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Parallel MR-BEM using ScaLAPACK 
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The multiple reciprocity method is a recent generalisation of the well-known 
Boundary Element Method. It allows the numerical analysis of Poisson's problem 
in an efficient and elegant manner since it converts the classical domain integral 
coming from excitation to a summation of boundary ones. However, the method 
leads to the computation of higher order kernels so that the assembly of the linear 
systems is significantly increased. In this paper, it is shown that parallel com- 
puting allows a substantial reduction in CPU time. Different data distribution 
strategies have been implemented and compared using standard ScaLAPACK 
computational kernel. Tests have been successfully run on a 24-processor Intel 
Paragon. © Elsevier Science Ltd 
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1 INTRODUCTION 

When the classical boundary element method is applied 
to the numerical analysis of  Poisson's problem, the 
source term leads to a domain integral. Generally, it 
can be treated without introducing further unknowns. 
However, it requires the introduction of  internal nodes 
and cells so that the domain integration may be time 
consuming. Therefore, some investigators have focused 
their research on the transformation of  the domain inte- 
gral into boundary ones. The first method of  this type is 
the so-called dual reciprocity method 1'2 (DRM) that was 
invented in 1982 by Nardini and Brebbia for elasto- 
dynamic problems. The source term is approximated 
by a combination of  known coordinate functions of  
which the particular solution is easy to find. Internal 
points have to be chosen in the domain and their 
number and position determine the accuracy of  the 
results. More recently, Nowak and Brebbia have intro- 
duced the multiple reciprocity method 3-5 (MRM or 
MR-BEM) that is the most recent technique for convert- 
ing domain integrals. Its principle lies in the use of  
higher order fundamental solutions that lead to a recur- 
rent summation of  boundary integrals that models the 
excitation. The new formulation is made by a series of  
boundary only integrals without any approximation. 
Those integrals have the same form as the one related 
to the left-hand side of  Poisson's equation. Successive 
Laplacians of  the source term and their normal deriva- 
tives have the same position as potential and flux 
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whereas higher order kernels are at the same level as 
the Green's function. Thus resulting influence matrices 
are built in a manner similar to the classical ones. The 
number of  terms in the summation depends on the com- 
plexity of the excitation but it should vanish rapidly pro- 
vided that the problem has been properly scaled. 
However execution time is relatively important in the 
assembly part of  the linear system in BEM and the 
MR-BEM technique still increases the computational 
effort. 

The emergence of  a mature parallel computing market 
now offers a convenient environment for solving com- 
puting intensive applications. It is therefore a natural 
and cost effective choice to consider parallel implemen- 
tation of  BEM methods. First parallel implementations 
of  BEM were conducted in the early 1980s. A seminal 
paper is due to Symm 6 and other researchers, such as 
Davies, 7'8 Bryant et al., 9 Lobry et al. 1° have brought 
their contributions to the area. Distributed DR M has 
also been recently studied) 1 An excellent account of  
the state-of-the-art has been written in Ref. 7. Our 
paper is devoted to the parallel implementation of  MR- 
BEM on a coarse-grained distributed memory MIMD 
(multiple instruction stream, multiple data stream) 
architecture. Different data distributions on a grid of  
processors are considered and compared, with respect 
to the problem size, the number of  processors and the 
number of  higher order terms. The implementation is 
performed in standard Fortran 77, using BLACS 12 
and ScaLAPACK 13 libraries for communication and 
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computation, respectively. Therefore, the code is scal- 
able and compatible on different distributed platforms, 
such as Cray T3D, IBM SP2 or Intel Paragon. Experi- 
ments are conducted on this last machine, showing 
that the assembly part of  the code is relatively expensive 
but is parallelisable with excellent efficiency. 

2 MR-BEM F O R M U L A T I O N  

Consider Poisson's problem defined on a 2-D domain ~2: 

~72U : b0 (1) 

where u and b0 are potential and source terms respec- 
tively. Classical BEM treatment consists of using the 
Green's kernel w~ that is the fundamental solution to 
Laplace's equation, i.e. 

vawi  : --(~i (2) 

where 6 i is Dirac's distribution acting at definition point 
i. The two-dimensional kernel, w~, is equal to 
(-1/21r)ln r where r is the distance from the point i to 
any point under consideration. Multiplying both sides 
of (1) and (2) by w i and u respectively, performing inte- 
gration over domain ~ and applying the second of 
Green's theorem, we obtain a formulation that involves 
only boundary unknowns: 14 

(u Ow~ win d r = -  wibod~ (3) CiUi q- Jonk, On - , 

where c~ is a geometric factor. From now on, a subscript 
'0' will complete the fundamental solution w~ since 
higher order kernels are introduced by MRM. 

