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Abstract
We consider zero-sum games on infinite graphs, with objectives specified as sets of infinite words
over some alphabet of colors. A well-studied class of objectives is the one of ω-regular objectives, due
to its relation to many natural problems in theoretical computer science. We focus on the strategy
complexity question: given an objective, how much memory does each player require to play as
well as possible? A classical result is that finite-memory strategies suffice for both players when
the objective is ω-regular. We show a reciprocal of that statement: when both players can play
optimally with a chromatic finite-memory structure (i.e., whose updates can only observe colors)
in all infinite game graphs, then the objective must be ω-regular. This provides a game-theoretic
characterization of ω-regular objectives, and this characterization can help in obtaining memory
bounds. Moreover, a by-product of our characterization is a new one-to-two-player lift: to show that
chromatic finite-memory structures suffice to play optimally in two-player games on infinite graphs,
it suffices to show it in the simpler case of one-player games on infinite graphs. We illustrate our
results with the family of discounted-sum objectives, for which ω-regularity depends on the value of
some parameters.
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1 Introduction

Games on graphs and synthesis. We study zero-sum turn-based games on infinite graphs.
In such games, two players, P1 and P2, interact for an infinite duration on a graph, called an
arena, whose state space is partitioned into states controlled by P1 and states controlled by
P2. The game starts in some state of the arena, and the player controlling the current state
may choose the next state following an edge of the arena. Moves of the players in the game
are prescribed by their strategy, which can use information about the past of the play. Edges
of the arena are labeled with a (possibly infinite) alphabet of colors, and the interaction of
the players in the arena generates an infinite word over this alphabet of colors. These infinite
words can be used to specify the players’ objectives: a winning condition is a set of infinite
words, and P1 wins a game on a graph if the infinite word generated by its interaction with
P2 on the game graph belongs to this winning condition — otherwise, P2 wins.
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This game-theoretic model has applications to the reactive synthesis problem [4]: a system
(modeled as P1) wants to guarantee some specification (the winning condition) against an
uncontrollable environment (modeled as P2). Finding a winning strategy in the game for P1
corresponds to building a controller for the system that achieves the specification against all
possible behaviors of the environment.

Strategy complexity. We are interested in the strategy complexity question: given a winning
condition, how complex must winning strategies be, and how simple can they be? We are
interested in establishing the sufficient and necessary amount of memory to play optimally.
We consider in this work that an optimal strategy in an arena must be winning from any state
from which winning is possible (a property sometimes called uniformity in the literature).
The amount of memory relates to how much information about the past is needed to play in
an optimal way. With regard to reactive synthesis, this has an impact in practice on the
resources required for an optimal controller.

Three classes of strategies are often distinguished, depending on the number of states of
memory they use: memoryless, finite-memory, and infinite-memory strategies. A notable
subclass of finite-memory strategies is the class of strategies that can be implemented with
finite-memory structures that only observe the sequences of colors (and not the sequences
of states nor edges). Such memory structures are called chromatic [30]. By contrast, finite-
memory structures that have access to the states and edges of arenas are called general.
Chromatic memory structures are syntactically less powerful and may require more states
than general ones [11], but have the benefit that they can be defined independently of arenas.

We seek to characterize the winning conditions for which chromatic-finite-memory strate-
gies suffice to play optimally against arbitrarily complex strategies, for both players, in all
finite and infinite arenas. We call this property chromatic-finite-memory determinacy. This
property generalizes memoryless determinacy, which describes winning conditions for which
memoryless strategies suffice to play optimally for both players in all arenas. Our work
follows a line of research [6, 8] giving various characterizations of chromatic-finite-memory
determinacy for games on finite arenas (see Remark 2 for more details).

ω-regular languages. A class of winning conditions commonly arising as natural specifi-
cations for reactive systems (it encompasses, e.g., linear temporal logic specifications [38])
consists of the ω-regular languages. They are, among other characterizations, the languages
of infinite words that can be described by a finite parity automaton [36]. It is known that
all ω-regular languages are chromatic-finite-memory determined, which is due to the facts
that an ω-regular language is expressible with a parity automaton, and that parity con-
ditions admit memoryless optimal strategies [27, 43]. Multiple works study the strategy
complexity of ω-regular languages, giving, e.g., precise general memory requirements for all
Muller conditions [18] or a characterization of the chromatic memory requirements of Muller
conditions [11, Theorem 28].

A result in the other direction is given by Colcombet and Niwiński [17]: they showed that
if a prefix-independent winning condition is memoryless-determined in infinite arenas, then
this winning condition must be a parity condition. As parity conditions are memoryless-
determined, this provides an elegant characterization of parity conditions from a strategic
perspective, under prefix-independence assumption.

Congruence. A well-known tool to study a language L of finite (resp. infinite) words is
its right congruence relation ∼L: for two finite words w1 and w2, we write w1 ∼L w2 if
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for all finite (resp. infinite) words w, w1w ∈ L if and only if w2w ∈ L. There is a natural
deterministic (potentially infinite) automaton recognizing the equivalence classes of the right
congruence, called the minimal-state automaton of ∼L [42, 35].

The relation between a regular language of finite words and its right congruence is given
by the Myhill-Nerode theorem [37], which provides a natural bijection between the states of
the minimal deterministic automaton recognizing a regular language and the equivalence
classes of its right congruence relation. Consequences of this theorem are that a language is
regular if and only if its right congruence has finitely many equivalence classes, and a regular
language can be recognized by the minimal-state automaton of its right congruence.

For the theory of languages of infinite words, the situation is not so simple: ω-regular
languages have a right congruence with finitely many equivalence classes, but having finitely
many equivalence classes does not guarantee ω-regularity (for example, a language is prefix-
independent if and only if its right congruence has exactly one equivalence class, but this does
not imply ω-regularity). Moreover, ω-regular languages cannot necessarily be recognized
by adding a natural acceptance condition (parity, Rabin, Muller. . . ) to the minimal-state
automaton of their right congruence [1]. There has been multiple works about the links
between a language of infinite words and the minimal-state automaton of its right congruence;
one relevant question is to understand when a language can be recognized by this minimal-
state automaton [42, 35, 1].

Contributions. We characterize the ω-regularity of a language of infinite words W through
the strategy complexity of the zero-sum turn-based games on infinite graphs with winning
condition W : the ω-regular languages are exactly the chromatic-finite-memory determined
languages (seen as winning conditions) (Theorem 11). As discussed earlier, it is well-known
that ω-regular languages admit chromatic-finite-memory optimal strategies [36, 43, 11] —
our results yield the other implication. This therefore provides a characterization of ω-regular
languages through a game-theoretic and strategic lens.

Our technical arguments consist in providing a precise connection between the repre-
sentation of W as a parity automaton and a chromatic memory structure sufficient to
play optimally. If strategies based on a chromatic finite-memory structure are sufficient
to play optimally for both players, then W is recognized by a parity automaton built on
top of the direct product of the minimal-state automaton of the right congruence and this
chromatic memory structure (Theorem 10). This result generalizes the work from Colcombet
and Niwiński [17] in two ways: by relaxing the prefix-independence assumption about the
winning condition, and by generalizing the class of strategies considered from memoryless to
chromatic-finite-memory strategies. We recover their result as a special case.

Moreover, we actually show that chromatic-finite-memory determinacy in one-player
games of both players is sufficient to show ω-regularity of a language. As ω-regular languages
are chromatic-finite-memory determined in two-player games, we can reduce the problem
of chromatic-finite-memory determinacy of a winning condition in two-player games to the
easier chromatic-finite-memory determinacy in one-player games (Theorem 12). Such a
one-to-two-player lift holds in multiple classes of zero-sum games, such as deterministic
games on finite arenas [23, 6, 31] and stochastic games on finite arenas [24, 8]. The proofs
for finite arenas all rely on an edge-induction technique (also used in other works about
strategy complexity in finite arenas [28, 21, 13]) that appears unfit to deal with infinite
arenas. Although not mentioned by Colcombet and Niwiński, it was already noticed [30] that
for prefix-independent winning conditions in games on infinite graphs, a one-to-two-player
lift for memoryless determinacy follows from [17].
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Related works. We have already mentioned [18, 43, 17, 29, 11] for fundamental results on
the memory requirements of ω-regular conditions, [23, 24, 6, 8] for characterizations of “low”
memory requirements in finite (deterministic and stochastic) arenas, and [42, 35, 1] for links
between an ω-regular language and the minimal-state automaton of its right congruence.

One stance of our work is that our assumptions about strategy complexity affect both
players. Another intriguing question is to understand when the memory requirements of
only one player are finite. In finite arenas, a few results in this direction are sufficient
conditions for the existence of memoryless optimal strategies for one player [28, 3], and a
proof by Kopczyński that the chromatic memory requirements of prefix-independent ω-regular
conditions are computable [29, 30].

Other articles study the strategy complexity of (non-necessarily ω-regular) winning
conditions in infinite arenas; see, e.g., [20, 25, 16]. In such non-ω-regular examples, as
can be expected given our main result, at least one player needs infinite memory to play
optimally, or the arena model is different from ours (e.g., only allowing finite branching — we
discuss such differences in more depth after Theorem 10). A particularly interesting example
w.r.t. our results is considered by Chatterjee and Fijalkow [15]. They study the strategy
complexity of finitary Büchi and parity conditions, and show that P1 has memoryless optimal
strategies for finitary Büchi and chromatic-finite-memory optimal strategies for finitary
parity.1 However, for these (non-ω-regular) winning conditions, P2 needs infinite memory.
This example illustrates that our main result would not hold if we just focused on the strategy
complexity of one player.

We mention other works on finite-memory determinacy in different contexts: finite
arenas [34], non-zero-sum games [33], countable one-player stochastic games [26], concurrent
games [32, 7].

This paper extends and complements a preceding conference version [9] with additional
details and complete proofs of all the statements.

Structure. We fix definitions and notations in Section 2. Our main results are discussed in
Section 3, and their proofs lie in Sections 4 and 5. We provide applications of our results to
discounted-sum, mean-payoff, and total-payoff winning conditions in Section 6.

2 Preliminaries

Let C be an arbitrary non-empty set of colors. Given a set A, we write A∗ for the set of
finite sequences of elements of A and Aω for the set of infinite sequences of elements of A.

Arenas. We consider two players P1 and P2. An arena is a tuple A = (S, S1, S2, E) such
that S = S1 ⊎ S2 (disjoint union) is a non-empty set of states (of any cardinality) and
E ⊆ S × C × S is a set of edges. States in S1 are controlled by P1 and states in S2 are
controlled by P2. We allow arenas with infinite branching. Given e ∈ E, we denote by
in, col, and out the projections to its first, second, and third component, respectively (i.e.,
e = (in(e), col(e), out(e))). We assume arenas to be non-blocking: for all s ∈ S, there exists
e ∈ E such that in(e) = s.

Let A = (S, S1, S2, E) be an arena with s ∈ S. We denote by Plays(A, s) the set of plays
of A from s, that is, infinite sequences of edges ρ = e1e2 . . . ∈ Eω such that in(e1) = s and for
all i ≥ 1, out(ei) = in(ei+1). For ρ ∈ Plays(A, s), we denote by colω(ρ) the infinite sequence

1 We argue in Appendix A that their result also applies to our slightly different setting.
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of colors obtained from applying the col function to each edge in ρ. We denote by Hists(A, s)
the set of histories of A from s, which are all finite prefixes of plays of A from s. We write
Plays(A) and Hists(A) for the sets of all plays of A and all histories of A (from any state),
respectively. If h = e1 . . . ek is a history of A, we define in(h) = in(e1) and out(h) = out(ek).
For convenience, for every s ∈ S, we also consider the empty history λs from s, and we
set in(λs) = out(λs) = s. For i ∈ {1, 2}, we denote by Histsi(A) the set of histories h such
that out(h) ∈ Si.

An arena A = (S, S1, S2, E) is a one-player arena of P1 (resp. P2) if S2 = ∅ (resp. S1 = ∅).

Skeletons. A skeleton is a tuple M = (M, minit, αupd) such that M is a finite set of states,
minit ∈ M is an initial state, and αupd : M × C → M is an update function. We denote by
α∗

upd the natural extension of αupd to finite sequences of colors. We always assume that all
states of skeletons are reachable from their initial state. We define the trivial skeleton Mtriv
as the only skeleton with a single state. Notice that although we require skeletons to have
finitely many states, we allow them to have infinitely many transitions (which happens when
C is infinite).

We say that a non-empty sequence π = (m1, c1) . . . (mk, ck) ∈ (M × C)+ is a path of M
(from m1 to αupd(mk, ck)) if for all i ∈ {1, . . . , k − 1}, αupd(mi, ci) = mi+1. For convenience,
we also consider every element (m, ⊥) for m ∈ M and ⊥ /∈ C to be an empty path of M
(from m to m). A non-empty path of M from m to m′ is a cycle of M (on m) if m = m′.
Cycles of M are usually denoted by letter γ. For π = (m1, c1) . . . (mk, ck) a path of M, we
define st(π) to be the set {m1, . . . , mk}, and col∗(π) to be the sequence c1 . . . ck ∈ C∗. For
an infinite sequence (m1, c1)(m2, c2) . . . ∈ (M × C)ω, we also write colω((m1, c1)(m2, c2) . . .)
for the infinite sequence c1c2 . . . ∈ Cω. If (m, c) ∈ M × C occurs in a path π of M, we call
(m, c) a transition of π and we write (m, c) ∈ π.

For m, m′ ∈ M , we write Πm,m′ for the set of paths of M from m to m′, Γm for the set
of cycles of M on m, and ΓM for the set of all cycles of M (on any skeleton state). When
considering sets of paths or cycles of M, we add a c in front of the set to denote the projections
of the corresponding paths or cycles to colors (e.g., cΓM = {col∗(γ) ∈ C+ | γ ∈ ΓM}).

For w = c1c2 . . . ∈ Cω, we define skel(w) as the infinite sequence (m1, c1)(m2, c2) . . . ∈
(M × C)ω that w induces in the skeleton (m1 = minit and for all i ≥ 1, αupd(mi, ci) = mi+1).

Let M1 = (M1, m1
init, α1

upd) and M2 = (M2, m2
init, α2

upd) be two skeletons. Their (direct)
product M1 ⊗ M2 is the skeleton (M, minit, αupd) where M = M1 × M2, minit = (m1

init, m2
init),

and, for all m1 ∈ M1, m2 ∈ M2, c ∈ C, αupd((m1, m2), c) = (α1
upd(m1, c), α2

upd(m2, c)).

Strategies. Let A = (S, S1, S2, E) be an arena and i ∈ {1, 2}. A strategy of Pi on A is a
function σi : Histsi(A) → E such that for all h ∈ Histsi(A), out(h) = in(σi(h)). We denote
by Σi(A) the set of strategies of Pi on A. Given a strategy σi of Pi, we say that a play ρ is
consistent with σi if for all finite prefixes h = e1 . . . ei of ρ such that out(h) ∈ Si, σi(h) = ei+1.
For s ∈ S, we denote by Plays(A, s, σi) the set of plays from s that are consistent with σi.

For M = (M, minit, αupd) a skeleton, a strategy σi ∈ Σi(A) is based on (memory) M if
there exists a function αnxt : S × M → E such that for all s ∈ Si, σi(λs) = αnxt(s, minit), and
for all non-empty paths h ∈ Histsi(A), σi(h) = αnxt(out(h), α∗

upd(minit, col∗(h))). A strategy
is memoryless if it is based on Mtriv.

▶ Remark 1. Our memory model is chromatic [30], i.e., it observes the sequences of colors and
not the sequences of edges of arenas, due to the fact that the argument of the update function
of a skeleton is in M × C. It was recently shown that the amount of memory states required
to play optimally for a winning condition using chromatic skeletons may be strictly larger
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than using general memory structures (i.e., using memory structures observing edges) [11,
Proposition 32], disproving a conjecture by Kopczyński [30]. The example provided is a
Muller condition (hence an ω-regular condition), in which both kinds of memory requirements
are still finite. A result in this direction is also provided by Le Roux [32, Corollary 1] for
games on finite arenas: it shows that in many games, a strategy using general finite memory
can be swapped for a (larger) chromatic finite memory.

