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A Higher Spin Gravity in five dimensions is constructed. It was shown recently that constructing formally 
consistent classical equations of motion of higher spin gravities is equivalent to finding a certain 
deformation of a given higher spin algebra. A strong homotopy algebra encoding the interaction vertices 
then follows. We propose two different and novel realizations of the deformed higher spin algebra in the 
case of five dimensions: one in terms of the universal enveloping algebra of su(2, 2) and the other by 
means of oscillator variables. Both the new realizations admit supersymmetric extensions and the N = 8
case underlies the massless sector of tensionless strings.
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1. Introduction

The Higher Spin Gravity is one of the approaches to the prob-
lem of quantum gravity whose main idea is to extend the metric 
field with (usually infinitely many) massless fields of spin greater 
than two. A rich gauge symmetry associated with the higher spin 
extension is expected to render higher spin gravities renormal-
izable and even finite, thereby serving as an alternative and/or 
companion of supersymmetry. The conjectural ‘no counterterm’ 
argument downgrades the problem of quantum consistency to a 
much simpler task of constructing a purely classical higher spin 
gravity. The crux, however, is a zoo of no-go theorems that makes 
it hard to find such theories in the landscape of conventional field 
theories. Many of these theorems are about the flat space back-
ground [1–3]. Recently, the most important of these no-go’s have 
found their anti-de Sitter space cousins.1

At present there are only three examples of higher spin grav-
ities that avoid all the no-go theorems one way or another: (i) 
extension of the Chern–Simons formulation of 3d gravity [11–13], 

* Corresponding author.
E-mail address: eugene.d.skvortsov@gmail.com (E. Skvortsov).

1 For example, the Weinberg and Coleman–Mandula theorems imply, basically, 
that S = 1 if massless higher spin particles are present as asymptotic states. Like-
wise, asymptotic higher spin symmetry at the boundary of AdS trivializes the holo-
graphic S-matrix [4–7], which has to be given by a free CFT’s correlators (AdS/CFT 
analog of S = 1 in flat space). Within the local field theory approach, the flat space 
non-locality [3] has found its AdS counterpart [8–10].
https://doi.org/10.1016/j.physletb.2019.135094
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which has been a very useful toy-model over the last years [14]; 
(ii) conformal higher spin gravity [15–17] where the non-locality 
is tamed by the local Weyl symmetry and it shares many fea-
tures with conventional lower spin theories; (iii) chiral higher spin 
gravity, which exists both in 4d flat [18–22] and anti-de Sitter 
[23] spaces. As shown in [22], the chiral higher spin gravity, be-
ing consistent at the quantum level, has S = 1 in flat space and a 
non-trivial S-matrix in AdS4. The latter can be used for deriving 
correlation functions in Chern–Simons Matter theories [23].

The AdS/CFT correspondence gives an important handle on the 
higher spin theories since the simplest CFT duals thereof are just 
free CFT’s [24–26]. Free (or weakly coupled) CFT’s do not have a 
large gap in the dimensions of single-trace operators and hence the 
existence of the gravitational dual is debatable [27]. The main dif-
ficulty is that the simplest holographic higher spin models cannot 
be conventional field theories due to severe nonlocalities required 
by the higher spin symmetry [8–10]. Yet, the existence of CFT dual 
descriptions allows one to address some problems of higher spin 
gravities from the boundary vantage point.

The free limit of N = 4 SYM is supposed to be dual to the 
tensionless limit of the IIB string theory on AdS5 × S5 [24,28]. A 
priori there are no reasons to expect the tensionless limit be well-
defined. Indeed, it is quite singular in the flat space background 
[29]. When the background has the AdSd+1 factor the tensionless 
limit corresponds to very long strings ls � R , the length ls be-
ing very large compared to the AdS radius R . The Planck length is 
still assumed to be small, so that we are dealing with the weakly 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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coupled string theory. The absence of any argument for why (or 
under which further conditions) the tensionless limit has to admit 
a simple, possibly, weakly-coupled description is another side of 
the same problem. In this respect it comes as a surprise that there 
is a worldsheet description of the tensionless strings on AdS3 [30]
and there is some understanding of the holographic fishnet models 
[31].2

Bearing the holographic higher spin theories in mind, it is nat-
ural to look for structures that survive in presence of nonlocalities. 
An infinite-dimensional extension of conformal symmetry so(d, 2), 
known as a higher spin symmetry, is one of such structures. The 
higher symmetries correspond to higher rank conserved tensors 
present in any free CFT (including the free SYM). Every free CFT 
comes equipped with a Higher Spin Algebra — the symmetry al-
gebra of the free equations of motion [32]. As such, higher spin 
symmetries always arise from associative algebras3 and are closely 
related to the universal enveloping algebra of the conformal alge-
bra so(d, 2) (and its supersymmetric extensions).

