Séminaire Euroceram - CRITT Maubeuge - 19 Juin 2001

Caractérisation par techniques optiques de la microstructure de couches minces non homogènes

Eric Dumont
Faculté Polytechnique de Mons
Belgique

Speech contents

- Introduction
- Experimental techniques
- Models
- Real microstructures
- Spectrophotometry and ellipsometry
- X-Ray reflectometry
- 3 techniques together
- Conclusions

Introduction

What is the microstructure of a thin film ?

Substrate	Substrate
Ideal microstructure	Real microstructure

 Causes: variation of the compacity (voids), of the crystalline structure, of the roughness and/or of the material composition of the film

Introduction

- Why studying the microstructure of thin films?
- Thin films are used in many applications, e.g.:

Their microstructure influences their final properties,
 e.g. roughness in antireflective coatings

Introduction

- Why using optical techniques for the determination of the microstructrure of a thin film?
- Advantages: non-destructive techniques, no sample preparation, measurements in the air
- Drawbacks: use of complex mathematical models to determine this microstructure
- Optical techniques : Spectrophotometry, X-Ray reflectometry, Ellipsometry

Experimental techniques

 Measurement of specular and scattered reflectivity and transmitivity of light: R_S T_S R_D T_D

- \blacksquare R_ST_S: Spectrophotometry: wl =190 2500 nm
- R_S : X-Ray Reflectometry : wl = 0.15418 nm
- $R_D T_D$: Spectrophotometry with integration sphere: wl = 190 2500 nm

Experimental techniques

• Measurement of the change of the polarisation state of polarised light by specular reflection : Δ and Ψ

$$R_{p} = E_{pr}/E_{pi}$$

$$R_{s} = E_{sr}/E_{si}$$

$$R_{p}/R_{s} = \tan \Psi e^{j\Delta}$$

■ Δ and Ψ : Ellipsometry: wl = 300 - 850 nm

 Optical measurements depend on : experimental parameters and physical parameters of a film

R, T, \triangle and Ψ = f (N_a, N_F (z), d_F, N_s, d_s, WL, AI)

 Relation between the microstructure and the optical index profile of a film

 Determination of the microstructure = calculation of the optical index profile N_F (z)

- How to calculate the optical index profile N_F (z) of a film ?
- \blacksquare 1) create a mathematical model with adjustable parameters to describe $N_F(z)$
- 2) compute R, T, \triangle and Ψ for starting values of the parameters of the model
- 3) compare the computed values with experimental values of R, T, Δ and Ψ measured on samples and adjust the parameters in order to minimize the differences thanks to a χ^2 method

- The optical index profile depends on the wavelength wl
- \uparrow creation of a « new model » based on a volume fraction of material profile $F_v(z)$ not dependant on wh

```
Visible wavelengths : N_{material} = n - j k
X-Ray wavelengths : N_{material} = 1 - \delta - j \beta
```

determination of the microstructure = calculation of F_v (z)

- Study by Scanning Electron Microscopy (SEM)
- In real microstructures, we observe three different features in the optical index profile: inhomogeneity, roughness and interface:

In the optical index profile, these features are also present:

- Roughness and interface: rapid variation of the optical index at the boundaries
- Inhomogeneity: slight variation of the optical index along the thickness of the film

 Relation between the index profile and the real structure of a film :

How to describe roughness?

- Roughness described by its rms value σ
- Optical index profile modeled by the error function erf (z, σ)

- Why describing roughness with a single parameter : roughness rms value σ ?
- This parameter can be measured by 2 other techniques :
- Measurement of the scattered reflectivity R_D and use of the TIS (Total Integrated Scattering) theory
- Measurement by AFM (Atomic Force Microscopy)
- ↑ Same values of σ obtained by the 2 techniques and optical measurements

Roughness of ZnO films measured with different techniques

Spectrophotometry and ellipsometry

- use of state of-the-art models in ellipsometry and spectrophotometry, example for ZnO films
- Spectrophotometry:
 models b-c-e-f-g-h are
 good ↑ not very
 sensitive to the
 microstructure
- Ellipsometry: models e and h good ↑ not very sensitive to « interfaces »

- use of improved models in ellipsometry
- linear index profile replaced by polynomial index profile, with Chebyshev polynomials

Multisample analysis of ZnO films

Annealing of a ZnO layer

Influence of the O₂ percentage during sputtering in ZnO films

LiNbO3 on sapphire (thick film)

LiNbO3 on sapphire (thin film)

X-Ray reflectometry

 use of state of-the-art models in X-Ray reflectometry, example for ZnO films

■ Model b is the best ↑ X-Ray reflectometry sensitive to roughness and to the presence of « interfaces »

X-Ray reflectometry

Index profile for the model with porosity (ZnO film)

X-Ray reflectometry

 use of improved models in X-Ray reflectometry, example for ZnO films

■ Models a and b are good ↑ X-Ray reflectometry not very sensitive to inhomogeneity

Spectrophotometry, ellipsometry and X-Ray reflectometry

- Each technique has its own field where it works well,
 different from the two other ones
- Sensitivity:
 - spectrophotometry not very sensitive to the microstructure of the films \uparrow can only be used to determine the thickness of a film
 - ellipsometry not very sensitive to the presence of interfaces ↑ can only be used to determine the roughness and inhomogeneity of a film
 - X-Ray reflectometry not very sensitive to inhomogeneity \uparrow can only be used to determine the roughness or presence of interface in a film

Spectrophotometry, ellipsometry and X-Ray reflectometry

- Each technique has its own field where it works well, different from the two other ones
- Thickness range :
 - spectrophotometry and ellipsometry : d_F > 50 nm
 - X-Ray reflectometry : $d_F < 100$ nm, sample not too rough

3 techniques together

- Our « new model » can be used with ellipsometric, spectrophotometric and X-Ray measurements together
- same model for all kinds of measurements :
 - film with roughness, inhomogeneity and interface
 - use of volume fraction profile $F_v(z)$
- Possibility of using the 3 techniques out of their usual range of thickness
- Application to a « thin » (75 nm) and a « thick » (460 nm) film of ZnO

3 techniques together

ZnO on glass (thin film)

3 techniques together

ZnO on glass (thick film)

Conclusions

- Creation of a software able to analyse 3 kinds of optical measurements (spectrophotometry, ellipsometry and X-Ray reflectometry) for the determination of the microstructure of thin films
- Study of the sensitivity of the 3 optical techniques to the various features (roughness, inhomogeneity, presence of interface) of a real microstructure: each technique has its own field of application

Conclusions

- Creation of a « new model » able to analyse all kinds of optical measurements together
- The « new model » has improved possibilities :
- possibility to use the optical measurements out of their usual « thickness range »
- possibility to determine the 3 features of a microstructure simultaneously
- Possibility to use the optical techniques for all kinds of films on all substrates