The domain integral on the right-hand side of (3) can 
be transformed if we consider a new function wL,~ 
defined as: 

V2WI,i = WO, i 

Thus, again from Green's theorem, the domain integral 
becomes: 

Jf~ b° w°'id~ : If~ bO v2WI 'idQ 

 0o( 0w,,, = bo ~-~-n -- Wl'i dF  

+ .I~ wl'iV2b°dQ (4) 

where 272bo may be denoted by bl, i.e. 

J[Wl,i~72bodf~=J~Wl,ibldf~ (5) 

Domain integral (5) is of the same form as in (3), hence 
the same decomposition can be applied by considering 
the new function w2,~ defined in a similar way as Wl,~, i.e. 

~2W2, i = WI, i 

Iterating the transformation process, a recurrent expres- 
sion arises. The domain integral is then converted into 
the following series of boundary integrals: 

J   0w0,d :2  p=0 J 'c~ p On Wp+uOffnJ (6) 

where higher order fundamental solutions wp,i and 
functions bp and defined as: 

~2 Wp+ 1 ,i = Wp,i 

bp+ 1 = ~TZbp 

f o r p  > 0. 
Substituting (6) into original expression (3) yields: 

(uOwo,, Ou) 
ciui + Jo~\ On Wo,i-~n dF : 

(7) 
-- ~ ~ (b  OWp+l'i Obp"~ 

Jof~, p Oil WP+ 1'i -~-n ) d~~ 

Notice that no approximation was made here, this new 
boundary only formulation is an exact form of  the 
original Poisson's problem. 

Successive Laplacians of the source term are assumed 
to be known, as b0 is a known function of space. The 
bp functions can be calculated either analytically or 
numerically by using symbolic manipulators. The 
higher order kernels are easy to derive for both 2-D 
and 3-D cases. The two-dimensional expressions for 
Wp,i and its normal derivative are given here: 

F2P 
Wp'i -- 27r (Apln r - Bp) 

OWp,~ _ r2P 1 I Or 
On 27r Ap(2pln r + I ) - 2pBp] on (8a) 

L 

where coefficients Ap and Bp are obtained from the 
following recurrence relationships: 

Ap 
Ap+ I -- 

4(p + 1) 2 

Ap 
1 ~ f q _ B p  I (8b) BP+I 4(/0 q- 1) 2 

for j > 0, A 0 = 1 and B 0 is arbitrary due to the non- 
uniqueness of the solution of  the integral equation, 5 
B 0 is often chosen equal to 0 or (1/27r) In rmax, where 
rma x stands for the maximum distance between nodal 
points. 

3 DISCRETISATION 

The numerical evaluation of  the integrals is obtained by 
subdividing the boundary 0f~ into a number of boundary 
elements 09tj. Discretisation of the integrals associated 
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with the potential and its normal derivative in (7) requires 
a suitable approximation of those variables within each 
element. Linear boundary elements and linear interpola- 
tion on them is generally a good compromise between 
accuracy and simplicity of implementation. There results 
the assembly of the well-known influence matrices that 
we write with the subscript '0', i.e. H0 and Go. The recur- 
rent boundary integrals of the right-hand side are of the 
same form as those related to the variables u and Ou/On. 
Therefore, a similar treatment can be conducted on 
them. Successive Laplacians of excitation b0 are able 
to be directly calculated on the nodes of the boundary 
since b0 is known. Thus discretisation of those integrals 
leads to higher order influence matrices 14 denoted as 
Hp+l and Gp+l. Finally, the set of equations is of the 
matrix form: 

H0u - G0q : ~ = 0Hp+ldp - Gp+lbp (9) 
P 

where u and q represents the vectors of boundary poten- 
tial and normal derivative respectively. Vectors bp and 
dp contain vertex values of bp and Ob~/On respectively. 
Boundary conditions are considered by rearranging the 
system as usual. 

Computation of the entries of 140 and Go can be car- 
ried out in either a numerical or an analytical way. The 
latter case relates to the situation where source point i 
belongs to the boundary element under consideration. 
The singularity of the zero-order kernels necessitates 
this particular treatment for a better accuracy in integra- 
tion. In this other case, Gauss quadrature integration is 
normally used. Expressions (8a) of the higher order 
kernels show that there is no singularity as distance r 
vanishes so that the recurrent integrals can all be 
evaluated numerically by using Gauss quadrature 
again. Thus MRM is easy to implement since the 
routines for numerical integration are similar to the 
classical ones. 