Being identified with a global symmetry on the CFT side, the 
higher spin algebra carries complete information about the spec-
trum of single-trace operators and their correlators.4 It has to be 
gauged in the gravitational dual producing thus inevitable nonlo-
calities. There is, however, an approach that makes the higher spin 
problem well-defined mathematically, but with some sacrifice in 
other features of conventional field theory. It focuses upon con-
struction of formally consistent classical equations of motion. The 
equations of formal higher spin gravities read

d� = V2(�,�) + V3(�,�,�) + · · · , dd ≡ 0 , (1.1)

where � is a master-field to be defined later. The equations are 
very close in spirit to those of String Field Theory, see e.g. [37,38]. 
It is also true that strong homotopy algebras, more precisely cer-
tain L∞- and A∞-algebras [37–40], play a crucial role in both the 
theories. For the higher spin case, the bilinear vertex V2 is com-
pletely determined V2 = � � � by the product � in a given higher 
spin algebra, so that the problem is to construct all higher vertices 
Vn in a consistent way. There is a handful of such models known 
[40–48] that take advantage of various techniques and approaches 
to the problem. We do this for the 5d case.

The study of five-dimensional higher spin gravities is well mo-
tivated by the relation to string theory. There should be a well-
defined massless subsector of the tensionless5 string theory (dual 
to the bilinear single-trace operators of the free SYM) that is de-
scribed by N = 8 higher spin gravity. The important steps towards 
this theory were made in [49], where the higher spin superalgebra 
and the free equations were given. Options with less supersym-
metries are also possible, including the purely bosonic theory, also 
called Type-A for any d [43,44,46,47]. The Type-A theory should be 
regarded as an important building block of supersymmetric mod-
els. For example, the known supersymmetric models in AdS4 [50]
can be thought of as supersymmetric extensions of the bosonic 
theory. Likewise, at least kinematically, there is a family of higher 
spin extensions of (p)su(2, 2|N) for any N that is relevant for the 
theories in AdS5 [49,51–53]. As different from [43,44,46,47] the re-

2 Fishnet theories admit a weakly-coupled limit where the higher spin currents 
have small anomalous dimensions. Therefore, fishnet theories are similar to weakly-
coupled SYM. The higher spin currents in these CFT’s are dual to massless higher 
spin fields in AdS5.

3 One can multiply any two symmetries of a linear equation, but, in general, only 
the commutator of the two is a symmetry for nonlinear equations.

4 Indeed, the correlation functions are just the simplest higher spin algebra in-
variants [33–36].

5 Note that [25] discusses a certain critical value of the tension.
alizations of the 5d higher spin algebra we use in the paper admit 
a simple supersymmetric extension.

Constructing formal Higher Spin Gravity in five dimensions 
has been an open problem since the late 1990s. The relevant 
higher spin algebra had been known [51]. Free fields, including the 
mixed-symmetry ones, were studied in [54–56]. Certain cubic ver-
tices for the N = 0, 1, 2 cases were constructed in [57–59]. The 
free equations of type (1.1) were analyzed in [60]. In Sec. 4, we 
explain why all the previously known methods do not work here 
when it comes to interactions. Our solution heavily relies on the 
work [40] that reduces the problem of constructing the interaction 
vertices to a much simpler problem of deforming a certain exten-
sion of a given higher spin algebra. We found two different and 
novel ways to construct such a deformation, which should have a 
wider range of applications.

The first one appeals to the very definition of higher spin al-
gebras as quotients of universal enveloping algebras. The ideal 
to be quotiented out is the annihilator of the corresponding free 
field and is also known as the Joseph ideal. The ideal is gen-
erated by a few quadratic relations. It turns out that one can 
simply deform these relations together with the commutator of 
the translation generators. This leads to an interesting way to de-
form (quotients of) universal enveloping algebras. The second one 
takes advantage of the quasi-conformal realizations [52,53,61] that 
were previously underrated in the higher spin context. The main 
feature is that they resolve all of the Joseph relations and give 
the minimal oscillator realization of the free field and of the cor-
responding higher spin algebra. We found a way to deform the 
quasi-conformal realization so that the deformed Joseph’s relations 
are satisfied.

The outline of the paper is as follows. In Section 2, we review 
various definitions of the 5d higher spin algebra and discuss the 
free equations, i.e., up to V2 in (1.1). In Section 3, we summarize 
the central result of [40] that simplifies the problem. The main re-
sults of the present paper are in Section 4, where we formulate 
two different ways to describe the deformed higher spin algebra. 
In Section 5, we show that the peculiar deformation of the confor-
mal algebra’s commutators gives rise to the Einstein equations and 
is therefore well-motivated. The discussion of the obtained results 
can be found in Section 6.

