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Chapitre 1
Topographie

Demandez a un géomeétre la mesure de la terre, mais ne lut demandez pas celle
de son nez

- P. Masson, Les Pensées d’un Yoghi

1.1 Buts et objectifs du cours

La topographie est la science ayant pour objet la représentation sur un plan des formes du
terrain avec les détails naturels et artificiels qu’il porte [1]. Le but & atteindre est 1’établissement
d’une minute de levé (établie sur papier ou sous forme numeérique) qui reprend en détail
I’ensemble de ces mesures. Trois techniques sont reliées aux études topographiques :

— la géodésie est 'étude de la forme de la terre et la mesure de ses dimensions, elle vise
également I’établissement de la position de points de repére connus en altitude (repéres
de nivellement) ou en altitude et position (repéres géodésiques);

— la topométrie est 'application de procédures géométriques permettant d’exploiter les
mesures topographiques pour établir la position et I'altitude des points mesurés ;

— l'arpentage est la mesure de la superficie des terrains.

La détermination des coordonnées et de diverses caractéristiques de points dans ’espace occupe
une place importante dans la plupart des études a buts environnementaux. L’objet de ce cours
est de balayer ’ensemble des méthodes et techniques a la disposition des bureaux d’études pour
acquérir des informations géométriques des objets tridimensionnels, qui composent nos paysages
urbains et naturels. Il ne s’agit évidemment pas de former des topographes chevronnés, mais
bien de donner une culture technique de base pour permettre d'une part un dialogue avec
les professionnels et d’autre part, lorsque c’est nécessaire, la mise en oeuvre de protocoles de
mesures élémentaires.
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1.2 Contenu du cours

Le cours présentera tout d’abord I’établissement des cartes et des repéres de base établis en
topographie (chapitre 2). Les références prises sont celles de 'institut géographique national
qui établit les régles et controle les canevas pour notre pays. Le principe du nivellement
sera développé au chapitre 3. Une présentation du matériel et des méthodes classiques de
relévement topographique sera ensuite réalisée (figure 4). Quelques méthodes courantes de
relevé planimétriques seront ensuite détaillées (chapitre 5). Les techniques d’implantation seront
détaillées au chapitre 6. Le cours se conclura par le chapitre 7 qui évoquera quelques techniques
avancées employées en topographie.

1.3  Vocabulaire de la mesure’

1.3.1 Grandeur et unité

— Grandeur (mesurable) : attribut d’'un phénoméne, d’un corps ou d’une substance qui est
susceptible d’étre distingué qualitativement et déterminé quantitativement. La longueur
est une grandeur générale ; la longueur d’une piéce donnée est une grandeur particuliére.

— Unité (de mesure) : grandeur particuliére, définie et adoptée par convention, a laquelle
on compare les autres grandeurs de méme nature pour les exprimer quantitativement
par rapport a cette grandeur. Exemple : le métre est la longueur du trajet parcouru dans
le vide par la lumiére pendant une durée de 1/299 792 458¢ de seconde.

1.3.2 Mesurages

— Mesurage : ensemble d’opérations ayant pour but de déterminer une valeur d’une
grandeur.

— Mesurande : grandeur particuliére soumise a mesurage.

— Grandeur d’influence : grandeur qui n’est pas le mesurande mais qui a un effet sur le
résultat du mesurage.

1.3.3 Reésultats de mesure

— Exactitude de mesure : étroitesse de 'accord entre le résultat d’'un mesurage et une
valeur vraie de mesurande.

— Répétabilité (des résultats de mesurage) : étroitesse de I'accord entre les résultats des
mesurages successifs du méme mesurande, mesurages effectués dans la totalité des mémes
conditions de mesure.

— Reproductibilité (des résultats de mesurage) : étroitesse de l'accord entre les résultats
des mesurages successifs du méme mesurande, mesurages effectués en faisant varier les
conditions de mesure.

— Incertitude de mesure : paramétre, associé¢ au résultat d’un mesurage, qui caractérise la
dispersion des valeurs qui pourraient raisonnablement étre attribuées au mesurande.

1. La majeure partie de cette section est extraite de [2]
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1.3.4 Etalons

— Etalon : mesure matérialisée, appareil de mesure, matériau de référence ou systéme de
mesure destiné & définir, réaliser, conserver ou reproduire une unité ou une ou plusieurs
valeurs d’une grandeur pour servir de référence.

— Etalonnage : ensemble des opérations établissant, dans des conditions spécifiées, la
relation entre les valeurs de la grandeur indiquée par un appareil de mesure ou les
valeurs représentées par une mesure matérialisée ou par un matériau de référence, et les
valeurs correspondantes de la grandeur réalisée par des étalons.

— Tragabilité : propriété du résultat d’'un mesurage ou d’un étalon tel qu’il puisse étre
relié & des références déterminées par l'intermédiaire d’une chaine ininterrompue de
comparaisons ayant toutes des incertitudes déterminées.

1.3.5 Caractéristiques des instruments de mesure

— Calibre (ou gamme de mesure) : étendue d’échelle que 'obtient pour une position donnée
des commandes d’un instrument de mesure.

— Sensibilité : quotient de l'accroissement de la réponse d’un instrument de mesure par
I’accroissement correspondant du signal d’entrée.

— Résolution (d’un dispositif afficheur) : la plus petite différence d’indication d’un dispositif
afficheur qui peut étre percue de maniére significative.

— Justesse : aptitude d’un instrument de mesure a donner des indications exemptes d’erreur
systématique.

— Fidélité : aptitude d’un instrument de mesure a donner des indications trés voisines lors
de 'application répétée du méme mesurande dans les mémes conditions de mesure.

— Exactitude : aptitude d’un instrument a donner des réponses proches d’une valeur vraie.

— Hystérésis : propriété d’un instrument de mesure dont la réponse a un signal d’entrée
donné dépend de la séquence des signaux d’entrées précédents.

L]
o ® °
o hd °
[ ]
. . N
Ni juste ni fidele Pas juste mais fidéle Juste mais pas fidele Juste et fidele

, . L , . P FErreurs faibles
Erreurs systématiques et aléatoires Erreur systématique Erreurs aléatoires rreurs faible

Figure 1.1 — Caractérisation d’un instrument de mesure ou d’une procédure.
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1.4 Généralités concernant les mesures

La topographie est une forme particuliéere de métrologie & grande échelle. Les procédures a
mettre en oeuvre pour une mesure efficace visent deux objectifs principaux contradictoires :
— la plus grande précision possible dans les mesures;
— la minimisation du nombre de mesures pour minimiser le cotit de la campagne.
Dans cette optique, il est nécessaire de préparer la campagne de mesure et de garder & I'esprit
I'utilisation qui sera faite des mesures pour une disposition optimale des essais.

1.4.1 Incertitude de mesure

Toute mesure est inévitablement entachée d’erreur qu’il faut estimer pour pouvoir les compenser
[2]. L’incertitude de mesure est étendue estimée des valeurs dans laquelle se situe la valeur
vraie de la grandeur mesurée. Toute indication de résultat de mesurage doit étre accompagnée
de l'incertitude de mesurage. Les effets de faibles erreurs, amplifiées par les grandes distances
mesurées peuvent étre rapidement significatives. Par exemple, une erreur de 1 mgon? sur une
visée effectuée a 100 m équivaudra a une erreur de 100 - tan 4% ~ 1,6.1073m pour une seule
visée. Ces écarts seront encore amplifiés lorsque la mesure d’un point résultera d’un ensemble
de mesures isolées. Le cas est encore plus problématique lorsqu’il s’agit d’un point résultant de
I'intersection de deux visées pour lesquelles les rayons de visée se coupent selon des angles trés
aigus ou trés obtus. Cette incertitude est la résultante de facteurs intrinséques aux instruments
utilisés, de facteurs intrinséques aux méthodes utilisées et de facteurs d’influence extérieurs.
Exemples de sources d’incertitude :

— environnement de la mesure (température, vibrations,...);

— matériel de mesure (guidage, régles,...) ;

— traitement des mesures (filtrage, échantillonnage, algorithme,...) ;

— meétrologue (expérience, connaissances,..) ;

— grandeur mesurée ;

— procédure de mesure ;

— constantes physiques et facteurs de conversion.
Une quantification des incertitudes liées aux mesures est nécessaire pour pouvoir s’auto-juger
sur la qualité des mesures effectuées. Historiquement, on employait la notion de calcul d’erreur.
La tendance est a I’évolution vers la notion statistique d’incertitude de mesure. Dans cette
optique, on définit le résultat d’une mesure comme une variable aléatoire, avec deux causes
produisant des écarts avec la valeur ’vraie’ :

— les erreurs systématiques (écart constant avec la valeur vraie, pouvant étre corrigé ou

non) ;
— les erreurs aléatoires (effet non prévisible, de moyenne nulle et présentant une certaine
dispersion).
L’hypotheése la plus courante sur la distribution des erreurs aléatoires est la distribution normale.
Pour rappel, la fonction de densité d’une distribution normale de moyenne m et d’écart type o
est : ,
F(r) = — e 305 (11)

 oV2r

La portion comprise entre —o et o englobe 68% de la distribution (95,5 % entre —20 et 20,
99,7 % entre —30 et 30).

2. L’unité de mesure d’angle en topographie est conventionnellement le grade noté gon, il correspond & l’angle
interceptant 1/400¢ de tour
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P Moyenne
(E(valeur))

- Incertitude type
(o(valeur))

Erreur
systématique
-

I
I
I
I
I
I
I
I
(
I
I
I
I
I
I
il
]

Valeur|vraie Valeur

Figure 1.2 — Résultat de mesure comme variable aléatoire.

Pour rappel, si on effectue plusieurs mesures pour indiquer une grandeur, le résultat annoncé
est espérance mathématique de U'ensemble des mesures (moyenne arithmétique) :

T=—) (1.2)

o= Y - = | =3 (i — 7R (1.3)

i=1 =1

Avec T qui est la moyenne de la distribution (inconnue, T étant un indicateur de cette valeur).
Un estimateur non biaisé de cet écart type est I’écart type expérimental :

LS - my (1.4)

n—14%
=1

Q
Il

L’écart type annoncé sera ’écart type de la moyenne a savoir :

i 15

0z = % (1.5)

Le résultat sera annoncé comme T £ koz avec k le coefficient d’élargissement (k=1 pour
indiquer que 68 % est dans l'intervalle, k=2 pour considérer 95 % dans lintervalle,...). On
prendra soin d’indiquer la mesure et l'incertitude dans les mémes unités et en conservant le
méme nombre de chiffres significatifs pour les deux (typiquement un ou deux pour I'incertitude).
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A titre d’exemple, si on compare les séries de dix mesures élémentaires (exemptes d’erreurs
systématiques) de distance x et y reprises dans le tableau 1.1

n° | x (m) |n°|x(m) n° |y (m) |n°|y(m)
1 100,123 | 6 | 100,023 | 1 | 100,002 | 6 | 100,003
2 1100,225 | 7 | 100,544 || 2 | 100,005 | 7 | 100,004
3 199876 |8 99975 ||3 |99,997 |8 | 99,995
4 199456 |9 [99,889 |4 199999 |9 | 99,996
5 99,777 |10 | 100,112 || 5 | 99,997 | 10 | 100,002

TABLE 1.1 — Mesures expérimentales

Si a l'issue de ces mesures on n’annonce que la moyenne, on obtient des résultats équivalents a
savoir 100 m, ce qui ne permet pas de remarquer que la dispersion des mesures est nettement
plus importante pour la premiére série. Le calcul de l'incertitude donne lieu aux résultats
suivants :

sy =0,288m s, =0,036 m (1.6)
oz =0,096m o0y =0,001 m

en choisissant un coefficient d’élargissement standard de 2, on peut donc annoncer les résultats
suivants :

x=100,00 m £ 0,19 m (k=2)

y=100,00 m + 0,002 m (k=2)

ce qui permet de juger immédiatement d'une dispersion prés de cent fois plus importante sur
les mesures x.

1.4.2 Incertitude liée aux instruments de mesure

Cette donnée est fournie dans la documentation technique de 'appareil de mesure sous forme
d’une valeur fixe ou d’une constante plus une partie fonction de la grandeur mesurée. Deux
commentaires peuvent étre faits a ce sujet :

— les valeurs annoncées sont les valeurs en sortie d’usine (aprés calibration, suivant
le constructeur, les périodes de validités sont différentes, il faut veiller de maniére
périodique a faire réétalonner I'appareil, typiquement tous les 6 & 24 mois) ;

— les valeurs annoncées sont valables pour un emploi correct du matériel ;

— les valeurs annoncées sont souvent une incertitude type multipliée par 2,7, on a donc
99% de chances d’étre dans cet intervalle (ou 1 % d’étre en-dehors!).
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1.5 Lexique

Francais Anglais Francais Anglais
arpentage (land) surveying justesse accuracy
erreur aléatoire random error mesurage measurement
erreur systématique systematic error mesurande mesurand
étalon standard répétabilité repeatability
étalonnage calibration reproductibilité | reproducibility
exactitude de mesure | accuracy of measurement résolution resolution
fidélité reliability sensibilité sensitivity
gamme de mesure effective (measuring) range | topographie topography
géodésie geodesy topométrie topometry
incertitude de mesure | uncertainty of measurement || tracabilité traceability
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Chapitre 2

Notions fondamentales - projections
cartographiques

Since my youth geography has been for me the primary object of study. When
I was engaged in it, having applied the considerations of the natural and geometric
sciences, I liked, little by little, not only the description of the earth, but also the
structure of the whole machinery of the world, whose numerous elements are not
known by anyone to date

- G. Mercator, Introduction to Ptolemy’s Geography

2.1 Historique

La géodésie est une science assez récente. L’établissement de cartes géographiques rigoureuses,
en-dehors des cartes maritimes, a débuté en France a la fin du dix-septiéme siécle. L’évolution
des techniques a permis ’établissement de relevés de plus en plus précis. Chaque pays s’est
progressivement doté d’un réseau géodésique (ensemble de points uniformément répartis sur
le territoire précisément mesurés et périodiquement vérifiés) sur lequel s’appuient les mesures
secondaires. En Belgique, ¢’est I'Institut Géographique National (ING/NGI) qui est entre autre
chargé de la mesure et de I’entretien de ce réseau primaire.

NATIONAAL GEOGRAFISCH INSTITUUT
INSTITUT GEOGRAPHIQUE NATIONAL

Figure 2.1 — Logo de 'ING belge.

Les premiers réseaux de nivellement de la Belgique ont été établis sous la responsabilité du
Ministére de la Défense nationale [1] :

— Le Nivellement général exécuté de 1840 a 1879 comportait quelques 8500 points répartis
sur toute ’étendue du pays. Il servit de base au tracé des courbes de niveau de ’ancienne
carte topographique de base (dite d’état major). Ce réseau n’était pas repéré par des
marques particuliéres, seul 'emplacement des points cotés était décrit. La surface de
niveau Zéro était le Zéro du Dépot de la Guerre ou Zéro D (celui-ci est défini comme
¢tant le niveau de la marée basse moyenne a vive eau ordinaire a Ostende).
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— Le Nivellement de Précision exécuté de 1889 a 1892 comportait quelques 2000 repéres
de nivellement jalonnant un polygone frontiére et deux transversales, Anvers-Mons et
Liége-Dinant. La surface de niveau Zéro était le niveau moyen de la mer a Ostende (il
se situe a 2,012 métres au-dessus du Zéro D).