For games on infinite arenas, which we consider in this article, we do not know whether
there exists a winning condition with finite general memory requirements, but infinite
chromatic memory requirements. Our results focus on chromatic memory requirements. ⌟

Winning conditions. A (winning) condition is a set W ⊆ Cω. When a winning condition
W is clear in the context, we say that an infinite word w ∈ Cω is winning if w ∈ W , and
losing if w ̸∈ W . For a winning condition W and a word w ∈ C∗, we write w−1W = {w′ ∈
Cω | ww′ ∈ W} for the set of winning continuations of w. We write W for the complement
Cω \ W of a winning condition W .

A game is a tuple G = (A, W ) where A is an arena and W is a winning condition.

Optimality and determinacy. Let G = (A = (S, S1, S2, E), W ) be a game, and s ∈ S.
We say that σ1 ∈ Σ1(A) is winning from s if colω(Plays(A, s, σ1)) ⊆ W , and we say that
σ2 ∈ Σ2(A) is winning from s if colω(Plays(A, s, σ2)) ⊆ W .

A strategy of Pi is optimal for Pi in (A, W ) if it is winning from all the states from which
Pi has a winning strategy. We often write optimal for Pi in A if the winning condition W is
clear from the context. We stress that this notion of optimality requires a single strategy to
be winning from all the winning states (a property sometimes called uniformity).

A winning condition W is determined if for all games G = (A = (S, S1, S2, E), W ), for all
s ∈ S, either P1 or P2 has a winning strategy from s. Let M be a skeleton. We say that
a winning condition W is M-determined if (i) W is determined and (ii) in all arenas A,
both players have an optimal strategy based on M. A winning condition W is one-player
M-determined if in all one-player arenas A of P1, P1 has an optimal strategy based on M
and in all one-player arenas A of P2, P2 has an optimal strategy based on M. A winning
condition W is (one-player) memoryless-determined if it is (one-player) Mtriv-determined. A
winning condition W is (one-player) chromatic-finite-memory determined if there exists a
skeleton M such that it is (one-player) M-determined.
▶ Remark 2. It might seem surprising that for chromatic-finite-memory determinacy, we
require the existence of a single skeleton that suffices to play optimally in all arenas, rather
than the seemingly weaker existence, for each arena, of a finite skeleton (which may depend
on the arena) that suffices to play optimally. In infinite arenas, it turns out that these notions
are equivalent.

▶ Lemma 3. Let W ⊆ Cω be a winning condition. The following are equivalent:
1. for all arenas A, there exists a skeleton MA such that both players have an optimal

strategy based on MA in A;
2. W is chromatic-finite-memory determined.

Proof. It is clear that 2. =⇒ 1., as 2. means that there is a (fixed) skeleton that suffices in
each arena. We now show 1. =⇒ 2. We proceed by contraposition. Assume that 2. does
not hold, i.e., that for all skeletons M, there exists AM = (SM, SM

1 , SM
2 , EM) such that at

least one player does not have an optimal strategy based on M in AM. We consider the
arena A = (

⊎
M SM,

⊎
M SM

1 ,
⊎

M SM
2 ,

⊎
M EM) consisting in the “disjoint union” over all



P. Bouyer, M. Randour, and P. Vandenhove 7

skeletons M of the arenas AM. Clearly, no strategy based on a skeleton suffices to play
optimally in A; this shows that 1. does not hold. ◀

When restricted to finite arenas, we do not have an equivalence between these two notions
(hence the distinction between finite-memory determinacy and arena-independent finite-
memory determinacy [6, 8]). Our proof of Lemma 3 exploits that an infinite union of arenas
is still an arena, which is not true when restricted to finite arenas. ⌟

ω-regular languages. We define a parity automaton as a pair (M, p) where M is a skeleton
and p : M × C → {0, . . . , n}; function p assigns priorities to every transition of M. This
definition implies that we consider deterministic and complete parity automata (i.e., in every
state, reading a color leads to exactly one state). Following [12], if M is a skeleton, we say
that a parity automaton (M′, p) is defined on top of M if M′ = M.

A parity automaton (M, p) defines a language L(M,p) of all the infinite words w ∈ Cω such
that, for skel(w) = (m1, c1)(m2, c2) . . ., lim supi≥1 p(mi, ci) is even. We say that W ⊆ Cω is
recognized by (M, p) if W = L(M,p). We emphasize that we consider here transition-based
parity acceptance conditions: we assign priorities to transitions, and not to states of M. For
further information on links between state-based and transition-based acceptance conditions,
we refer to [11]. If a language of infinite words can be recognized by a parity automaton, it
is called ω-regular.
▶ Remark 4. Formally, a deterministic parity automaton should be defined on a finite set of
colors, whereas here our set of colors C can have any cardinality. However, given a parity
automaton (M = (M, minit, αupd), p), as there are finitely many states in M and finitely
many priorities, there are in practice only finitely many “truly different” classes of colors:
two colors c1, c2 ∈ C can be assumed to be equal (w.r.t. (M, p)) if αupd(·, c1) = αupd(·, c2)
and p(·, c1) = p(·, c2). ⌟

Right congruence. For ∼ an equivalence relation, we call the index of ∼ the number of
equivalence classes of ∼. We denote by [a]∼ the equivalence class of an element a for ∼.

Let W be a winning condition. We define the right congruence ∼W ⊆ C∗ × C∗ of W as
w1 ∼W w2 if w−1

1 W = w−1
2 W (meaning that w1 and w2 have the same winning continuations).

Relation ∼W is an equivalence relation. When W is clear from the context, we write ∼
for ∼W . We denote by ε the empty word. When ∼ has finite index, we can associate a
natural skeleton M∼ = (M∼, m∼

init, α∼
upd) to ∼ such that M∼ is the set of equivalence classes

of ∼, m∼
init = [ε]∼, and α∼

upd([w]∼, c) = [wc]∼. This transition function is well-defined since it
follows from the definition of ∼ that if w1 ∼ w2, then for all c ∈ C, w1c ∼ w2c. Hence, the
choice of representatives for the equivalence classes does not have an impact in this definition.
We call skeleton M∼ the minimal-state automaton of ∼ [42, 35].

3 Concepts and characterization

We define two concepts at the core of our characterization, one of them dealing with
prefixes and the other one dealing with cycles. Let W ⊆ Cω be a winning condition and
M = (M, minit, αupd) be a skeleton.

Prefix-independence. Let ∼ be the right congruence of W .

▶ Definition 5. Condition W is M-prefix-independent if for all m ∈ M , for all w1, w2 ∈
cΠminit,m, w1 ∼ w2.



8 Characterizing Omega-Regularity through Finite-Memory Determinacy

minit m2

b

a, c

a

b, c

Figure 1 Skeleton M such that W = Büchi(a) ∩ Büchi(b) is M-cycle-consistent (Example 7).
In figures, we use rhombuses (resp. circles, squares) to depict skeleton states (resp. arena states
controlled by P1, arena states controlled by P2).

In other words, W is M-prefix-independent if finite words reaching the same state of M
from its initial state have the same winning continuations. The classical notion of prefix-
independence is equivalent to Mtriv-prefix-independence (as all finite words have the exact
same set of winning continuations, which is W ). If ∼ has finite index, W is in particular
M∼-prefix-independent: indeed, two finite words reach the same state of M∼ (if and) only
if they are equivalent for ∼. Any skeleton M such that W is M-prefix-independent must
have at least one state for each equivalence class of ∼, but multiple states may partition the
same equivalence class.

Cycle-consistency. For w ∈ C∗, we define

Γwin,w
M = {γ ∈ Γm | m = α∗

upd(minit, w) and (col∗(γ))ω ∈ w−1W}

as the cycles on the skeleton state reached by w in M that induce winning words when
repeated infinitely many times after w. We define

Γlose,w
M = {γ ∈ Γm | m = α∗

upd(minit, w) and (col∗(γ))ω ∈ w−1W}

as their losing counterparts. We emphasize that cycles are allowed to go through the same
edge multiple times.

▶ Definition 6. Condition W is M-cycle-consistent if for all w ∈ C∗, (cΓwin,w
M )ω ⊆ w−1W

and (cΓlose,w
M )ω ⊆ w−1W .

What this says is that after any finite word, if we concatenate infinitely many winning (resp.
losing) cycles on the skeleton state reached by that word, then it only produces winning
(resp. losing) infinite words.

▶ Example 7. For c′ ∈ C, let Büchi(c′) be the set of infinite words on C that see color
c′ infinitely often. Let C = {a, b, c}. Condition W = Büchi(a) ∩ Büchi(b) is Mtriv-prefix-
independent, but not Mtriv-cycle-consistent: for any w ∈ C∗, a and b are both in cΓlose,w

Mtriv
(as

waω and wbω are losing), but word w(ab)ω is winning. However, W is M-cycle-consistent for
the skeleton M with two states minit and m2 represented in Figure 1. For finite words reaching
minit, the losing cycles only see a and c, and combining infinitely many of them gives an
infinite word without b, which is a losing continuation of any finite word. The winning cycles
are the ones that go to m2 and then go back to minit, as they must see both a and b; combining
infinitely many of them guarantees a winning continuation after any finite word. A similar
reasoning applies to state m2. Notice that W is also M-prefix-independent. With regard to
memory requirements, condition W is not Mtriv-determined but is M-determined. ⌟

Properties of these concepts. Both M-prefix-independence and M-cycle-consistency hold
symmetrically for a winning condition and its complement, and are stable by product with an
arbitrary skeleton (as products generate even smaller sets of prefixes and cycles to consider).
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▶ Lemma 8. Let W ⊆ Cω be a winning condition and M be a skeleton. Then, W is
M-prefix-independent (resp. M-cycle-consistent) if and only if W is M-prefix-independent
(resp. M-cycle-consistent). If W is M-prefix-independent (resp. M-cycle-consistent), then
for all skeletons M′, W is (M ⊗ M′)-prefix-independent (resp. (M ⊗ M′)-cycle-consistent).

Proof. Let M = (M, minit, αupd).
We assume that W is M-prefix-independent. Thus, for all m ∈ M , for all w1, w2 ∈

cΠminit,m, w1 ∼ w2, i.e., w−1
1 W = w−1

2 W . This last equality is equivalent to w−1
1 W = w−1

2 W ,
which can be rewritten as w−1

1 W = w−1
2 W . This shows that W is M-prefix-independent.

To show that W is M-cycle-consistent if and only if W is M-cycle-consistent, notice that
the winning cycles for W are exactly the losing cycles for W , and vice versa.

Let M′ = (M ′, m′
init, α′

upd) be a skeleton. We assume that W is M-prefix-independent
and we show that W is (M ⊗ M′)-prefix-independent. The sets of prefixes to consider are
smaller in M ⊗ M′ than in M: for all (m, m′) ∈ M × M ′, cΠ(minit,m′

init),(m,m′) ⊆ cΠminit,m.
Therefore, for all w1, w2 ∈ cΠ(minit,m′

init),(m,m′), we also have w1, w2 ∈ cΠminit,m, so by M-
prefix-independence, w1 ∼ w2.

We now assume that W is M-cycle-consistent and we show that W is (M ⊗ M′)-cycle-
consistent. The sets of winning and losing cycles to consider are smaller in M ⊗ M′ than
in M: for all w ∈ C∗, cΓwin,w

M⊗M′ ⊆ cΓwin,w
M and cΓlose,w

M⊗M′ ⊆ cΓlose,w
M . By M-cycle-consistency,

for all w ∈ C∗, we have (cΓwin,w
M )ω ⊆ w−1W and (cΓlose,w

M )ω ⊆ w−1W , so we also have
(cΓwin,w

M⊗M′)ω ⊆ w−1W and (cΓlose,w
M⊗M′)ω ⊆ w−1W . ◀

An interesting property of languages defined by a parity automaton (M, p) is that they
satisfy both aforementioned concepts with skeleton M.

▶ Lemma 9. Let W ⊆ Cω be a winning condition and (M, p) be a parity automaton. If W

is recognized by (M, p), then W is M-prefix-independent and M-cycle-consistent.

Proof. By definition of the parity acceptance condition, any two finite words reaching
the same state of the skeleton have the same winning continuations. Therefore, W is
M-prefix-independent.

Also, the winning (resp. losing) cycles of M after any finite word are exactly the ones that
have an even (resp. odd) maximal priority. Therefore, combining infinitely many winning
(resp. losing) cycles can only produce a winning (resp. losing) infinite word. ◀

Main results. We state our main technical tool. We recall that one-player M-determinacy
of a winning condition W is both about one-player arenas of P1 (trying to achieve a word in
W ) and of P2 (trying to achieve a word in W ).

▶ Theorem 10. Let W ⊆ Cω be a winning condition and ∼ be its right congruence.
1. If there exists a skeleton M such that W is one-player M-determined, then ∼ has finite

index (in particular, W is M∼-prefix-independent) and W is M-cycle-consistent.
2. If there exists a skeleton M such that W is M-prefix-independent and M-cycle-consistent,

then W is ω-regular and can be recognized by a deterministic parity automaton defined on
top of M.

We prove this theorem in Sections 4 and 5. We state two consequences of this result
that were already mentioned in the introduction: a strategic characterization of ω-regular
languages, and a novel one-to-two-player-lift.

▶ Theorem 11 (Characterization). Let W ⊆ Cω be a language of infinite words. Language
W is ω-regular if and only if it is chromatic-finite-memory determined (in infinite arenas).
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Proof. One implication is well-known [36, 43]: if W is ω-regular, then it can be recognized
by a deterministic parity automaton whose skeleton can be used as a memory that suffices
to play optimally for both players, in arenas of any cardinality. The other direction is given
by Theorem 10: if W is chromatic-finite-memory determined, then there exists in particular
a skeleton M such that W is one-player M-determined, so ∼ has finite index and W is
M-cycle-consistent. In particular, by Lemma 8, W is (M∼ ⊗ M)-prefix-independent and
(M∼ ⊗ M)-cycle-consistent, so W is ω-regular and can be recognized by a deterministic
parity automaton defined on top of M∼ ⊗ M. ◀

▶ Theorem 12 (One-to-two-player lift). Let W ⊆ Cω be a winning condition. Language W is
one-player chromatic-finite-memory determined if and only if it is chromatic-finite-memory
determined.

Proof. The implication from two-player to one-player determinacy is trivial. The other
implication is given by Theorem 10: if W is one-player M-determined, then ∼ has finite
index and W is M-cycle-consistent. Again by Lemma 8 and Theorem 10, as W can be
recognized by a parity automaton defined on top of M∼ ⊗M, W is determined and strategies
based on M∼ ⊗ M suffice to play optimally in all two-player arenas. ◀

We discuss two specific situations in which we can easily derive interesting consequences us-
ing our results: the prefix-independent case, and the case where the minimal-state automaton
suffices to play optimally.

Prefix-independent case. If a condition W is prefix-independent (i.e., ∼ has index 1 and
M∼ = Mtriv), and skeleton M suffices to play optimally in one-player games, then W is
recognized by a parity automaton defined on top of Mtriv ⊗ M, which is isomorphic to M.
This implies that the exact same memory M can be used by both players to play optimally
in two-player arenas, with no increase in memory. Note that, in general, when M suffices to
play optimally in one-player arenas, we do not know whether taking the product of M with
M∼ is necessary to play optimally in two-player arenas. Still, the question is automatically
solved for prefix-independent conditions.

If, moreover, M = Mtriv (i.e., memoryless strategies suffice to play optimally in one-player
arenas), we recover exactly the result from Colcombet and Niwiński [17]: W can be recognized
by a parity automaton defined on top of Mtriv, so we can directly assign a priority to each
color with a function p : C → {0, . . . , n} such that an infinite word w = c1c2 . . . ∈ Cω is in
W if and only if lim supi≥1 p(ci) is even.

M∼-determined case. An interesting property of some ω-regular languages is that they can
be recognized by defining an acceptance condition on top of the minimal-state automaton of
their right congruence [35], which is a useful property for the learning of languages [1]. Here,
Theorem 10 implies that W can be recognized by defining a transition-based parity acceptance
condition on top of the minimal-state automaton M∼ if and only if W is M∼-determined
(and more precisely, if and only if W is M∼-cycle-consistent). The transition-based parity
acceptance condition was not considered in the cited results [35, 1].