2. Initial data

The only input is given by a Higher Spin Algebra. The Type-A 
theory is, by definition, the anti-holographic dual to the large-N
free (or critical if d �= 4) vector model [26]. For the AdS5/C F T4

case the higher spin algebra, we shall call hs, comes from the 
universal enveloping algebra of su(2, 2), whose generators T A

B , 
A, B = 1, . . . , 4 obey6

[T A
B , T C

D ] = δA
D T C

B − δC
B T A

D . (2.1)

The higher spin algebra is defined then to be the quotient of the 
universal enveloping algebra U (su(2, 2)) by a certain two-sided 
ideal [32], known as the Joseph ideal J , hs = U (su(2, 2))/ J . The 
state space |φ〉 of a free 4d conformal scalar field, �φ = 0, is 
the minimal unitary irreducible representation of su(2, 2) and the 
Joseph ideal is the annihilator of this module. The ideal is gener-
ated by the quadratic relations7

6 The indices A, B, . . . are the indices of the (anti)-fundamental representation of 
su(2, 2).

7 Here, [AB] means that one has to add minus the same term with AB swapped. 
We also used the first two to simplify the third one, otherwise a projector onto 
(0, 2, 0) has to be written down explicitly.
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C2 = T A
B T B

A = −3 , (2.2a)

T A
C T C

B = −2 T A
B + 1

4
C2 δA

B , (2.2b)

{T [A
[B , T C]D] } = δA

B δC
D − δC

B δA
D . (2.2c)

Elements of the higher spin algebra hs are polynomials f (T ) (or 
formal power series) in T A

B modulo the Joseph relations. It is easy 
to see that the Joseph relations wash away all su(2, 2)-tensors ex-
cept for

f =
∑

k

f A1...Ak
B1...Bk

T A1
B1 · · · T Ak

Bk , (2.3)

where the coefficients are traceless and symmetric in upper and 
lower indices, i.e., define an irreducible representation of weight 
(k, 0, k).

From the conformal point of view, these representations are 
in one-to-one with conformal Killing tensors (in particular the 
(1, 0, 1) is the adjoint of su(2, 2) associated with conformal Killing 
vectors). It can be shown [32] that each homogeneous element of 
hs defines a conformal Killing tensor8 va1···ak (x) and

δvφ(x) = va1···ak∂a1 · · · ∂akφ(x) + · · · (2.4)

is a (higher derivative) symmetry of �φ(x) = 0. The equation be-
ing linear, the symmetries form an associative algebra, the one we 
have just described, see also [62].

One can take Rels. (2.1) and (2.2) as an ab initio definition of 
the higher spin algebra hs. In practical applications it is sometimes 
convenient to resolve (some of) the Joseph relations by passing 
to an appropriate realization. One common way to resolve some 
of the Joseph relations is to introduce two quartets of oscillator 
variables aA and bB in the fundamental and anti-fundamental rep-
resentations of su(2, 2) (they generate the Weyl algebra A4):

[aA,aB ] = 0 , [bA,bB ] = 0 , [aA,bB ] = δA
B . (2.5)

Then the su(2, 2) generators are given by

T A
B = 1

2
{aA,bB} − 1

4
δA

B N , (2.6)

where the u(1) generator N = 1
2 {aC , bC } commutes with T A

B . The 
same hs can now be defined as a subquotient of the oscillator al-
gebra:

hs � f ⇔ [ f , N]� = 0 , f ∼ f + g � N , (2.7)

The first relation forces the monomials of f (a, b) to have an equal 
number of a’s and b’s. The quotient with respect to N makes the 
Taylor coefficients effectively traceless, as in (2.3). It is this realiza-
tion that was used in [60] to study the spectrum and free higher 
spin equations.

While Rel. (2.2c) is identically satisfied (up to the traces, see 
footnote 7), the remaining two Joseph’s relations are not and 
gauging of u(1) in (2.7) lands us onto the right algebra. There 
is also a way to resolve all Joseph’s relations. It is known as a 
quasi-conformal realization [52,53,61]. The idea is to represent the 
higher spin algebra by a minimal possible number of oscillators.9

In the case under consideration the minimal number of canonical 
pairs is three.10 Therefore, we set

8 Conformal Killing tensors obey ∂a1 va2 ···ak+1 + permutations − traces = 0.
9 In some sense, this is exactly the problem that Joseph addressed in [63]: how 

to realize irreducible representations by the minimal number of oscillators.
10 Apart from the rigorous results by Joseph [63] this can be seen by noticing that 

the solution space of the Klein-Gordon equation has functional dimension three.
[z, pz] = [y, p y] = [x, px] = i . (2.8)

The most nontrivial statement of the quasi-conformal realization is 
that the following two composite operators11