The number of terms in the series (6) depends on the 
complexity of the source function b0. In many cases, e.g. 
a polynomial definition of b 0, the summation is finite 
with a relative small number of terms. When the excita- 
tion gives rise to an infinite series, the summation has to 
be truncated by using a suitable convergence criterion 
that is described in detail by Nowak) 5 Generally, the 
terms vanish rapidly due the introduction of factorials 
into the denominators of coefficients Ap and Bp given 
in (8b). 

4 PARALLEL IMPLEMENTATION OF MR-BEM 

4.1 Introduction 

Finite element methods (FEM) generally require large 

computational efforts. Although the boundary element 
method reduces the calculations of a problem, it can be 
time consuming when the geometry is three-dimensional 
and complex. Moreover, the related linear system 
involves a dense matrix whereas finite element methods 
yield to sparse systems, though the size of the systems 
are smaller for BEM than FEM. Parallel computing 
offers an interesting way of reducing the related 
computational cost. 

Numerous types of parallel machines exist depending 
on the number and the type of processors, the connec- 
tion and the memory topologies, etc. Our study is 
devoted to the use of a distributed architecture as it 
seems the top end topology for supercomputers in the 
future. A coarse-grained parallelism is exploited so 
that a small number of high-performance processors 
are used. On the other hand, Davies 7'8 works on 
massively parallel computers using small-grained 
implementation. Computation and communication 
complexities are studied with the model of Saad and 
Schultz. 16 The communication time of n consecutive 
data items between two processors is assumed to be of 
the form /3 + n'r where /3 is the latency and -r is the 
time to transfer one data item. The elementary com- 
putation time is w. Two main steps should be considered 
for the MR-BEM: the assembly of the linear system 
and its solution. The second can only start when the 
first has been completed but each one may be decom- 
posed into parallel tasks. Several strategies are possible 
for both the assembly and solving steps but they 
should be closely arranged in order to get the best 
global performance. Gaussian elimination with partial 
pivoting is used for the solution since it appears to be 
an efficient stable parallel solver for linear dense 
systems. 17 

Discretisation of boundary formulation (7) leads to a 
linear system of equations expressed by (9) in matrix 
form. The expanded form is now necessary in order to 
understand the strategy used in the parallel implementa- 
tion presented in this section. Each equation is asso- 
ciated with a source point i that is chosen as the 
successive node of the boundary mesh. Let n be the 
number of nodes and, at the same time, the number of 
boundary elements 0ftj. Suppose that the series (6) is 
truncated so that N + 1 terms are considered in the 
series. Thus, expansion of (9) is: 

I/h(1) . (2)  ~ f (1) (2) ~ "~ 
[ ~ o,i,juj,1 + no,i,juj,2 ] - ~ go,i,jqjA + go,i,jV,2 ) ] CiUi + 

j= l  

= hp+l,i,jb p + ,j,l r'p+ l,i,jUp,j,2 J 
p=O j=l 

/ (1) . gp+l,i,jdp,j,2) ] _ ~gp+l,i,jap,j, 1 qt_ (2) (10) 

where uj,k, qj,k, bpj,k (k = 1,2, p = 0-N) are the values 
of u, Ou/On, bp and Obp/On respectively on the nodes 
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k of the element OQj. Coefficients h(k). and g(k!. are P,ld P,td 
deduced from integration of  respective p-kernels 
O%,i/On and we, ~ with the interpolation functions. 
Assuming that Of~j is enclosed between nodes j and 
j + 1, (10) may be rewritten as: 

n 

( I-Io, , , : , j  - ao , , , j q j )  : 
j=l 

N n 

(l l)  
p=0 j = l  

where 

uj = uj-l,: : uj, j 

qj = qj-l,2 = qj: 

b ,j : : bN. ,  

dp,j = qp,j_ 1,2 = qp,/,l 

(2) 
H p i  j ,  , = h(l).p,,,] + h p , i , j _ l ( + C  i i f  i = j  for  p : O) 

= gO!. + _(2) 
Gp,i,j p,z,: go,i,) I (12) 