▶ Corollary 13. Let W ⊆ Cω be an ω-regular language and M∼ be the minimal-state
automaton of its right congruence. The following are equivalent:
1. W is recognized by defining a transition-based parity acceptance condition on top of M∼;
2. W is M∼-determined;
3. W is M∼-cycle-consistent.
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Proof. Implication 1. =⇒ 2. follows from the memoryless determinacy of parity games [43].
Implication 2. =⇒ 3. follows from the first item of Theorem 10. Implication 3. =⇒ 1. follows
from the second item of Theorem 10: we have by definition that W is M∼-prefix-independent,
so if it is additionally M∼-cycle-consistent, then W can be recognized by a parity automaton
defined on top of M∼. ◀

Classes of arenas. We discuss the sensitivity of Theorem 10 with regard to our model of
arenas.

There are multiple conditions that are chromatic-finite-memory determined if we only
consider finite arenas (finitely many states and edges), but which are not in infinite arenas. A
few examples are discounted-sum games [41], mean-payoff games [19], total-payoff games [22],
one-counter games [10] which are all memoryless-determined in finite arenas but which
require infinite memory to play optimally in some infinite arenas (we discuss some of these
in Section 6). In particular, Theorem 11 tells us that the derived winning conditions are not
ω-regular.

Strangely, the fact that our arenas have colors on edges and not on states is crucial for the
result. Indeed, there exists a winning condition (a generalization of a parity condition with
infinitely many priorities [25]) that is memoryless-determined in state-labeled infinite arenas,
but not in edge-labeled infinite arenas (as we consider here). This particularity was already
discussed [17], and it was also shown that the same condition is memoryless-determined in
edge-labeled arenas with finite branching. Therefore, the fact that we allow infinite branching
in our arenas is also necessary for Theorem 11. Another example of a winning condition with
finite memory requirements in finitely branching arenas for one player but infinite memory
requirements in infinitely branching arenas is presented in [16, Section 4].

In Sections 4 and 5, we prove respectively the first item and the second item of Theorem 10.

4 Two properties of one-player chromatic-finite-memory determinacy

Let W ⊆ Cω be a winning condition, ∼ be the right congruence of W , and M =
(M, minit, αupd) be a skeleton, fixed for this section. We aim to show the first item of
Theorem 10, which is that for a skeleton M, one-player M-determinacy of W implies that
∼ has finite index and that W is M-cycle-consistent.

Finite index of ∼. For w1, w2 ∈ C∗, we define w1 ⪯ w2 if w−1
1 W ⊆ w−1

2 W (meaning that
any continuation that is winning after w1 is also winning after w2). Relation ⪯ ⊆ C∗ × C∗ is
a preorder. Notice that ∼ is equal to ⪯ ∩ ⪰. We also define the strict preorder ≺ = ⪯ \ ∼.

We will use preorder ⪯ to deduce that ∼ has finite index by showing that under hypotheses
about the optimality of strategies based on M in one-player arenas, (i) on each subset cΠminit,m

of C∗ for m ∈ M , preorder ⪯ is total (Lemma 14) (ii) on each subset cΠminit,m of C∗ for
m ∈ M , preorder ⪯ has no infinite increasing nor decreasing sequence (Lemma 15).

▶ Lemma 14. Assume P1 has optimal strategies based on M on all its one-player arenas.
Then, for all m ∈ M , preorder ⪯ is total on cΠminit,m.

Proof. Let m ∈ M . Let w1, w2 ∈ cΠminit,m; we show that w1 ̸⪯ w2 implies w2 ⪯ w1. If
w1 ̸⪯ w2, then there exists w′

1 ∈ Cω such that w1w′
1 ∈ W and w2w′

1 /∈ W . We show that
w2 ⪯ w1, i.e., that w−1

2 W ⊆ w−1
1 W . Let w′

2 ∈ w−1
2 W . We build an infinite one-player arena

of P1, depicted in Figure 2, that merges the ends of finite chains for w1 and w2 and the
starts of the infinite chains for w′

1 and for w′
2 in a state s.
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s

. . .

. . .

w1

w2

w′
1

w′
2

Figure 2 Arena built in the proof of Lemma 14. Squiggly arrows indicate a sequence of edges.

It is possible to win after seeing w1 or w2, by choosing respectively w′
1 or w′

2 in the
merged state s. Moreover, there must be a strategy based on M that wins from the starts of
the chains of both w1 and w2, which means that in both cases the same choice has to be
made in s (as memory state m is reached in both cases). Continuing to w′

1 in s would be
losing after w2, so w′

2 must be winning after w1. Therefore, w′
2 ∈ w−1

1 W . ◀

▶ Lemma 15. Assume P1 has optimal strategies based on M in all its one-player arenas.
For all m ∈ M , there is no infinitely decreasing sequence of finite words for ⪯ in cΠminit,m.

Proof. Let m ∈ M . Assume by contraposition that there is an infinitely decreasing sequence
of finite words w1 ≻ w2 ≻ w3 ≻ . . ., with wi ∈ cΠminit,m for i ≥ 1. Then for all i ≥ 1, there
exists w′

i ∈ Cω such that wiw
′
i ∈ W and wi+1w′

i /∈ W . If we create an infinite one-player
arena of P1 in which we merge the ends of chains for all wi to the starts of chains for all w′

i,
for all i ≥ 1, it is always possible to win from the start of the chain for wi, but there is no
strategy based on M winning from all the starts of the chains simultaneously. Therefore, M
is not sufficient to play optimally in all one-player arenas of P1. ◀

We will also use this last lemma from the point of view of P2. If we were to define a
preorder ⪯′ for P2 (using winning condition W ), symmetrically to ⪯ for P1, we would obtain
w1 ⪯′ w2 if and only if w2 ⪯ w1 because for any finite word w ∈ C∗, w−1W = w−1W .

We can now combine the results of Lemmas 14 and 15 to find that ∼ has finite index if
W is one-player M-determined.

▶ Lemma 16. If both P1 and P2 have optimal strategies based on M in their one-player
arenas (i.e., if W is one-player M-determined), then the right congruence ∼ has finite index.

Proof. Using Lemma 15 along with the hypothesis about P1, we have that for all m ∈ M ,
there are no infinitely decreasing sequence of words in cΠminit,m for ⪯. Using the same result
replacing P1 with P2, we obtain that there is no infinitely decreasing sequence for ⪯′, or
in other words, that there is no infinitely increasing sequence for ⪯. For m ∈ M , as ⪯ is
total in cΠminit,m (Lemma 14), we conclude that there are only finitely many equivalence
classes of ∼ in cΠminit,m. As M is finite, there are only finitely many equivalence classes of ∼
in

⋃
m∈M cΠminit,m = C∗. ◀

Under one-player chromatic-finite-memory determinacy of W , we can therefore consider the
minimal-state automaton M∼ of ∼.

M-cycle-consistency of W . We now prove in a straightforward way that one-player M-
determinacy of W implies M-cycle-consistency of W .

▶ Lemma 17. If both P1 and P2 have optimal strategies based on M in their one-player
arenas (i.e., if W is one-player M-determined), then winning condition W is M-cycle-
consistent.
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s1 s2
w

w1, w2, . . .

Figure 3 Infinite one-player arena of P2 used in the proof of Lemma 17. The thick squiggly
arrow indicates a choice between sequences of edges for any word in {w1, w2, . . .}.

Proof. Let w ∈ C∗ and m = α∗
upd(minit, w). We show that (cΓwin,w

M )ω ⊆ w−1W . If cΓwin,w
M is

empty, this is true. If not, let w1, w2, . . . be an infinite sequence of finite words in cΓwin,w
M

— we show that the infinite word w1w2 . . . is in w−1W . We consider the infinite one-player
arena of P2 starting with a chain for w from a state s1, followed by a choice in a state s2
between a chain for each finite word in {w1, w2, . . .}, all coming back to s2 (depicted in
Figure 3). In this arena, P2 has no winning strategy based on M from s1, since the same
memory state m is always reached in s2 (hence the same choice must always be made in
s2), and repeating any cycle in cΓwin,w

M forever after w is winning for P1 by definition of
cΓwin,w

M . Therefore, P2 also has no winning strategy at all, which means in particular that
the infinite word w1w2 . . . must be a winning continuation of w — w1w2 . . . is in w−1W .
Hence, (cΓwin,w

M )ω ⊆ w−1W .
Using a similar one-player arena of P1, we can show in a symmetric way that (cΓlose,w

M )ω ⊆
w−1W for all w ∈ C∗. ◀

The reciprocal of this result is false, as shown in the following example.

▶ Example 18. Let C = {a, b} and W = abCω. If we consider the skeleton M in Figure 4,
then W is M-cycle-consistent: for all finite words w except for ε and a, either all continuations
are winning (if w ∈ abC∗) or all continuations are losing. If w is ε or a, then it reaches state
minit of M, and the only cycles on minit are in a+, are losing, and are losing when infinitely
many of them are combined into an infinite word. But this automaton does not suffice to
play optimally in arena A in Figure 4, as seeing a does not change the state.

Notice that the minimal-state automaton M∼ has four states (corresponding to equiva-
lence classes [ε]∼, [a]∼, [ab]∼, and [b]∼) and suffices to play optimally. ⌟

minit m2
b

a a, b a b [ε]∼

[a]∼ [ab]∼

[b]∼

a

b

b

a, b

a, b

Figure 4 Skeleton M (left), arena A (center) and skeleton M∼ (right) used in Example 18.

▶ Remark 19. As discussed in Section 3, Theorem 10 does not hold if we assume chromatic-
finite-memory determinacy in arenas in which states rather than edges are labeled with colors.
Lemma 17 is an example of a step in the proof of Theorem 10 that would not work with
state-labeled arenas: the construction in Figure 3 would not work (there would have to be a
color labeling s seen at the start of every cycle, but words wi cannot all start with the same
color in general). There is a winning condition that is memoryless-determined in state-labeled
arenas [25] for which it is straightforward to show that it is not Mtriv-cycle-consistent. ⌟
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We will often use a weaker implication of M-cycle-consistency, which is that a finite
combination of winning cycles is still a winning cycle (i.e., if γ, γ′ ∈ Γwin,w

M , then γγ′ ∈ Γwin,w
M ).

Wrap-up of the section. Thanks to the results from this section, we deduce the first item
of Theorem 10.

▶ Corollary 20 (First item of Theorem 10). If there exists a skeleton M such that W is one-
player M-determined, then ∼ has finite index (in particular, W is M∼-prefix-independent)
and W is M-cycle-consistent.

Proof. Follows from Lemmas 16 and 17. ◀

In particular, we obtain from the previous result that if both players have optimal strategies
based on M in their one-player arenas, then W is both (M∼ ⊗ M)-prefix-independent and
(M∼ ⊗ M)-cycle-consistent (using Lemma 8).
▶ Remark 21. If we compare Example 7 (W = Büchi(a) ∩ Büchi(b)) and Example 18
(W = abCω), we see that we can easily classify the prefixes of the former, but that information
is not sufficient to play optimally: we need some more information to classify cycles. For the
latter, it is possible to find a skeleton classifying cycles that is insufficient to play optimally,
but a good classification of the prefixes suffices to play optimally. In general, in order to
understand W , we need to have information about prefixes and about cycles, which is why,
intuitively, skeleton M∼ ⊗ M turns out to be useful. ⌟

▶ Remark 22. In the proofs of this section, we only ever used arenas with countably many
states and edges. This implies that we can actually formulate a slightly stronger version
of Theorem 12 (one-to-two-player lift): chromatic-finite-memory determinacy in one-player
countable arenas is equivalent to chromatic-finite-memory determinacy in arenas of any
cardinality. ⌟

5 From properties of a winning condition to ω-regularity

In this section, we fix a language W ⊆ Cω and a skeleton M = (M, minit, αupd), and we
assume that W is M-prefix-independent and M-cycle-consistent. Our goal is to show
that W can be recognized by a parity automaton defined on top of M and is thus ω-regular.
To do that, we show in multiple steps how to assign a priority to each transition of M through
a function p : M × C → {0, . . . , n} so that W is recognized by the parity automaton (M, p).

Simplified notations. In this section, as we have M-prefix-independence and M-cycle-
consistency assumptions about W , we extend some notations from Section 2 for conciseness.

As W is M-prefix-independent, for m ∈ M , we write m−1W for the set of infinite words
that equals w−1W for any w ∈ cΠminit,m. Notice in particular that m−1

initW = ε−1W =
W . Moreover, as we consider the property of M-cycle-consistency along with M-prefix-
independence, the definition of M-cycle-consistency can be written by only quantifying over
states of M and not over all finite words. The reason is that there are then only finitely
many classes of finite words that matter, which correspond to the states of M. We define a
few more notations that only make sense under the M-prefix-independent hypothesis. Let

Γwin
m = {γ ∈ Γm | (col∗(γ))ω ∈ m−1W}

be the cycles on m that induce winning words when repeated infinitely many times from m,
and Γlose

m be their losing counterparts. In this case, W is M-cycle-consistent if and only if for
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all m ∈ M , (cΓwin
m )ω ⊆ m−1W and (cΓlose

m )ω ⊆ m−1W . We call elements of Γwin
m (resp. Γlose

m )
winning (resp. losing) cycles on m. The set of winning (resp. losing) cycles of M (on any
state) is denoted Γwin

M (resp. Γlose
M ). We write val(γ) for the value of a cycle: win if γ ∈ Γwin

M ,
and lose if γ ∈ Γlose

M .

Proof ideas. Our intermediate technical lemmas will focus on cycles of M, how they relate
to each other, and what happens when we combine them. Our main tool is to define a
preorder on cycles, which will help assign priorities to transitions of M — the aim being to
define a parity condition on top of M that recognizes W . Intuitively, for some state m of
M, γ ∈ Γwin

m , and γ′ ∈ Γlose
m , we look at which cycle “dominates” the other, that is whether

the combined cycle γγ′ is in Γwin
m (in which case γ dominates γ′) or in Γlose

m (in which case γ′

dominates γ). We will formalize this and show how to extend this idea to cycles that may
not share any common state.
▶ Remark 23. One may wonder why we seek to define a parity condition on top of M to
prove that W is ω-regular, rather than a more general Muller condition which would achieve
the same goal. Indeed, using M-cycle-consistency and a recent result by Casares et al. [12,
Section 5], it is straightforward to show that we could relabel such a Muller automaton with
a parity condition defining the same language.

One of the obstacles in our context is that we may start with infinitely many colors; in
order to prove ω-regularity of W , we need to show at some point that many colors can be
assumed to be equal (for W ) in order to get finitely many classes of “equivalent” colors. The
way we manage that, using the aforementioned idea of ordering cycles, actually brings us
very close to directly defining a relevant parity condition on top of M — it does not appear
that our proof technique can be easily simplified by trying to obtain a Muller condition. ⌟

Combining cycles on the same skeleton state. We first prove that “shifting” the start of
a cycle does not alter its value.

▶ Lemma 24 (Shift independence). Let m1, m2 ∈ M be two states of M. Let π1 ∈ Πm1,m2 and
π2 ∈ Πm2,m1 ; π1π2 is a cycle on m1 and π2π1 is a cycle on m2. Then, val(π1π2) = val(π2π1).

Proof. For all w1 ∈ cΠm1,m2 and w2 ∈ Cω, notice that

w1w2 ∈ m−1
1 W ⇐⇒ ∃w ∈ cΠminit,m1 , w1w2 ∈ w−1W

⇐⇒ ∃w ∈ cΠminit,m1 , w2 ∈ (ww1)−1W

⇐⇒ ∃w′ ∈ cΠminit,m2 , w2 ∈ (w′)−1W

⇐⇒ w2 ∈ m−1
2 W.

The third equivalence is due to the fact that ww1 is in cΠminit,m2 for the left-to-right
implication, and to M-prefix-independence for the right-to-left implication; if there exists
w′ ∈ cΠminit,m2 such that w2 ∈ (w′)−1W , then the same is true for any word in cΠminit,m2 .

Going back to the statement of the lemma, we have that

π1π2 ∈ Γwin
m1

⇐⇒ (col∗(π1π2))ω ∈ m−1
1 W

⇐⇒ col∗(π1)(col∗(π2π1))ω ∈ m−1
1 W as (col∗(π1π2))ω = col∗(π1)(col∗(π2π1))ω

⇐⇒ (col∗(π2π1))ω ∈ m−1
2 W by the above property as col∗(π1) ∈ cΠm1,m2

⇐⇒ π2π1 ∈ Γwin
m2

.