Y A
L =

{
z, pz,0,

1

x
(zp y − pz y − 1

2 )
}

, Y A
R = {

y, p y, x, px
}

(2.9)

can be used to define the generators of hs. Let us also define Y A± =
Y A

L ∓ iY A
R . Then one can easily check that the operators

T A
B = − i

2

(
Y +

A Y B− − 1
4 δA

B Y +
C Y C−

)
(2.10)

obey the commutation relations (2.1) as well as Joseph’s relations 
(2.2). We note in passing that the most singular component of the 
su(2, 2)-generators coincides with the Calogero Hamiltonian:

iL44 = H = p2 + Q

x2
, (2.11)

where Q is a quartic polynomial in the other variables. The rest of 
the su(2, 2) generators are either non-singular or involve 1/x.12

An important role is played in what follows by the Lorentz 
subalgebra so(4, 1) ∼ sp(4) — it is the maximal symmetry that re-
mains undeformed. It allows one to split the su(2, 2)-generators 
into the Lorentz generators L AB and translations P AB :

L AB = T A|B + T B|A , P AB = T A|B − T B|A . (2.12)

Hereafter all sp(4)-indices are raised and lowered with the help 
of sp(4)-invariant tensor C AB = −C B A . The su(2, 2) commutation 
relations (2.1) then read

[L AB , LC D ] = L AD C BC + LB D C AC + L AC C B D + LBC C AD ,

(2.13a)

[L AB , P C D ] = P AD C BC + P B D C AC − P AC C B D − P BC C AD ,

(2.13b)

[P AB , P C D ] = L AD C BC − LB D C AC − L AC C B D + LBC C AD . (2.13c)

In order to write the free equations of motion we need the au-
tomorphism π that any higher spin algebra is equipped with. It 
acts by altering the sign of translations, while leaving the Lorentz 
generators intact: (π f )(T ) = f (L, −P ).

The master field � of the simplest higher spin gravities con-
sists of two components13: one-form ω and zero-form C , both 
taking values in a given higher spin algebra hs. Loosely speaking, 
for |φ〉 being the irreducible representation corresponding to the 
free scalar field φ(x), the higher spin-algebra hs is the space of all 
linear maps |φ〉 → |φ〉, i.e., |φ〉〈φ|. The space of single-trace opera-
tors is |φ〉 ⊗ |φ〉. The latter is formally isomorphic to hs up to the 
conjugation that maps |φ〉 to 〈φ|. We want to gauge hs in the bulk 
since it is a global symmetry on the CFT side. The single-trace op-
erators are dual to bulk physical states that are in C . We see that 
hs is formally isomorphic to the algebra of single-trace operators, 
which allows one to identify C up to the π -map with hs as well.

Given one or another realization of the higher spin algebra, the 
free equations of motion read

dω = ω � ω , dC = ω � C − C � π(ω) , (2.14)

11 We note that the realization we present here is slightly different from the one 
in [52,53].
12 See [52,53] for the wave functions and complete construction of the unitary 

representation.
13 This was first proposed in [64] for the 4d system.
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where � is the product in hs and d is the exterior differential 
d = dxμ∂μ . The first equation describes the maximally symmetric 
higher spin backgrounds. The simplest one is AdS5 and has only 
the spin-two subsector activated:

ω = 1

2
hAB P AB + 1

2
	 AB L AB . (2.15)

Here hAB = −hB A is the fünf-bein and 	 AB = 	 B A is the spin-
connection. The second equation in (2.14) describes the physi-
cal states that are dual to the single-trace operators of the free 
scalar CFT. The automorphism π is responsible for the conjugation 
|φ〉 �→ 〈φ|. These are the correct free equations that are completely 
fixed by representation theory. For the AdS5 case they were stud-
ied in [60]. Without going into the details we just state that the 
spectrum of the theory is given by the massless fields on AdS5
with all integer spins s = 0, 1, 2, 3, . . . [60]. Truncation to even 
spins and Yang-Mills gaugings with u(N), o(N), usp(N) are also 
possible.

3. Vertices

The problem of formal higher spin gravities is to find a nonlin-
ear completion of the free system (2.14). Its general form reads

dω = ω � ω + V3(ω,ω, C) + O (C2) , (3.1a)

dC = ω � C − C � π(ω) + V3(ω, C, C) + O (C3) , (3.1b)

where the bilinear terms V2 are displayed explicitly. The interac-
tions, Vn , are constrained by the formal consistency that stems 
from the nilpotency of the exterior differential, dd ≡ 0.14 Intu-
itively, it is clear that the higher spin algebra hs (together with 
π ) is the only input data for the problem and the interaction ver-
tices Vn , n > 2, should be derivable from it. The precise relation 
between hs and Vn ’s for any hs was established in [39,40].

To formulate the result, let us extend the higher spin algebra 
with the π -automorphism by defining the smash-product algebra 
πhs = hs�Z2, where Z2 = (1, k), k2 = 1. The general element of 
πhs has the form a = a′ · 1 +a′′ ·k for a′, a′′ ∈ hs and multiplication 
is given by

a � b = (a′b′ + a′′π(b′′)) · 1 + (a′′π(b′) + a′b′′) · k , (3.2)

i.e. kxk = π(x), x ∈ hs. Clearly, we can get the free equations (2.14)
by omitting π in the second equation while requiring ω = ω′ · 1
and C = C ′′ · k. The same trick would work for the nonlinear equa-
tions (3.1) as well. The smashed product allows us to incorporate 
the π -automorphism through the generator k.

