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The Ant Colony Algorithm (ACA) is applied to classical optics to find the Snell law of refraction back. For sufficiently small simulation space, the
algorithm rapidly converges to the optimal solution and the refraction law is recovered.

1. Context

The ACA is an optimization algorithm, proposed by Dorigo in 1996 [1], which is based on the collective behavior of ants which are able to find the
shortest path between their colony and food [2] (figure 1A). Each ant leaves some pheromones on its way which influences the decisions of the other
ants. After a while, the shortest path is covered by the largest amount of pheromones and most of the ants follow this optimal way. This algorithm has
been applied with success to a large number of optimization problems such as the travelling salesman problem.

In classical optics, the Fermat principle states that light always chooses the path
(between one departure and one arrival points) with the least duration time. This
principle leads to the refraction law (figure 1B) : when a ray of light crosses two
media with different refractive indexes, a change in its direction occurs which can
be characterized by the Snell law

nysini=n,sinr
where n,, n, are the refractive indexes of medium 1 and 2, i and r are the angles of

incidence and refraction. Refraction indexes can be linked to the speed of light v in

(A) (B) the related medium through the relation n = ¢/v where c is the speed of light in the

Figure 1 — (A) Ants follow the fastest path and are submitted to a « refraction » when they vacuum
cross a medium which influences their speed [2] (B) Refraction of a laser beam '

The goal of this work is to apply the ACA on the Fermat’s principle and compare the solution proposed by the algorithm with the prediction of the Snell

law.
2. Algorithm

1. Initial conditions : the simulation space is discretized into a square grid and is divided into two different media. Arrival and departure points are
defined by the user. All the transition probabilities are initially equal.

2. For each iteration, a number n, of ants independently travels in the grid.

3. At each time step, each ant, initially at position i, chooses a new neighbored position j with a probability p; given by p;; < 7

qguantity of pheromones associated to this transition. The path of each ant is stopped when it arrives at the final position.

&

ij Where t;; is the

X
4. At the end of the path, the old pheromones are evaporated with a rate p and are then updated depending on the ant path : 7;; = 7;; + (%) where

T is the duration of the ant path.
5. Atthe end of the program, the least duration path and a grid providing the frequency at which the ants get to each position are given.

Simulation grids were composed of 7x7 points and simulation parameters were chosenasa =1, y=2,0Q0=1/7n,, n, = 50, p = 25% and 10000
iterations. The algorithm was first tested for a homogeneous medium (n,=n,) : as expected, the optimal path is given by a straight line between the
arrival and the departure points. Different refraction indexes (n,/n, ratios of 1/3 and 1/5) were then tested showing that in average the ants seem to
follow the optimal path close to the theoretical prediction. However the shortest path found by the simulation is not always close to the theoretical one.
Our simulations and conclusions are limited by the small size of our grid. Larger grids would need more time computation to reach a good precision.
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Figure 2 — Simulation results for n,/n, ratios of (A) 1/1, (B) 1/3 and (C) 1/5

4. Conclusion

Our preliminary results for the application of ACA on light refraction are promising and show that it could provide a good method for more complex optic
problems or more general optimization problems involving a path optimization. However, current computers are not fast enough to provide a sufficiently
good precision.
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