Numerical integration is carried out by using a n  r/g- 

point Gauss quadrature. In practical implementations, 
higher order influence matrices are not stored in an 
array. Once calculated, coefficients h(k!. and _(k) p,t,j gp,i,,j 
(p > 0) are immediately multiplied by the right source 
function bpj or dpj and the result is stored in the right- 
hand side vector of  the linear system, 

4.2 Parallel assembling of the linear system 

This section is devoted to the parallel assembling of  the 
n by n linear system (11) which will be rewritten in the 
matrix form: 

Sx : f (13) 

Each entry Sij of matrix S is either a term Ho,ij or G0,~, 
depending on the boundary condition at node j. From 
(12), S 0. may be decomposed as follows: 

S/j  s ! ! ) _  (2) (14) = z) ~- Stj 

where s!( 0 #~) ,,(k) (k = 1,2). = "'0,/j o r  6o,/j 
We assume working on a grid of Pr by Pc processors, 

the total number of  processors is then equal to p = PrP,. 
Data are block-cyclically distributed on this grid so 
that each coefficient S/j is calculated by processor Pkt, 
where k = ( i -  1)/b rood Pr and 1 = ( ] -  1)/b rood Pc. 
Parameter b represents the size of  squared data block. 
This standard block cyclic data allocation is illus- 
trated in the case of  a 12 by 12 matrix distributed on 
a 2 by 3 grid with blocksize 2, the allocation is then 

as follows: 

0 0  00 01 01 02 02 00 00 01 01 02 02 
00 00 01 01 02 02 00 00 01 01 02 02 
10 10 11 11 12 12 10 10 11 11 12 12 
10 10 11 11 12 12 10 10 11 11 12 12 
00 00 01 01 02 02 00 00 01 01 02 02 
00 00 01 01 02 02 00 00 01 01 02 02 
10 10 11 11 12 12 10 10 11 11 12 12 
10 10 11 11 12 12 10 10 11 11 12 12 
00 00 01 01 02 02 00 00 01 01 02 02 
00 00 01 01 02 02 00 00 01 01 02 02 
10 10 11 11 12 12 10 10 11 11 12 12 
10 10 11 11 12 12 10 10 11 11 12 12 

where each entry of  the above matrix gives the kl-index 
of  the processor that holds the coefficient written at the 
same position in matrix S. The advantage of  such a dis- 
tribution is that it is extremely flexible, ranging from a 
classical column interleaved storage (Pr = b = 1) to a 
row one (Pc = b = 1). A particular case is the block 
grid distribution (b = n/pr, Pr = Pc). 

For the assembly of  (14), some communication 
between neighbouring processors is generally required, 
depending on the column index. Indeed, the compu- 
tation of s!~ ) will always be local to a processor whereas 
s(2 ) has to be '~ transferred from processor Pkt to processor ij 
Pkl+l (Pko if 1 = Pc) only if co lumnj  is a border column, 
i.e. j rood b -- 0. Figure 1 illustrates the assembly of a 
part  of  the matrix in processor Pkt, the transfers from 
and to this processor are shown by a bold line. In the 
case of  the cyclic row distribution, no transfer is needed. 
As said above, the right-hand s ide f i s  computed by rear- 
ranging system (9) in order to take boundary conditions 
into account and by summing the higher order contribu- 
tions. Each processor builds a part of  this vector without 
any data transfer. A global accumulation is performed 
just before the solution step. Communication cost of  
the assembly part  is evaluated as (Pc > 1): 

n n 
Tcomm : / 3  + p-~r b~pc 7- 

n 2 

since communication of  all the coefficients can be 
done for each processor with one single message, as 
soon as the computat ion is performed is performed. 
Computat ion time is approximated as: 

Tcom n n = 16- - - -Nngw 
PrP,, 

t/2 
= 16--Nngw (16) 

P 

The ratio of  (15) to (16) is about: 

16n2Nngw + 16bNngw (17) 
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l::)kl - 1 Pkl 

T . . T  
Sq_ i Sq SII4. ! ~q÷b-I 

k = i / b  rood Pr 

Fig. 1. Data transfer in the grid allocation. 

It is clear that the communication overhead is negligible 
in the matrix assembly process. Therefore, this step is 
highly scalable and parallelisable whatever the grid 
topology may be. 

4.3 Parallel solution of the linear system 

Pkl+  1 

_0} _(z} ... ?% 
Sii+b Stl+ID+t 

required for the assembly step, where the complexity is 
O(n2), provided the size n is not too large say 
n < 1000). That is to say the best data distribution is 
governed on a global basis assembling+solution) 
rather than on the solution alone. 