The main statement of [40] is that (up to formal field re-
definitions) the nontrivial interaction vertices are in one-to-one 
correspondence with the nontrivial deformations of πhs as an as-
sociative algebra. The deformation of an associative algebra πhs

appears to be a much simpler problem to solve.15 Let us assume 
for a moment that the deformation of πhs is known and is given 
by the formal series in the formal parameter we denote ν

a ◦ b = a � b + φ1(a,b)ν + φ2(a,b)ν2 + · · · , (3.3)

14 One can think of the right-hand side as of the definition of an abstract differ-
ential d. This trick allows one to avoid the problem of nonlocality. Whenever d is 
taken to be the exterior differential d = dxμ∂μ the equations become a set of PDE’s 
that faces the nonlocality problem.
15 In more technical terms [39], one can construct a certain strong homotopy alge-

bra, A∞ , from the one-parameter family of associative algebras. Higher spin algebras 
are just particular examples for which such a deformation is possible after extend-
ing them with the π -automorphism.
so that a ◦ (b ◦ c) = (a ◦ b) ◦ c. Then, there are general formulas 
expressing all the vertices in a certain minimal form16:

Vn(ω,ω, C, . . . , C) = + fn(ω,ω, C, . . . ) � C , (3.4a)

Vn(ω, C, . . . , C, C) = + fn(ω, C, . . . , C) � C , (3.4b)

Vn(C,ω, . . . , C, C) = − fn(C,ω, . . . , C) � C . (3.4c)

The structure functions fn are given by the sum over graphs

fn(a,b, u, . . . , w) =
∑
�

a b

mk+1
u

m1+1
w

l1

lk
(3.5)

where the edges represent the arguments, simple vertices repre-
sent the direct products (formally φ0(a, b) = a �b) and labelled bold 
vertices represent φmi+1(•, •). The sum is over all graphs such that 
the labels (l1, . . . , lk) and (m1, . . . , mk) form two nested Young di-
agrams with the first rows of equal length:

l1

n − 2 − k

l2

l3

lk

k

m1

m2

mk
mk−1

(3.6)

For instance, with these prescriptions, one can find the following 
explicit expressions for the cubic, quartic, and quintic vertices17:

V3(ω,ω, C) = φ1(ω,ω) � C , (3.7)

V4(ω,ω, C, C) = φ2(ω,ω) � C � C + φ1(φ1(ω,ω), C) � C ,

V5(ω,ω, C, C, C) = φ3(ω,ω) � C � C � C

+ φ2(φ1(ω,ω), C) � C � C

+ φ1(φ2(ω,ω), C) � C � C

+ φ1(φ2(ω,ω) � C, C) � C

+ φ1(φ1(φ1(ω,ω), C), C) � C .

There is also a simple differential equation that allows one to gen-
erate the vertices Vn and to prove their formal consistency [39,40,
66]. Thus, we see that the vertices are completely determined by 
the associative ◦-product (3.3).

It was also shown in [40] that the equations of the formal 
Higher Spin Gravities are integrable. Solving the (highly nonlinear) 
equations (3.1) is equivalent to solving a much simpler Lax pair 
system

16 The form is minimal in the sense of having the least number of nontrivial struc-
ture maps that are, moreover, expressed entirely in terms of the deformed product. 
However, this form is less convenient to discuss reality conditions and various trun-
cations, extensions.
17 For the AdS4 case the first few vertices are very close to those discussed e.g. in 

[64,65].
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dω = ω ◦ ω , dC = ω ◦ C − C ◦ ω , (3.8)

where the fields take values in the deformed algebra. There exists 
an explicit formula ω[ω, C ], C[C ] for the solutions of (3.1) [40]. We 
note that the Lax pair equations are well-defined and do not have 
any locality problem. The explicit formula for the solutions of the 
original system (3.1) allows one to avoid dealing with nonlocalities 
whatsoever. These facts give an importance to the deformed higher 
spin algebra as the only structure controlling interactions in formal 
higher spin gravities.

Since the computation along the canonical AdS/CFT path is ex-
pected to face the problem of nonlocalities in higher spin theories, 
it is important to come up with a set of well-defined observables. 
As was suggested in [67] a natural set of observables is given by 
invariants of higher spin symmetries. The simplest invariants are 
traces of the master field C

Tr(C ◦ ... ◦ C) . (3.9)

It is important that when the deformation is switched off the in-
variants reduce to those of the initial higher spin algebra and are 
known to reproduce the correct correlation functions [33–36]. A 
larger set of invariants is discussed in [40].