Hence, the values of π1π2 and π2π1 are always the same. ◀
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In particular, this result implies that swapping two cycles on the same skeleton state does
not alter the value: if γ, γ′ ∈ Γm, then val(γγ′) = val(γ′γ).

The next two lemmas are used to show that although cycles of M that are taken infinitely
often might have an impact on the result of a play, their relative number of repetitions is not
relevant (i.e., val(γγ′) = val(γk(γ′)l) for any k, l ≥ 1). These two proofs and statements are
very close to [17, Lemmas 9, 10, and 11] and are a direct generalization to a larger class of
winning conditions.

▶ Lemma 25. Let m ∈ M . Let Λ, Λ′ ⊆ Γm be non-empty sets of cycles on m. We have

∀γ′ ∈ Λ′, ∃γ ∈ Λ, γγ′ ∈ Γwin
m =⇒ ∃γ ∈ Λ, ∀γ′ ∈ Λ′, γγ′ ∈ Γwin

m .

This lemma says that if all cycles from Λ′ can be made winning by adjoining them a cycle
from Λ, then we can actually find a single cycle from Λ that makes all cycles from Λ′ winning.

Proof. We assume the premise of the implication, and by contradiction, we assume that the
conclusion is false. We therefore assume that

∀γ′ ∈ Λ′, ∃γ ∈ Λ, γγ′ ∈ Γwin
m and ∀γ ∈ Λ, ∃γ′ ∈ Λ′, γγ′ ∈ Γlose

m .

Let γ1 be any word in Λ. We build inductively an infinite sequence starting with γ1 by
alternating the use of the two assumptions. For i ≥ 1, we take γ′

i ∈ Λ′ such that γiγ
′
i ∈ Γlose

m

(using the second assumption), and we then take γi+1 ∈ Λ such that γi+1γ′
i ∈ Γwin

m (using the
first assumption).

We consider the infinite sequence γ1γ′
1γ2γ′

2γ3 . . . ∈ (M × C)ω such that for all i ≥ 1,
γiγ

′
i ∈ Γlose

m and γ′
iγi+1 ∈ Γwin

m (we use that the order of cycles on m does not matter, shown
in Lemma 24). We show that the infinite word colω(γ1γ′

1γ2γ′
2 . . .) is both in m−1W and in

m−1W by pairing cycles in two different ways:
the infinite sequence (γ1γ′

1)(γ2γ′
2) . . . is a sequence of losing cycles on m and its projection

to colors is therefore in m−1W by using M-cycle-consistency.
the infinite word colω(γ1(γ′

1γ2)(γ′
2γ3) . . .) is in m−1W if and only if colω((γ′

1γ2)(γ′
2γ3) . . .)

is in m−1W by using that γ1 ∈ Γm and M-prefix-independence of W . The sequence
(γ′

1γ2)(γ′
2γ3) . . . is a sequence of winning cycles on m and its projection to colors is in

m−1W by using M-cycle-consistency.
As m−1W ∩ m−1W = ∅, we have our contradiction. ◀

▶ Lemma 26 (Repetition independence). Let m ∈ M . Let γ, γ′ ∈ Γm such that γγ′ ∈ Γwin
m .

We have γ(γ′)+ ⊆ Γwin
m .

Proof. We have that γ or γ′ is in Γwin
m — otherwise, γγ′ would be in Γlose

m by M-cycle-
consistency. If γ′ is in Γwin

m , we notice that any element of γ(γ′)+ can be written as (γγ′)(γ′)n

for some n ≥ 0, which is a combination of winning cycles on m. Using M-cycle-consistency,
we thus get that γ(γ′)+ ⊆ Γwin

m .
It is left to deal with the case γ ∈ Γwin

m and γ′ ∈ Γlose
m . We first show by induction that for

n ≥ 1, γn(γ′)n ∈ Γwin
m . This is true by hypothesis for n = 1. We now assume it is true for

some n ≥ 1, and we show it is true for n + 1. By Lemma 24, we have that γn+1(γ′)n+1 ∈ Γwin
m

if and only if γn(γ′)n+1γ = (γn(γ′)n)(γ′γ) ∈ Γwin
m , by swapping the order of γ and γn(γ′)n+1.

By induction hypothesis, γn(γ′)n ∈ Γwin
m ; by hypothesis and by Lemma 24, γ′γ ∈ Γwin

m .
Therefore, by M-cycle-consistency, (γn(γ′)n)(γ′γ) is also in Γwin

m .
We now define Λ = γ+ and Λ′ = (γ′)+. We have that for all elements (γ′)n of Λ′ (with

n ≥ 1), we have that γn (an element of Λ) is such that γn(γ′)n ∈ Γwin
m . Therefore the
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hypothesis of Lemma 25 is verified for Λ and Λ′, which implies that there exists n ≥ 1 such
that γn(γ′)+ ⊆ Γwin

m .
We assume w.l.o.g. that n = min{n ∈ N | γn(γ′)+ ⊆ Γwin

m }. For all k, k ≥ n, we also have
that γk(γ′)+ = γk−n(γn(γ′)+) ⊆ Γwin

m by M-cycle-consistency. We intend to show that n = 1,
which would end the proof of the lemma as this would show that γ1(γ′)+ = γ(γ′)+ ⊆ Γwin

m .
We assume by contradiction that n > 1. Then there must exist k ∈ N such that

γn−1(γ′)k ∈ Γlose
m . We also have that (γ′)kγn−1 is in Γlose

m by Lemma 24, which implies that
γn−1(γ′)k(γ′)kγn−1 is also in Γlose

m by M-cycle-consistency. But then by Lemma 24, this cycle
has the same value as γ2n−2(γ′)2k, which must therefore be in Γlose

m . This is a contradiction
since n > 1 implies that 2n − 2 ≥ n.

We conclude that γ(γ′)+ ⊆ Γwin
m . ◀

Thanks to this result, we can now show that any two consecutive cycles can always be
swapped without changing the value of a longer cycle.

▶ Corollary 27 (Cycle-order independence). Let m ∈ M . Let γ1, γ2, γ3 ∈ Γm. Then,
val(γ1γ2γ3) = val(γ1γ3γ2).

Proof. We assume by contradiction that cycles γ1γ2γ3 and γ1γ3γ2 have a different value;
w.l.o.g., that γ1γ2γ3 ∈ Γwin

m and that γ1γ3γ2 ∈ Γlose
m . By M-cycle-consistency, at least one

cycle among γ1, γ2 and γ3 is winning and one is losing. We assume w.l.o.g. that γ1 ∈ Γwin
m

and γ2 ∈ Γlose
m . We also assume that γ3 ∈ Γwin

m ; the other case can be dealt with by symmetry.
Notice that we necessarily have that γ3γ2 is in Γlose

m ; otherwise, γ1γ3γ2 = γ1(γ3γ2) would be
in Γwin

m by M-cycle-consistency. For the same reason, γ2γ1 is in Γlose
m . We have

win = val(γ1γ2γ3) by hypothesis
= val((γ3γ1)γ2) by Lemma 24
= val((γ3γ1)(γ2)2) by Lemma 26
= val(γ2γ3γ1γ2) by Lemma 24.

However, this last cycle can be written as a combination of two losing cycles (γ2γ3) and
(γ1γ2), and should therefore be losing by M-cycle-consistency. This is a contradiction. ◀

Combining cycles on different skeleton states. We can now also strengthen Lemma 26
(“repetition independence”) to show that even “non-consecutive subcycles” in a longer cycle
can be repeated without affecting the value of the long cycle.

▶ Corollary 28 (Repetition independence, strong version). Let m1, m2 ∈ M . Let γ1 ∈ Γm1 ,
γ2 ∈ Γm2 , γ1 ∈ Πm1,m2 , and γ2 ∈ Πm2,m1 . Then, val(γ1γ1γ2γ2) = val(γ1(γ1γ2)nγ1γ2γ2) for
all n ≥ 0.

The situation is depicted in Figure 5. Notice first that we can see γ1γ1γ2γ2 as a combination
of two cycles γ1 and γ1γ2γ2 on m1, we therefore already know that the value of γ1γ1γ2γ2 on
m1 is the same as the one of (γ1)k(γ1γ2γ2)l for all k, l ≥ 1. This second cycle can be seen
as two cycles γ2γ1 and γ2 on m2, we therefore know that the value of γ1γ2γ2 on m2 is the
same as the one of (γ2)k(γ2γ1)l for all k, l ≥ 1. However, these two facts do not directly give
the result as cycle γ1γ2 does not appear “consecutively” in γ1γ1γ2γ2.
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m1 m2γ1

γ1

γ2

γ2 m1 m2

π1

π2

π′
1

π′
2

Figure 5 Depiction of the statement of Corollary 28 (left) and Lemma 29 (right).

Proof. We have that

val(γ1γ1γ2γ2) = val(γ1(γ1γ2γ2)(γ1γ2γ2)) by Lemma 26 on m1

= val(γ1γ1(γ2)(γ2γ1)γ2γ2)
= val(γ1γ1(γ2γ1)(γ2)γ2γ2) by Lemma 27 on m2

= val(γ1(γ1γ2)γ1(γ2)2γ2)
= val(γ1(γ1γ2)γ1γ2γ2) by Lemma 26 on m2.

This shows the result for n = 1; applying Lemma 26 gives the result for all n ≥ 1. ◀

Another important property that will help define an interesting preorder on cycles is that
the value of a combination of two cycles is independent from the skeleton state chosen to
compare pairs of cycles: if two cycles both go through two different states m1 and m2 of M,
then combining them around m1 or around m2 yields the same value.

▶ Lemma 29 (Crossing-point independence). Let m1, m2 ∈ M be two states of M. Let
π1, π′

1 ∈ Πm1,m2 and π2, π′
2 ∈ Πm2,m1 . We have that val(π1π2π′

1π′
2) = val(π2π1π′

2π′
1).

The intuition of this lemma is that if we take two cycles (in the statement, π1π2 and π′
1π′

2)
that have two common states (m1 and m2), the chosen starting state to combine the two
cycles (the combination is (π1π2)(π′

1π′
2) if m1 is chosen, and (π2π1)(π′

2π′
1) if m2 is chosen)

has no impact on the value of the combination. This situation is depicted in Figure 5.

Proof. If π1π2 and π′
1π′

2 are both in Γwin
m1

or both in Γlose
m1

, then π2π1 and π′
2π′

1 are also
respectively both in Γwin

m2
or both in Γlose

m2
by Lemma 24. Therefore, we have our result using

M-cycle-consistency.
For the remaining cases, we assume w.l.o.g. that π1π2 ∈ Γwin

m1
and π′

1π′
2 ∈ Γlose

m2
. We will

assume (again w.l.o.g.) that combining them is winning, i.e., that π1π2π′
1π′

2 ∈ Γwin
m1

. Our
goal is to show that π2π1π′

2π′
1 is also in Γwin

m2
. We assume by contradiction that it is not, i.e.,

that π2π1π′
2π′

1 ∈ Γlose
m2

.
Observe that as π1π2π′

1π′
2 ∈ Γwin

m1
, we also have (π2π′

1)(π′
2π1) ∈ Γwin

m2
by Lemma 24. Hence,

at least one of π2π′
1 or π′

2π1 must be a winning cycle on m2, otherwise their combination
would be losing on m2 by M-cycle-consistency. Equivalently, by Lemma 24, at least one of
π′

1π2 or π1π′
2 must be a winning cycle on m1.

Similarly, as π2π1π′
2π′

1 is in Γlose
m2

, we have that (π1π′
2)(π′

1π2) is in Γlose
m1

. Hence, at least
one of π1π′

2 and π′
1π2 is a losing cycle on m1 by M-cycle-consistency.

Our conclusions imply that exactly one of π1π′
2 and π′

1π2 is winning on m1, and one is
losing on m1. Without loss of generality, we assume that π1π′

2 ∈ Γwin
m1

and π′
1π2 ∈ Γlose

m1
.

We now have a value for all four two-word cycles on m1 (and therefore for all four two-word
cycles on m2 by Lemma 24): π1π2 and π1π′

2 are in Γwin
m1

, and π′
1π2 and π′

1π′
2 are in Γlose

m1
. If

we look at four-word cycles, we have already assumed w.l.o.g. that π1π2π′
1π′

2 ∈ Γwin
m1

and
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that π1π′
2π′

1π2 ∈ Γlose
m1

. We still do not know whether π1π2π′
1π2 and π1π′

2π′
1π′

2 are winning
or losing — no matter how we express them as two two-word cycles, one two-word cycle is
winning and the other one is losing. We study the value of these two four-word cycles.

Consider the cycle (π2π′
1π′

2π1)(π′
2π1π2π′

1) on m2. It is winning, since π2π′
1π′

2π1 and
π′

2π1π2π′
1 are both in Γwin

m2
: this can be shown using Lemma 24 and the fact that π1π2π′

1π′
2

is in Γwin
m1

. Therefore, by shifting the start of the cycle, (π′
1π′

2π1π′
2)(π1π2π′

1π2) is in Γwin
m1

. By
M-cycle-consistency, this means that at least one of π′

1π′
2π1π′

2 (equivalently, π1π′
2π′

1π′
2) and

π1π2π′
1π2 is winning on m1.

Similarly, we have that the cycle (π2π1π′
2π′

1)(π′
2π′

1π2π1) is in Γlose
m2

. Therefore, by shifting
the start of the cycle, (π1π′

2π′
1π′

2)(π′
1π2π1π2) is in Γlose

m1
. This means that at least one of

π1π′
2π′

1π′
2 or π′

1π2π1π2 (equivalently, π1π2π′
1π2) is in Γlose

m1
.

Our conclusions imply that exactly one of π1π2π′
1π2 and π1π′

2π′
1π′

2 is winning on m1, and
one is losing on m1. We consider both cases and draw a contradiction in each case.

Assume that val(π1π2π′
1π2) = lose. Now consider the cycle ν = (π′

2π1)(π2π′
1)2 on m2. We

have

val(ν) = val(π′
2π1π2π′

1) by Lemma 26
= val(π1π2π′

1π′
2) by Lemma 24

= win by hypothesis.

However, we also have

val(ν) = val((π1π2π′
1π2)(π′

1π′
2)) by Lemma 24,

and since val(π1π2π′
1π2) = val(π′

1π′
2) = lose, we also have val(ν) = lose by M-cycle-consistency.

This is a contradiction.
Assume now that val(π1π′

2π′
1π′

2) = lose. Now consider the cycle ν = (π1π2)(π′
1π′

2)2 on
m1. We have

val(ν) = val(π1π2π′
1π′

2) by Lemma 26
= win by hypothesis.

However, we also have

val(ν) = val((π2π′
1)(π′

2π′
1π′

2π1)) by Lemma 24,

and since val(π′
1π2) = val(π1π′

2π′
1π′

2) = lose, we also have val(ν) = lose by M-cycle-consistency.
This is a contradiction. ◀

▶ Remark 30. A consequence of the previous lemma is that when two cycles γ, γ′ ∈ ΓM
share at least one common state (i.e., st(γ) ∩ st(γ′) ̸= ∅), we can write γγ′ for any cycle
that, starting from a common state, sees first γ and then γ′, without necessarily specifying
on which common state the cycle starts; we allow such a shortcut as the value of γγ′ is
not impacted by the choice of the common skeleton state. This convention is used in the
following definition. ⌟

Competing cycles.

▶ Definition 31. Let γ, γ′ ∈ ΓM with val(γ) ̸= val(γ′). We say that γ and γ′ are competing
if there exists γ ∈ ΓM such that st(γ) ∩ st(γ) ̸= ∅, st(γ′) ∩ st(γ) ̸= ∅, val(γγ) = val(γ), and
val(γ′γ) = val(γ′). In this case, we say that γ is a witness that γ and γ′ are competing, or
that the competition of γ and γ′ is witnessed by γ.
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m1

m2

m′
1

m′
2

γ1,1

γ1,2

γ1 γ2

γ2,1

γ2,2

γ′
1 γ′

2

Figure 6 Situation in the proof of Lemma 32.

