times X_{\mathbf{k}}^{ \pm} \mid \forall x \in \mathbb{R}^{N}, z(x)=z(|x|)\right\} .
$$

Radial solutions (1/3)

Restrict $T: \mathbb{R} \times\left(\mathcal{X} \cap \mathcal{Z}_{\text {rad }}^{ \pm}\right) \rightarrow \mathcal{Z}_{\text {rad }}^{ \pm}$where

$$
\mathcal{Z}_{\mathrm{rad}}^{ \pm}:=\left\{z \in X_{\mathbf{k}}^{+} \times X_{\mathbf{k}}^{ \pm} \mid \forall x \in \mathbb{R}^{N}, \quad z(x)=z(|x|)\right\}
$$

Kernel $\partial_{z} T(\alpha, 0,0)\left[\left(w_{1}, w_{2}\right)\right]=0$.

$$
w_{1}=\sum_{i=1}^{N} a_{i} \frac{\partial U}{\partial x_{i}}+b W \in X_{\mathbf{k}, \mathrm{rad}}^{+}
$$

Restrict $T: \mathbb{R} \times\left(\mathcal{X} \cap \mathcal{Z}_{\text {rad }}^{ \pm}\right) \rightarrow \mathcal{Z}_{\text {rad }}^{ \pm}$where

$$
\mathcal{Z}_{\text {rad }}^{ \pm}:=\left\{z \in X_{\mathbf{k}}^{+} \times X_{\mathbf{k}}^{ \pm} \mid \forall x \in \mathbb{R}^{N}, z(x)=z(|x|)\right\} .
$$

Kernel $\partial_{z} T(\alpha, 0,0)\left[\left(w_{1}, w_{2}\right)\right]=0$.

$$
w_{1}=\sum_{Z_{1}}^{W} \partial \frac{\partial U}{\partial x_{\lambda}}+b W \in X_{\mathbf{k}, \text { rad }}^{+}
$$

- $\frac{\partial U}{\partial x_{i}}$ is not radially symmetric;

Radial Solutions (1/3)

Restrict $T: \mathbb{R} \times\left(\mathcal{X} \cap \mathcal{Z}_{\text {rad }}^{ \pm}\right) \rightarrow \mathcal{Z}_{\text {rad }}^{ \pm}$where

$$
\mathcal{Z}_{\text {rad }}^{ \pm}:=\left\{z \in X_{\mathbf{k}}^{+} \times X_{\mathbf{k}}^{ \pm} \mid \forall x \in \mathbb{R}^{N}, z(x)=z(|x|)\right\} .
$$

Kernel $\partial_{z} T(\alpha, 0,0)\left[\left(w_{1}, w_{2}\right)\right]=0$.

$$
w_{1}=\sum_{Z_{1}}^{W} \partial \frac{\partial U}{\partial x_{x}}+b W \in X_{\mathbf{k}, \text { rad }}^{+}
$$

$-\frac{\partial U}{\partial x_{i}}$ is not radially symmetric;

- $\mathbf{k}(W)=-W$ thus $W \notin X_{\mathbf{k}}^{+}$.

Restrict $T: \mathbb{R} \times\left(\mathcal{X} \cap \mathcal{Z}_{\text {rad }}^{ \pm}\right) \rightarrow \mathcal{Z}_{\text {rad }}^{ \pm}$where

$$
\mathcal{Z}_{\text {rad }}^{ \pm}:=\left\{z \in X_{\mathbf{k}}^{+} \times X_{\mathbf{k}}^{ \pm} \mid \forall x \in \mathbb{R}^{N}, z(x)=z(|x|)\right\} .
$$

Kernel $\partial_{z} T(\alpha, 0,0)\left[\left(w_{1}, w_{2}\right)\right]=0$.

$$
w_{1}=\sum_{=1}^{W} \partial \frac{\partial V}{\partial x_{i}}+b \notin \in X_{\mathbf{k}, \mathrm{rad}}^{+}
$$

- $\frac{\partial U}{\partial x_{i}}$ is not radially symmetric;
- $\mathbf{k}(W)=-W$ thus $W \notin X_{\mathbf{k}}^{+}$.