4. Deformation

The problem of constructing the interaction vertices therefore 
reduces to that of deforming the smash-product algebra πhs. This 
is a much simpler problem to solve18 and one can also present 
certain model-independent arguments that such deformation is al-
ways possible [39]. Nevertheless, the 5d case resisted a number 
of attempts over the years. It turns out that the usual oscillator 
realization (2.6) does not admit the deformation we are looking 
for. One can easily realize the π -automorphism as the reflection of 
four (out of eight) oscillators aA , bB , but the corresponding smash-
product algebra A4�Z2 does not have any nontrivial deformations 
[68–70] since its second Hochschild cohomology group vanishes.19

Therefore, we have to resort to other tools.
The problem now is to describe the deformation of πhs. We 

found two ways to achieve that. The first one, section 4.1, is to 
directly deform the Joseph relations and hence the quotient of 
U (su(2, 2)) � Z2. The second one, section 4.2, is to deform the 
quasi-conformal realization of the higher spin algebra.

4.1. Deformation through the universal enveloping algebra

It is convenient to describe πhs in the Lorentz base where 
the su(2, 2) commutation relations have the form (2.13). To obtain 
πhs we add one more generator k, k2 = 1, such that kLk = L and 
kPk = −P . The set of Joseph’s relations (2.2) split into the triple 
of finite-dimensional irreducible modules of su(2, 2): the trivial 
module corresponding to the Casimir operator, the 15-dimensional 
adjoint representation (1, 0, 1), and the 20-dimensional represen-
tation of weight (0, 2, 0). The value of the Casimir operator is fixed 
by the self-consistency of the ideal.20 Since the modules are irre-
ducible one can take the following two Lorentz components of the 

18 For example, the case of the smashed product of the Weyl algebra with any 
group of symplectic reflections was studied in [68,69].
19 This is not in contradiction with the fact that πhs should admit the deforma-

tion. πhs is realized as a subquotient (2.7) of the Weyl algebra A4 (4 stands for the 
number of canonical pairs, aA , bB ). Therefore, there is no direct relation between 
the rigidity of A4 �Z2 and πhs being soft. This explains why the methods based 
on (2.7) are not applicable here.
20 One can obtain it by reducing the element T A

B T C
D T E

F in two different ways 
[32].
nontrivial modules as the ‘lowest weight vectors’ (we omit � be-
low):

I ≡ 1

2
P AB P AB − m2 , I AB ≡ {L AM , P B

M } + {LBM , P A
M } .

(4.1)

The rest of the relations are obtained by commuting these two 
with P AB . Note that 15 = 10 + 5 and 20 = 14 + 5 + 1 as represen-
tations of sp(4). The consistency fixes m2 = −2 (in the units of the 
cosmological constant that we set to 1). Note that (2.13) and (4.1)
give a complete description of hs and πhs. It is possible to work 
with the free equations directly in terms of fields taking values in 
the universal enveloping algebra U (so(d, 2)) modulo the Joseph re-
lations [71].

First of all, the very definition of hs as of the universal envelop-
ing algebra modulo the Joseph relations suggests that the sought 
for deformation of πhs can be described in the same language. The 
starting point is to keep (2.13a) and (2.13b), but deform (2.13c)
into21

[P AB , P C D ] = (1+νk)(L AD C BC − LB D C AC − L AC C B D + LBC C AD) .

(4.2)

It is this modification that drives the whole deformation. It also 
leads to the correct Einstein’s equations as we show below. The 
requirement not to deform the [L, L] and [L, P ] commutators is a 
form of the equivalence principle: we ought to preserve the local 
Lorentz algebra and its action on the tensors. Otherwise, the tenso-
rial interpretation of the components of ω and C is lost. We keep 
the ‘lowest weight vectors’ (4.1) the same, but let m2 depend on 
k. Indeed, there is no other deformation possible for (4.1), which 
explains our choice. Acting with [P AB , •], we generate the other 
components of the deformed Joseph’s ideal:

(0,0,0) :

⎧⎪⎨
⎪⎩

2C2 = 1

2
P AB P AB − 1

2
L AB L AB

= −1

2
(6 + νk)(2 + νk) ;

(0,2,0) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
P AB P AB − m2 = 0 ,

{L AM , P B
M } − {LBM , P A

M } − 2νkP AB = 0 ,

({L[A
[B , LC]D] } + {P [A

[B , P C]D] })+
+ 2νk(2 + νk)C AC C B D

− (2 + νk)2(δA
B δC

D − δC
B δA

D ) = 0 ;
(4.3)

(1,0,1) :
⎧⎨
⎩

{L AM , P B
M } + {LBM , P A

M } = 0 ,

{L AM , LB
M } + 1

2
C AB(2 + νk)(−4 + νk) = 0 .

Self-consistency also requires m2 = −(2 +νk)(1 +νk). Upon setting 
ν = 0, we recover the original Joseph’s relations that are equivalent 
to (2.2). Even though su(2, 2) gets deformed by (4.2), there is still 
a sense in which we have the same 1 + 15 + 20 as the total num-
ber of relations (the decomposition into Lorentz tensors still makes 
sense).