— Différents réseaux locaux furent exécutés de 1892 a 1945, dans diverses parties du pays.
Certains d’entre eux furent repérés. La surface d’origine de certains de ces réseaux semble
douteuse.

sace origine zéro HP
point fondzmental Oostende

2.812m

X . 8.86m
surface orligine Zéro D

point fopdamental Qostende
DHG - ..
Deuziéme Hivellement Général - 1946/68 1931-199
sirface origine  Zéro D (fictif)

fundamenteel punt  Bruxelles (Uccle)
B.14m

suiface origine Zéro D {provisoire)
0.1865m point fondamental Antwerpen

suface origine Zéro 2
point fopdamental Qostende

8.28m

suHace origine ZéroH
point fondamental Qostende

Figure 2.2 — Relation entre les surfaces de niveau zéro (doc IGN).

Le réseau actuel est le Deuxiéme Nivellement Général (DNG), exécuté de 1947 a 1968.
Il comporte quelques 19000 repéres, répartis sur tout le territoire. En 1950, une premiére
compensation du réseau de triangulation a été exécutée. Trés vite on constata que le réseau, dont
la précision était suffisante pour une production cartographique & moyenne échelle, n’était pas
assez précis pour d’autres applications. Entre 1955 et 1969, des observations supplémentaires
ont été exécutées. Une compensation globale selon la méthode des moindres carrés a été réalisée
en 1972 (établissement du Belgian datum 72 figure 2.3). Le renouvellement de ce réseau a été
réalisé de 1981 & 2000. Entre 1988 et 2003, 'IGN a réactualisé et densifié le réseau des points
au sol pour atteindre une densité moyenne de 1 point par 8 km?.

vy ;L‘/“
Ry AT e

f“_"’ . 13 { EE! I-‘s}

fre—"

Belgian Datum 1972

Figure 2.3 — Belgian datum 72 (ref IGN). Figure 2.4 — Subdivision actuelle du réseau
belge.

Le réseau est constitué de repéres planimétriques (coordonnées et altitude connues) et

altimétriques (altitude seule connue). Ces points peuvent étre des points caractéristiques
d’ouvrages existants (figure 2.5), des rivets dans le sol (figure 2.6) ou des bornes en fonte

9



CHAPITRE 2. NOTIONS FONDAMENTALES - PROJECTIONS CARTOGRAPHIQUES

(figure 2.7). La référence de 'ensemble de ces points est maintenant consultable librement sur
le web.

Figure 2.5 — Exemple de repére planimétrique élevé : beffroi de Mons. Le pied de la girouette
au sommet de la tour sert de référence planimétrique; le centre de la boule sert de référence
altimétrique.

Figure 2.6 — FExemple de repére Figure 2.7 — Reprére altimétrique en fonte
planimétrique au sol : rivet en cuivre sur la fagade du batiment du Dolez, rue de
dans le béton, place de Flandre (document I’ Alchimiste (document IGN).

IGN).
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2.2 Modélisation de la surface terrestre

2.2.1 Vocabulaire de base

La seule référence absolue en tout point du globe est la direction du fil & plomb qui définit la
direction de la pesanteur. Le champ de pesanteur est défini comme ? = VW. Les surfaces iso
W correspondent aux courbes d’altitude constante.

La terre est un solide qui tourne autour de la ligne des poles (ligne reliant le pole nord au pole
sud). Son intersection avec un plan contenant la ligne des poles (figure 2.8) définit un méridien.
L’angle A formé entre ce méridien et un méridien de référence (observatoire de Greenwitch)
définit la longitude du lieu (A valeur de 0 & 180 degrés est ou ouest). L'intersection de la terre
avec un plan perpendiculaire a la ligne des poles définit un paralléle. Le paralléle a égale distance
des deux poles est appelé équateur. La latitude (¢) d’un lieu est 1’angle entre la verticale locale
et le plan de I’'équateur.

Les poles autour desquels la terre tourne sont appelés poles géographiques. La mesure par
Iintermédiaire d’un boussole donne la direction du nord magnétique. Le nord magnétique a
une position variable au cours du temps (la terre a connu plusieurs inversions de poles), on
estime sa vitesse actuelle a 55 km par année, sa position en 2007 mesurée par L’institut polaire
francais est a une latitude de 83,95° nord et une longitude de 121.02° ouest, soit & une distance
de 673 km du pole nord géographique.

Méridien
de référence!
|

Figure 2.8 — Définition de la longitude et de la latitude d’un point P.

2.3 Ellipsoide de référence

Dés le deuxiéme siécle avant Jésus-Christ, les grecs avaient déterminé une approximation du
rayon terrestre (Eratosténe avait estimé une circonférence de 39375 km en mesurant la différence
d’inclinaison des rayons solaires entre Alexandrie et Assouan, cette valeur est étonnement proche
de la réalité). La mesure de la circonférence de la terre a un temps servi de référence pour le
systéme métrique. Au début du dix-neuviéme siécle, un important travail a été mené pour
mesurer la portion de méridien de Barcelone & Dunkerque. Suite & ce relevé, le métre a été
défini comme la dix-millioniéme partie du quart de méridien terrestre. Cette définition a par la
suite évolué, mais la topographie en a conservé son unité de mesure angulaire : le grade (ayant
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pour symbole gon) qui est défini par I’angle interceptant 1/400¢ de cercle (un angle d’un grade
sur un méridien correspondait donc & 100 km).

En réalité, les équipotentielles de la surface terrestre ont une forme plus complexe appelée
géoide (figure 2.9).

Zone d'utilisation
e . ¥ .
de I'ellipsoide local Point fondamental

~——— Ellipsoide local
Ellipsoide global

Figure 2.9 — Géoide et ellipsoide (Source : pole ARD, adess, domaine public).

Les diverses observations ont permis d’observer que la terre se rapprochait de la forme d’une
ellipsoide de révolution dont les dimensions sont les suivantes :

— demi-grand axe a 6378388 m;

— demi petit axe b 6356912 m.
L’axe de révolution est le petit axe qui est dirigé selon la ligne des poles géographiques. La
variation est donc assez minime (22 km) et du méme ordre de grandeur que les extrémes
variations d’altitudes sur le globe (20 km des fonds les plus profonds au sommet de 'Everest).
Malgré cela, chaque pays a également la possibilité de définir sa propre ellipsoide locale qui
tend a approcher au mieux la géoide localement sur son territoire (figure 2.9).

Wy
- I r
£ ¥
E}?}--L &

Xg AX
AY

Figure 2.10 — Ellipsoide.
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2.4 Projection cartographique

L’objectif des projections cartographiques est de reproduire sur plan la surface non développable
de la terre. La projection cartographique établit une application au sens mathématique du terme
qui & tout couple de coordonnées géographiques (¢, \) fait correspondre un point de coordonnée
(x,y) sur un plan. Classiquement, la projection est établie sur un cylindre ou un cone tangent ou
sécant a lellipsoide (figure 2.11). La zone de tangence est naturellement celle qui est représentée
avec le moins d’altérations.

un plan

normale transversale
c.-a-d. selon |'axe de rotation c.-&-d. perpendiculaire & |'axe de oblique
de la Terre rotation de la Terre

Figure 2.11 — Différents types de projections cartographiques [1].

Les projections peuvent étre équivalentes (les surfaces se conservent) ou conformes (les
proportions sont conservées). Pour évaluer les déformations engendrées par la projection, il est
possible de superposer au plan 'image d’un cercle de rayon donné (indicateur de Tissot). Comme
il n’existe pas de projection a la fois conforme et équivalente, divers systémes ont coexisté au
cours du temps. Il est clair que le passage d’une représentation spatiale a une représentation
plan améne immanquablement des distorsions. C’est pourquoi les mesures effectuées sur des
plans doivent étre corrigées pour tenir compte de cet effet. En pratique, les corrections étant
faibles, elles ne seront appliquées que pour les mesures & grande échelle.
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Les projections les plus fréquents sont les projections cylindriques de Mercator (figure 2.13) et
la projection conique de Lambert (figure 2.14) qui est la référence en topographie.

Z Cercles sécants

Figure 2.13 — Projection de Mercator avec
indicatrice de Tissot.

Figure 2.12 — Principe de la projection de
Mercator.

En fonction de ’étendue du territoire considéré, il peut étre nécessaire d’avoir recours a plusieurs
projections Lambert pour un méme pays (la France a défini quatre zones Lambert dites I, II,
IIT et IV plus une projection pour la Corse). Pour la Belgique, deux références de projection

F 9
Y
!
__________ 5
'
Y ]
s g
¥s .
=
Pargllblos E
sécants e m
)\0 s1°1l .
01 » fr— Vi Yy E
o 1\[ SOATSIANGS \ o
49°5( f a0 3
A " T
Ll “H9IBm
z ° Xg X B

Figure 2.15 — Projection conique
de Lambert pour la Belgique.

Figure 2.14 — Projection conique de Lambert.

Lambert ont été employées : Lambert 1972 (se référencant a ellipsoide Hayfort datant de
1924) puis actuellement Lambert 2008 (se référencant & GRS 80 datant de 1980). Les données
principales sont reprise dans le tableau 2.1; le point central pour la Belgique est Uccle.
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Projection Projection
Lambert 1972 Lambert 2008
Ellipsoide Identité Hayford GRS80
Demi grande axe (a) | 6378388,0 m 6378137,0 m
Aplatissement (f) | 1/297,0 1/298,257222101
Paralléles standard  ¢1 | 49°50'00”00204 N | 49°50" N
2 | 51°10° 00"00204 | N 51°10'N
Origine Latitude origine 90° 50°47 min52"134 N

Méridien central

4°22'02"952 E

4°21" 33"177T E

Coordonnées de I'origine

x0 150.000, 013 m
y0 5400088, 438 m

649328, 0 m
665262, 0 m

TABLE 2.1 — Définition des projections cartographiques belges

Un algorithme simple permet la correspondance directe (¢, A) — (z,y) et inverse pour une
projection Lambert donnée. On calcule les constantes :

COS ¢

COS 9

myp =

m
1— c2sin? ’
— e2sin” ¢

V1 — e2sin? ¢,

b= tan (/4 — ¢1/2)

b tan (m/4 — ¢9/2)

1 —esin ¢ ¢/2 1 — esin ¢ /2
(1—|—esin¢1) <1+esin¢2)
~Inmy —Inmy om
"= Int; —Int, g_n_t?

La transformation directe suit le cheminement suivant :

tan (7/4 — ¢/2)

ty =

= agt"

Lo+ rsinf

® B O =
I

= yp+rcosl

La transformation inverse suit :

1—esing\??
1+ esing

o = tan (/4 — ¢o/2) (2.2)

1 — esin ¢ /2
1+ esin ¢

ro = agty

(2.4)

~—~ o~~~
o =~ O Ot
N N e N

( r >1/n
t = —
ag
arctan

T — X9
ro — (¥ — o)

¢ est calculé de maniére itérative avec

%o
i1

= 7/2—2arctant

1 — . : e/2
= m/2—2arctan | ¢ ﬂ
1+ esing;

V@ =20+ [ro— (y -

yo)]2 (2-9)

(2.10)

(2.11)

(2.12)

(2.13)

Jusqu’a obtenir la convergence entre deux itérations avec un seuil déterminé.
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2.5 Lexique

Francais Anglais Francais Anglais
ellipsoide ellipsoid projection conique conic projection
géoide geoid projection cylindrique | cylindrical projection

indicateur de Tissot
meéridien

paralléle

pole géographique
pole magnétique

projection cartographique

projection conforme

Tissot’s indicatrix
meridian

parallel

geographic pole
magnetic pole

map projection
conformal projection

projection équivalente
projection normale
projection oblique
projection plane
projection sécante
projection tangente
projection transverse

equal-area projection
normal projection
oblique projection
azimuthal projection
secant projection
tangential projection
transverse projection

TABLE 2.2 — Lexique du chapitre 2 (les valeurs en italique sont des traductions littérales)

Références

[1] Site web de l'institut Géographique National. www.ngi.be.

[2] P. Tournois. Topographie :

1984.

géodésie, toponomeétrie, arpentage.

[3] S. Miles. Topographie et toponométrie moderne. Eyrolles, 1999.

Techniques, C300 :1-21,

[4] M. Brabant. Maitriser la topographie - Des observations au plan. Eyrolles, 2003.
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Chapitre 3

Nivellement

That’s the second biggest mountain I've ever seen

- G. Threepwood, Monkey island

3.1 Introduction

Le nivellement est 'opération qui consiste a relever les différences d’altitude entre différents
points d’un canevas. Cette information est importante dans les projets d’implantation pour
de nombreux aspects pratiques (écoulements, dévers, ...). Il existe différentes techniques qui se
démarquent par les outils et les méthodes mis en oeuvre. On distingue notamment :
— le nivellement direct qui mesure via des lectures sur mire les différences d’altitudes entre
points ;
— le nivellement indirect qui calcule les différences d’altitudes entre points a partir de
mesures de distances et angulaires ;
— le nivellement barométrique qui exploite la variation de pression atmosphérique avec
Ialtitude;
— le nivellement hydrostatique basé sur le principe des vases communicants.
Dans le cadre de ce cours, nous nous contenterons de présenter des techniques de nivellement
direct et indirect ordinaires qui sont les plus fréquemment employées en pratique.

3.2 Nivellement direct

Le nivellement direct consiste a lire a ’aide d’une lunette les graduations portées par deux mires
stationnées en des points judicieusement choisis. L’écart entre les lectures permet de déterminer
la différence d’altitude entre deux points selon :

Zpy = Zp, + AR — AV (3.1)

Z représente I'altitude d’un point, AR et AV les lectures arriére et avant (on oriente le travail
de Py vers P,). On distingue dans ce type de méthodes :
— le nivellement par rayonnement (les différences sont prises par rapport a un seul point
de référence), cette méthode permet une vérification rapide d’un ensemble de points
a partir d’un seul stationnement de I’appareil (sondage, points de berges,...) mais ne
permet aucune détection d’erreurs de mesures ;
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— le nivellement par cheminement (les différences sont mesurées de proche en proche), cette
méthode permet d’employer des techniques de compensation des erreurs et de controle
du résultat ;

— le nivellement par franchissement (cas pour lequel un obstacle empéche le cheminement)
réalisé avec deux appareils en simultané) ;

— le nivellement d’auscultation (suivi dans le temps d’ouvrages) qui combine les
caractéristiques des précédentes techniques.

La précision typique varie de 0,1 millimétre & quelques millimétres selon le matériel et les
protocoles mis en oeuvre.

3.3 Matériel employé pour le nivellement direct

L’opération de nivellement est classiquement opérée en placant une mire (régle graduée, figure
3.1) verticalement sur le point dont on souhaite déterminer 1’altitude et sur un point de référence
et en effectuant une lecture & 'aide d’un niveau (instrument définissant un plan horizontal de
visée, figure 3.2). Les mires (ou stadia) sont des régles graduées généralement en aluminium
(parfois en invar) de section rectangulaire. Les mires sont graduées en centimétres (le millimétre
est estimé a la lecture) ou portent un code barre (figure 3.3) pour des mesures automatisées.
Comme les anciens niveaux optiques inversaient 'image, les anciennes mires portaient les chiffres
a I'envers pour faciliter la lecture.

b2
E -
d ol

=]
=
=5
Figure 3.1 — Graduations portées par une Figure 3.2 — Lecture sur une mire.
mire.
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s"
==

Les niveaux peuvent étre :

Figure 3.3 — Mire en invar a code barre.