Conclusion

$\partial_{z} T(\alpha, 0,0)$ is invertible if $\alpha \neq \alpha_{n}^{*}$ for all n.

Radial solutions (2/3)

For the second component:

$$
W_{2}=\sum_{h=0}^{n} A_{h} W_{n, h}(r) Y_{h}(\Theta) \in X_{\mathbf{k}, \mathrm{rad}}^{ \pm}
$$

Radial solutions (2/3)

For the second component:

$$
w_{2}=\sum_{h=0}^{n} A_{h} W_{n, h}(r) Y_{h}(\Theta) \in X_{\mathbf{k}, \mathrm{rad}}^{ \pm}
$$

w_{2} radially symmetric $\Rightarrow h=0$. Thus

$$
w_{2}=W_{n, 0} \in X_{\mathbf{k}}^{ \pm}
$$

Choose $X_{\mathbf{k}}^{+}$when n is even, $X_{\mathbf{k}}^{-}$when n is odd.

The problem
 Radial solutions (2/3)

For the second component:

$$
w_{2}=\sum_{h=0}^{n} A_{h} W_{n, h}(r) Y_{h}(\Theta) \in X_{\mathbf{k}, \mathrm{rad}}^{ \pm}
$$

w_{2} radially symmetric $\Rightarrow h=0$. Thus

$$
w_{2}=W_{n, 0} \in X_{\mathbf{k}}^{ \pm}
$$

Choose $X_{\mathbf{k}}^{+}$when n is even, $X_{\mathbf{k}}^{-}$when n is odd.

Conclusion

$\partial_{z} T(\alpha, 0,0)$ has a 1-dim kernel when $\alpha=\alpha_{n}^{*}$ for some n.

The problem Results Critical Sobolev eq. Line Radial solutions (3/3)

Consequences:

- There is a continuum in $\mathbb{R} \times\left(\mathcal{X} \cap \mathcal{Z}_{\text {rad }}^{ \pm}\right)$bifurcating from each ($\alpha_{n}^{*}, 0,0$) and Rabinowitz alternative holds.
- Crandall-Rabinowitz transversality condition can be checked so in a neighborhood of ($\alpha_{n}^{*}, 0,0$), the continuum is a C^{1}-curve.

Non-radial solutions: general idea

Let $\mathcal{S} \leqslant O(N)$ and $\sigma: \mathcal{S} \rightarrow\{-1,1\}$ be a group morphism. Define

$$
\begin{aligned}
\mathcal{Z}:=\left\{z=\left(z_{1}, z_{2}\right) \in X_{\mathbf{k}}^{+} \times X_{\mathbf{k}}^{ \pm} \mid \forall s \in \mathcal{S},\right. & z_{1}\left(s^{-1}(x)\right)=z_{1}(x) \text { and } \\
& \left.\sigma(s) z_{2}\left(s^{-1}(x)\right)=z_{2}(x)\right\} .
\end{aligned}
$$

Idea: $\sigma \not \equiv 1 \Rightarrow$ non-radial solutions.

Non-radial solutions: general idea

Let $\mathcal{S} \leqslant O(N)$ and $\sigma: \mathcal{S} \rightarrow\{-1,1\}$ be a group morphism. Define

$$
\begin{aligned}
\mathcal{Z}:=\left\{z=\left(z_{1}, z_{2}\right) \in X_{\mathbf{k}}^{+} \times X_{\mathbf{k}}^{ \pm} \mid \forall s \in \mathcal{S},\right. & z_{1}\left(s^{-1}(x)\right)=z_{1}(x) \text { and } \\
& \left.\sigma(s) z_{2}\left(s^{-1}(x)\right)=z_{2}(x)\right\} .
\end{aligned}
$$

Idea: $\sigma \not \equiv 1 \Rightarrow$ non-radial solutions.