Our requirement for cycle γ means that it intersects the states of both γ and γ′, but is
not influential enough to “alter” the values of γ and γ′ when it is combined with them. If
val(γ) ̸= val(γ′) and st(γ) ∩ st(γ′) ̸= ∅, then if val(γγ′) = val(γ) (resp. val(γγ′) = val(γ′)), we
have that γ′ (resp. γ) witnesses that γ and γ′ are competing (the argument uses Lemma 26).
In short, any two cycles of opposite values that share a common state are competing, and two
cycles of opposite values that do not share a common state may or may not be competing.

If two cycles are competing, we want to determine which one dominates the other. For γ

a witness, for some m ∈ st(γ) and m′ ∈ st(γ′), it is possible to decompose γ as two (possibly
empty) paths γ1 and γ2 such that γ = γ1γ2, γ1 ∈ Πm,m′ , and γ2 ∈ Πm′,m. We define that γ

dominates γ′ if val(γγ1γ′γ2) = val(γ), and γ′ dominates γ if val(γγ1γ′γ2) = val(γ′). However,
to be well-defined, the domination notion needs to be independent from the choice of witness.

▶ Lemma 32 (Witness independence). Let γ, γ′ ∈ ΓM with val(γ) ̸= val(γ′). Let γ1, γ2 ∈ ΓM
be two witnesses that γ and γ′ are competing. Then, γ dominates γ′ taking γ1 as a witness
if and only if γ dominates γ′ taking γ2 as a witness.

Proof. We assume w.l.o.g. val(γ) = win and val(γ′) = lose. As γ1 witnesses that γ and γ′ are
competing, there exists m1 ∈ st(γ), m′

1 ∈ st(γ′) such that γ1 = γ1,1γ1,2 with γ1,1 ∈ Πm1,m′
1
,

γ1,2 ∈ Πm′
1,m1 . Similarly, as γ2 witnesses that γ and γ′ are competing, there exists m2 ∈ st(γ),

m′
2 ∈ st(γ′) such that γ2 = γ2,1γ2,2 with γ2,1 ∈ Πm2,m′

2
, γ2,2 ∈ Πm′

2,m2 . We can also write
γ = γ1γ2 with γ1 ∈ Πm1,m2 and γ2 ∈ Πm2,m1 , and γ′ = γ′

1γ′
2 with γ1 ∈ Πm′

1,m′
2

and
γ′

2 ∈ Πm′
2,m′

1
.

The situation is depicted in Figure 6. Note that it is possible that m1 = m2 (in which
case we can assume γ = γ1, γ2 = (m1, ⊥)) or similarly that m1 = m′

1, m′
1 = m′

2, and/or
m2 = m′

2.
We assume by contradiction that γ dominates γ′ taking γ1 as a witness, but that γ′

dominates γ taking γ2 as a witness. In other words, val(γ1γ2γ1,1γ′
1γ′

2γ1,2) = win and
val(γ2γ1γ2,1γ′

2γ′
1γ2,2) = lose. We consider the concatenation of both these cycles, shifting

the second one to make it a cycle on m1,

ν = (γ1γ2γ1,1γ′
1γ′

2γ1,2)(γ1γ2,1γ′
2γ′

1γ2,2γ2).

It is possible to express ν directly as a combination of two losing cycles: γ1,1γ′
1γ′

2γ1,2 is losing
(by definition of witness), and

val(γ1γ2,1γ′
2γ′

1γ2,2γ2γ1γ2)
= val(γ2,1γ′

2γ′
1γ2,2(γ2γ1)2) by Lemma 24

= val(γ2,1γ′
2γ′

1γ2,2γ2γ1) by Lemma 26
= lose as γ′ dominates γ taking γ2 as a witness.
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m1 m2

c | 3

b | 1

a | 2

a | 2

b, c | 0

[(m1, c)]≃

[(m1, a)(m2, a)]≃

[(m1, b)]≃

[(m2, b)]≃

◁

◁

◁

Figure 7 A parity automaton (M, p) (left) with C = {a, b, c} used in Example 33. Notation c | k

on a transition from a state m means that p(m, c) = k. A diagram (right) showing the relations
between the elements of ΓM/≃ ordered by partial preorder ◁, discussed in Example 36.

Cycle ν is therefore losing by M-cycle-consistency.
Now, notice that ν can be written as three cycles on m′

2 after being shifted in the following
way:

val(ν) = val((γ′
2γ1,2γ1γ2,1)(γ′

2γ′
1)(γ2,2γ2γ1γ2γ1,1γ′

1)).

By Lemma 27 (“cycle-order independence”), it has the same value as

val(ν) = val((γ′
2γ1,2γ1γ2,1)(γ2,2γ2γ1γ2γ1,1γ′

1)(γ′
2γ′

1)).

As before, this cycle can be shifted and written as two winning cycles γ1γ2,1γ2,2γ2 and
γ1γ2γ1,1(γ′

1γ′
2)2γ1,2 and is therefore winning by M-cycle-consistency.

Cycle ν is both winning and losing, a contradiction. ◀

▶ Example 33. We illustrate competition and domination of cycles on a parity automaton
(even though at this point in the proof, we have not yet shown that W is ω-regular). We
consider the parity automaton (M, p) from Figure 7, with winning condition W = L(M,p).
Condition W is M-prefix-independent and M-cycle-consistent (Lemma 9). We give a few
examples of competition and domination between cycles. The winning cycle (m1, a)(m2, a)
dominates losing cycle (m1, b) but is dominated by losing cycle (m1, c). Cycle (m2, b)
is winning but is not competing with (m1, b). In particular, their competition is not
witnessed by (m1, a)(m2, a) since combining it with (m1, b) alters its value ((m1, b) is losing
but (m1, b)(m1, a)(m2, a) is winning) — another potential witness is (m1, c)(m1, a)(m2, a),
but combining it with (m2, b) alters its value. However, cycle (m2, b) is competing with
and dominated by (m1, c): their competition is witnessed, e.g., by (m1, a)(m2, a) and by
(m1, b)(m1, a)(m2, a). ⌟

Preorder on cycles. For a winning (resp. losing) cycle γ ∈ ΓM, we define comp(γ) as the
set of losing (resp. winning) cycles that γ is competing with, and domBy(γ) as the set of
losing (resp. winning) cycles dominated by γ.

We define an ordering ◁ of cycles based on these notions. We write γ′ ◁ γ if γ′ ∈ domBy(γ).
We extend this definition to cycles with the same value: if val(γ1) = val(γ2), we write γ2 ◁ γ1
if there exists a cycle γ′ such that val(γ′) ̸= val(γ1) with γ2 ∈ domBy(γ′) and γ′ ∈ domBy(γ1)

— intuitively, this condition implies that γ2 is less powerful than γ1 as we can find a cycle
dominating γ2 that is itself dominated by γ1. We show that relation ◁ is a strict preorder
(which is not total in general).

▶ Lemma 34. Relation ◁ is a strict preorder.

Proof. We first prove that ◁ is irreflexive, i.e., that for all γ ∈ ΓM, γ ̸◁ γ. If γ ◁ γ,
since val(γ) = val(γ), there exists γ′ ∈ ΓM such that val(γ′) ̸= val(γ), γ ∈ domBy(γ′), and



22 Characterizing Omega-Regularity through Finite-Memory Determinacy

γ1
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γ2
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γ′
1,2

γ′
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γ′
2
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γ′′
1

γ′′
2

γ′
2

Figure 8 Situation to show transitivity of ◁ in Lemma 34.

γ′ ∈ domBy(γ). But that is not possible since when γ and γ′ are competing, they cannot
both dominate the other (no matter the choice of witness, as shown in Lemma 32).

We now prove that ◁ is transitive. We distinguish four cases (we rename cycles in each
case to ease the reading by making it so that cycles with a prime symbol have a different
value from cycles without a prime symbol).

If γ2 ◁ γ′ and γ′ ◁ γ1 with val(γ2) ̸= val(γ′) and val(γ′) ̸= val(γ1), then val(γ2) = val(γ1),
and γ2 ◁ γ1 by definition.

Let γ′
2 ◁ γ2 and γ2 ◁ γ1 with val(γ′

2) ̸= val(γ2) and val(γ2) = val(γ1). We assume w.l.o.g.
that val(γ2) = val(γ1) = win, so there exists γ′

1 ∈ ΓM such that val(γ′
1) = lose, γ2 ◁ γ′

1 and
γ′

1 ◁ γ1. We assume that γ′
1 ◁ γ1 is witnessed by γ, that γ2 ◁ γ′

1 is witnessed by γ′ and that
γ′

2 ◁ γ2 is witnessed by γ′′. We assume that γ = γ1γ2, γ′
1 = γ′

1,1γ′
1,2, γ′ = γ′

1γ′
2, γ2 = γ2,1γ2,2,

and γ′′ = γ′′
1γ′′

2 . We use Figure 8 to illustrate the situation and explain where the common
states of these cycles are.

We want to show that γ′
2 ◁ γ1. To do so, we show that for ν1 = γ1γ′

1,1γ′
1γ2,1γ′′

1 and
ν2 = γ′′

2γ2,2γ′
2γ′

1,2γ2, ν = ν1ν2 is a witness that γ1 and γ′
2 are competing, and that γ1ν1γ′

2ν2
is winning:

Cycle γ1ν is winning. We can split this cycle into γ′
1,2γ2γ1γ1γ′

1,1 and γ′
1γ2,1γ′′

1γ′′
2γ2,2γ′

2.
The former cycle can be shifted (Lemma 24) to γ1γ1γ′

1,1γ′
1,2γ2, which is winning since

γ′
1 ◁ γ1. The latter cycle has the same value as γ′

1(γ2,2γ2,1)γ2,1γ′′
1γ′′

2γ2,2γ′
2 (Lemma 28),

which can be shifted to (γ′
2γ′

1γ2,2γ2,1)(γ2,1γ′′
1γ′′

2γ2,2). Both these cycles are winning since
γ′ and γ′′ are witnesses for competitions involving γ2.
Cycle γ′

2ν is losing. We can split this cycle into γ′′
1γ′

2γ′′
2 (losing because γ′′ witnesses

a competition involving γ′
2) and γ2,2γ′

2γ′
1,2γ2γ1γ′

1,1γ′
1γ2,1. This latter cycle has the

same value as the cycle γ2,2γ′
2(γ′

1,2γ′
1,1)γ′

1,2γ2γ1γ′
1,1γ′

1γ2,1 (Lemma 28), which can itself
be split into γ′

1,2γ2γ1γ′
1,1 (losing because γ witnesses a competition involving γ′) and

γ′
2γ′

1,2γ′
1,1γ′

1γ2,1γ2,2 (losing because γ2 ◁ γ′
1).

Cycle γ1ν1γ′
2ν2 is winning. Using Lemma 28, we can show that γ1ν1γ′

2ν2 has the same
value as γ1ν1(γ′′

2γ2,2γ2,1γ′′
1)γ′

2ν2. We can split this cycle into γ1ν1ν2 = γ1ν (which is
winning, as shown above) and γ′′

2γ2,2γ2,1γ′′
1γ′

2 (winning since γ′
2 ◁ γ2).

This shows that γ′
2 ◁ γ1.

There are still two cases left to consider. The case γ′
2 ◁ γ′

1 and γ′
1 ◁ γ1 with val(γ′

2) = val(γ′
1)

and val(γ′
1) ̸= val(γ1) can be dealt with in the same way as the previous case (after noticing

that there exists γ2 ∈ ΓM such that γ′
2 ◁ γ2, γ2 ◁ γ′

1 and val(γ2) = val(γ1)).
If γ3 ◁ γ2 and γ2 ◁ γ1 with val(γ3) = val(γ2) = val(γ1), then there exists in particular

γ′ ∈ ΓM such that γ3 ◁ γ′, γ′ ◁ γ2 and val(γ3) ̸= val(γ′). By a previous case, we conclude
from γ′ ◁ γ2 and γ2 ◁ γ1 that γ′ ◁ γ1. As γ3 ◁ γ′ and γ′ ◁ γ1, we have γ3 ◁ γ1 as desired. ◀

We define an equivalence relation on the cycles: we write γ1 ≃ γ2 if val(γ1) = val(γ2),
comp(γ1) = comp(γ2), and domBy(γ1) = domBy(γ2). We show that cycles that are equivalent
for ≃ are in relation with the same elements for ◁.
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▶ Lemma 35. Let γ1, γ2, γ′ ∈ ΓM. If γ1 ≃ γ2 and γ′ ◁ γ1, then γ′ ◁ γ2. If γ1 ≃ γ2 and
γ1 ◁ γ′, then γ2 ◁ γ′. In other words, preorder ◁ is compatible with ≃.

Proof. The first item is trivial, as the elements smaller than γ1 for ◁ are determined by
domBy(γ1), and domBy(γ1) = domBy(γ2). For the second item, we distinguish two cases:

if val(γ1) ̸= val(γ′), then γ1 ◁ γ′ means that γ′ ∈ comp(γ1) and γ′ ̸∈ domBy(γ1). If
γ1 ≃ γ2, the same properties also hold for γ2, so γ2 ◁ γ′.
if val(γ1) = val(γ′), then γ1 ◁ γ′ means that there exists γ′′ with val(γ1) ̸= val(γ′′) such
that γ1 ∈ domBy(γ′′) and γ′′ ∈ domBy(γ′). By the previous case, if γ1 ≃ γ2, then γ2 ◁ γ′′,
so γ2 ◁ γ′ as well. ◀

Partial preorder ◁ therefore also induces a partial preorder on ΓM/≃ .

▶ Example 36. We represent the relations between all elements of ΓM/≃ for the parity
automaton considered in Example 33 in their “Hasse diagram”, depicted in Figure 7. Elements
that are linked by a line segment are comparable for ◁, and elements that are above are greater
for ◁. There are four equivalence classes of cycles, two of them winning and two of them losing.
Notice for instance that any cycle going through transition (m1, c) is equivalent (for ≃) to cycle
(m1, c): indeed, it is necessarily a losing cycle competing with and dominating all the winning
cycles in this skeleton. Other examples are given by (m1, a)(m2, a) ≃ (m1, a)(m2, b)(m2, a)
and (m2, b) ≃ (m2, c). ⌟

We now prove finiteness of the index of ≃, by showing that
the height of partial preorder ◁ is finite, i.e., there is no infinite increasing nor decreasing
sequence for ◁ (Lemma 39);
the width of partial preorder ◁ on ΓM/≃ is finite, i.e., there is no infinite set of elements
in ΓM/≃ that are all pairwise incomparable for ◁ (Lemma 40).

We start with two technical lemmas about competition between cycles.

▶ Lemma 37. Let γ1, γ2, γ′ ∈ ΓM be such that val(γ1) = val(γ2) ̸= val(γ′), γ2 ◁ γ′, and
γ′ ◁ γ1. Let γ be a witness that γ2 and γ′ are competing such that st(γ) ∩ st(γ1) ∩ st(γ2) ̸= ∅.
Then, γ also witnesses that γ1 and γ′ are competing.

Proof. We already know that val(γ′γ) = val(γ′) and that st(γ′) ∩ st(γ) ̸= ∅ (as γ witnesses a
competition involving γ′) and that st(γ1) ∩ st(γ) ̸= ∅ (by hypothesis). It is left to show that
val(γ1γ) = val(γ1). Let m ∈ st(γ)∩st(γ1)∩st(γ2); we represent the situation in Figure 9, with
γ = γ1γ2. Consider first cycle γ1γ2γ2: this cycle is a witness that γ1 and γ′ are competing,
since it has common states with those cycles, val(γ1(γ1γ2γ2)) = val(γ1) (both γ1 and γ1γ2γ2
have the same value), and val(γ′(γ2γ2γ1)) = val(γ′) (since γ2 ◁ γ′ and γ is a witness of the
competition). Therefore, as γ′ ◁ γ1, the cycle ν = γ1γ1γ′γ2γ2 has the same value as γ1. By
Lemma 28, cycle ν has the same value as γ1(γ1γ2)γ1γ′γ2γ2, which can be split into γ1γ′γ2γ2
(which has the same value as γ′ since γ2 ◁ γ′ and γ is a witness of the competition) and
γ1γ1γ2. Therefore, γ1γ1γ2 = γ1γ cannot have the same value as γ′, otherwise ν would also
have the same value as γ′ by M-cycle-consistency. ◀

▶ Lemma 38. Let γ, γ′
1 ∈ ΓM be such that val(γ) ̸= val(γ′

1) and γ′
1 ◁ γ. Let γ′

2 be a cycle
such that val(γ′

2) = val(γ′
1) and st(γ′

2) ∩ st(γ′
1) ̸= ∅. Then, γ and γ′

2 are competing.