— manuels (nécessitent le réglage du plan horizontal lors de la mise en station) ;
— automatiques (I’axe se régle de maniére automatique si I'écart & I'horizontale est dans
une plage raisonnable, figure 3.4);

— numériques (lecture

automatique sur mire a code barre).

suspensi o|| . Prisme fixe
] X
/ _/j{/_/ Té.{)_*f
HJ f s A0
u A | | N -
et = | | | |
iy a }\_“ \ |
Prisme_ AT T T T ThA] L/ NI
Prisme -‘—.-» [—l—,— L._,)
mobile / N/ / Nivelle Nivelle
/4 / Ve non colée calée

Figure 3.4 — Niveau automatique [1] .

Figure 3.5 — Bulle coupée [2].

Le réglage des niveaux manuels nécessite de vérifier que l'axe optique est parfaitement
horizontal. pour vérifier ce réglage, les niveaux sont munis de nivelles (fonctionnant sur le
principe du niveau a bulle). Pour augmenter la sensibilité (et donc la précision), les niveaux
sont typiquement munis de systémes optiques visant les deux extrémités de la bulle (on parle
de bulle coupée) ; le réglage est correct lorsque les deux ménisques sont en concordance (figure

3.5).

3.4 Nivellement par cheminement

Le nivellement par cheminement consiste en la réalisation systématique de deux mesures en
maintenant fixe la lunette (on parlera de mesures 'en avant’ et ’en arriére’) pour déterminer de
proche en proche laltitude de points entre lesquels on stationne une lunette (figure 3.6).

&

Figure 3.6 — Principe du nivellement par cheminement.

Les mesures sont effectuées de maniére séquentielle, on déplace un élément a la fois (mire ou
lunette) selon le canevas suivant :
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— réglage de la lunette si celle-ci n’intégre pas de mise a I’horizontale automatique;
— lecture sur la mire (maintenue verticale) en un point ’arriére’;
— déplacement de la mire sur le point avant et lecture sur la mire dans la nouvelle position ;
— déplacement de la lunette pour recommencer le cycle.
L’altitude des différents points de station de la mire se calcule de maniére cumulée par :

Zp, =Zp,+ > _AR; — AV (3.2)

i=1

Une premiére vérification des mesures peut étre effectuée en réalisant un cheminement fermé
(le dernier point de station correspond au point de départ) dans ce cas, on doit avoir :

N N
Zpy=Zp+ Y AR — AVi=Zp, =e=Y AR, — AV, =0 (3.3)

1=1 =1

La quantité e est appelée écart de fermeture; les erreurs de mesures font que cette valeur
n'est pas exactement nulle (cette valeur peut servir de référence pour attester de la qualité
d’une campagne de mesure). On peut corriger I'ensemble des mesures en retranchant lerreur
de fermeture pondérée par la portée des différentes mesures.

Ll AR — AV
Zz’:l L

Si les portées n’ont pas été relevées, la compensation se fera de maniére uniforme sur I’ensemble
des mesures.

Si la configuration du terrain empéche la mise en place de la lunette entre deux points
(franchissement d’un cours d’eau par exemple), on doit opérer par des visées réciproques (placer
Iinstrument dans l'alignement de AB a quelques métres de A en retrait puis & quelques métres
de B en avant). Le dénivelé peut se calculer comme la moyenne des deux résultats obtenus :

corr; =

(3.4)

AZsp=La1 —Lp, = Las— Lp, (3.5)

Figure 3.7 — Nivellement indirect.
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Lors de mesures souterraines, il est parfois nécessaire de placer la mire ’au plafond’ pour I'un
ou Pautre des points mesurés (figure 3.8). Dans ce cas de figure, la relation générale 3.1 peut
toujours étre employée, en affectant d’un signe négatif les lectures effectuées au-dessus du plan
de visée.

LLL s s sy

44_)_/7] - -
— _J__.a_z_é < A
— _[_/_L/_é_/_ __(_(_Z_Z 4
iy
L
) %{{ =T £
m -(_/_Z_._/_/_ZJ—' L
fay _444(-/.._
Ma I I = m
m I
P 7
s s /‘7777_/7_ e

7‘7‘7777‘/777777—7-77

Figure 3.8 — Nivellement en tunnel [2].

3.4.1 Erreurs de mesure

Parmi I’ensemble des erreurs de mesure pouvant affecter le processus de nivellement, on peut
noter :

— les erreurs parasites (défaut de calage, erreur de lecture ou de transposition) ;

— les erreurs systématiques (défaut d’étalonnage de la mire, défaut de verticalité de la

mire, colimation,...);

La colimation représente l'inclinaison de 1’axe optique par rapport a I'horizontale lorsque le
calage est réalisé de maniére correcte. Cette erreur peut étre éliminée par 1’égalité des portées
lors du cheminement (I’erreur s’additionne aux deux lectures qui sont soustraites I'une de 'autre,
son effet résultant est donc nul). C’est pourquoi il est recommandé de maniére générale d’essayer
de respecter 1’égalité des portées lors de la réalisation de cheminement.

3.4.2 Exemple d’application

On réalise un cheminement fermé pour déterminer ’altitude de 6 points; on considére que le
point 1 définit la valeur Z=0. Les mesures sont reprises dans le tableau 3.1 (L est la portée de
la mesure).

mesure | AV (cm) | AR (cm) | L (m)

1 1134 1448 40
2 132,7 156,2 35
3 145,7 142,3 50
4 1235 113 45
5 142,7 121,7 40
6 1374 117 40

TABLE 3.1 — Nivellement
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On calcule I'écart de fermeture en sommant les différences de lectures. On obtient une valeur
de -4 mm qui est tout a fait acceptable au vu de la précision des mesures (si un écart anormal
apparaissait a ce stade, une nouvelle campagne de mesures devrait étre entreprise). Cet écart
sera réparti de maniére proportionnelle aux portées L des visées :

corr; =

_L'ZiN:lARi—AV;
Zij\il Li

(3.6)

On obtient finalement les altitudes données dans le tableau 3.2 (les résultats sont arrondis au
dixiéme de millimétre). Le profil est représenté en figure 3.9.

point | AZ mes (cm) | correction (cm) | AZ final (cm) | H (cm)
1 31,4 0,06 31,46 0,00

2 23,5 0,06 23,56 31,46
3 -3,4 0,08 -3,32 55,02
4 -10,5 0,07 -10,43 51,70
5 21 0,06 220,94 41,27
6 -20,4 0,06 -20,34 20,34

TABLE 3.2 — Calcul de I'altitude des points

1 position

Figure 3.9 — Exemple de nivellement par cheminement.
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3.5 Nivellement indirect

L’altitude d’un point peut étre calculée a partir de la distance horizontale et de I’angle vertical
mesuré dans une campagne d’ajustement planimétrique (figure 3.10).

Figure 3.10 — Calcul de l'altitude du point P.

Pour la station J, on peut calculer :

dyjp = \/ (X, — Xp)2 4 (V) —Yp)? (3.7)
AZ = dy, sptan Vp, (3.8)

Cette relation peut étre employée pour l’ensemble des mesures d’angle vertical ayant été
réalisées. Le résultat annoncé sera la moyenne des déterminations. On peut vérifier la cohérence
des mesures en constatant que les résultats sont bien identiques au premier ordre.
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3.6 Lexique

Francais Anglais Francais Anglais

altitude height - direct direct levelling

erreur de fermeture | closing error - hydrostatique hydrostatic levelling

mesure ’arriére’ backward measurement || - indirect indirect levelling

mesure ‘avant’ forward measurement - mixte mixed levelling

mire survey rod - optique spirit (optical)
levelling

niveau level - par cheminement pas d’équivalent
(running a line of levels
and heights)

nivelle spirit (air, bubble) level || - par cheminement fermé | loop levelling

Nivellement levelling - par rayonnement pas d’équivalent

- barométrique barometric heighting (throwing heights and

levels from a known

point)

TABLE 3.3 — Lexique du chapitre 3 (les valeurs en italique sont des traductions littérales)

Références

[1] S. Miles. Topographie et toponométrie moderne. Eyrolles, 1999.

[2] M. Brabant. Maitriser la topographie - Des observations au plan. Eyrolles, 2003.

24



Chapitre 4

Mesures et matériel employés en
planimétrie

L’ignorance cotite plus cher que les matériels

- A. Ribeau, Revue EPI intersection

4.1 Introduction

Un des problémes historiques de la topographie était que la précision des mesures de distances
était nettement moins performante que les mesures angulaires. Les appareils de mesures
angulaires (théodolites figure 4.1) assuraient une précision de mesure qui, jusqu’a un passé
récent, n’était pas accessible par des mesures de distances (mesures par report d’'un étalon
comme une chaine d’arpenteur, figure 4.2). C’est ce qui justifie 'existence de nombreuses
méthodes de mesure planimétriques basées sur des mesures angulaires. Ce chapitre présentera
les moyens de mesure d’angles et de distances ainsi que les précautions associées pour des
mesures de bonne qualité.

Figure 4.1 — Théodolite de 1737 ((©National Figure 4.2 — Chaine d’arpenteur.
Maritime Museum, Greenwich, London).



CHAPITRE 4. MESURES ET MATERIEL EMPLOYES EN PLANIMETRIE

4.2 Mesure des angles

L’appareil de mesure des angles en topographie est appelé théodolite. Il est essentiellement
constitué de trois axes concourants et de deux goniomeétres permettant la mesure d’angles.

Figure 4.3 — Théodolite numérique Figure 4.4 — Théodolite optique.
(document Sokkia).

Il existe deux catégories d’instruments :
— les théodolites électroniques (figure 4.3) a lecture automatique (le processeur intégré
permet de gérer la mesure, Uaffichage et la sauvegarde des angles) ;
— les théodolites optiques (figure 4.4) pour lesquels la lecture est effectuée par I'opérateur.
Les instruments optiques sont en voie de disparition, supplantés par les versions électroniques.
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Lunette

(0) J (lp)

Cercle
vertical

Cercle

“T\h
Vis colantes

Figure 4.5 — Principe de base d’un théodolite.

On distingue (figure 4.5) :
— le pivot (P) (ou axe principal) il doit via réglage étre calé et centré, ¢’est-a-dire confondu
avec la verticale locale (on dit qu’il est alors mis en station) a 'aide des vis calantes ;
— P’axe des tourillons (T) (ou axe secondaire ou axe de basculement) perpendiculaire au
précédent ;
— l'axe optique de la lunette ;
— le cercle horizontal centré sur le pivot qui permet la mesure de ’angle horizontal
(constitué d’un limbe fixe et d’un alidade mobile) ;
— le cercle vertical centré sur I’axe de basculement qui permet la mesure de I'angle vertical.
La mesure sur des appareils numériques peut étre incrémentale (comptage de graduations)
ou absolue. Les appareils fonctionnant avec une mesure incrémentale nécessitent une
réinitialisation (passage devant une graduation donnée) a la mise sous tension.
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4.2.1 Mise en station

Avant utilisation, les théodolites doivent étre installés de maniére optimale afin de garantir des
conditions d’utilisation correctes. Cette étape dise de mise en station vise a :
— placer Pappareil a la vertical d’un point de référence (matérialisé par 'intermédiaire d’un
rivet par exemple) ;
— placer 'axe du pivot dans la direction de la verticale locale.
Le réglage de la position est contrdlé a I’aide d’un plomb qui peut étre optique (oculaire coudé
qui permet de visualiser le point au sol dans I’alignement du pivot) ou laser (pointeur laser
matérialisant directement au sol le point a la verticale du pivot). Le réglage de la verticalité du
pivot est controlé a I'aide de nivelles (qui permettent en réalité de vérifier 'horizontalité de la
base de 'appareil) de deux types :
— une nivelle sphérique de faible précision qui est constituée d’un réservoir a sommet
sphérique de grand diamétre dans lequel une bulle d’air est enfermée (figure 4.6) ;
— une nivelle torique de haute précision (appelée communément nivelle tubulaire figure
4.7) qui s’utilise comme un niveau a bulle traditionnel.

C
Coupe Vue de dessus @ oupe

Figure 4.6 — Nivelle sphérique. Figure 4.7 — Nivelle torique.

La mise en station peut par exemple s’effectuer de la sorte :

— installation du trépied au-dessus du point de référence et réglage grossier de
I'horizontalité en jouant sur la longueur des jambes (attention a garantir la stabilité
et a installer I'appareil & une hauteur de travail confortable en fonction de la taille de
lopérateur) ;

— installation du théodolite sur I'embase et réglage approximatif du plomb sur le point de
référence et de la verticalité & 'aide de la nivelle sphérique ’jouer sur la longueur des
pieds);

— placement de la nivelle tubulaire entre deux vis calantes et réglage par l'intermédiaire
de ces deux vis calantes ;

— rotation d’un quart de tour et réglage par 'intermédiaire de la troisiéme vis;

— répétition de ces deux derniéres étapes pour faire un tour complet ;

— veérification finale du point visé par le plombe et ajustement éventuel (en dévissant la vis
de fixation sur ’embase et en repositionnant I’appareil par translation).
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Figure 4.9 — Réglage des vis calantes [1].

4.3 Lecture d’angle

Les lectures d’angle s’effectuaient sur des goniométres manuels (rapporteurs d’angle et vernier,
figure 4.10). Les appareils modernes possédent un affichage digital (figure 4.11) en plus d’une
possibilité de sauvegarde automatique.

Idéalement, les lectures s’effectuent par séquences. On réalise n+1 lectures pour mesurer 'angle
par rapport a n directions. Pour une plus grande précision, on calcule de I'erreur de fermeture
pour vérifier le résultat (vérifier qu’aprés un tour, on a bien parcouru 400 gon). Pour la lecture
de I'angle de visée sur un point par exemple, voici la séquence :

— lecture en visant A pour obtenir Ly (départ) ;

— lecture en visant B pour obtenir Lg ;

— continuer a tourner dans le méme sens et pointer sur A pour lire Ly ;

— vérifier la cohérence entre Ly et L; (Les normes en vigueur précisant les écarts maximum

admissibles) ;
— retenir la valeur moyenne pour la lecture sur A (L = (Lg+ Lf)/2).
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QEEEI0= o0 1>

Il

Figure 4.10 — Goniométre manuel. Figure 4.11 — Affichage digital de la station
totale du service de Génie Mécanique.

Pour augmenter la précision des mesures et se prémunir des erreurs grossiéres, il est conseillé
de réaliser plusieurs séquences en alternant les sens, de procéder a des doubles retournements
(tourner de 200 gon les deux axes) et/ou des changements de l'origine entre deux séquences.
Le nombre de séquences dépend de la précision voulue (peut monter a 4 dans certains cas
extrémes).

4.3.1 FErreurs de mesure

Les erreurs liées aux mesures angulaires peuvent étre de plusieurs ordres, la plus fréquemment
rencontrée est l'erreur de verticalité. Si le pivot n’est pas calé de maniére parfaite, il s’ensuit
une erreur évoluant comme le sinus de I’écart entre ’axe du pivot et la verticale. Une mise en
station correcte cherche a annuler cette erreur.
Les précisions typiques des théodolites peuvent valoir :

— 2 cgon pour des appareils de chantier;

— 2 mgon pour des théodolites ordinaires ;

— 5 dmgon pour des théodolites de précision ;

— 0,5 a 1,5 dmgon pour des théodolites électroniques.