Lemma

The operator T maps $\mathbb{R} \times(\mathcal{X} \cap \mathcal{Z})$ into \mathcal{Z}.
Again, the relations

$$
\begin{aligned}
& f_{1}\left(|x|, z_{1},-z_{2}\right)=f_{1}\left(|x|, z_{1}, z_{2}\right), \\
& f_{2}\left(|x|, z_{1},-z_{2}\right)=-f_{2}\left(|x|, z_{1}, z_{2}\right) .
\end{aligned}
$$

are essential.

Non-radial solutions: first case

$\mathcal{S}_{1}:=\left\langle O(N-1), h_{N}\right\rangle$ where

$$
h_{N}\left(x^{\prime}, x_{N}\right):=\left(x^{\prime},-x_{N}\right), \quad \text { where } x^{\prime}:=\left(x_{1}, \ldots, x_{N-1}\right)
$$

and $\sigma_{1}: \mathcal{S}_{1} \rightarrow\{-1,1\}$ is the group morphism s.t. $\sigma_{1}(s):=1$ if $s \in O(N-1)$ and $\sigma_{1}\left(h_{N}\right):=-1$. Thus

$$
\left.\begin{array}{rl}
\mathcal{Z}_{1}^{ \pm}=\left\{z \in X_{k}^{+} \times X_{k}^{ \pm} \mid\right. & z_{1}\left(x^{\prime}, x_{N}\right)
\end{array}=z_{1}\left(\left|x^{\prime}\right|,-x_{N}\right) \text { and } . ~\left(x^{\prime}\right)\right\} . ~ \$
$$

Non-radial solutions: first case

Kernel $\partial_{z} T(\alpha, 0,0)\left[\left(w_{1}, w_{2}\right)\right]=0$.
$w_{1}=\sum_{i=1}^{N-1} a_{i} \frac{\partial U}{\partial x_{i}}+a_{N} \frac{\partial U}{\partial x_{N}}+b W$ in $X_{\mathbf{k}}^{+}$and $\left\{\begin{array}{l}O(N-1) \text {-invariant } \\ \text { even w.r.t. } x_{N}\end{array}\right.$

Non-radial solutions: first case

Kernel $\partial_{z} T(\alpha, 0,0)\left[\left(w_{1}, w_{2}\right)\right]=0$.
$w_{1}=\sum_{i=1}^{N-1} \partial \frac{\partial U}{\partial x_{i}}+a_{N} \frac{\partial U}{\partial x_{N}}+b W$ in $X_{\mathbf{k}}^{+}$and $\left\{\begin{array}{l}O(N-1) \text {-invariant } \\ \text { even w.r.t. } x_{N}\end{array}\right.$
$-\frac{\partial U}{\partial x_{i}}$ is odd w.r.t. x_{i} thus not $O(N-1)$-invariant;

Non-radial solutions: first case

Kernel $\partial_{z} T(\alpha, 0,0)\left[\left(w_{1}, w_{2}\right)\right]=0$.
$w_{1}=\sum_{i=1}^{N-1} a_{i} \frac{\partial X}{\partial x_{i}}+a_{N} \frac{\partial \varnothing}{\partial x_{N}}+b W$ in $X_{\mathbf{k}}^{+}$and $\left\{\begin{array}{l}O(N-1) \text {-invariant } \\ \text { even w.r.t. } x_{N}\end{array}\right.$
$\square \frac{\partial U}{\partial x_{i}}$ is odd w.r.t. x_{i} thus not $O(N-1)$-invariant;
$\square \frac{\partial U}{\partial x_{N}}$ is odd w.r.t. x_{N};