Proof. Let γ be a witness that γ and γ′
1 are competing; we represent the situation in Figure 9.

We show that γγ′
1 is a witness that γ and γ′

2 are competing. As st(γ) ∩ st(γ) ̸= ∅, we have
st(γγ′

1) ∩ st(γ) ̸= ∅. Similarly, as st(γ′
1) ∩ st(γ′

2) ̸= ∅, we have st(γγ′
1) ∩ st(γ′

2) ̸= ∅. As γ′
1 ◁ γ

with witness γ, we have that val(γ(γγ′
1)) = val(γ). Moreover, since γ is a witness for γ′

1 (and
γ′), val(γγ′

1) = val(γ′
1). Therefore val(γγ′

1) = val(γ′
2), which implies by M-cycle-consistency

that val(γ′
2(γγ′

1)) = val(γ′
2). ◀
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Figure 9 Situation in the proof of Lemma 37 (left) and in the proof of Lemma 38 (right).
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Figure 10 Situation in the proof of Lemma 39. Competition of γi and γ′
i is witnessed by γi, and

competition of γ′
i and γi+1 is witnessed by γ′

i. State m′ appears somewhere along γ′
i and is not

represented.

▶ Lemma 39. The height of partial preorder ◁ is finite.

Proof. By contradiction, let γ0 ▷ γ′
0 ▷ γ1 ▷ γ′

1 ▷ γ2 ▷ . . . be an infinitely decreasing sequence
for ◁. We assume w.l.o.g. that for all i ≥ 0, val(γi) = win and val(γ′

i) = lose (if two consecutive
cycles are, for example, both winning, we can always insert an intermediate losing cycle
between them, by definition).

For i ≥ 0, let m (resp. m′) be a state of M that is part of infinitely many sets st(γi) (resp.
st(γ′

i)) — such states necessarily exist as the state space of M is finite. Thanks to transitivity
of ◁ (Lemma 34), by keeping only winning cycles γi such that m ∈ st(γi) alternating with
losing cycles γ′

i such that m′ ∈ st(γ′
i), we keep an infinitely decreasing sequence for ◁. We

can therefore assume w.l.o.g., up to renaming cycles, that for all i ∈ N, m ∈ st(γi) and
m′ ∈ st(γ′

i).
We show that the competition of each contiguous pair in sequence γ0, γ′

0, γ1, γ′
1, γ2, . . .

has a witness that intersects the winning cycle at m, and the losing cycle at m′. For all
i ≥ 0, let γi = γi,1γi,2 be a witness that γi and γ′

i are competing, and γ′
i = γ′

i,1γ′
i,2 be

a witness that γ′
i and γi+1 are competing. Let i ≥ 0; we depict part of the situation in

Figure 10, with γ′
i = γ′

i,1γ′
i,2. Based on the cycles that we already know, we consider the

cycle νi = γi,1γ′
i,1γ′

i,1γi+1γ′
i,2γ′

i,2γi,2. We have that m, m′ ∈ st(νi) since γi+1 and γ′
i are part

of ν. We show that νi witnesses that γi and γ′
i are competing:

val(γiνi) = win since γiνi can be split into γ′
i,2γi,2γiγi,1γ′

i,1 (winning since γi ▷ γ′
i) and

γ′
i,1γi+1γ′

i,2 (winning since γ′
i witnesses a competition involving γi+1);

val(γ′
iνi) = lose since γ′

iνi can be split into γ′
iγi,2γi,1 (losing since γi witnesses a competi-

tion involving γ′
i) and γ′

i,1γ′
i,1γi+1γ′

i,2γ′
i,2 (losing since γ′

i ▷ γi+1). We use Remark 30 in
order to write “γ′

iνi”.

We can perform a symmetric reasoning to show that the competition of any pair γ′
i, γi+1,

i ≥ 0, is witnessed by a cycle ν′
i ∈ ΓM such that m′, m ∈ st(ν′

i).
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By Lemma 37, ν′
i is not only a witness that γ′

i and γi+1 are competing, but also that γi

and γ′
i are competing (indeed, val(γi) = val(γi+1) ̸= val(γ′

i), γi+1 ◁ γ′
i, γ′

i ◁ γi, ν′
i witnesses

that γi+1 and γ′
i are competing, and m ∈ st(ν′

i) ∩ st(γi) ∩ st(γi+1)).
For i ≥ 0, we can write ν′

i = ν′
i,1ν′

i,2 with ν′
i,1 ∈ Πm′,m and ν′

i,2 ∈ Πm,m′ . We now
consider the infinite sequence

ξ = γ0ν′
0,2γ′

0ν′
0,1γ1ν′

1,2γ′
1ν′

1,1γ2 . . .

Notice that for all i ≥ 0, γiν
′
i,2γ′

iν
′
i,1 is a winning cycle on m since γi ▷ γ′

i; hence colω(ξ) ∈
m−1W by M-cycle-consistency. Also, for all i ≥ 0, ν′

i,2γ′
iν

′
i,1γi+1 is a losing cycle on m since

γ′
i ▷ γi+1; hence colω(ξ) ∈ m−1W by M-prefix-independence and M-cycle-consistency. This

is a contradiction.
A proof for infinitely increasing sequences can be done in a symmetric way. ◀

▶ Lemma 40. The width of partial preorder ◁ on ΓM/≃ is finite.

Proof. We recall that M = (M, minit, αupd). We will show that any two cycles γ1 and γ2
such that st(γ1) = st(γ2) are necessarily comparable for ≃ or ◁. This will show that the
cardinality of a maximal set of pairwise incomparable (for ◁) elements in ΓM/≃ is necessarily
bounded by 2|M |, which implies that the width of partial preorder ◁ is finite. Let γ1 and γ2
be two cycles such that st(γ1) = st(γ2) (we recall that there are infinitely many transitions
in M if C is infinite, and that two cycles going through the same states may use different
transitions and have a different value).

If val(γ1) ̸= val(γ2), then as γ1 and γ2 share a common state, they are competing — we
have either γ1 ◁ γ2 or γ2 ◁ γ1 (depending on the value of γ1γ2).

We now assume that val(γ1) = val(γ2); we assume w.l.o.g. that γ1 and γ2 are winning. If
γ1 and γ2 are such that comp(γ1) = comp(γ2), then they can necessarily be compared with
≃ or ◁; indeed,

if domBy(γ1) = domBy(γ2), then γ1 ≃ γ2;
if domBy(γ1) ̸= domBy(γ2), then there is i ∈ {1, 2} and a losing cycle γ′ in domBy(γi)
that is competing with γ3−i but that is not an element of domBy(γ3−i). Therefore,
γ3−i ◁ γ′ ◁ γi, which means that γ3−i ◁ γi.

It is left to deal with the case comp(γ1) ≠ comp(γ2). W.l.o.g., let γ′ be in comp(γ1)\comp(γ2).
There are two cases to discuss: whether γ1 ◁ γ′ or γ′ ◁ γ1.

Assume γ1 ◁ γ′. By Lemma 38, as val(γ1) = val(γ2) and st(γ1) ∩ st(γ2) ̸= ∅, γ′ is also
competing with γ2, which is a contradiction.
Assume γ′ ◁ γ1. Let γ be a witness that γ1 and γ′ are competing. We therefore have that
γ1γ is winning and γ′γ is losing. As γ2 is not competing with γ′, γ cannot be a witness
that γ2 and γ′ are competing. Since st(γ1) = st(γ2) has a non-empty intersection with
st(γ), the only possibility for that to happen is that γ2γ is losing (all other conditions
are satisfied). This means that γ must itself be a losing cycle. But then, observe that γ

is competing both with γ1 and γ2 (as γ has a common state with and a different value
than γ1 and γ2) and γ2 ◁ γ ◁ γ1 (as γ2γ is losing and γ1γ is winning). This implies
that γ2 ◁ γ1. ◀

Lemmas 39 and 40 imply together that ≃ has finite index, and thus that ◁ (partially)
orders only finitely many classes of cycles in ΓM/≃ . Therefore, for some n ∈ N, there
exists a function pΓ : ΓM/≃ → {0, . . . , n} that is a monotonic function (assuming ΓM/≃
is preordered with ◁ and {0, . . . , n} is ordered with the usual order on N); such a function
is sometimes called a linear extension of the partial order. We extend it to a function
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pΓ : ΓM → {0, . . . , n} such that pΓ(γ) = pΓ([γ]≃). Moreover, we assume w.l.o.g. that
val(γ) = win if and only if pΓ(γ) is even (this might require to increase n, but it is always
possible).

We fix n and any such function pΓ for the rest of the proof.

Parity automaton on top of M. At this point, it would already be possible to describe
words of W in terms of the cycles of M that they visit through function skel (there may be
multiple such decompositions) and their values by pΓ, but that does not directly correspond
to a classical acceptance condition for automata on infinite words. We can actually obtain
something more satisfying: we show that we can assign priorities to transitions of M to
recognize W , in a way that corresponds to a parity acceptance condition on transitions. We
transfer function pΓ to transitions of M: for (m, c) ∈ M × C, we define

p(m, c) = min{pΓ(γ) | γ ∈ ΓM, (m, c) ∈ γ}. (1)

We now have a well-defined function assigning priorities to every transition of M.

▶ Example 41. We illustrate our definitions for pΓ and p. We again consider the example
from Figure 7 (for which, unlike W , we already know that it describes an ω-regular language).
For the sake of the example, let us ignore the already-defined priority function p of this
parity automaton. We show that we can recover priorities defining the same language
starting from our preorder ◁ and our definitions for pΓ and p. Function pΓ must be any
function that respects the order given by the diagram and that assigns even priorities to
winning classes of cycles, and odd priorities to losing classes. One such possible choice is
pΓ([(m1, c)]≃) = 5, pΓ([(m1, a)(m2, a)]≃) = 2, pΓ([(m2, b)]≃) = 4, and pΓ([(m1, b)]≃) = 1.
From this choice of function pΓ, our definition (1) of function p entails p((m1, c)) = 5,
p((m1, a)) = p((m2, a)) = 2, p((m2, b)) = p((m2, c)) = 4, and p((m1, b)) = 1. This choice of
priorities defines the same language as the original parity automaton. ⌟

We will prove a property of function p: (M, p) recognizes the language W . In our proof,
we will need to relate the cycles dominated by a cycle γ and the ones dominated by cycles in
a “decomposition” of γ, i.e., cycles that can be obtained from iteratively removing cycles
from γ. We formally define this notion and prove two related results.

▶ Definition 42 (Cycle decomposition). Let γ = (m1, c1) . . . (mk, ck) ∈ ΓM, and γ1, . . . , γl ∈
ΓM. We say that (γ1, . . . , γl) is a cycle decomposition of γ if

either l = 1 and γ = γ1,
or l > 1 and there exist i, i′ ∈ {1, . . . , k}, i ≤ i′, such that γ1 = (mi, ci) . . . (mi′ , ci′), and
(γ2, . . . , γl) is a cycle decomposition of (m1, c1) . . . (mi−1, ci−1)(mi′+1, ci′+1) . . . (mk, ck).

▶ Lemma 43. Let γ, γ1, γ2, γ′ ∈ ΓM be cycles such that γ = γ1γ2. If γ′ ◁ γ1, then γ′ ◁ γ.

Proof. We assume γ′ ◁ γ1.
If val(γ1) ̸= val(γ), then γ1 ◁ γ — indeed, they share at least one state and γ1γ = (γ1)2γ2

has the same value as γ1γ2 = γ by Lemma 26. Therefore, by transitivity of ◁ (Lemma 34),
γ′ ◁ γ.

We now assume val(γ1) = val(γ) and val(γ′) ̸= val(γ1). Let γ be a witness that γ′ and
γ1 are competing. We prove that γ also witnesses that γ′ and γ are competing: to do so,
it is left to show that ν = γγ has the same value as γ. We have that ν can be written as
γγ1,1γ2γ1,2 for some paths γ1,1 and γ1,2 such that γ1 = γ1,1γ1,2. Cycle ν has the same value
as γ(γ1,1γ1,2)γ1,1γ2γ1,2 by Lemma 28. This last cycle can be split into γγ1 and γ, which both
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Figure 11 Situation in the proof of Lemma 45, with γ = e1 . . . ek.

have the same value as γ. Therefore γ is also a witness that γ′ and γ are competing. We can
show with a very similar argument that γ′γ1γγ2 also has the same value as γ, hence γ′ ◁ γ.

If val(γ1) = val(γ) and val(γ′) = val(γ1), then there exists γ′′ with val(γ′′) ̸= val(γ1) such
that γ′ ∈ domBy(γ′′) and γ′′ ∈ domBy(γ1), so γ′ ◁ γ′′ ◁ γ1. By the previous case, γ′′ ◁ γ,
and by transitivity, γ′ ◁ γ. ◀

▶ Lemma 44. Let γ be a cycle of M and (γ1, . . . , γl) be a cycle decomposition of γ. For all
i ∈ {1, . . . , l}, for all γ′ ∈ ΓM, if γ′ ◁ γi, then γ′ ◁ γ.

Proof. We proceed by induction on l. If l = 1, then the statement is trivial as γ = γ1. For
l > 1, we now assume that the property holds for l − 1, and we show that it also holds for l.
Up to a shift of γ and of the cycle decomposition, we assume that γ is equal to γ1ν, where
(γ2, . . . , γl) is a cycle decomposition of ν.

Let γ′ ∈ ΓM be such that γ′ ◁ γi for some i ∈ {1, . . . , l}. This implies that γ′ ◁ γ1 if i = 1
or, using the induction hypothesis, that γ′ ◁ ν. In any case, by Lemma 43, we immediately
have that γ′ ◁ γ. ◀

We can now prove that W is recognized by the parity automaton (M, p). We do this in
the next two results. First, we show that winning cycles of M are exactly the ones that have
an even maximal priority given by p. It is then straightforward to conclude that infinite
words in W are exactly the ones whose maximal infinitely visited priority is even.

▶ Lemma 45. Let γ = (m1, c1) . . . (mk, ck) ∈ ΓM. Then, γ is winning if and only if
max1≤i≤k p(mi, ci) is even.

Proof. For conciseness, let p∗ = max1≤i≤k p(mi, ci) and ei = (mi, ci). By definition of
function p, for all i ∈ {1, . . . , k}, p(ei) ≤ pΓ(γ). Hence, p∗ ≤ pΓ(γ). We want to show that γ

is winning if and only if p∗ is even. By contradiction, we assume that we do not have this
equivalence. We assume w.l.o.g. that γ is losing and that p∗ is even; we could obtain in a
symmetric way a contradiction for γ winning and p∗ odd.

As γ is losing, we have that pΓ(γ) is odd — as p∗ is even, p∗ < pΓ(γ). We assume (up to a
shift of the transitions) that p∗ = p(e1). Since p∗ < pΓ(γ), there exists, for all i ∈ {1, . . . , k},
a cycle γi ̸= γ such that ei ∈ γi and p(ei) = pΓ(γi). We assume γi = eiπi. The situation is
represented in Figure 11.

The rest of the proof consists in exhibiting two cycles, building on the ones we know,
showing that one of them is winning and one of them is losing, and finally showing that they
must have the same value, which provides a contradiction.

We will first consider cycle e1 . . . ekπk . . . π1 (on m1). We will prove by induction that it is
winning. First, e1π1 is winning since pΓ(e1π1) = p∗ is even. Assume now that for 1 < l ≤ k,
e1 . . . el−1πl−1 . . . π1 is winning. We show that e1 . . . el−1(elπl)πl−1 . . . π1 is winning.
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If elπl is a winning cycle, it follows from M-cycle-consistency.
If elπl is a losing cycle, we distinguish two cases. If e2 . . . el−1(elπl)πl−1 . . . π2 is winning,
then so is e1 . . . el−1(elπl)πl−1 . . . π1 because we just concatenate the winning cycle π1e1
to a winning cycle (M-cycle-consistency). If e2 . . . el−1(elπl)πl−1 . . . π2 is losing, then
e2 . . . el−1πl−1 . . . π2 witnesses that e1π1 and elπl are competing. Since pΓ(elπl) is odd,
and pΓ(e1π1) is even and is equal to the maximum of i 7→ pΓ(eiπi), we have that
pΓ(elπl) < pΓ(e1π1). Since pΓ is monotonic and e1π1 and elπl are competing, this implies
elπl ◁ e1π1. Thus e1 . . . el−1(elπl)πl−1 . . . π1 is winning.