Erreur de ligne de visée [c| Erreur d'axe de Inclinaison résiduslle Erreur d"index vertical (i)
| collimation Hz) basculement (a) de I'axe vertical [index V)

Figure 4.12 — Diverses cause d’erreurs comise avec un théodolite [1].
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4.4 Mesures de distances

Historiquement, les premiéres mesures de distances étaient réalisées par I'intermédiaire d’étalons
de longueur qui étaient directement reportés sur le terrain (chaines d’arpenteur par exemple).
Les dispositifs modernes de mesure de distances emploient préférentiellement des mesures sans
contact lorsque la visibilité du terrain le permet. Au vu des progrés techniques, ces méthodes
permettent d’atteindre des précisions suffisantes a des cotits abordables, et la quasi totalité des
théodolites modernes incluent un moyen de mesure de distances. On parle alors de tachéométre
électronique (bien que le terme, impropre, de station totale est employé dans la pratique).

Pour le repérage des positions sur le terrain, on peut employer des jalons (figure 4.13), tubes
métalliques de plus ou moins 2 m de long pouvant étre enfoncés dans le sol ou soutenus par un
trépied (figure 4.14) pour marquer les différents points intermédiaires considérés. L’alignement
des jalons peut se faire a I'oeil nu, au théodolite ou par I'intermédiaire d’un oculaire laser.

| i

||

Figure 4.13 — Jalons. Figure 4.14 — Trépied. Figure 4.15 — Ruban.

4.4.1 Mesures a plat

On peut encore rencontrer de nos jours des mesures directes, par exemple au ruban (décamétre
ou double décamétre en acier, gradué tous les centimétres, figure 4.15). Son emploi nécessite
de compenser les effets de chainette (sous leffet de la gravité, le ruban prend ’allure d’une
fonction cosinus hyperbolique), de dilatation et de tension notamment (plus de détails dans
[2]). T existe trois classes de précision notées de I & III (cf tableau 4.16).

10 m 20 m 30m 50m 100 m
CLASSE | +1,1 mm +2,1 mm +3,1 mm +5,1 mm
CLASSE Il +2,3 mm +4,3 mm 16,3 mm 10,3 mm +20,3 mm
CLASSE HlI +4,6 mm +8,6 mm +12,6 mm + 20,6 mm

Figure 4.16 — Norme européenne pour la précision des rubans [2].
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4.4.2 Mesurage optique

L’objectif de la mesure optique, tombant en désuétude, était de pouvoir mesurer des distances
a partir de I'utilisation de théodolites ou de lunettes ordinaires. [.’idée de base est de mesurer
I’angle interceptant une distance connue ou inversement.

4.4.2.1 Mesure parallactique

On mesure avec un théodolite les extrémités d’une stadia horizontale en invar® (barre
horizontale de longueur calibrée) placée perpendiculairement a I'axe de visée (figure 4.17).
La distance est mesurée a partir de 'angle & selon

L
Dh = — cot

5 (4.1)

| 2)

L’erreur de mesure évolue comme le carré de la distance, ce qui implique une précision médiocre
pour les grandes distances. Actuellement, les stadias ne sont pratiquement plus utilisées que
pour des applications de métrologie a courte distance.

Figure 4.17 — Principe de la mesure parallactique [3].

1. L’invar est un alliage de fer et de nickel a faible coefficient de dilatation thermique
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4.4.2.2 Mesure stadimétrique

Une lunette stadimétrique (figure 4.18) est une lunette dont le réticule porte deux traits
stadimétriques symétriques par rapport a I'axe optique. Ces deux traits définissent deux lignes
de visées pour lesquelles Pangle S est connu comme une constante de 'appareil (figure 4.19).
La lecture sur mire de la distance entre les deux traits [, — [; permet de déduire la distance
horizontale selon :

Dh =

12 - ll &
— 4.2
2 (4.2)

cot
2

Pour des raisons de facilité, une grande majorité des lunettes présente un rapport stadimétrique
cot 5 égal a 100.

Figure 4.18 — Lecture sur mire par Figure 4.19 — Mesure stadimétrique [3].
une lunette stadimétrique.

4.4.3 Mesurage électronique

La mesure électronique d’une distance se fait a l'aide d’'un IMEL (Instrument de Mesure
ELectronique) ou distancemétre qui fonctionne le plus souvent par émission d’une onde
électromagnétique et mesure du déphasage de I’écho envoyé par un réflecteur (figure 4.20).

Figure 4.20 — Principe de la mesure avec un IMEL [3].
Ils peuvent étre autonomes (figures 4.21 et 4.22) ou intégrés a un théodolite. Les plus employés

sont les infrarouges (moins cotiteux mais portée plus faible) et les lasers (meilleure portée mais
plus cotiteux et plus énergivores).
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La précision de mesure est classiquement donnée sous la forme =+ (cste + k- ppm) avec une
partie constante et une partie proportionnelle donnant I'ordre de grandeur de I'incertitude de

mesure. La gamme classique d’instruments sur le marché a une précision typique allant de
+(5 mm+5 ppm) & £(1 mm-+1 ppm).

pisTO™ D3

Figure 4.21 — Distancemetre laser Figure 4.22 — Distancemeétre laser
(document Bosch). (document Leica).

Les mesures effectuées par ce type de dispositifs sont sujettes a un ensemble de phénomeénes
parasites qu’il faut controler ou corriger :

— les erreurs liées a la calibration du systéme (celle-ci doit étre effectuée de maniére
réguliére) ;

— les erreurs liées a la variation de densité de I'atmosphére (liées par exemple & la
température et a la pression) qui peuvent étre corrigées :
— automatiquement si I'appareil intégre une mesure des effets parasites;
— semi-automatiquement via l'introduction de ces paramétres par ['utilisateur ;
— manuellement par lecture d’un facteur de correction dans des abaques (figure 4.23).

— la limitation de la portée liée & 'absorption de l'atmosphére (les temps couverts ou
brumeux limitent les portées).

t o Correction atmosphérique en ppm
50 WO P 9P 0 WO W0 P P b o e a0 19 10 P o P P B 0 P P D
> &
40 - 1o
/ . A A4 ,/ r/ ] // L~ e d \0
30 4/ / 1l // /, ] Pal /‘/ // I e Y
A 1/ A4V CIA A A AT A A A S
2c / // // A L1 ’5
/1 14 A pdAy Y A 0
10 4v4 A 4D d ] Y ] AT 1A =P “\o
AV avi / =P 20
o-LLA . d A 1A A A NA dEpardZes 19
,/ L . L1 A ,; ?_g
- Vi & LA P 1 LA
10 %4 % % AN = Ef
-20 V1 v 4 L1111 L1 -1 s L~ L~
550 600 650 700 750 800 850 900 950 1000 1(33,9)
Altitude ‘

4500m 4000m 3500m 3000m 2500m 2000m 1500m  1000m 500m Om

Figure 4.23 — Exemple de correction de lecture pour un distancemétre (document Wilde).
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Si la puissance de I’émetteur est suffisante, une simple paroi réfléchissante (paroi lisse en
béton, acier, verre,...) peut étre suffisante pour effectuer la mesure (en particulier pour les
appareils laser grace a leur puissance d’émission). Pour éviter de réduire fortement 1’autonomie
des batteries lors de mesure sur le terrain, on cherche toutefois a employer ’énergie la plus
faible possible (les documents techniques fournissent typiquement un ordre de grandeur de
lautonomie sous forme d'une durée de mesure avec une certaine cadence de mesures de
distances). On utilise donc un réflecteur spécial qui est un prisme rhomboédrique (coin de
cube tronqué pour limiter sa fragilité au niveau des coins, figure 4.24). Ce systéme (figure 4.25)
est le plus utilisé en raison de sa simplicité de fabrication et de sa propriété de réfléchir tout
rayon lumineux parallélement & lui-méme. Le rayon lumineux ne réalise pas un simple aller-
retour, mais un trajet un peu plus long. Pour tenir compte de ce phénoméne dans des mesures
de haute précision, une constante de calibration (appelée constante d’addition) est ajoutée via
le logiciel de I’appareil de mesure.

’ Cube
Prisme,

axe du support

vue de dessus

</0(,\/\.@5 N

&

<
1

<

g
@6 /

Figure 4.24 — Schéma de fonctionnement Figure 4.25 — Forme typique d’un prisme.
d’un prisme |3].
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4.4.4 Réduction des distances

Pour entrer dans les calculs de coordonnées du systéme de projection, une distance mesurée de
I’axe du théodolite A jusqu’au réflecteur B doit subir quatre réduction successives :
— la correction atmosphérique déja évoquée précédemment ;
— la réduction a I’horizontale (si la mesure n’est pas effectuée entre deux points a la méme
altitude) ;
— la réduction a D'ellipsoide (les mesures sont effectuées en ligne droite et pas a altitude
constante) ;
— la réduction au systéme de projection (les écarts entre Uellipsoide et la géoide peuvent
étre significatifs aux extrémités des zones).
Il est bien évident que ces corrections n’ont de sens que si elles peuvent avoir un impact sur le
résultat final et pourront étre négligées pour un chantier de dimensions réduites. La procédure
compléte est détaillée par exemple dans [2| au §3.3.7.

Francgais Anglais Francgais Anglais
cercle horizontal horizontal circle nivelle torique | toric level
cercle vertical vertical circle pivot vertical axis

chaine d’arpenteur
constante d’addition
distancemeétre

double retournement
IMEL (instrument de

mesure électronique)

jalon
mesure a plat

mesure parallactique
mesure stadimétrique

mise en station

Gunter’s chain
additive constant
distance measuring
equipment

double revert

EDM (electronic
distance
measurement)
pole
horizontal
measurement
parallactic
measurement
optical
measurement
exposure (setting up)

distance

plomb laser
plomb optique
prisme

ruban

station totale
théodolite
tour d’horizon
tourillon

trépied

vis calante

laser plummet
optical plummet
prism

tape measure

electronic tacheometer

theodolite

round of horizontal
angle

sight axis

tripod

foot screw

TABLE 4.1 — Lexique du chapitre 4 (les valeurs en italique sont des traductions littérales)

Références

[1] K. Zeiske. Mesurer en toute simplicité. Leica, 2006.
[2] M. Brabant. Maitriser la topographie - Des observations au plan. Eyrolles, 2003.
[3] S. Miles. Topographie et toponométrie moderne. Eyrolles, 1999.

[4] Y. Durand. Topographie Fascicule I : Méthodes classiques de levés topographiques :
Généralités. Mutuelle d’édition FPMs, 2010.

[5] M. Gelman. Utilisation des théodolites en mécanique : Les systémes de mesure par
intersections (smi). Techniques de l'ingénieur, R1382 :1-15, 1985.
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Chapitre 5

Etablissement d’'un canevas planimétrique

Les citoyens Méchain et Delambre sont les commissaires chargés spécialement
de la mesure des angles, des observations astronomiques et de la mesure des bases
dépendantes de la méridienne

- base du systéme métrique décimal, ou mesure de ’arc méridien entre Dunkerque et
Barcelone, P. Méchain et J.B. Delambre

5.1 Introduction

De maniére générale, le canevas est un ensemble de points répartis de maniére judicieuse sur
la surface a lever. Selon 'ampleur des mesures a effectuer, on peut considérer trois niveaux de
détail :

— le canevas d’ensemble qui reprend un ensemble de points connus sur lesquels les mesures
s’appuieront (repéres géodésiques ou points sur lesquels un instrument est mis en station)
qui est étayé par des bornes ou des repéres adéquats;

— le raffinement de ce canevas par mesure de points (accessibles ou non) en se basant sur
les points du canevas d’ensemble ;

— le lever de détail qui intégre les éléments artificiels (clotures, batiments,...) ou naturels
(cours d’eau, bois,...) nécessaires au projet.

Dans le cadre de ce cours, nous nous intéresserons plus particuliérement aux deux premiers
aspects.



CHAPITRE 5. ETABLISSEMENT D’UN CANEVAS PLANIMETRIQUE

5.2 Notion de gisement

Le gisement d’une visée est I’angle horizontal que forme la projection horizontale du vecteur
de visée (vecteur reliant le point de station au point visé) et 'axe Y (figure 5.1). Cet angle
est compté positivement dans le sens horlogique a partir de 'axe Y. On y fait fréquemment
référence dans les mesures topographiques.

XV

Figure 5.1 — Calcul du gisement d’un point.

5.2.1 Calcul du gisement

Si le point de station a des coordonnées (Xg, Ys) et que le point visé a des coordonnées (Xg, Yg)
la résolution du triangle rectangle (figure 5.1) donne immédiatement
Xp— Xs
g = arctan Y, v, + km (5.1)

Les programmes de calcul donnent systématiquement une valeur d’arctangente comprise entre
—7/2 et w/2; afin d’obtenir la valeur correcte du gisement, la constante k doit étre adaptée en
fonction du signe de (Xg — Xg) et de (Yr — Yy) (figure 5.2) :

— k=0si AX et AY sont positifs;

— k=1 si AY est négatif;

— k=2 si AX est négatif et AY est positif.
L’emploi de la fonction atan? des logiciels de calcul permet de résoudre en partie ce souci (la
valeur retournée est toutefois comprise entre —m et 7). Dans tous les cas, la réalisation d’un
croquis préalable permet de visualiser I’angle recherché et donc d’éviter les erreurs grossiéres
dans cette évaluation.
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Figure 5.2 — Valeur de k en fonction de la position du point visé.
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5.2.2 Détermination de la constante d’orientation

Comme indiqué précédemment, le gisement est une notion relative au repére employé. Lors
de la mise en station d’un appareil, il faut déterminer la direction de I'axe Y par rapport
a la position angulaire 'zéro’ (quelconque) de Pappareil de mesure (on parle de constante
d’orientation G meyen de station). Deux cas de figure se présentent :

— lopérateur travaille dans un repére local ;

— l'opérateur travaille dans un repére global.

Figure 5.3 — go, repére local. Figure 5.4 — go, repére global.

Lors du travail en repére local, il est possible de choisir arbitrairement comme axe Y la droite
joignant deux points du canevas S et P. Le gomoyen €st donc simplement I'opposé de la lecture
faite en visant le point P en étant stationné en S (figure 5.3). Il est ensuite possible de repasser
dans un repére global au moyen des matrices de changement de repére.
Lors du travail en repére global, on peut calculer le gisement de la visée et déterminer le gy en
notant que (figure 5.4) :

gsp =go+ Lsp (5.2)

donc :
9o = gsp — Lsp (5.3)

Pour améliorer la précision, on peut effectuer la détermination de gy en effectuant des mesures
sur plusieurs points connus; dans ce cas, on prendra comme valeur de gy la moyenne pondérée
par la distance entre les points de station des gy obtenus; on parle alors de gomoyen :

Z di - go,i
=1

=1 (5.4)

>
i=1

9o,moyen
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5.3 Etablissement d’un canevas d’ensemble

Suivant 'ampleur du domaine étudié, le canevas d’ensemble peut étre rattaché aux données
géodésiques ou limité & un repére local, sans précision sur son orientation globale. Le canevas
d’ensemble consiste en un ensemble de points dont les coordonnées ont été relevées avec une
précision suffisante pour servir de référence lors de mesures suivantes (insertion de points dans le
canevas principalement). Comme dans le cas du nivellement, les différents points de ce canevas
peuvent étre organisés de maniéres notablement différentes :
— on parle de cheminement ouvert lorsque les différents points forment une ligne brisée
ouverte ;
— on parle de cheminement encadré lorsqu’on connait en plus un gisement a l'extrémité
du chemin;
— on parle de cheminement fermé (ou polygonale) lorsque le point de départ correspond
au point d’arrivée.
L’avantage de ’emploi d’un canevas polygonal est la possibilité de vérifier les mesures effectuées
en s’assurant que les coordonnées du point initial sont bien obtenues lors de la fermeture. Il est
également possible de compenser les diverses erreurs de mesures sur ’ensemble du canevas par
une méthode analogue a celle rencontrée en nivellement par un cheminement fermé (§ 3.4).