Non-radial solutions: first case

Kernel $\partial_{z} T(\alpha, 0,0)\left[\left(w_{1}, w_{2}\right)\right]=0$.
$w_{1}=\sum_{i=1}^{N-1} a_{i} \frac{\partial X}{\partial x_{i}}+a_{N} \frac{\partial \varnothing}{\partial x_{N}}+b W$ in $X_{\mathbf{k}}^{+}$and $\left\{\begin{array}{l}O(N-1) \text {-invariant } \\ \text { even w.r.t. } x_{N}\end{array}\right.$
$\square \frac{\partial U}{\partial x_{i}}$ is odd w.r.t. x_{i} thus not $O(N-1)$-invariant;
$\square \frac{\partial U}{\partial x_{N}}$ is odd w.r.t. x_{N};
$\square \mathbf{k}(W)=-W$ thus $W \notin X_{\mathbf{k}}^{+}$.

Non-radial solutions: first case

Kernel $\partial_{z} T(\alpha, 0,0)\left[\left(w_{1}, w_{2}\right)\right]=0$.
$w_{1}=\sum_{i=1}^{N-1} a_{i} \frac{\partial \not}{\partial x_{i}}+a_{N} / \frac{\partial \varnothing}{\partial x_{N}}+b W$ in $X_{\mathbf{k}}^{+}$and $\left\{\begin{array}{l}O(N-1) \text {-invariant } \\ \text { even w.r.t. } x_{N}\end{array}\right.$
$\square \frac{\partial U}{\partial x_{i}}$ is odd w.r.t. x_{i} thus not $O(N-1)$-invariant;
$\square \frac{\partial U}{\partial x_{N}}$ is odd w.r.t. x_{N};
$\square \mathbf{k}(W)=-W$ thus $W \notin X_{\mathbf{k}}^{+}$.

Conclusion

$\partial_{z} T(\alpha, 0,0)$ is invertible if $\alpha \neq \alpha_{n}^{*}$ for all n.

Non-radial solutions: first case

For the second component:

$$
w_{2}=\sum_{h=0}^{n} A_{h} W_{n, h}(r) Y_{h}(\Theta) \quad \text { in } X_{\mathbf{k}}^{ \pm} \text {and }\left\{\begin{array}{l}
O(N-1) \text {-invariant } \\
\text { odd w.r.t. } x_{N}
\end{array}\right.
$$

Non-radial solutions: first case

For the second component:

$$
w_{2}=\sum_{h=0}^{n} A_{h} W_{n, h}(r) Y_{h}(\Theta) \quad \text { in } X_{\mathbf{k}}^{ \pm} \text {and }\left\{\begin{array}{l}
O(N-1) \text {-invariant } \\
\text { odd w.r.t. } x_{N}
\end{array}\right.
$$

For all h, there is a single (up to a multiple) spherical harmonic that is $O(N-1)$-invariant: $Y_{h}(\Theta)=P_{h}^{\left(\frac{N-3}{2}, \frac{N-3}{2}\right)}\left(\cos \theta_{N-2}\right)$ where $\left(r, \varphi, \theta_{1}, \ldots, \theta_{N-2}\right)$ are the spherical coordinates.

Non-radial solutions: first case

For the second component:

$$
w_{2}=\sum_{h=0}^{n} A_{h} W_{n, h}(r) Y_{h}(\Theta) \quad \text { in } X_{\mathbf{k}}^{ \pm} \text {and }\left\{\begin{array}{l}
O(N-1) \text {-invariant } \\
\text { odd w.r.t. } x_{N}
\end{array}\right.
$$

For all h, there is a single (up to a multiple) spherical harmonic that is $O(N-1)$-invariant: $Y_{h}(\Theta)=P_{h}^{\left(\frac{N-3}{2}, \frac{N-3}{2}\right)}\left(\cos \theta_{N-2}\right)$ where $\left(r, \varphi, \theta_{1}, \ldots, \theta_{N-2}\right)$ are the spherical coordinates. Moreover, this Y_{h} is odd w.r.t. x_{N} iff h is odd.