We now consider the cycle e1(π1e1) . . . ek(πkek) (on m1). We show by induction that it
is losing. We start from γ, which is losing by hypothesis, and we add cycles πiei one by one.
We denote γ(l) = e1(π1e1) . . . el(πlel)el+1 . . . ek. Assume that γ(l−1) is losing for 1 < l ≤ k.
We want to show that γ(l) is also losing.

If πlel is a losing cycle, it follows from M-cycle-consistency.
If πlel is a winning cycle, then as pΓ(πlel) ≤ p∗ < pΓ(γ) and πlel is competing with γ

(they share common states), we have πlel ◁ γ. Notice that (π1e1, . . . , πl−1el−1, γ) is a
cycle decomposition of γ(l−1) as in Definition 42. Thus by Lemma 44, as πlel ◁ γ, we also
have πlel ◁ γ(l−1). We conclude that γ(l) is also losing.

We have now considered two cycles on m1: the winning e1 . . . ekπk . . . π1 and the losing
e1(π1e1) . . . ek(πkek). We show that it is possible to transform the latter into the former
using only value-preserving transformations (given by Lemmas 26 and 27), which provides
the desired contradiction.

We show inductively that for all l ∈ {1, . . . , k}, cycle e1(π1e1) . . . ek(πkek) can be trans-
formed into

ν(l) = (e1 . . . elπl . . . π1e1 . . . el)el+1(πl+1el+1) . . . ek(πkek)

using value-preserving transformations. Notice that e1(π1e1) . . . ek(πkek) is equal to ν(1),
which deals with the base case of the induction. Now assume that e1(π1e1) . . . ek(πkek) has the
same value as ν(l−1) for 1 < l ≤ k. In the expression of ν(l−1), notice that πl−1 . . . π1e1 . . . el−1
and elπl are two consecutive cycles on ml. By Lemma 27, they can thus be swapped while
keeping a cycle with the same value. Notice that this gives exactly the cycle ν(l).

We obtain that e1(π1e1) . . . ek(πkek) has the same value as ν(k) = e1 . . . ekπk . . . π1e1 . . . ek,
which has the same value as e1 . . . ekπk . . . π1 by Lemma 26. ◀

▶ Proposition 46. Let w = c1c2 . . . ∈ Cω with skel(w) = (m1, c1)(m2, c2) . . . ∈ (M × C)ω.
Then,

w ∈ W if and only if lim sup
i≥1

p(mi, ci) is even.

Proof. Let p∗ = lim supi≥1 p(mi, ci). Let j ≥ 1 be an index such that for all i ≥ j,
p(mi, ci) ≤ p∗. Let I∗ = {i ≥ j | p(mi, ci) = p∗} be the infinite set of indices of transitions
with priority p∗ occurring after index j. We write i1, i2, . . . for the elements of I∗ in
order. Let m∗ be a state appearing infinitely often in {mi | i ∈ I∗} (such a state exists
necessarily as the state space of M is finite). This implies that skel(w) can be written
as the concatenation of a finite prefix (m1, c1) . . . (mi1−1, ci1−1) and infinitely many cycles
γk = (mik

, cik
) . . . (mik+1−1, cik+1−1) with mik

= m∗ and p(mik
, cik

) = p∗, for k ≥ 1.
For all k ≥ 1, we have that maxik≤i<ik+1 p(mi, ci) = p∗ (it is ≤ p∗ as ik ≥ j, and it

is ≥ p∗ as p(mik
, cik

) = p∗). By Lemma 45, we conclude that cycles γk are all cycles on
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m∗ that have the same value: they are winning if p∗ is even, and losing if p∗ is odd. By
M-prefix-independence and M-cycle-consistency, w is in W if p∗ is even, and w is in W if
p∗ is odd. ◀

We have therefore reached our goal for this section.

▶ Corollary 47 (Second item of Theorem 10). If there exists a skeleton M such that W is
M-prefix-independent and M-cycle-consistent, then W is ω-regular and can be recognized by
a deterministic parity automaton defined on top of M.

▶ Remark 48. As discussed in Remark 4, our proof shows as a by-product that even if C is
infinite, many colors can be assumed to be equal (w.r.t. W ) — there are only finitely many
classes of truly different colors. ⌟

6 Applications

We provide a thorough application of our concepts to a discounted-sum winning condition.
We then discuss more briefly mean-payoff and total-payoff winning conditions.

6.1 Discounted sum
We apply our results to a discounted-sum condition in order to illustrate our notions. A
specificity of this example is that its ω-regularity depends on some chosen parameters —
we use our results to characterize the parameters for which it is ω-regular or, equivalently
(Theorem 11), chromatic-finite-memory determined. The ω-regularity of discounted-sum
conditions has also been studied in [14, 2] with different techniques and goals.

Let C ⊆ Q be non-empty and bounded. For λ ∈ (0, 1) ∩ Q, we define the discounted-sum
function DSλ : Cω → R such that for w = c1c2 . . . ∈ Cω,

DSλ(w) =
∞∑

i=1
λi−1 · ci.

This function is always well-defined for a bounded C, and takes values in [ inf C
1−λ , sup C

1−λ ].
We define the winning condition DS≥0

λ = {w ∈ Cω | DSλ(w) ≥ 0} as the set of infinite
words whose discounted sum is non-negative, and let ∼ be its right congruence. We will
analyze cycle-consistency and prefix-independence of DS≥0

λ to conclude under which conditions
(on C and λ) it is chromatic-finite-memory determined. First, we discuss a few properties of
the discounted-sum function.

Basic properties. We extend function DSλ to finite words in a natural way: for w ∈ C∗,
we define DSλ(w) = DSλ(w0ω). For w ∈ C∗, we define |w| as the length of w (so w ∈ C |w|).
First, we notice that for w ∈ C∗ and w′ ∈ Cω, we have

DSλ(ww′) = DSλ(w) + λ|w|DSλ(w′).

Therefore,

ww′ ∈ DS≥0
λ ⇐⇒ DSλ(w)

λ|w| ≥ −DSλ(w′).

This provides a characterization of the winning continuations of a finite word w ∈ C∗ by
comparing their discounted sum to the value DSλ(w)

λ|w| .
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s1 s2 s3

1
1
2

...

−1
λ

−1
2λ

...
0

Figure 12 Arena with infinitely many edges in which P1 needs infinite memory to win for
condition DS≥0

λ from s1 for any λ ∈ (0, 1) ∩ Q, with C = [−k, k] ∩ Q for k sufficiently large.

This leads us to define the gap of a finite word w ∈ C∗, following ideas in [5], as

gap(w) =


⊤ if DSλ(w)

λ|w| ≥ − inf C
1−λ ,

⊥ if DSλ(w)
λ|w| < − sup C

1−λ ,
DSλ(w)

λ|w| otherwise.

Intuitively, the gap of a finite word w ∈ C∗ represents how far it is from going back to 0:
if w′ ∈ Cω is such that DSλ(w′) = −gap(w), then DSλ(ww′) = 0. We can see that for all
words w ∈ C∗, if gap(w) = ⊤, then all continuations are winning (i.e., w−1W = Cω) as it
is not possible to find an infinite word with a discounted sum less than inf C

1−λ . Similarly, if
gap(w) = ⊥, then all continuations are losing (i.e., w−1W = ∅).

Cycle-consistency. We can show that DS≥0
λ is always Mtriv-cycle-consistent.

▶ Proposition 49. For all bounded C ⊆ Q, λ ∈ (0, 1) ∩ Q, winning condition DS≥0
λ is

Mtriv-cycle-consistent.

The proof of this result is elementary and is provided in Appendix B.

Prefix-independence. If C = [−k, k] ∩ Q for some k ∈ N \ {0}, winning condition DS≥0
λ

is not M-prefix-independent for any M, as ∼ has infinite index. Indeed, for i ≥ 1 and
wi = 1

i ∈ C∗, we have w1 ≻ w2 ≻ . . . — we can see how to use this to exhibit an arena in
which P1 can win but needs infinite memory to do so in Figure 12.

For finite C ⊆ Z, the picture is more complicated; for C = [−k, k] ∩ Z for some k ∈ N,
we characterize when DS≥0

λ is M-prefix-independent for some finite skeleton M. We give an
intuition of the two situations in which that happens: (i) if C is too small, then the first
non-zero color seen determines the outcome of the game, as it is not possible to compensate
this color to change the sign of the discounted sum; (ii) if λ = 1

n for some integer n ≥ 1,
then the gap function actually takes only finitely many values, which is not the case for a
different λ.

▶ Proposition 50. Let λ ∈ (0, 1)∩Q, k ∈ N, and C = [−k, k]∩Z. Then, the right congruence
∼ of DS≥0

λ has finite index if and only if k < 1
λ − 1 or λ is equal to 1

n for some integer n ≥ 1.

Proof. We define maxDS = sup C
1−λ = k

1−λ and minDS = − k
1−λ , as respectively the maximal

and minimal discounted-sum value achievable with colors in C.
The key property that we will show is that gaps characterize equivalence classes of prefixes:

for w1, w2 ∈ C∗,

w1 ∼ w2 ⇐⇒ gap(w1) = gap(w2). (2)

Once this is proven, it is left to determine the number of different gap values, which will
correspond to the index of ∼. The right-to-left implication of (2) is clear: if the gaps are ⊤,
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1−1

2−2
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0, 1, 2

−2

1

−2, −1

2

0

2

C \ {2}
CC

Figure 13 Minimal-state automaton of ∼DS≥0
λ

for λ = 1
2 and C = {−2, −1, 0, 1, 2}. The value

in a state is the gap characterizing the equivalence class of ∼ corresponding to that state. Here,
sup C
1−λ

= 4 and inf C
1−λ

= −4. The asymmetry around 0 comes from the ≥ 0 inequality in the definition
of the condition: when state −4 is reached, there is exactly one winning continuation (2ω), but a
state with gap value 4 would only have winning continuations (hence, it is part of state ⊤). Notice
that we can define a parity condition on top of this automaton that recognizes DS≥0

λ : an infinite
word is winning as long as it does not reach ⊥.

all the continuations are winning; if the gaps are ⊥, all the continuations are losing; else,
for any continuation, the final discounted-sum values will have the same sign. We prove the
left-to-right implication for each case of the disjunction from the statement and discuss the
number of gap values.

We first assume k < 1
λ − 1. The case k = 0 is trivial (as all words are winning) — we

assume k ≥ 1. The inequality k < 1
λ − 1 is equivalent to 1

λ > k
1−λ . In this case, there are

only three possible gaps:
for w ∈ 0∗, gap(w) = 0.
for w ∈ 0∗c with c ≥ 1, then DSλ(w)

λ|w| = c
λ ≥ 1

λ > k
1−λ = −minDS — so for any word

w ∈ 0∗cC∗, gap(w) = ⊤.
for w ∈ 0∗cC∗ with c ≤ −1, symmetrically, gap(w) = ⊥.

These three possible gaps clearly correspond to different equivalence classes of the right
congruence ∼, so there are three such equivalence classes. Hence the minimal-state automaton
M∼ has three states [ε]∼, [1]∼, and [−1]∼.

We now assume that k ≥ ⌈ 1
λ − 1⌉. The left-to-right implication of (2) is clear in the

cases in which all, or none, of the continuations are winning. The difficult case is when both
w1 and w2 have a rational gap. We show that if their gaps are different rational numbers,
then they have different winning continuations. We assume w.l.o.g. that gap(w2) < gap(w1).
We show that there is an infinite continuation that has a discounted sum exactly equal to
−gap(w1): this infinite continuation is winning after w1 but losing after w2.

Showing that there exists w ∈ Cω such that DSλ(w) = −gap(w1) amounts to showing
that there is a representation of −gap(w1) in the (rational but not necessarily integral) base
1
λ with digits in C, with one digit before the decimal point. We can adapt the well-known
greedy expansion [40] to our context to show this (details in Appendix B, Proposition 54).

It is left to show that there are finitely many gap values if and only if λ equals 1
n for

some integer n ≥ 1. One implication is clear: if λ = 1
n for some integer n ≥ 1, then there

are finitely many possible gaps as gaps are then always integers between minDS and maxDS,
⊤, or ⊥. We illustrate this implication by depicting the minimal-state automaton of ∼ for
λ = 1

2 and k = 2 in Figure 13. The proof of the other implication is provided in Appendix B,
Proposition 55. ◀

▶ Corollary 51. Let λ ∈ (0, 1) ∩ Q, k ∈ N, and C = [−k, k] ∩ Z.
If k < 1

λ − 1, then DS≥0
λ is memoryless-determined.

If k ≥ ⌈ 1
λ − 1⌉, then DS≥0

λ is chromatic-finite-memory determined if and only if λ is equal
to 1

n for some integer n ≥ 1.
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Proof. This follows from Propositions 49 and 50, thanks to Theorem 10. The only thing to
clarify is that memoryless strategies suffice in case k < 1

λ − 1. The proof of Proposition 50
tells us that in this case, DS≥0

λ is ω-regular and can be recognized by a parity automaton
that can be defined on top of M∼ ⊗ Mtriv, which has three states. To use this skeleton as
a memory, we can notice that the game is already over in states [1]∼ and [−1]∼ (as every
continuation wins or every continuation loses). Thus, it is not necessary to use these states
to play, and we can consider that we always stay in state [ε]∼. ◀

6.2 Other winning conditions
Mean payoff. Let C ⊆ Q be non-empty. We define the mean-payoff function MP : Cω →
R ∪ {−∞, ∞} such that for w = c1c2 . . . ∈ Cω,

MP(w) = lim sup
n→∞

1
n

n∑
i=1

ci.

We define the winning condition MP≥0 = {w ∈ Cω | MP(w) ≥ 0} as the set of infinite words
whose mean payoff is non-negative. This condition is Mtriv-prefix-independent for any set
of colors. However, it is known that infinite-memory strategies may be required to play
optimally in some infinite arenas [39, Section 8.10]; the example provided uses infinitely
many colors. Here, we show that chromatic-finite-memory strategies do not suffice to play
optimally even when C = {−1, 1}. Let us analyze cycle-consistency of MP≥0. If we consider,
for n ∈ N,

wn = 1 . . . 1︸ ︷︷ ︸
n times

−1 . . . −1︸ ︷︷ ︸
n+1 times

,

we have that (wn)ω is losing for all n ∈ N, but the infinite word w0w1w2 . . . has a mean
payoff of 0 and is thus winning. This shows directly that MP≥0 is not Mtriv-cycle-consistent.
The argument can be adapted to show that MP≥0 is not M-cycle-consistent for any skeleton
M (see Appendix B, Lemma 57).
▶ Remark 52. As memoryless strategies suffice to play optimally for both players in finite
arenas for mean-payoff games [19], winning condition MP≥0 distinguishes finite-memory
determinacy in finite and in infinite arenas. For a skeleton M, M-determinacy in finite arenas
has also been shown [23, 6] to be equivalent to the conjunction of a property about prefixes
(M-monotony) and a property about cycles (M-selectivity). The concepts of M-selectivity
and M-cycle-consistency share the similar idea that combining losing cycles cannot produce
a winning word, but they are distinct notions with different quantification on the families of
cycles considered. Here, MP≥0 is Mtriv-selective but not Mtriv-cycle-consistent. ⌟

Total payoff. Let C ⊆ Q be non-empty. We define the total-payoff function TP : Cω →
R ∪ {−∞, ∞} such that for w = c1c2 . . . ∈ Cω,

TP(w) = lim sup
n→∞

n∑
i=1

ci.

We define the winning condition TP≥0 = {w ∈ Cω | TP(w) ≥ 0} as the set of infinite words
whose total payoff is non-negative.