5.3.1 Reéalisation d’une polygonale

On suppose que l'appareil a été mis en station sur n sommets d’un polygone et que pour
chacune des mesures, la distance au point suivant du canevas ainsi que les angles internes du
polygone été mesurés (figure 5.5). La premiére étape de la démarche consiste a réaliser le calcul
des gisements des différentes visées. Si on travaille dans un repére local, on prend un des cotés
du polygone comme axe X de référence ; si on travaille dans un repére global, il faut établir la
constante d’orientation comme expliqué au § 5.2.2.

vA

Figure 5.5 — Exemples de mesures relevées pour I'établissement d’un canevas polygonal.

Le calcul initial des coordonnées des sommets s’effectue par I'intermédiaire des formules

suivantes :
{ Ax; = d;sin g;

Ay; = d; cos g; (5.5)

Il est donc possible d’obtenir une premiére approximation des coordonnées des points de proche
en proche (7 = xg + Ay, 19 = 21 + Axa,...).
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Une fois tous les calculs menés, on peut constater ’écart entre le calcul de la coordonnée du
dernier point qui doit correspondre a celle du point initial :

N
£CN:£C0+ZA$i

I (5.6)
Yn = Yo + Z Ay;
i=1
Théoriquement, on doit obtenir xy = x9 et yy = o, mais 'accumulation d’erreurs

expérimentales donne une valeur non nulle aux quantités suivantes :

N
€xtot = E Amz
=1

N
€y tot = E Ayz
=1

qui sont les erreurs totales de fermeture en x et y. Pour réaliser la fermeture du canevas, on va
corriger ’ensemble des incréments en x et en y d'une correction proportionnelle aux distances

mesurées :
k:m' - iex,tot
> di
7 (5.8)

i
kyi = €y tot

d;

(5.7)

les corrections s’appliquant selon :

{ Al‘i,cm’r = sz - k:m (59>

Ayi,corr - Ayz - kyi

Ces relations permettent de recalculer les positions finales des différents points et de vérifier
qu’aprés correction, on se retrouve bien avec une erreur de fermeture nulle.

5.4 Ajout de points dans un canevas

A partir des mesures sur le terrain, on peut procéder de deux maniéres différentes pour raffiner
un canevas existant :
— méthodes points par points (on ajoute de maniére successive les points mesurés au
canevas) ;
— meéthodes par bloc.
Les méthodes par points offrent une simplicité et une précision suffisante pour des projets
de mesures de dimensions raisonnables. Elles présentent toutefois le désavantage de ne pas
permettre d’enrichir le canevas par les différentes mesures successives. Les méthodes par bloc
ne seront pas évoquées dans ce cours, le lecteur intéressé est renvoyé au §5.3 de la référence [1].
Comme le matériel, les méthodes de mesure sont a classer selon deux grands types :
— les méthodes employant la mesure d’angles ;
— les méthodes employant la mesure de distances;
— les méthode dite d’insertion permettant la combinaison des informations de distances et
d’angles (ce type de méthode ne sera pas détaillée dans ce cours).
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Deux méthodes employant la mesure d’angles seront étudiées : la méthode par intersection
de visée et par relévement. La méthode par intersection sera détaillée au § 5.5, le point de
coordonnées inconnues P est visé par le théodolite successivement mis en station en différents
points connus A, B, C,... (figure 5.6). Les angles horizontaux (ou plus précisément le gisement
cf § 5.2) sont mesurés a partir de chaque station.

vA
Figure 5.6 — Principe de la méthode par Figure 5.7 — Principe de la méthode par
intersections des rayons de visée. relévement.

La méthode par relévement sera détaillée au chapitre 5.6, le théodolite est stationné sur le point
a mesurer, les gisements des visées vers un ensemble de points connus sont relevés (figure 5.7).

La méthode par multilatération (§ 5.7) utilise la mesure de distance horizontale a partir de
points connus pour retrouver les coordonnées du point inconnu (figure 5.8).

vA

-
-

X

Figure 5.8 — Principe de la méthode par multilatération.
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5.5 Meéthode par intersections des rayons de visée

5.5.1 Introduction

On suppose disposer de N points connus en coordonnées et on cherche a déterminer la
position d’un nouveau point P dans le canevas. La méthode par intersection consiste a mesurer
uniquement le gisement du point inconnu vu des différents points connus (figure 5.9) pour la
détermination des coordonnées X et Y du point.

vA

Figure 5.9 — Principe de la méthode par intersections des rayons de visée.
On parle de méthode d’intersection car le point recherché se situe au sommet d’un triangle dont
la base relie deux points connus.
5.5.2 Reésolution pour deux stations

Si on considére I'information juste suffisante pour trouver la position du point, il faut connaitre
les mesures a partir de deux points connus.

vA

-
-

X

Figure 5.10 — Résolution du probléme d’intersection pour deux stations.

Dans ce cas, on peut établir les formules suivantes :

Xp—Xy
tangA = Yf

o (5.10)
tangp = —YP v,
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Avec (X 4,Ya) et (Xp, Yp) les coordonnées des points connus et g4 et gp les gisements mesurés.
La résolution pour obtenir les coordonnées (Xp,Yp) donne successivement :

(Yp —Ya)tangs = Xp — Xy _ _ _ _ _
{ (YP . YB) tan gg = Xp— Xp = Xgp— X4 = (Yp YA) tan ga (Yp YB) tan gp (5.11)
Xp— Xa=Yp(tangs —tangp) — Yatangs + Yptangp (5.12)

ce qui donne finalement :

Xp—X Yat —Ypt
Y, — (X5 A) +Yatangy ptangp (5.13)
tangyq — tangp

(X —X4) — (Yp—Ya)tangp

Yp = Y, 5.14
F At tangs — tangp ( )

Xp est obtenu en substituant cette valeur dans une des équations du systéme 5.10 :
Xp:XA+(Yp—YA)tangA (515)

Il faut noter que le choix préférentiel devrait étre fait pour des stations donnant des rayons de
visée orientés de maniére privilégiée, c’est-a-dire le plus proche de I'angle droit.

Rayons a 20° B
cas dé favorable

Rayons a 90°
cas favorable

Figure 5.11 — Sensibilité de la position du point a un écart angulaire de 5°.

Si les rayons de visée sont presque paralléles, la position du point d’intersection est trés sensible
a un écart de gisement méme faible. On peut observer cet effet en étudiant la sensibilité par
rapport au gisement des expressions 5.14 ou 5.15 (pour rappel, la sensibilité d’un résultat par
rapport a une variable est sa dérivée partielle par rapport & cette variable). En prenant la
sensibilité de Yp par rapport a g4, on obtient :

Otan gu
0Y; o
= = ((Xp — Xa) — (Y — Ya) tangp) - — J4 5 (5.16)
0ga (tan gy — tangp)

aYp _ (XB—XA)—(YB—YA)tangB (5 17)
dga cos? g4 (tan g4 — tan gg)> '

qui prend des valeurs élevées si :
— ga est proche de +£7/2 (Yp proche de Yy, la tangente tend vers U'infini) ;
— ga est proche gp (les rayons tendent & devenir paralléles).

Les mémes conclusions pourraient étre tirées en étudiant les sensibilités de Xp.

45



CHAPITRE 5. ETABLISSEMENT D’UN CANEVAS PLANIMETRIQUE

5.5.3 Prise en compte de mesures excédentaires

Comme indiqué précédemment, pour permettre une minimisation des effets des erreurs de
mesure, le nombre de points connus du canevas est supérieur a deux. Si on effectue le calcul de
position du point P & partir de deux autres stations, les coordonnées du point P obtenues avec
les relations 5.14 et 5.15, bien que fort proches, seront différentes du résultat obtenu avec les
stations A et B. L’ensemble de ces résultats se concentrera sur une zone réduite du plan (figure
5.12), et il faudra choisir une méthode pour déterminer la coordonnée du point P dans cette
zone.

v A

Zoom

Figure 5.12 — Zoom autour du point 'théorique’.

Plusieurs méthodes sont possibles, on peut citer :

— la méthode du point approché;

— la méthode des moindres carrés.
La méthode du point approché consiste a prendre en compte le recouvrement des plages
d’incertitude des différentes visées pour rechercher un point qui se situe dans les zones
d’incertitude des différents capteurs. Cette méthode permet une visualisation graphique directe
du point déterminé. Son automatisation est toutefois plus délicate (plus de détails dans [2] et

[1])-

5.5.3.1 Principe de la méthode des moindres carrés

Nous allons développer la méthode des moindres carrés qui vise a rechercher le meilleur point
au sens statistique du terme résultant de ’ensemble des mesures. Elle se base sur I'étude des
variations du point autour d’une position calculée. Pour chacune des mesures effectuées aux
point J, le point recherché P est vu selon un gisement g,; (I'indice ’a’ indique qu’a ce stade, la
valeur est approchée, aux erreurs de mesure prés).

Les coordonnées (Xp,,Yp, ) ne sont pas encore définitives. Si la valeur finale pour le point P
était connue, il faudrait imposer une correction d,, pour arriver a la valeur finale g¢, (figure
5.13) :

9f5 = Ya; T ng (518)

La correction est appelée compensation. En 1’absence d’erreurs grossiéres, les compensations
sont faibles et peuvent étre assimilées a des variations au sens de ’analyse mathématique. g,
est une valeur approchée, qui n’est pas équivalente a la valeur mesurée g,,, (sauf si la station
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A
Y
|
I x P,
I s
| Ve
I 9fs da: X
\ -7 p
! T AY
I 94, -~ _7
N>/ // ~
| -
| //// J
*
J -
X
Figure 5.13 — Compensation de gisement. Figure 5.14 — Variation de gisement.

J a été employée pour déterminer le point approché). Par analogie avec la relation précédente,
on peut écrire :

ng = ng + ry (519)

ry est appelé résidu de I'écart. Des relations 5.18 et 5.19, on peut tirer :

Yo, tdg; = Gm, + 7 (5.20)

5.5.3.2 Calcul de variation

On a vu précédemment 1'expression reliant les coordonnées du point au gisement de la forme :

Xp, — X,

" 5.21
Yo —Y, (5.21)

tang,, =

en différenciant selon Xp, et Yp, et en remarquant que X; et Y sont des constantes, on obtient :

dg  dX dYAX

C0529 = AY - (AY)Q (522)

AX = Xp, — X;, AY =Yp, — Y. Si on pose D comme la distance calculée entre J et P,, on
peut écrire que :
(Ay)

— 2 _
AY = Dcosg = cos” g = oz

(5.23)

On peut donc réécrire I'expression 5.22 comme :

dX (AY)?  dYAX (AY)?
_ _ 24
W=AY D T avy D? (5:24)

Ou encore : IXAY  dVAX
dg = e T (5.25)
En injectant cette relation dans 5.20, on obtient la forme suivante :
dXAY dYAX
ry= _D2 - D2 + gaJ - ng (526)
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5.5.3.3 Forme matricielle

La résolution du probléme va étre de rechercher le meilleur point tel que la somme des carrés
des résidus soit minimale. On posera :

AY
AX
C; = Yo, — Gm, (5.29)

Avec cette notation, les N relations pour les stations 1,2,...,N peuvent se synthétiser sous la

forme matricielle suivante :
CL1dX + bldY +c1=n

aodX +bydY +co =7
2 2' 2 2 (5.30)

aNdX—l—bNdY—l—cN =TN

Il S’agit d’un systéme de N équations & 2 inconnues dX et dY surdéterminé (sauf si on prend
exactement deux stations). La minimisation de la somme des carrés des résidus passe par
I’annulation de la dérivée de la somme des carrés des résidus par rapport a dX et dY :

003 r?)

oax
(5.31)
o7 0
ody

La somme des carrés des résidus s’écrit :
N N

i=1 i=1

Ce qui permet de calculer les dérivées :

2 N
002, ri) %};ﬁ = " 2(@dX +bdY + ;) a; =0 (5.33)
(X} _
ol - > 2(adX + b,dY + ¢;) b =0 (5.34)
=1

Ces deux relations peuvent s’écrire de maniére synthétique :

(X aib) dX + (02 dY + (X bici) = 0 '

Le systéme peut donc s’écrire :

(24, Ton] =B -

Par inversion matricielle, on obtient les valeurs de dX et dY qui permettent de trouver la
meilleure position de P au sens des moindres carrés. Ce raisonnement considére que I’ensemble
des mesures sont de qualité équivalente (réalisées avec le méme appareil ou des appareils
semblables). Dans le cas contraire, il faudrait pondérer les différents termes d’observation par
un poids inversement proportionnel a I’écart type de la mesure pour compenser cet effet.
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5.5.3.4 Unités d’emploi pratique

Les termes des relations d’observation sont adimensionnels, les angles doivent étre exprimés en
radians. Comme les distances AX, AY et D sont de I'ordre de la centaine de métres voire plus
et les corrections de 'ordre du centimétre approximativement, les coefficients des inconnues
auront un ordre de grandeur tributaire des unités choisies. D’un point de vue pratique, il peut
étre intéressant pour l'affichage de choisir des unités qui permettraient une lecture facilitée
(le km pour les distances et le centimétre pour les variations par exemple). Pour les calculs
informatiques, le choix de représentation de nombres en virgule flottante permet d’exprimer les
longueurs dans les unités du systéme international (le métre en occurrence) comme cela est
toujours recommandé en pratique.

5.5.3.5 Exemple d’application

On observe un point P a partir de quatre points connus en coordonnées dans un repére donné
(A(119579,39 m;114978,08 m), B(119550, 92 m ;109329,19 m), C(111317, 74 m ;106378, 76 m),
D(111306,82 m.112962,00 m)).

La constante d’orientation et le résultat des visées sur P permettent de déduire le g mesuré
pour P par rapport aux quatre stations (table 5.1)1.

go (gom) | go (rad) a (gon) | o (rad) gm (g0n) | gm(rad)

330,6632 | 5,1940454 285,923 | 4,491267981 | 216,5862 | 3,402128074
365,1931 | 5,736439801 | 18,6413 | 0,292816856 | 383,8344 | 6,029256656
289,7528 | 4,551426339 | 168,5779 | 2,648015461 | 58,3307 | 0,916256493
38,1149 | 0,598707449 | 68,8417 | 1,081362895 | 106,9566 | 1,680070344

OQw e

TABLE 5.1 — Mesures angulaires

Il faut ensuite faire le choix d’un point approché, par exemple celui obtenu en ne considérant
que les mesures effectuées en B et en D. Les formules 5.14 et 5.15 (page 45) donnent :

(XD — XB) — (YD — YB) tanng

Yp=Yp+
tan g,,, — tan g,,,

= 112137,4931 m (5.37)

Xp=Xp+ (Yp—Yp)tang,,, = 118822,0784 m (5.38)

A ce stade, un croquis & petite échelle peut étre réalisé pour situer les points les uns par rapport
aux autres (figure 5.15).

Les gisements approchés peuvent maintenant étre calculés pour les stations A et C (g,, et
Jap sont bien évidemment nuls. On obtient (en faisant attention au signe des écarts pour
l'arctangente) :

Xp — X

o, = arctan —=— A — 3 402136454 rad = 216, 5367335 gon (5.39)
Yp, — Y4
Xp — X

o = arctan —=— % — (91625997 rad = 58, 33092138 gon (5.40)
Yp, — Yo

Ces valeurs permettent de calculer les différents coefficients repris dans les tableaux 5.2 et 5.3

1. Il est clair qu’il est recommandé de conserver ’ensemble des décimales pour la réalisation des calculs, mais
que pour laffichage, il ne faut conserver qu’un nombre raisonnable de décimales
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Figure 5.15 — Croquis d’ensemble.