Non-radial solutions: first case

$$
w_{2}=\sum_{h=0, h \text { odd }}^{n} A_{h} W_{n, h}(r) Y_{h}(\Theta) \text { in } X_{\mathbf{k}}^{ \pm}
$$

Non-radial solutions: first case

$$
w_{2}=\sum_{h=0, h \text { odd }}^{n} A_{h} W_{n, h}(r) Y_{h}(\Theta) \text { in } X_{\mathbf{k}}^{ \pm}
$$

Recall $W_{n, h} \in X_{\mathbf{k}}^{+}\left(\right.$resp. $\left.X_{\mathbf{k}}^{-}\right) \Leftrightarrow n-h$ is even (resp. odd). Thus

- if n is even, choose $X_{\mathbf{k}}^{-}$;
\square if n is odd, choose $X_{\mathbf{k}}^{+}$.

Non-radial solutions: first case

$$
w_{2}=\sum_{h=0, h \text { odd }}^{n} A_{h} W_{n, h}(r) Y_{h}(\Theta) \quad \text { in } X_{\mathbf{k}}^{ \pm}
$$

Recall $W_{n, h} \in X_{\mathbf{k}}^{+}\left(\right.$resp. $\left.X_{\mathbf{k}}^{-}\right) \Leftrightarrow n-h$ is even (resp. odd). Thus

- if n is even, choose $X_{\mathbf{k}}^{-}$;
\square if n is odd, choose $X_{\mathbf{k}}^{+}$.

$$
\text { multiplicity }= \begin{cases}\sum_{h=0, h \text { odd }}^{n} 1=n / 2 & \text { if } n \text { is even } \\ \sum_{h=0, h \text { odd }}^{n} 1=n \operatorname{div} 2+1 & \text { if } n \text { is odd }\end{cases}
$$

The multiplicity is odd iff $n \bmod 4 \in\{1,2\}$.

Non-radial solutions: more odd symmetries

Let $1 \leqslant m \leqslant N-1, \mathcal{S}_{m}=\left\langle O(N-m), h_{N-m+1}, \ldots, h_{N}\right\rangle$ where
h_{m} is the reflection w.r.t. $x_{m}=0$
and $\sigma_{m}: \mathcal{S}_{m} \rightarrow\{-1,1\}$ be the group morphism defined by $\sigma_{m}(s)=1$ for $s \in O(N-m)$ and $\sigma_{m}\left(h_{i}\right)=-1$.

Proposition

Bifurcation with these symmetries occur from $\left(\alpha_{n}^{*}, U, U\right)$ if

$$
\binom{m+\left\lfloor\frac{n-m}{2}\right\rfloor}{ m} \text { is an odd integer. }
$$

Non-radial solutions: highly oscillating

As before, let $\left(r, \varphi, \theta_{1}, \ldots, \theta_{N-2}\right)$ be the spherical coordinates. For $m \geqslant 1$, let R_{m} be the rotation of angle $\frac{2 \pi}{m}$ in φ, and take $\mathcal{S}_{m}=\left\langle R_{m}, h_{2}, h_{3}, \ldots, h_{N}\right\rangle$ and $\sigma_{m}: \mathcal{S}_{m} \rightarrow\{-1,1\}$ be the group morphism defined by $\sigma_{m}\left(R_{m}\right)=1, \sigma_{m}\left(h_{2}\right)=-1$, and $\sigma_{m}\left(h_{i}\right)=1$ for $i=3, \ldots, N$.

Among the function in the second component of the kernel at α_{m}^{*}

$$
w_{2}=\sum_{h=0}^{m} A_{h} W_{m, h}(r) Y_{h}\left(\varphi, \theta_{1}, \ldots, \theta_{N-2}\right)
$$

these symmetries select

$$
W_{m, m}(r) Y_{m}(\Theta)
$$

1-dim \Rightarrow bifurcation.