The right congruence ∼ of TP≥0 does not have finite index, even for C = {−1, 1}:
we indeed have that (−1) ≻ (−1)(−1) ≻ . . .. Condition TP≥0 is therefore not M-prefix-
independent for any skeleton M. We can also show that TP≥0 is not M-cycle-consistent for
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any M, using the exact same argument as for MP≥0. Chromatic-finite-memory strategies
are therefore insufficient to play optimally for TP≥0 in infinite arenas. Once again, this
situation contrasts with the case of finite arenas, in which memoryless strategies suffice to
play optimally [22].

7 Conclusion

We proved an equivalence between chromatic-finite-memory determinacy of a winning condi-
tion in games on infinite graphs and ω-regularity of the corresponding language of infinite
words, generalizing a result by Colcombet and Niwiński [17]. A “strategic” consequence of
our result is that chromatic-finite-memory determinacy in one-player games of both players
implies the seemingly stronger chromatic-finite-memory determinacy in zero-sum games.
A “language-theoretic” consequence is a relation between the representation of ω-regular
languages by parity automata and the memory structures used to play optimally in zero-sum
games, using as a tool the minimal-state automata classifying the equivalence classes of the
right congruence.

For future work, one possible improvement over our result is to deduce tighter chromatic
memory requirements in two-player games compared to one-player games. Our proof technique
gives as an upper bound on the two-player memory requirements a product between the
minimal-state automaton and a sufficient skeleton for one-player arenas, but smaller skeletons
often suffice. We do not know whether the product with the minimal-state automaton is
necessary in general in order to play optimally in two-player arenas (although it is necessary
in Theorem 10 to describe W using a parity automaton). This behavior contrasts with the
case of finite arenas, in which it is known that a skeleton sufficient for both players in finite
one-player arenas also suffices in finite two-player arenas [6, 8]. More generally, it would
be interesting to characterize precisely the (chromatic) memory requirements of ω-regular
winning conditions, extending work on the subclass of Muller conditions [18, 11].
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A Proof of claim from Section 1

We argue that the result on the strategy complexity of finitary games in [15, Theorem 2],
mentioned in Section 1 (paragraph Related works), also apply to our setting. The main
difference is that our setting considers arenas with edges labeled with colors rather than
states. As we have discussed, this difference may in general have an impact on the strategy
complexity [25, 17]. However, we argue that this difference has no impact for the strategy
complexity of finitary games as defined in [15]. A similar argument was stated in [17] to
transfer the memoryless determinacy of parity conditions from state-labeled to edge-labeled
arenas. We refer to [15] for formal definitions of finitary conditions. Informally, finitary
Büchi is a winning condition defined over the alphabet of colors C = {0, 1}. It contains the
infinite words for which there exists a uniform bound N ∈ N such that each 1 is followed by
a 0 after at most N steps.

▶ Lemma 53 ([15, Theorem 2] for edge-labeled arenas). For finitary Büchi games, P1 has a
memoryless optimal strategy in all infinite (edge-labeled) arenas.

Proof (sketch). Let C = {0, 1}. Let A = (S, S1, S2, E) be an (edge-labeled) arena, as defined
in Section 2, and W be a finitary Büchi condition. We transform A into a state-labeled arena
A′ = (S′, S′

1, S′
2, E′, c) such that E′ ⊆ S × S and c : S → C labels each state with a color.

For each edge e ∈ E, we define a new state se to which we assign the color col(e), and we
insert this state between in(e) and out(e). To any other state, we assign the color 1. We
define

S′
1 = S1 ⊎ {se | e ∈ E, in(e) ∈ S1}, S′

2 = S2 ⊎ {se | e ∈ E, in(e) ∈ S2}, S′ = S′
1 ⊎ S′

2,

E′ = {(in(e), se) | e ∈ E} ⊎ {(se, out(e)) | e ∈ E},

for s ∈ S, c(s) = 1, and for e ∈ E, c(se) = col(e).

There is a natural bijection between strategies on A and strategies on A′ which preserves
the memoryless feature of strategies. Moreover, the winning feature of strategies is also
preserved: the infinite words of colors seen in the state-labeled arena will be the same as
the ones in the edge-labeled arenas, with extra 1’s in every other position. This alteration
does not change the winning status of infinite words for the finitary Büchi condition. We
can therefore reuse [15, Theorem 2] on A′, and recover a memoryless optimal strategy of P1
on A. ◀

An example showing that P2 needs infinite memory to play optimally in some state-
labeled arena for finitary Büchi conditions [15, Example 1] can also be easily transformed to
work with edge-labeled arenas. Similar arguments can be used to show that P1 has optimal
strategies based on a skeleton for finitary parity conditions in edge-labeled arenas.

B Missing proofs of Section 6

We prove statements that were given without proof in Section 6.1 about the discounted-
sum winning condition: Proposition 49, as well as the two properties used in the proof of
Proposition 50 (Propositions 54 and 55).

▶ Proposition 49. For all bounded C ⊆ Q, λ ∈ (0, 1) ∩ Q, winning condition DS≥0
λ is

Mtriv-cycle-consistent.
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Proof. Let w ∈ C∗. We show that (cΓlose,w
Mtriv

)ω ⊆ w−1DS≥0
λ — we discuss how to adapt the

proof to show that (cΓwin,w
Mtriv

)ω ⊆ w−1DS≥0
λ at the end. Let w1, w2, . . . ∈ cΓlose,w

Mtriv
. We want to

show that ww1w2 . . . ∈ DS≥0
λ , i.e., that DSλ(ww1w2 . . .) < 0.

For k ≥ 1, as wk ∈ Γlose,w
Mtriv

, we have DSλ(wwω
k ) < 0. Since, moreover,

DSλ(wwω
k ) = DSλ(w) + λ|w|DSλ(wω

k )

= DSλ(w) + λ|w|
∞∑

i=0
λi|wk|DSλ(wk)

= DSλ(w) + λ|w|DSλ(wk) 1
1 − λ|wk| ,

we obtain

DSλ(wk) < −DSλ(w)1 − λ|wk|

λ|w| . (3)

In particular, for k = 1, there exists ε > 0 such that

DSλ(w1) = −ε − DSλ(w)1 − λ|w1|

λ|w| . (4)

We have that

DSλ(ww1w2 . . .) = DSλ(w) + λ|w|
∞∑

k=1
λ

∑k−1
i=1

|wi|DSλ(wk)

≤ DSλ(w) − λ|w|ε − λ|w|
∞∑

k=1
λ

∑k−1
i=1

|wi|DSλ(w)1 − λ|wk|

λ|w|

≤ DSλ(w) − λ|w|ε − DSλ(w)
∞∑

k=1
λ

∑k−1
i=1

|wi|(1 − λ|wk|),

where the second line uses (4) for k = 1, and (3) for k ≥ 2. The series
∞∑

k=1
λ

∑k−1
i=1

|wi|(1 − λ|wk|) =
∞∑

k=1
λ

∑k−1
i=1

|wi| − λ
∑k

i=1
|wi|

is telescoping (we can expand it as 1 − λ|w1| + λ|w1| − λ|w1|+|w2| + λ|w1|+|w2| − . . .). As
limk→∞ λ

∑k

i=1
|wi| = 0, this series converges to 1. We conclude that

DSλ(ww1w2 . . .) ≤ −λ|w|ε < 0,

as required. A proof that (cΓwin,w
Mtriv

)ω ⊆ w−1DS≥0
λ can be done in a similar way, with no need

to extract an ε as we are then only looking for a non-strict inequality. ◀

We now prove the two properties used in Proposition 50 whose proofs were omitted. We
use notations from the proof of Proposition 50 itself.

▶ Proposition 54. Let λ ∈ (0, 1) ∩ Q, k ∈ Z such that k ≥ ⌈ 1
λ − 1⌉, and C = [−k, k] ∩ Z.

For any real number x, −k
1−λ ≤ x ≤ k

1−λ , there exists w ∈ Cω such that x = DSλ(w).

Proof. This problem can be rephrased as a number representation problem: we are looking
for a sequence of “digits” (xi)i≥0 in C such that x = x0.x1x2 . . . in base 1

λ , i.e., such that

x =
∞∑

i=0
xiλ

i.
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Notice that
∑∞

i=0 xiλ
i = DSλ(x0x1 . . .). It is known that every number x ∈ [0, 1) has (at

least) one representation 0.x1x2 . . . in base 1
λ with digits in {0, 1, . . . , ⌈ 1

λ − 1⌉}, and one such
representation can be found using the greedy expansion [40].

We adapt this greedy expansion to our setting (for a potentially greater x and larger
set C of digits). Let x ∈ R such that −k

1−λ ≤ x ≤ k
1−λ . We deal with the case x ≥ 0 — the

negative case is symmetric. We set x0 = min(k, ⌊x⌋); clearly, x0 ≤ x. Then inductively, if
x0, . . . , xl−1 have been defined, we define xl as the greatest integer in {0, . . . , k} such that

l∑
i=0

xiλ
i ≤ x.

The series
∑∞

i=0 xiλ
i is converging, as every term is non-negative and it is bounded from

above by x. We show that it converges to x, which ends the proof. Let ε ≥ 0. Assume by
contradiction that

∑∞
i=0 xiλ

i ≤ x − ε. Let j be the least index such that λj ≤ ε. Clearly, for
any j′ ≥ j, xj′ = k — otherwise, a greater digit could have been picked during the inductive
greedy selection. Still, not every digit x0, x1, . . . can be k, as

∑∞
i=0 kλi = k

1−λ > x − ε.
Let l be the greatest index such that xl ̸= k. We show that a digit ≥ xl + 1 should have
been picked instead of xl for the digit at index l, leading to a contradiction. To do so, it is
sufficient to show that

(xl + 1)λl +
l−1∑
i=0

xiλ
i ≤ x.

We have

(xl + 1)λl +
l−1∑
i=0

xiλ
i =

∞∑
i=0

xiλ
i + λl −

∞∑
i=l+1

xiλ
i

=
∞∑

i=0
xiλ

i + λl −
∞∑

i=l+1
kλi as xi = k for i ≥ l + 1

=
∞∑

i=0
xiλ

i + λl − kλl+1

1 − λ

=
∞∑

i=0
xiλ

i + λl(1 − kλ

1 − λ
).

Since kλ
1−λ ≥ ⌈ 1

λ −1⌉λ

1−λ = ⌈ 1−λ
λ ⌉ λ

1−λ ≥ 1, we have that λl(1 − kλ
1−λ ) ≤ 0, which implies that

(xl + 1)λl +
l−1∑
i=0

xiλ
i ≤

∞∑
i=0

xiλ
i < x,

a contradiction. We conclude that x = DSλ(x0x1 . . .). ◀

▶ Proposition 55. Let λ ∈ (0, 1) ∩ Q, k ∈ Z such that k ≥ ⌈ 1
λ − 1⌉, and C = [−k, k] ∩ Z. If

λ ̸= 1
n for all integers n ≥ 1, the gap function takes infinitely many values.

Proof. We assume that λ = p
q with p, q ∈ N co-prime, p ≥ 2 and q > p, and we show

that the gap function takes infinitely many values. To do so, we exhibit an infinite word
w = c1c2 . . . ∈ Cω such that the sequence of rationals (gap(c1 . . . ci))i≥1 never takes the same
value twice.
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We will use the following inductive property of gaps: for w ∈ C∗ and c ∈ C,

gap(wc) = gap(w)
λ

+ λ|w|−1c

λ|w| = 1
λ

(gap(w) + c) , (5)

unless some gap in this equation equals ⊤ or ⊥. Notice that under our hypotheses, ⌈ 1
λ − 1⌉ =

⌊ 1
λ ⌋ (this equality is not verified when λ = 1

n for some integer n ≥ 1).
We set c1 = 1. Then, gap(c1) = 1

λ = q
p . Inductively, if c1, . . . , ci−1 are defined, we set

ci = −⌊gap(c1 . . . ci−1)⌋ (we remove the largest possible integer from the current gap, while
keeping a positive gap value). We set gi = gap(c1 . . . ci) for conciseness.

We first show that if all gi’s are rational, then no two gi’s can be equal. To do so, we
show inductively that the reduced denominator of fraction gi is pi for all i ≥ 1. This is true
for i = 1. For i > 1, assume it is true for i − 1. Then, gi−1 = m

pi−1 for some m co-prime with
p. Using (5),

gi = 1
λ

· (gi−1 + ci) = 1
λ

·
(

m

pi−1 + ci

)
= q(m + cip

i−1)
pi

.

This last fraction is irreducible: q and p are co-prime, and the fact that m and p are co-prime
implies that m + cip

i−1 and p are co-prime.
We now prove by induction that our scheme is well-defined by showing that for all i ≥ 1,

ci ∈ C and 0 < gi ≤ 1
λ . This is true for i = 1 (as k ≥ 1 for any possible value of λ). For i > 1,

if this is true for i − 1, then −ci = ⌊gi−1⌋ ≤ ⌊ 1
λ ⌋, so ci ∈ C. Moreover, gi = 1

λ (gi−1 + ci).
Since gi’s cannot be integers (as their reduced denominator is not 1 by an earlier property),
we have that gi−1 + ci is not an integer either. Therefore, 0 < gi−1 + ci < 1, so 0 < gi < 1

λ .
As 1

λ < k
1−λ = maxDS, the values of the considered gaps are never ⊤ or ⊥. ◀

▶ Remark 56. For λ ∈ (0, 1) ∩ Q with λ ≠ 1
n for all integers n ≥ 1, k ≥ ⌈ 1

λ − 1⌉, and
C = [−k, k] ∩ Z, Proposition 50 along with Theorem 10 implies that any chromatic skeleton
is insufficient to play optimally (for at least one player). However, this does not directly give
an explicit arena in which some player requires infinite memory to play optimally. Here, we
show how to construct such an arena given the extra results from Appendix B.

The proof of Proposition 55 gives us c1c2 . . . ∈ Cω such that (gap(c1 . . . ci))i≥1 is a
sequence of distinct values in [0, maxDS]. Hence, by compacity of [0, maxDS], there exists a
subsequence (ij)j≥1 and x ∈ [0, maxDS] such that limj→∞ gap(c1 . . . cij

) = x. We can further
extract a subsequence such that either all elements are greater than x, or all elements are
less than x. We assume w.l.o.g. that for all j ≥ 1, gap(c1 . . . cij

) < x (this implies that
x ̸= 0). The proof is symmetric if all the gaps are greater than x (which would imply that
x ̸= maxDS).

By Proposition 54, for all ε > 0 sufficiently small, there exists wε ∈ Cω such that
DSλ(wε) = −x + ε. We can define an infinite arena in which P2 needs infinite memory to
win, depicted in Figure 14. In this arena, P1 may choose to reach a gap arbitrarily close (but
not equal) to x in s2, and then P2 is always able to bring the discounted sum below 0 by
choosing a word reaching a discounted sum sufficiently close to −x. ⌟

We now prove the claim about the mean-payoff condition (Section 6.2) stating that it is
not M-cycle-consistent for any M.

▶ Lemma 57. For all skeletons M, MP≥0 is not M-cycle-consistent.

Proof. Let M = (M, minit, αupd) be a skeleton. For n ∈ N, let

wn = 1 . . . 1︸ ︷︷ ︸
n times

−1 . . . −1︸ ︷︷ ︸
n+1 times

.
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s1 s2 . . .

...
c1 . . . ci1

c1 . . . ci2

...

w1

w 1
2

...

Figure 14 Infinite arena in which P2 needs infinite memory to win from s1 for condition DS≥0
λ

for λ ∈ (0, 1) ∩ Q with λ ̸= 1
n

for all integers n ≥ 1, k = ⌈ 1
λ

− 1⌉, and C = [−k, k] ∩ Z.

Let Mn be the set of states m ∈ M such that there exists k ≥ 1 with m = α∗
upd(m, wk

n). Each
Mn is non-empty as, M being finite, iterating the function m 7→ α∗

upd(m, wn) necessarily
goes multiple times through at least one state. Let m ∈ M be a state in set Mn for infinitely
many n’s, and w be any finite word in cΠminit,m. Let n1, n2, . . . be the indices such that
m ∈ Mni , and let k1, k2, . . . be such that m = α∗

upd(m, wki
ni

). Every word wki
ni

is a losing cycle
after any finite word (in particular after w). However, it is possible to find a subsequence of
(wki

ni
)i≥1 with a non-negative mean payoff by always taking a word wni that bring the sum

of the colors above 0 during the first ni 1’s. ◀
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