Points | AX = Xp, — X ;(m) | AY =Yp, — X;(m) | D? = AX? + AY? (m?)
A -757,3115605 -2840,586856 8642454,487
B -728,8415605 2808,303144 8417776,569
C 7504,338439 5758,733144 89478102,84
D 7515,258439 -824,5068561 57158920,97

TABLE 5.2 — Calculs intermédiaires pour les coefficients
Points | ay = AY/D*(m™Y) | by = —AX/D*(m™) | ¢j = g, — gm, (rad)
A -32,8678-107° 8,76269 - 10~° 0,837957-107°
B 33,3616 -107° 8,65836-107° 0
C 6,43591 - 107° -8,38679-107° 0,347737-107°
D -1,44248 -107° -13,148-107° 0

TABLE 5.3 — Coeflicients de la matrice

A partir des calculs présentés au tableau 5.3, il est possible de calculer les différents coefficients
servant & exprimer la relation matricielle de base :

4
2
>
i=1
4
2
P
i=1
4
g a;b;
i=1

4

E a;C;
i=1

4

E bic;

=1

2,23679-1077 m 2

3,9496- 1078 m 2

—3,41649-107% m 2

—2,53038- 107 rad/m

4,42637-107*° rad/m

La relation matricielle 5.36 peut donc s’écrire :

2,23679

1077

—3,41649-107% 3,9496-1078

—3,41649 - 10~°

dX
ay

[ =

—92,53038-10~°
4,42637 10710

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)
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Ce qui donne apreés inversion matricielle :

{ dX =0,011156123 m (5.47)

dY = —0,010242096 m

Soit, comme attendu, des corrections de I'ordre du centimétre. Au final, la position finale du
point P est donc :
{ Xp = 118822,09 m (5.48)

Yp =112137,48 m

En vue de mesurer la qualité des mesures, il est intéressant de calculer la valeur des résidus.
Ceci peut étre fait de deux maniéres différentes (donnant le méme résultat) :

— soit en injectant les valeurs de dX et dY dans les équations 5.30;

— soit en recalculant le gisement vers le point P final.

Point r (rad) | r (mgon)
A |3,8-107° 0,24
B 2,8-107 0,18
C 5,0-1076 0,32
D |12-10° 0,08

TABLE 5.4 — Résidus calculés

On remarque que les valeurs des résidus sont faibles (de 'ordre du dmgon) et que les valeurs
ne sont pas égales pour les quatre stations car la méthode des moindres carrés vise a minimiser
I'écart global, pas a rechercher des écarts équivalents (c’est plutot 'optique de la méthode du
point approché).
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5.6 Meéthode par relévement

5.6.1 Introduction

La méthode de relévement (figure 5.16) consiste a obtenir la coordonnée d’un point sur lequel le
théodolite est mis en station par 'intermédiaire de visées effectuées sur un ensemble de points
(éventuellement inaccessibles) dont les coordonnées sont connues (par exemple, les points de
repére cartographiés).

y A

T
)

/ |
|
[
[
/

TT

/

— =

Figure 5.16 — Principe de la méthode par relévement.

On effectuera un tour d’horizon qui permettre de mesurer les angles entre les rayons de
visée visant deux points successifs. Cette information sera ensuite traitée pour obtenir les
coordonnées du point de station. Comme dans la méthode précédente, il faut noter qu’un
nombre surabondant de mesures sera effectué et qu’il faudra donc & nouveau effectuer un calcul
permettant de rechercher le 'meilleur’ point parmi ’ensemble des mesures effectuées. Pour
résumer la démarche, le principe général est le suivant :
— réalisation d’un croquis a petite échelle de la situation ;
— recherche de la constante de station pour obtenir le gisement des différentes stations;
— recherche d’une premiére approximation des coordonnées du point a partir de mesures
juste suffisantes pour le déterminer ;
— recherche des corrections a apporter pour obtenir le point minimisant les écarts par
rapport & 'ensemble des mesures (de nouveau, nous ne présenterons que la méthode des
moindres carrés, une méthode graphique est présentée dans [3]).

5.6.2 Etablissement d’un croquis

Aprés positionnement des points sur un croquis, une premiére approximation graphique de la

position d’un point peut étre effectuée par 'intermédiaire de l'intersection de cercles. En effet,

si un tour d’horizon a été effectué, on connait ’angle qui intercepte un ensemble de segments

de droites. Il est possible d’en déduire le tracé du cercle passant par les extrémités du segment
et le point de station par la méthode suivante (figure 5.17) :
— le centre du cercle est sur la médiatrice du segment ;

— le centre du cercle est sur le segment faisant un angle 7 /2 —« avec le segment AB passant

par A ou B (le triangle ABO est isocéle, 'angle au centre vaut deux fois I'angle inscrit).

Il faut donc connaitre I'angle interceptant deux segments, soit faire les mesures sur trois ou

quatre points (figure 5.18) qui nécessitent chacune la connaissance de deux angles. De maniére
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Figure 5.17 — Recherche du cercle pour lequel P voit le segment AB selon un angle a.

générale, on privilégiera parmi ’ensemble (surabondant) de mesures celles qui conduisent & des
cercles dont les arcs se coupent avec un angle le plus proche de angle droit (constatations
identiques a celles effectuées en figure 5.11 pour l'intersection de segments).

Figure 5.18 — Recherche d’une premiére approximation du point P.

5.6.3 Calcul de la position du point approché

Deux méthodes sont proposées pour mener cette démarche : la premiére se raméne a la notion
de gisement, la seconde passe par la résolution de triangles.

5.6.3.1 Calcul des gisements des rayons de visée

On a démontré précédemment que :

Xp,—Xp)—(Yp, —Yp )t .
Vi, — Vp, = (Xr = Xp) = (Y = Y, tangr, (5.49)
! tan gp, — tan gp,
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cette relation est valable Vi # j. On peut écrire en particulier :

(XA — XB) — (YA — YB) tangB _ (XA - Xc) - (YA — Yc) tangc (5 50)
tan gp — tan ga tan go — tan gu '

Les angles connus ne sont pas les gisements, mais bien les angles «, 5 entre les points A, B
et C. Nous allons tenter la réduction des expressions précédentes pour calculer le gisement en
un point a partir des valeurs connues. Une fois cette valeur connue, les autres gisements se
déduisent de maniére évidente par :

9B =0ga+a (5.51)

en prenant le soin de respecter la valeur algébrique des angles. Le numérateur des expressions
5.50 peut étre exprimé par :
sin sin
tangp —tangy = g5 _ SMIA (5.52)
CcoSgp  COSga
_ Sin gp cos g4 — Sin g4 cos gp (5.53)
COS (4 COS §B '
_ sin(gs—ga) (5.54)
COS g4 COS GR '

En combinant 5.54 et 5.50, on obtient :

Xa—Xp)—(Ya—Yp)t
cosgAcosgB( 2= Xp) si(ng p)tangs _ (5.55)

(X4 —Xc) — (Ya — Yc) tange
sin 3

COS g4 COS g

qui se simplifie en :

(X4 — Xp)cosgp — (Y4 — Yp)singp _ (Xa— X¢)cosge — (Ya — Yeo)singe (5.56)

sin o sin 8

en introduisant 5.51 dans cette expression, on trouve :

(X4 — Xp)cos(ga+a)— (Ya—Yp)sin (g4 + )
sin «v

(Xa — X¢)cos(ga+ B) — (Ya — Yc)sin (ga + )
sin 3

Le développement des sinus et cosinus de sommes d’angles donne :

... (5.57)

(X4 — Xp)cosgacosa — (X4 — Xp)singasina

(5.58)

sin «v
(Ya—Yp)cosgasina+ (Y4 — Yp)sings cosa

sin o N
(X4 — X¢)cosgacos B — (Xa— X¢)singasin B
sin (3
(Ya—Yo)cosgasin B+ (Y4 — Yo)singa cos
sin 3

qui peut également s’écrire selon :
(X4 — Xp)cosgacota — (X4 — Xp)sings — -+ (5.59)
(Ya—Yp)cosga+ (Ya—Yp)singacota = ---
(X4 — Xg)cosgacot B — (Xa— X¢g)sings — -+
(Ya—Yo)cosga+ (Ya — Yo)singa cot 5
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En divisant finalement les deux membres par cos g4, on obtient ’expression

Xa—Xp)cota— (X4 — Xp)tangy — - - (5.60)
Yi—Yp)+ (Ya—Yp)tangycotar = - -

Xa—Xco)eot B —(Xa— Xe)tangs — -+

Ya—Ye)+ (Ya—Yo)tanga cot 5

(
(
(
(

dans laquelle il est possible de mettre les termes en tan g4 en évidence pour obtenir finalement :

(Yo —Yg) — (X4 — Xp)cota+ (X4 — X¢)cot 8
(Xe — Xg) — (Y4 —Yp)cota+ (Y4 — Yo)cot 3

tangs = — (5.61)

qui permet de calculer le gisement en A & partir des éléments connus a savoir :

— les coordonnées des points P ;

— les angles horizontaux relevés entre les points.
A partir de cette information, les gisements des différents points sont obtenus par 5.51. Enfin,
la position estimée du point mesuré peut étre obtenue par les relations 5.14 et 5.15 rappelées
ici :
(Xp — Xa) — (Yp —Yu)tangp

tanga — tangp

XM = XA+ (YP—YA) tangA (563)

Yy = Ya+

5.6.3.2 Meéthode de Ponthenod (méthode de Gauss)

Une deuxiéme méthode est applicable pour ’établissement de la position initiale du point M.
Cette méthode consiste & simuler un levé du point par rayonnement. On va rechercher a résoudre
les triangles ABM, et BC'M, & partir des mesures, a savoir les angles « et 8 (figure 5.19). La

Figure 5.19 — Principe de la méthode de Ponthenod.
somme des angles intérieurs d’un quadrilatére vaut 400 gon, on a donc :
p+v=400gon — (o +F+7)=m (5.64)

L’angle ~v est calculable a partir des données du probléme par :

Xp—X Xoe—X
Y =0gBA — 9gBC = arctan ﬁ — arctan ﬁ (565)
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ce qui implique que m peut étre directement calculé a partir des mesures et des données du
probléme.
La relation des sinus appliquée aux triangles ABM, et BC'M, fournit :

sin p sin v

BM,| =|BA = |BC 5.66
B:,| = B4 525 = 1B0Y (5.66)
Cette relation peut également s’écrire :
sing  [BC|sina (5.67)
sinv  |BAlsinf '
k est entiérement calculable a partir des données. On examine ensuite I’expression :
sin p — sinv
- > 5.68
sin o + sinv ( )
Cette expression peut se décomposer de deux maniéres différentes :
— En divisant le numérateur et le dénominateur par sinv (relation 5.69) ;
— en employant les identités trigonométriques (relation 5.70) ;
sinpg—siny  FE -1 k-1 (5.69)
sinu+siny_ziiif;+1_k+1 '
sinpg —siny  sin 452 - cos £EY .y +u
SRR — 2 = tan & cot & (5.70)
sinpg+siny  sin 557 - cos £ 2 2
En combinant 5.69, 5.70 et 5.64, on peut tirer :
w—v k-1 w4+ v
ta = ta 5.71
YT TR 2 (5.71)
qui peut également s’écrire selon :
k—1 m
— v = 2arctan tan — | =n 5.72
a (k +1m ) (5:72)

n étant entierement calculable a partir des données. Finalement, les angles sont calculés par :

_ min
{ r= 2, (5.73)

V:—2

A partir de ces valeurs, il est possible de retrouver les coordonnées approchées du point M par

application de la régle des sinus dans le triangle ABM, :

sinm — (a +
(atp) _ AB|

sin « sin o

|AM,| = [AB| (5.74)

sina+p [ Xy, = Xa + |AMa[sin gan,
YMa = YA + |AMQ| COS gam,

Le gisement se calcule par gay, = gap + p.

5.6.4 Recherche du point définitif par la méthode des moindres carrés

A ce stade du calcul, nous disposons des éléments suivants :
— les coordonnées des points repéres A, B, C,...;
— les coordonnées approchées du point mesuré;
— des mesures angulaires effectuées a partir du point inconnu sur les points repéres.

o6



CHAPITRE 5. ETABLISSEMENT D’UN CANEVAS PLANIMETRIQUE

Il faut a partir de ces éléments déterminer le point finalement retenu en compensant au mieux les
résidus. Le principe général est similaire aux calculs effectués pour la méthode des intersections,
a une différence fondamentale prés : dans la méthode des intersections, le gisement initial
des stations était calculé par l'intermédiaire de mesures angulaires sur les points de station
uniquement. Il s’agissait donc d’une constante dans les calculs et sa différentiation donnait une
valeur nulle. Dans le cas du relévement, le gisement initial pour les mesures angulaires dépend
de la position du point mesuré, il ne peut donc plus étre considéré comme une constante dans
la minimisation de la somme des carrés des résidus. Il faudra donc introduire une troisiéme
variable dans la différenciation : en plus de dX et dY, interviendra un terme dgy qui tiendra
compte de cet effet. Dans le calcul du gisement, on considérera donc des expressions de la
forme :

Imf; = Yof + Ly = goa +dgo+ Ly (5.75)

avec gm,r, le gisement mesuré retenu, goy la constante d’orientation retenue, g,, la constante
d’orientation approchée, dg, le résidu sur la constante d’orientation et L; la lecture effectuée.
La constante d’orientation approchée peut se calculer de maniére simple en considérant les
coordonnées des points de station connus et du point M, qui vient d’étre calculé. On effectue
une moyenne sur ’ensemble des constantes mesurées :

1
o= — o) — L 5.76
9o n ; (Gas J) ( )
Pour rappel, le gisement se calcule par :

X;— Xy, AXy

t 0 = = 5.77
Wl =y TV T AY, (5.77)

sa différenciation donne : AY AX
dgy = —do=—2 + dy==" (5.78)

D3 D3

C’est-a-dire une relation similaire a ce qui avait été obtenu dans la méthode des intersections,
au signe prés (en effet, dans le cas du relévement, c’est le point origine qui est variable, pas le
point visé). En combinant cette relation avec 5.75, on obtient I'expression du résidu :

AY AX
= _dXD—,j + dYD—; — dgo + (gas — goa — L) (5.79)
J J
ou en posant :
AY; AX;
ay=——- by= €7 = Gas — Goa — L (5.80)
D3 D3
TJ:CLJ'dX+bJ'dY—CZgo+CJ (581)
La somme des carrés des résidus vaut donc :
N

=1 =1

pour minimiser cette expression, il faut annuler ses dérivées par rapport a dX, dY et dgg :

N
2
—EL 2 =Y "2, (a;-dX + b~ dY —dgo+¢;) =0 (5.83)
ddX -
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= 2 (a;-dX +b;-dY — dgo + ¢;) =0 (5.84)
ady -
N
2
0 (Z rz-) N
#:Z—(ai-dX+bi-dY—dgo+ci):0 (5.85)
0

i=1
Ces trois expressions peuvent étre regroupées sous la forme matricielle suivante :

N N N T ( N )
a; aibi — a; a;C;
=1 =1 =1 =1
N N dX

N N

b Y b =) b |- dY p=—0 ) b (5.86)
=1 =1 =1
N

i=1 dgo

N N
Z a; Z bz —-N Z C;
=1 i=1

4 \ =1 V,

La résolution de ce systéme permet d’obtenir les corrections sur X, Y et go du point approché
pour trouver le point final.

