
Design and implementation of a modular

distributed and parallel clustering algorithm∗

Landelin Delcoucq

University of Mons, Faculty of Engineering, Mons, Belgium,

e-mail: landelin.delcoucq@umons.ac.be

Pierre Manneback

University of Mons, Faculty of Engineering, Mons, Belgium,

e-mail: pierre.manneback@umons.ac.be

The number of data generated per year will reach more than 44.000 billions
of gigaoctets in 2020, ten times more than in 2013 and this is likely to continue
according to an EMC/IDC survey 1. This means more than 10.000 gigaoctets
per person and per year generated by the daily life. Nowadays, very large hetero-
geneous datasets are collected. The analysis of those data to be able to extract
relevant information without getting lost in the vastness of the data represents
a major challenge of the coming years. The raise of the amount of data due
to the storage capacity big bang implies architectural modi�cations in the data
storage and in the data management. Data mining methods have to adapt to
those changes. We evolved from a single storage site to many distributed sites
but the need of a single centralized data mining process is remained.

The most known and used solution developed to solve this problem is the
Big Data. Big Data is a concept proposed and detailed by the Association for
Computing Machinery in 1997. It represents a set of tools to deal with data and
to reach a triple goal, the triple V (Volume, Variety and Velocity). The Big Data
has to deal with very large datasets and those datasets are very heterogeneous
because they are coming from di�erent locations, with di�erent structures or
can be unstructured. In addition, the process has to reach a level of velocity
and accuracy that involves its superiority against classical methods and tools.
Therefore, the purpose of my work is to design and implement an algorithm to
deal with large datasets while satisfying the triple V. The core of this algorithm
being a clustering method, the K-Means algorithm.

The purpose of my work is to propose an implementation of K-Means using
the pattern MapReduce. This pattern has been developed to deal with very large
distributed datasets. This is an approach in which the K-Means clustering algo-
rithm is a module which could be replaced by others clustering algorithms. That

∗This work was realized in collaboration with the University College of Dublin as part of

the Erasmus programme
1The Digital Universe of Opportunities : rich data and the Increasing Value of the internet

of things

1



allows us to combine the advantages and to reduce the drawbacks. Clustering
algorithms can't provide an unique solution and need many experimentations to
reach the �nal solution. Those experimentations can be computationally expen-
sive and require a lot of memory access then the optimization of the distribution
and of the parallelization has to be highly considered. The distributed and paral-
lel features of this algorithm will allow us to use it on data coming from multiple
locations and the modular feature will allow us to use in on data heterogeneously
structured.

MapReduce is a programming model for performing calculations on the data.
It composed of two basics components : mapping functions and reducing func-
tions. A MapReduce job can be divided into map tasks and reduce tasks, both
that run parallel with each other. The map task converts a set of data into a set
of individual elements constituted of tuples key-values. This key is the central
component of the pattern. Values with the same key will be grouped in the next
step. The reduce task takes outputs from the previous task and combines those
tuples into another set of tuples.

The main feature of this algorithm is to use only the mapper to perform the
K-Means algorithm itself and after that the algorithm will use multiple reducers
to perform mergers between the clusters previously generated. This algorithm
will process data in a parallel way because it will compute all the clusters in the
same time at the �rst level of the algorithm. At the followings levels, the mergers
will also be processed in a parallel way because the clusters will be separated
into groups and the clusters into those groups will be compared and merged
simultaneously, if they are similar, until there is only one group.

The algorithm will also process data in a distributed way because the Hadoop
Distributed File System will allocate randomly the points to di�erent nodes (and
thus di�erent processors). The distributed feature of this algorithm is managed
by the pattern and the algorithm doesn't have an impact on it. The right con�g-
uration of the network is nonetheless a critical factor to the successful completion
of the algorithm. For example, it has to be able to identify the nodes.

The mapper is completely independent of the reducer because the input of
the reducers is clusters. It allows us to switch the algorithm used by the mapper.
A �rst mapper can use a K-Means algorithm, a second can use a KNN algorithm
and a third a DBSCAN algorithm, it will have no e�ect on the reducers. First
of all, the mapper will be also used like a translator. The MapReduce pattern is
designed on a "schema-on-read", the algorithm must adapt to the data. Thus,
our algorithm will read the input, identify the corresponding pattern of the data
and extract a common structure which will be used throughout the process.

The personalization of the mapper is a key point of the algorithm. The mapper
is able to identify the node on which it is working and thus an application using
this algorithm will be able to identify the node on which it is working, a node
can be a datacenter representing a speci�c type of data. The application will be
able to modify its pattern to �t with the data.