There are numerous papers on the subject of the parallel 
solution of dense linear systems and it is generally 
admitted that LAPACK ~8 sequential codes and their 
parallel extension to ScaLAPACK ~3 are the most 
powerful and compatible codes for numerical linear 
algebra standard algorithms. Moreover, they make the 
conversion of a parallel code from a sequential version 
easy. ScaLAPACK Fortran routines PDGETRF for 
LU factorisation and PDGETRS for forward and back- 
ward substitution are used. They exploit the block cyclic 
data distribution on the grid of processors in an efficient 
manner. Interested readers are referred to the literature 
mentioned above for extensive description and test 
results. In Ref. 13, the complexity TLu is shown to be 

n2 1 2n2 
TLU ~--- 2n Iog2(Pr)fl -~ ~p [2pc +p og2(p)]r + -~-p~ 

(18) 

Although it is a cubic complexity, the real time for sol- 
ving the system in parallel does not exceed the one 

ST= 0 
On 

T(O) =T o ~ IJ(x)l 

io L 

a_T.T = 0 
8n 

T(L) =T O 

~ x  

Fig. 2. Test-case for parallel MR-BEM. 

5 PERFORMANCE RESULTS 

In order to measure and to compare the performances of 
the parallel strategies, a very simple example is studied. 
The test case chosen consists of  a 2-D heat problem 
described as follows. A time-harmonic current is flowing 
in a conductor of rectangular cross-section (Fig. 2). The 
frequency is sufficiently high to give rise to a skin effect 
so that the current density J is non-uniform. Assuming 
the height of the conductor is several times greater 
than the width, end-effects may be neglected. Then the 
analytical expression of  J exists. It is deduced from 
Maxwell's equations and is of the complex form: 

J(x) = J(0)e -(l+j)~ 

where 6 is the skin depth that depends on the material 
and decreases with the square root of  the frequency. It 
is desirable to compute the mean temperature field T 
within the conductor while both sides are at Dirichlet 
conditions To. The governing equation is of Poisson 
type where the source term comes from the local dissi- 
pated Joule's power: 

P V 2 T = - X IJla 

= _-P ij(0) 12e-aX/a 
A 

where ), and p are the thermal conductivity and electrical 
resistivity of the material respectively. This problem has 
an analytical solution that can be compared with the 
numerical one. The field temperatures only vary with 
the x-direction as: 

[,_ e-:X/' (e :L" 

F r o m  n o w  on,  we deno te  the source te rm as b0. 
Successive Lablacians bp are easy to obtain from 
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Block size b 

Fig. 3. CPU time vs block size (n = 512, N = 5, p = p~ x p,. = 16). 

bp = b0 

Notice that the recurrent series is infinite due to the 
exponential function. 

The implementation of the algorithm has been carried 
on in standard Fortran 77 using double precision. Com- 
munication library BLACS is used. The code has been 
run on the Intel Paragon of University of  Lyon 1, con- 
sisting of  24 processors 50 MHz i860XP operating under 
the OSF/1 operating system. On each processor, the 
kernel computation for solving the linear system was 
performed using assembly-coded BLAS provided by 
Intel. Experimental tests have been conducted with sev- 
eral problem sizes (n = 256, 512, 1024, 2048). Problem 
size has been limited to 1024 due to the limitation of 
memory storage on the processors. The number of  
higher order terms (N = 0, 1, 5, 15) and the number 
of processors (p = 1, 4, 8, 16) are also parameters of 
the study, the assembly time is nearly independent of  

the grid topology since the communication overhead is 
negligible compared with the computation time. Tests 
reveal excellent efficiencies Eas s of  this part of  the MR- 
BEM algorithm (Eass > 95%). In fact, it is the solution 
step that governs the overall efficiency and, finally, the 
choice of  the best processor topology. Optimal blocksize 
b for the block cyclic data distribution has been deter- 
mined experimentally, considering the total execution 
time. It is found to be around 8, whatever the number 
of processors or the problem size may be. This is illu- 
strated by the timings plotted in Fig. 3 for a size 
n = 512, a number of  higher order terms N = 5 and 16 
processors. This corroborates what is observed in the lit- 
erature about LU factorisation using ScaLAPACK. ~9 
Furthermore, it is noticed that the block cyclic distri- 
bution is far better than simple cyclic wrapped inter- 
leaved allocation. It is also shown that the block 
column-oriented distribution (Pr = 1) is the best top- 
ology. Note that those conclusions may be slightly 
altered for very large sizes as it occurs in three-dimen- 
sional analysis but it is beyond the scope of  this paper. 