5.6.5 Exemple d’application
5.6.5.1 Introduction

On dispose de quatre points connus A, B, C et D et on mesure les angles entre une référence

arbitraire et ces stations a partir d'un point M inconnu. Les données sont accessibles dans le
tableau 5.5.

X Y Ly (gon) | Ly (rad)
9263601 | 10644321 | 148,4931 | 2,33252416
9476808 | 11097271 | 191,3829 | 3,00623556
10134285 | 10500274 | 303,3138 | 4,76444203
10037792 | 10051202 | 0,0002 3,1416-107°

QW=

TABLE 5.5 — Données pour le probléme de relévement

Le croquis d’ensemble est proposé en figure 5.20.

5.6.5.2 Recherche des coordonnées du point M approché

Nous allons employer les deux méthodes proposées dans la partie théorique pour retrouver ces
coordonnées, ce qui nous permettra de vérifier I’équivalence entre les deux approches.

5.6.5.2.1 Calcul des gisements Nous allons employer les visées interceptant les segments
AC et CD. Le croquis d’ensemble est complété par les mesures angulaires sur la figure 5.21.

On calcule dans un premier temps les angles tirés de données, a savoir :

{ a= Lo — Ly =154,8207 gon = 2,431917869 rad

§=Lp— La=251,5071 gon = 3,950664288 rad (5.87)
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Figure 5.21 — Croquis d’ensemble pour la méthode de relévement.

La formule 5.61

(Yp—Ye) — (X4 — X¢)cota+ (Xa— Xp)cotd
t = — 5.88
At ga (XC — XD> — (YA — Yc) cot o + (YA — YD) cot ( )

= 122,9531324 gon = 1,931343288 rad

On en déduit la valeur du gisement en C par :
go = ga +a = 277,7738324 gon = 4,363261157 rad (5.89)

Ce qui permet finalement le calcul des coordonnées de M, par les formules classiques :

tangc—tanga

YMa, = YA + (Xa—Xco)—(Ya—Yco)tango — 10409775,87 cm (5 90)
Xu, = X4+ (Yay, — Y) tan g = 9885691, 36 cm '

5.6.5.2.2 Meéthode de Ponthenod Dans cette méthode, nous avons besoin des gisements
relatifs entre A et C et entre C et D ainsi que I'angle ~ :

tan goa = A= = gea = 4, 876345069 rad = 310, 4377688 gon

tan gep = 325 = gep = 3, 353246468 rad = 213, 4743003 gon (5.91)

v = tangea — tan gep = 1,523098601 rad = 96, 96346844 gon

Par la formule 5.64, on obtient :

m = p+ v =400gon — (o + 4+ ) = 51, 52943156 gon = 0, 809422418 rad (5.92)
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On calcule ensuite la constante k par la relation 5.67 :

|C'D|sin«
k= ———— = 0,339589282 5.93
|CAlsing (5.93)
On peut ensuite calculer la constante n par la relation 5.72 :
kE—1
n = p — v = 2arctan (k 1 tan %) = —0,416240673 rad = —26,49870422 gon  (5.94)
Les angles i et v sont finalement calculés par :
p= " = 0,196590873 rad = 12, 51536367 gon (5.95)
v = """ =0,612831545 rad = 39, 01406789 gon ’
Les coordonnées du point approché sont obtenues par I'intermédiaire du gisement gays, :
gam, = gac + p = 1,931343288 rad = 122, 9531324 gon (5.96)
On peut également calculer la distance |AM,| par la relation 5.74 :
AM,| = [AC| SO 61836 6985 em (5.97)
sin v
Ce qui permet au final le calcul de la position du point A approché :
X, = Xa+ |AM,|sin gap, = 9885691, 36 cm (5.98)
Y]VLL = YA + |AMG‘ cosSgam, = 10409775, 87 cm '

5.6.5.3 Recherche de la position définitive du point M

On commence par rechercher la constante d’orientation approchée en faisant la moyenne sur
les constantes qui seraient calculées a partir des différents points (go, = gas — Ls). Les valeurs
sont reprises dans le tableau 5.6 :

gal (rad) | gaJ (gon) | gaJ - LJ (rad) | gaJ - LJ (gon)
5,07293594 | 322,953132 2,74041178 174,460032
5,74663974 | 365,842448 2,74040418 174,459548
1,2216685 | 77,7738324 2,74041178 174,460032
2,74041492 | 174,460232 2,74041178 174,460032

TABLE 5.6 — Recherche de la constante d’orientation approchée

La moyenne des valeurs donne comme valeur retenue go,—2, 74040988 rad=174, 4599114 gon.
On peut ensuite calculer les différents termes intervenant dans la relation matricielle 5.86 a
partir des calculs présentés au tableau 5.7.

8,69442-10712  —7,89647-1071 5,34612-10"7 dX —7,15583712
—7,89647-1071 1,60104-10""  —2,50802-107° dY »=—< —9,62937712
—5,34612-10"7  2,50802-107%  —4 dgo 0
(5.99)
Ce qui permet d’obtenir :
dX = —0,866443872 cm
dY = —0,694223113 cm (5.100)

dg0 = —3,19479- 107 rad
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Station | AX (cm) | AY (cm) Dy (cm) ay (em™1) by (em™1) cy (rad)
A -622090,36 | 234545,133 | 664836,6985 | -5,3063610" | -1,40742107° | 1,9014610°
B -408883,36 | 687495,133 | 799896,9683 | -1,07449107° | -6,3904510~7 | -5,7043810°
C 248593,64 | 90498,1327 | 264553,7936 | -1,29304107° | 3,55191107¢ | 1,9014610°°
D 152100,64 | -358573,867 | 389499,4517 | 2,3635510~¢ | 1,00258107% | 1,90146107°
TABLE 5.7 — Calculs intermédiaires pour I’exemple du relevement
Les coordonnées finales du point seront donc :
X, = 9885690, 5 cm
Y, = 10409775, 2 cm (5.101)

go = 2,7404 rad = 174, 4599 gon

Comme controle, il est possible de recalculer les résidus aprés optimisation par la méthode de
Gauss (tableau 5.8).

résidu
initial (rad)

résidu
final (rad)

QW

1,90146 - 107
-5,70438 - 107
1,90146 - 107
1,90146 - 107

3,65777-1070F
-4,01027 - 10706
8,75465- 10707
-5,22958 - 10777

TABLE 5.8 — Calcul des résidus.

On vérifie que la somme des carrés des résidus finaux (= 3,057 ') est inférieure a la somme des
carrés des résidus initiaux (= 4,33711).
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5.7 Meéthode par multilatération

La méthode de multilatération consiste a viser le point inconnu a partir d’un ensemble de points
de station (dont les coordonnées sont connues) et de relever la distance horizontale (figure 5.22).

v

Figure 5.22 — Principe de la méthode par multilatération.

Ce type de méthode était d’emploi assez limité a cause de la faible précision de la mesure de
distance par rapport aux mesures angulaires mais les progrés techniques les rendent de plus
en plus compétitives. La multilatération présente ’avantage de proposer des calculs nettement
plus simples que les méthodes basées sur les mesures angulaires.
Le principe général de la méthode est similaire aux méthodes angulaires, a savoir :

— l’établissement d’un croquis a petite échelle;

— la détermination d’un point approché;

— le calcul de la correction pour tenir compte des mesures redondantes.
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5.7.1 Coordonnées du point approché

Le point approché est obtenu a partir de la mesure de distances par rapport a deux points
connus. Le probléme se réduit a la recherche de l'intersection de deux cercles.

Figure 5.23 — Recherche du point approché par multilatération.

Dans la figure 5.23, on peut écrire la relation de pythagore généralisé dans le triangle [;C1C) :
R} = R} + d¢. ¢, — 2Ridc,c, cos a (5.102)

avec

deyo, = \/(X02 — Xe,) + (Yo, — Yo, )? (5.103)

L’angle o peut donc étre calculé a partir des données. Pour obtenir le gisement des différentes
visées, on applique :

— XCQ—Xcl
gc,c, = arctan Yoo Ve,
gClll = gC&Cg — (5104)

goi, = 9oy, +

Les coordonnées des points d’intersection sont ensuite classiquement obtenues par :

{ X5, = X¢, + Risinge g, { X1, = Xoy + Rysingeyr, (5.105)

Y, =Y, + Ricosge Y, =Y, + Ricosge,

Pour décider entre ces deux possibilités le point a retenir, il faut employer l'information
provenant d’une troisiéme mesure de distance.
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5.7.2 Calcul du point définitif

Comme pour les deux méthodes précédentes, nous nous concentrerons sur une méthode des
moindres carrés pour la résolution du systéme surabondant reprenant 1’ensemble des mesures.
Comme dans le cas des méthodes employant les mesures angulaires, on peut exprimer la distance
finale de deux maniéres différentes :

— distance définitive = distance mesurée -+ résidu

— distance définitive = distance approchée + variation

Figure 5.24 — Effet d’une variation selon X. Figure 5.25 — Effet d’une variation selon Y.

Pour calculer la variation, on peut décomposer 'effet d’une variation selon X et selon Y.

5.7.2.1 Variation selon X

La figure 5.24 présente la situation. Sous l'effet d’une variation dX. La variation de distance
correspond a la longueur du segment |K’M’|. Comme dX est une variation, on peut assimiler
l'arc K'M, a la corde. Ceci permet de dire que dans le triangle rectangle K'M'M, :

|K/M/| =dX singJMa (5106)

5.7.2.2 Variation selon Y

La figure 5.25 présente la situation. Sous l'effet d’une variation dY. La variation de distance
correspond a la longueur du segment |K’M’|. Comme dY est une variation, on peut assimiler
I'arc K'M, a la corde. Ceci permet de dire que dans le triangle rectangle K'M'M, :

|K'M'| = dY cos gy, (5.107)

5.7.2.3 Moindres carrés
Comme dX et dY sont indépendants, la variation globale peut s’exprimer selon

d|JMa| = sin gjpadX + cos gjaradY (5.108)
On peut donc écrire en syntheése :

TéSidlL|J]\4‘ = sin gJA{adX + cos g(]MadY -+ AD,]]\/[ (5109)
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AD ;) valant 'écart entre la distance approchée et la distance mesurée. Le calcul procéde a la
minimisation de la somme des carrés des résidus, c’est-a-dire 'annulation des dérivées selon x
et y. On obtient :

d n n
_X Z ’l"éSZ.dUﬁHW‘ =2 Z (sin gJMadX -+ cos gJMadY + ADJJM) sin giMa = 0 <5110>
J=1 J=1

d n

dY reszduuw =2 Z (sin gypadX + cos grpadY + ADjpr) cos gy =0 (5.111)

Ces deux expressions peuvent étre mises sous forme matricielle :

Z sin® gyve 3 Z SN 2g7na Z Dy sin gyna
= . ;U}f }: _ ] (5.112)
Z SN 2 Ma Z cos” gura Z D jpr €08 gina
=1

La résolution de ce systéme permet le calcul des résidus, donc la recherche de la position
définitive du point.
5.7.3 Exemple d’application

On dispose de mesures de distance entre un point inconnu M et quatre stations A, B, C et D
selon le tableau 5.9.

Points | X (em) | Y (cm) | Distances 8 M (cm)
A 9263601 | 10644321 | 664837,8
B 9476808 | 11097271 | 799894,4
C 10134285 | 10500274 | 264552,9
D 10037792 | 10051202 | 389499,7

TABLE 5.9 — Données de base pour 'exemple de la multilatération

Le calcul de la position approchée de M en employant par exemple les mesures a partir des
points A et C donne en employant les relations 5.102 et 5.103 :

JAC] = /(X4 — Xc)? + (Ya — Yo)? = 882519,2157 cm (5.113)

IMAI + | AC|* — | MC|”
cos (v = = 0,980738196 (5.114)
2[|MAf{lAC

L’angle a vaut donc 0,196590739 rad ou 12,51535514 gon. On peut donc calculer :

gac = arctan )ég:g = 110, 4377688 gon
gan, = gac — o = 97,92241364 gon (5.115)
gar, = gac + o = 122,9531239 gon
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Ce qui permet de calculer les coordonnées des deux points potentiels :

Xy, = Xa+ Rysingay, = 9928084, 799 cm (5.116)
Y, = Ya + Ry cos gan, = 10666013,9 cm '
Xy, = X4+ Rysingay, = 9885692, 422 cm (5.117)
Y, = Ya + Ry cos gan, = 10409775, 56 cm '

Pour sélectionner le point parmi les deux possibilités, on calcule la distance & un troisiéme
point, par exemple le point B, qu’on peut comparer a la mesure. On obtient une distance de
624206, 2455 cm pour M; et de 799897, 7735 cm pour M, & comparer & la mesure (799894, 4 cm).
On conserve donc le point My comme premiére approximation de la position du point (M,=M),
ce qui permet d’établir le croquis présenté en figure 5.26.

gc

M, = M\
;o\

/
9D
;.E
X

Figure 5.26 — Croquis a petite échelle pour 'exemple d’application.

Une fois cette information connue, il est possible de calculer I’ensemble des données permettant
de remplir les matrices pour la relation 5.112 (tableau 5.10).

Points | Gisements Gisements Distances Distances AD
approchés (rad) | approchés (gon) | approchées (cm) | mesurées (cm) | (cm)

A 1,9313432 122,95312 664837,8 664837,8 0

B 2,6050461 165,84239 79989777 7998944 3,37352619

C 4,3632587 277,77368 2645529 2645529 0

D 2,8820098 374,46037 389498,76 389499,7 -0,94402613

TABLE 5.10 — Calculs pour 'exemple de multilatération
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La relation matricielle donne donc :

2,172309387

qui donne apreés résolution :

—0, 80749681
—0,80749681 1,827690613

| )

dX = —0,235796
dy =

|

125 em

3, 768548234

1,957740325 cm

—2,093091203

} (5.118)

(5.119)

Aprés correction, la position finale du point (coordonnées arrondies au mm) est :

{ X, = 9885692, 2 cm

Y, = 10409777,

On peut calculer les résidus finaux qui valent :

résiduy = —0,891796425 cm

résidug = 1,594209

5 cm

178 cm

résiduc = —0,453925332 cm

résidup = 0,926906

158 cm

(5.120)

(5.121)

dont la somme des carrés vaut 4,4 cm? (4 comparer a une valeur initiale de 12,27 cm?); On
remarque une distribution plus homogéne des résidus.

5.8 Lexique

Francgais Anglais Francgais Anglais
boussole compass insertion par | resection
relévement
canevas planimétrique network of control || levé survey
points
clisimétre clinometer lever survey
constante d’orientation station constant méthode des | root mean square
moindres carrés method

erreur de fermeture
gisement

insertion par intersection
insertion par multilatération

closing error
grid bearing
intersection
multilateration

point approché
polygonale
résidu

TABLE 5.11 — Lexique du chapitre 5

Références

approximate position
transverse line
residual value

[1] M. Brabant. Maitriser la topographie - Des observations au plan. Eyrolles, 2003.

[2] Y. Durand. Topographie Fascicule II : Méthodes classiques de levés topographiques : Méthode
par intersections de rayons de visée. Mutuelle d’édition FPMs, 2010.

[3] Y. Durand.

Méthode par relévement. Mutuelle d’édition FPMs, 2010.

[4] Y. Durand.

Meéthode des multilatérations. Mutuelle d’édition FPMs, 2010.