Much as the standard Joseph’s relations determine the higher 
spin algebra hs, the deformed Joseph’s relations (4.3), together 

21 This type of a deformed commutator has already appeared in [39,40] for differ-
ent higher spin algebras. One of the main findings of the present paper is that this 
is the only relation that completely determines the nonlinear equations of motion.
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with (2.13a), (2.13b) and the deformed commutator (4.2), deter-
mine the deformation of πhs. The deformation is smooth in the 
sense that for any two elements f (L, P , k) and g(L, P , k) we can, 
as a matter of principle, compute their product f ◦ g and decom-
pose it into irreducible Lorentz tensors. Therefore, the deformed 
algebra is well-defined and the vertices can be written down.

It is easy to read off the Lorentz spectrum of the (un)de-
formed algebra directly from (4.3). First of all, there are no sin-
glets except for the unit element itself since P 2, L2 are equiva-
lent to (k-dependent) numbers. Secondly, all single contractions, 
L AM P B

M , L AM LB
M , and P AM P B

M , can be transformed into L AB , 
P AB and C AB . Lastly, the four-index relation implies that the 
two ways of getting (0, 2) of sp(4) via appropriate projections of 
L AB LC D and P AB P C D are equivalent. Therefore, the spectrum of the 
algebra consists of sp(4)-tensors of weight (2k, m), m, k = 0, 1, ...
that can be thought of as coefficients of the appropriately sym-
metrized monomials Lk Pm . The spectrum is multiplicity free. The 
Young diagram of (2k, m) has 2k + m boxes in the first row and m
boxes in the second.

In practice, one may want to have an efficient tool to compute 
the ◦-product of any two elements.22 Any (e.g., oscillator) realiza-
tion of the deformed algebra must fulfill the deformed Joseph’s 
relations we derived above.

4.2. Quasi-conformal realization

While the widely used oscillator realization (2.7) is rigid, it is 
clear that the quasi-conformal realization, being minimal, must ad-
mit a deformation that we constructed in the previous section. The 
automorphism π is realized here in a very simple way:

π(pz) = −pz , π(z) = −z , (4.4)

leaving all the other generators intact. The corresponding smash-
product algebra is defined by the relations

k2 = 1 , {z,k} = 0 , {pz,k} = 0 , (4.5)

along with the requirement that k commutes to x, px, y, p y . The 
desired deformation can now obtain by redefining the ‘momentum’

pz �→ p̃z = pz + iν

2z
k . (4.6)

Upon this redefinition the (anti)commutation relations for the 
triple z, p̃z, k take the form

[z, p̃z] = i(1 + νk) , {z,k} = 0 , {p̃z,k} = 0 . (4.7)

These relations are known as the ‘deformed oscillator algebra’ [73]. 
The change of variables (4.6) should be accompanied with the fol-
lowing change of the composite operators Y A

L :

Y A
L =

{
z, p̃z,0,

1

x
(zp y − p̃z y − 1

2 − 1
2νk)

}
, (4.8)

while all Y A
R stay the same. It is now a simple exercise in algebra 

to see that the Lorentz L AB and translations P AB generators, being 
defined by the same formulas (2.10), (2.12), do fulfill the deformed 
Joseph’s relations (4.3) together with (2.13a), (2.13b), and (4.2). 
This gives an explicit quasi-conformal realization of the deformed 
algebra πhs. Thus, Rels. (4.7), (4.8) provide a complete solution of 
the 5d higher spin problem. It is interesting to note, that an ob-
viously nontrivial deformation of the extended higher spin algebra 

22 It seems that the efficient methods to compute the structure constants of [71,
72] can be extended from higher spin algebras to their deformations.
generated by L AB , P AB , and k is induced by the trivial deforma-
tion (4.6) of the algebra of rational functions in non-commuting 
variables z, pz, x, px, y, p y and k.

5. Einstein equations

Let us clarify the origin of the [P , P ]-commutator (4.2), which 
plays the role of a seed that drives the whole deformation. It re-
sults in the Einstein equations and is, therefore, well-motivated. 
To show this, let us switch off all the higher spin components in 
ω and C and concentrate on the spin-two sector.23 The Einstein 
equations are realized as the P AB and L AB components of (3.1a):