100.0 

w 

>, 75.0 
r- 
I1) 

~ 0 ¢ 0 ~  n = 2 5 6  
n = 5 1 2  

: : : : :  n = 1 0 2 4  
~ e  n = 2 0 4 8  

50.0 2 ,3 4- ,~ (~ "-~ 8 9 10 1'1 12 I~ 14 15 

Number of processors p 

Fig. 4. Efficiency vs number of processors (N = 5, b = 8, Pr = l). 

1'6 
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0.3  

=, 0 .2  

=, 
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0 
-'-" 0.1 0 (M 

0 .0  

J 

5 6  512  768  

Fig. 5. Ratio TLu/TAs s vs size 

Figure 4 presents the global efficiency E versus the 
number of  processors for the four sizes considered 
where optimal topology is considered. In the case of  
n = 2048, the implementation cannot be run on 1 and 
4 processors due to memory limitation. Extrapolation 
of sequential timings has been necessary for the calcula- 
tion of the efficiency in the case of  p = 8 and 16. From 
the results, we deduce that the efficiency decreases with 
the number of  processors whereas it increases with the 
problem. This is due to the parallel LU factorisation 
that is known to exhibit this natural behaviour. This is 
further demonstrated through Fig. 5 that displays the 
ratio of  solution and assembly times TLU //'as s as a func- 
tion of the size for different number of  processors, with 
optimal topology. 

An interesting parameter is the number N of  higher 
order terms that is different from one problem to 
another. Here the same problem is used for various 
values of  N since only the timing is of interest. It is 
clear that the assembly process becomes more and 
more important  with respect to the solution step as N 

100.0  

f - %  

i , i  

>, 75 .0  
0 
E 
a3 
0 

t.d 

: : ; : ;  p = 8 
= : : : ==  p = 16 

t . . . . . +  

10'24 1280 15'36 1792 20~,8 

Size n 

n (N = 5, b = 8, pr = 1). 

increases. Indeed triangular reduction only depends on 
the size n of  the problem. Therefore the efficiency is 
closer to unity for problems with complex source excita- 
tion (N large). The worst case relates to N = 0, i.e. a 
constant or linear excitation. Then we are in the case 
of  the classical boundary element method. This is in 
agreement with results of  Fig. 6. An interesting extrapo- 
lation of  the assembling execution time Tass, with respect 
to the number of  terms is the following: 

Tass(N) = N[Tass(1) - Tass(0)] + Tass(0) 

The results of  this study lead to some interesting con- 
clusions. First of  all, the column-oriented allocation 
with a blocksize b around 8 seems the optimal topology. 
From a practical point of  view, larger values of  b do not 
significantly affect the performances but lower values 
must be avoided. In particular, the optimal choice 
should be followed with care as a low number of 
higher order terms is to be expected in the problem. 
As the problem size is still increased above 1024, the 
ratio TLu/Tass increases so that the global efficiency 

^ ^ ^  

N = 1 
: : : : :  N - -  5 
-~--~-~-~-~ N = 1 5  

50.0 2 3 4 5 6 7 8 9 I'0 I'I I'2 i'3 I'4 I'5 

Number  of processors  p 

Fig. 6. Efficiency vs number of processors (n = 512, b = 8, Pr = 1). 
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becomes further influenced by the solution step. On the 
other hand, the LU efficiency becomes better since the 
size is larger. 

6 CONCLUSION 

Our paper was devoted to the parallel implementation 
of MR-BEM on a coarse-grain distributed memory 
M I M D  architecture. Different data distributions on a 
grid of  processors were considered and compared with 
respect to the problem size, the number of  processors 
and the number of higher order terms. The implementa- 
tion has been performed in standard Fortran 77, using 
BLACS and ScaLAPACK libraries for communication 
and computation, respectively. Performance results 
have been conducted on an Intel Paragon machine 
with 24 processors. A simple test-case was considered. 
The grid topology has been the basis of the study. It is 
deduced that the block column-oriented allocation 
with a blocksize b around 8 seems the best topology 
whatever the size of  the problem may be. The choice 
of  optimal topology is important for the parallel treat- 
ment of problems with smooth body force, that is to 
say when the number of  higher order terms is low. 
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