P AB : dhAB − 	 [A
C ∧ hC B] = 0 ,

L AB : d	 AB − 	 A
C ∧ 	 C B = hA

C ∧ hC B

+ hC
M ∧ hM D W ABC D ,

where W has the symmetries of the Weyl tensor.24 It is embed-
ded into C as W ABC D L AB LC D . The first equation is the torsion 
constraint. The second one implies that the Riemann two-form 
(the left-hand side) consists of the cosmological hh-term (it comes 
from the undeformed [P , P ]-commutator) and from the Weyl ten-
sor. Thus, the traceless part of the Ricci tensor vanishes. This is a 
fancy yet correct way to impose the vacuum Einstein’s equations. 
Let us see how the Weyl tensor emerges from the deformation. We 
write, omitting irrelevant terms and numerical factors,

V3(ω,ω, C) = hMC ∧ hN D φ1(P MC , P N D) � Ck

∼ hC
M ∧ hM D(kLC D) (W AB E F L AB LE F )k

∼ hC
M ∧ hM D δA

C δB
D W AB E F LE F

∼ hC
M ∧ hM D W ABC D L AB .

Here, we used (3.7) with C → Ck; φ1 results from (4.2). In the last 
line we used the Joseph relations that imply that L AB L AB = 8 +
O(ν) and hence the product {L AB , LC D} contains the singlet com-
ponent in addition the others, that is, {L AB , LC D} = C AC C B D + . . .. It 
is this singlet that reduces the power of L’s from 3 to 1, generating 
the proper right hand side for the Riemann two-form. Note that 
the potentially dangerous 		 W and 	hW terms vanish since 
the deformation preserves both [L, L] and [L, P ] commutators.

In the so(4, 1) language the Lorentz and translation genera-
tors are Lab = −Lba and Pa , a, b = 1, . . . , 5. We can summarize the 
physical interpretation of the deformation (4.2) as follows (now it 
is written in a d-independent form):

[Pa, Pb] = (1 + νk)Lab ⇐⇒ (Einstein Equations) .

(5.1)

Of course, the Einstein equations is a part of numerous non higher 
spin theories. The difference is that the deformation (5.1) is a small 
part of the Hochschild cocycle φ1 of the higher spin algebra and 
leads to the A∞-algebra eventually [39,40]. It is the associative 
structure of the higher spin algebras and of the deformation they 
lead to that brings higher spin fields in. In the lower-spin theories 
containing gravity, the same commutator [Pa, Pb] gets deformed, 

23 It is well to bear in mind that this is not a consistent truncation of the full 
theory: since each field sources all the others, one cannot just set higher spin fields 
to zero.
24 The Weyl tensor in the so(4, 1) language Wab,cd has the same symmetries as 

the Riemann tensor and is also traceless. In the sp(4) language this corresponds to 
a rank-four totally symmetric tensor W ABC D .
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but only as the Chevalley–Eilenberg cocycle of the Poincaré or 
(anti)-de Sitter algebra.25 As such, it does not call for a higher spin 
extension.

6. Conclusions

In the paper we constructed the bosonic formal higher spin 
gravity in AdS5. The cornerstone of any formal Higher Spin Gravity 
is a higher spin algebra. The definition of higher spin algebras via 
enveloping algebras and Joseph’s relations is a fundamental one. 
We suggested a new way to construct the interaction vertices by 
deforming the Joseph ideal relations as well as the commutator of 
the AdS5 translations. This simplifies significantly the construction 
and puts the full nonlinear theory on the same algebraic ground 
as the higher spin algebra.

Any other realization of the 5d theory has to fulfill the de-
formed Joseph’s relations we found. The usual oscillator realization 
does not admit the deformation and cannot be used to construct 
interactions. Instead, we constructed a quasi-conformal realization 
of the deformed algebra. Obviously, the two approaches – through 
the universal enveloping algebra and the quasi-conformal realiza-
tion – are applicable to all other higher spin gravities, both known 
and yet to be constructed. Some examples of interest include the 
5d supersymmetric theories, the 7d higher spin gravities [74], and 
the 6d exceptional higher spin gravity based on the F (4) superal-
gebra [75].

The considered bosonic theory opens up the way for the super-
symmetric extensions, where su(2, 2) gets replaced by su(2, 2|N). 
The massless sector of tensionless strings should be described by 
a theory based on the higher spin extension of psu(2, 2|4) [49]. 
We expect that the two approaches presented here should ad-
mit a straightforward supersymmetric extension, e.g. the quasi-
conformal realization is available [52,53]. Contrary to the case of 
AdS4 there is an upper bound N ≤ 8 on the number of supersym-
metries for higher spin gravities in AdS5.

It is worth mentioning, that there are not so many ways to 
deform enveloping algebras. Well-known is the quantum defor-
mations of the Hopf structure. We seem to have found another 
way: enveloping algebras evaluated in certain irreducible repre-
sentations do admit a deformation as associative algebras once 
extended with automorphisms (while the quotient algebras them-
selves may not have any deformations). This is closely related to 
the quantization of the corresponding Poisson orbifolds.

Lastly, it would be interesting to establish a more precise re-
lation between integrable quantum-mechanical models, e.g. the 
Calogero model, and formal Higher Spin Gravities.
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