Topographie Fascicule III : Méthodes classiques de levés topographiques :

Topographie Fascicule IV : Méthodes classiques de levés topographiques :
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Chapitre 6

Implantation

You build a beautiful superstructure, but it may be standing on air

- 1. Asimov, Foundation and Earth

6.1 Introduction

L’implantation reprend l’ensemble des opérations consistant a matérialiser sur le terrain les
points qui sont présents sur les plans d’éléments a construire (position de batiments, axes
ou points isolés) dans un but de construction ou de repérage. Suivant la précision souhaitée,
les implantations emploient différents instruments (ruban, équerre optique, théodolite,...)
et différentes méthodes. On recherche typiquement une précision décimétrique pour les
terrassements, centimétrique pour les ouvrages courants et millimétrique pour les fondations
d’ouvrages spéciaux. Deux principes doivent étre respectés [1] :

— aller de I'ensemble vers le détail ce qui implique de s’appuyer sur un canevas existant ou

a créer;
— prévoir des mesures surabondantes pour un controle sur le terrain.

6.2 Implantation d’alignements

6.2.1 Jalonnement

Le jalonnement est ’opération consistant a positionner un ou plusieurs jalons sur un alignement
existant, soit entre les points matérialisant cet alignement, soit en prolongement de ’alignement.

A “7

Figure 6.1 — Jalonnement sans obstacles. Figure 6.2 — Jalonnement a I’équerre.



CHAPITRE 6. IMPLANTATION

6.2.1.1 Jalonnement sans obstacles

On matérialise I'alignement initial AB par des jalons (idéalement réglés au fil & plomb). Un
opérateur se place en retrait du jalon A et I'aligne visuellement avec le jalon B. Un deuxiéme
opérateur se déplace avec un jalon C et le place sous les instructions du premier opérateur
(lorsque les trois jalons sont alignés, figure 6.1). Une mesure au ruban aligné sur deux des
jalons permet ensuite de placer définitivement le jalon C.

On peut également employer une équerre optique (figure 6.3) pour réaliser le jalonnement. Une
équerre optique est instrument qui permet de construire rapidement des perpendiculaires par
'alignement de jalons. Elle est constituée de deux prismes renvoyant la lumiére (figure 6.4).
Elle est associée a un fil & plomb ou a une canne a plomber sur laquelle elle est vissée.

Un seul opérateur peut également réaliser le jalonnement a 1’aide d'une équerre optique. Il se
place entre A et B, les épaules paralléles & la direction AB. Il se déplace perpendiculairement a
la direction AB jusqu’a observer 'alignement des deux jalons en A et B dans I’équerre optique,
ce qui permet de marquer le point C.

___________ "I
.
Figure 6.3 — Equerre optique (Doc Leica).
Vue de face
|
i
Jalom  _ |
N —= 71
Jalon
] - Iz
. T
N |
= QObservateur Jalon
\Y4 13

Figure 6.4 — Principe de fonctionnement de 1’équerre optique [2].
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6.2.1.2 Franchissement d’une butte

S’il n’est pas possible de voir les deux jalons d’un point donné suite & la configuration du terrain,
on emploie une méthode itérative (procédé Fourier, figure 6.5) :

— poser un jalon en 1, visible de A et de B;

— poser un jalon en 2, visible de B et sur I’alignement A-1;

— poser un jalon en 3, visible de A et sur l'alignement B-2;

— répéter jusqu’a obtenir un alignement entre A et B.
Ce procédé permet d’obtenir un alignement satisfaisant en quelques itérations.

Figure 6.5 — Franchissement d’une butte par le procédé Fourier.

6.2.2 Intersection d’alignements

L’intersection de deux alignements peut s’effectuer :
— avec un cordex (corde laissant une trace sur un support bétonné par exemple) en
matérialisant l'intersection des deux alignements ;
— en tendant des cordeaux (fils de fer) et en reportant le point a leur intersection (figure
6.6) ;
— avec un théodolite (par approximations successives).

Figure 6.6 — Intersection d’alignements aux courdeaux.
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6.2.3 Perpendiculaire & un alignement

Le tracé de perpendiculaires est une opération trés fréquente, que ce soit pour I'implantation
de points ou pour la réalisation de constructions intermédiaires. Nous allons lister différentes
méthodes possibles suivant le matériel a disposition (ruban, équerre optique, théodolite) pour
réaliser un alignement perpendiculaire & un autre a partir d’un point de ’alignement ou d’un
point extérieur (figure 6.7).

Figure 6.7 — Perpendiculaire a un alignement.

6.2.3.1 Perpendiculaire au ruban

La réalisation de perpendiculaires au ruban utilise des triangles particuliers. On exploite par
exemple la propriété des triangles isocéles d’avoir la hauteur issue du troisiéme co6té confondue
avec la médiatrice de ce coté. Pour la construction d’une perpendiculaire & partir d’un point
C de T'alignement (figure 6.8), on décale deux points D et E d’une méme distance de part et
d’autre de C, puis on tend le ruban en le maintenant par la graduation qui garantit I’égalité
des cotés DP et EP (dans ce cas, deux aides sont nécessaires). On peut également tracer deux
arcs de cercle de méme rayon dont 'intersection donne le point P recherché (dans ce cas, une
seule aide est nécessaire). Si le point n’appartient pas a I'alignement, on trace un arc de cercle
centré en ce point coupant ’alignement en D et E. Le pied de la perpendiculaire est au milieu
de ce segment DE (figure 6.9).

¢ — — — — — — =

’\' —
A B A D P E
Figure 6.8 — Perpendiculaire au ruban Figure 6.9 — Perpendiculaire au ruban
(triangle isocéle) par un point de (triangle isocéle) par un point extérieur a
I’alignement. I’alignement.
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Pour une meilleure précision, il est recommandé de prendre des distances les plus grandes
possibles. La méthode du triangle isocéle permet une vérification directe de I'implantation, il
suffit de vérifier, aprés mesure au ruban, qu’'on a bien PD? + CD? = PD?.

On peut également exploiter le théoréme de Pythagore : un angle droit est obtenu par la
réalisation d’un triangle rectangle (carré de ’hypoténuse valant la somme des carrés des autres
cotés). On parle de régle des 3-4-5 (trois cotés dans ces proportions conduisent a la réalisation
d’un triangle rectangle, figure 6.10).

P
/|i
/
, I
E . / I
oL/ 4.1
4 |
/
, I
/ |
A D 3-L C B

Figure 6.10 — Perpendiculaire au ruban (triangle rectangle).

6.2.3.2 Perpendiculaire a I’équerre optique

On dispose deux jalons sur A et B. Si le point C est sur I’alignement, 'opérateur se positionne
au moyen de I'équerre sur l'alignement AB en alignant les images des deux jalons de A et B
puis un deuxiéme opérateur se déplace un jalon jusqu’a ce que la correspondance soit établie. Si
le point C est en-dehors de 'alignement, c’est 'opérateur qui se déplace le long de AB jusqu’a
aligner le troisiéme jalon avec les deux premiers.

Figure 6.11 — Perpendiculaire a 1’équerre Figure 6.12 — Perpendiculaire a 1’équerre
optique (point sur Palignement). optique (point hors de 1’alignement).
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6.2.3.3 Perpendiculaire au théodolite

Si le point C est sur I'alignement, il suffit d’y stationner puis de pivoter de 100 gon par rapport
a une visée sur un des points de l'alignement. Si le point est extérieur, on peut procéder de
plusieurs facons :

— tracer une perpendiculaire d’essai en un point M visuellement proche du pied de la
perpendiculaire, puis mesurer la distance d par rapport au point C (figure 6.13); on
peut répéter 'opération pour plus de précision ;

— stationner en A et mesurer 'angle o entre AB et AC, puis stationner en C et reporter
un angle (100 gon -«) (figure 6.14) ;

— marquer le milieu M de AB, stationner en C et mesurer les angles a; et ay (figure 6.15),

en déduire ’angle & reporter « en résolvant I’équation 6.1 .

cos (o + g +a)  sinay (6.1)

cos « sin aiy

Figure 6.13 — Perpendiculaire  Figure 6.14 — Perpendiculaire  Figure 6.15 — Perpendiculaire
au théodolite : premiére au théodolite : deuxiéme au théodolite : troisiéme
méthode. méthode. méthode.

6.2.4 Paralléle & un alignement

Le tracé de paralléles & un alignement au ruban peut étre réalisé simplement en tracant deux
perpendiculaires successives a 'alignement initial ou en reportant la méme distance sur deux
perpendiculaires a 'alignement initial (figure 6.16).

D E c’ D'

T ° ' T

| |

\ \ F

| | ‘

|

: d d % T

| | !

| | ‘

| | !
& Y % % Yl [d X
A C B A C D B

Figure 6.16 — Tracé d’un alignement paralléle au ruban.
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Un tracé plus précis est obtenu en employant un théodolite. En stationnant au point A, on
effectue une rotation d’un angle o par rapport a l'alignement AB. On implante le point C a
une distance calculée selon (d étant la distance souhaitée entre les deux alignements) :

d

sin «

AC =

(6.2)

Ensuite, on stationne en C et on reporte un angle —a pour matérialiser l'alignement CC’
parallele & AB (figure 6.17).

- — -0

Q
o]
%m
=]

- d d

M (87 o V

A B A B
Figure 6.17 — Alignement paralléle au Figure 6.18 — Vérification du parallélisme de
théodolite. deux alignements.

Dans tous les cas, une vérification simple peut étre opérée : les diagonales d’'un parallélogramme
se coupent en leur milieu. Il suffit donc de construire un parallélogramme ABCD (D est situé a
la méme distance de C que A de B) et de vérifier que ses diagonales se coupent en leur milieu
(figure 6.18).

6.2.5 Prolongement d’alignements

Le prolongement consiste a poser des jalons supplémentaires pour étendre un alignement
existant.

Figure 6.19 — Prolongement d’alignement au théodolite
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6.2.5.1 Prolongement sans obstacles

Lorsqu’il n’y a pas d’obstacles, le prolongement peut s’effectuer selon les méthodes de
jalonnement présentée au § 6.2.1.1; il est recommandé dans ce cas de ne pas prolonger d’une
distance supérieure au quart de la longueur de ’alignement existant pour conserver une bonne
précision.

Si on dispose d’'une lunette, on stationne en I'extrémité B de I'alignement a prolonger, puis on
tourne de 200 gon pour viser le nouveau point & implanter. Si on dispose d’un théodolite, on
peut effectuer un double retournement pour avoir deux mesures; si le point obtenu est différent,
on prend comme point final le milieu du segment obtenu (figure 6.19).

6.2.5.2 Prolongement avec obstacle

6.2.5.2.1 Au ruban Le prolongement avec obstacle peut se réaliser au ruban seul. On
implante une paralléle a 1'alignement original & une distance donnée d (qui permet le
contournement de 1’obstacle) puis on trace une perpendiculaire auxiliaire sur laquelle on reporte
la méme distance d pour finalement implanter I'alignement prolongé sur une perpendiculaire a
ce segment (figure 6.21).

Figure 6.20 — Prolongement sans visibilité au ruban

6.2.5.2.2 Au théodolite Sion dispose d’un théodolite, on implante & partir de A un point
P qui permet de voir 'autre cété de 'obstacle et on mesure angle o entre ’alignement initial
et le rayon de visée vers P. En stationnant en P, on reporte la distance d (d=|AP|) selon un
angle 2o pour trouver un point dans le prolongement de AB. En stationnant en ce point, on
peut matérialiser ’alignement en reportant I'angle « (figure 6.21).

Figure 6.21 — Prolongement sans visibilité au ruban
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6.2.6 Contournement d’obstacle

Lorsque la ligne joignant les deux extrémités du segment & mesurer est interrompue par un
obstacle, il est nécessaire de le contourner pour réaliser la mesure.

6.2.6.1 Contournement au ruban

On se base sur le théoréme de Thalés : on construit par un point de ’alignement initial un
alignement sécant en A qui contourne 'obstacle. On implante ensuite sur cet alignement le
pied B’ de la perpendiculaire issue du point final de l'alignement extréme. Il ne reste plus
qu’a jalonner entre A et B’ et reporter les points correspondants via des perpendiculaires a
I'alignement AB’.

Figure 6.22 — Contournement au ruban.

Comme toutes ces perpendiculaire a AB’ sont paralléles entre elles; le théoréme de Thalés
garantit d’avoir :
\BB'| |CC'|  |DD'|
|AB'| — |AC'|  |AD/|

(6.3)
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6.2.6.2 Contournement au théodolithe

Dans ce cas de figure, on stationne en un point M duquel on peut voir A et B. On mesure
I'angle 3 selon lequel on voit le segment AB et les distances |[AM| et |BM]|. La résolution du

triangle ABC donne successivement :

sinay  sinap  sin (200 — oy — B)  sin(a; + f)

|BM|  |AM| |AM| |AM|
= |AM|sina; = |BM]| (sin o cos 4 sin 5 cos aq )
= cotay = ﬂ—cotﬁ

|BM | sin 8

La distance AB est ensuite déduite de la régle des sinus

sina;  sinap  sinf

|BM| |AM| |AB|

X o

Figure 6.23 — Contournement au théodolite.

Si des obstacles multiples ne permettent pas de stationner en un point ou A et B sont visibles,
il est nécessaire de suivre un cheminement planimétrique entre A et B (cf chapitre 5) trouver

les coordonnées de points, et donc déterminer la distance les séparant.
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Figure 6.24 — Contournement au théodolite, obstacles multiples.

6.2.7 Alignement faisant un angle donné avec un autre alignement

L’objectif est de matérialiser un alignement faisant un angle a avec un alignement AB existant
dont un des points est & une distance h de A.

6.2.7.1 Au théodolite, intersection accessible

La méthode la plus simple consiste a implanter le point S (intersection des alignements) a une
distance |AS| de A telle que
h

sin «

AS| = (6.8)

Ensuite, il suffit de stationner en S et de reporter I'angle a. On peut vérifier en tracant la
perpendiculaire au nouvel alignement passant par A et vérifier la distance entre A et le pied de
cette perpendiculaire A’ vaut bien h (figure 6.26).

b 004a

Figure 6.25 — Alignement faisant un angle Figure 6.26 — Alignement faisant un angle
avec un autre. avec un autre, intersection inaccessible.
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6.2.7.2 Au théodolite, intersection inaccessible

Si l'intersection n’est pas accessible, on peut implanter le point A’ & partir de A (reporter
la distance h selon un angle de 100+«) puis tracer le perpendiculaire & AA’ pour obtenir
'alignement recherché (figure 6.25). La vérification doit se baser sur des informations qui n’ont
pas été implantées, par exemple en vérifiant que

|BA'| = \/(d + hsina)® + (hcosa)? (6.9)

6.2.7.3 Au ruban

Si I’alignement doit étre réalisé au ruban, on implante les point C et D sur des perpendiculaires
a lalignement initial issues de A et de B telles que (figure 6.27) :

h
ACl = —— (6.10)
|BD| = AC + dtana (6.11)

Figure 6.27 — Alignement faisant un angle avec un autre au ruban.

Le controle consiste par exemple & vérifier que

en = \fes (1) e

2
AD = \/d2+<coh —|—dtana) (6.13)
s
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6.2.8 Pan coupé régulier

Un pan coupé régulier est un alignement coupant deux pans de murs selon des angles égaux.
Cette solution permet d’optimiser la visibilité aux intersections de voiries. Typiquement, la
longueur du pan est imposée et 'implantation est réalisée a partir du point d’intersection entre
les alignements. Si I’angle « entre les alignements est connu, on peut directement reporter les

distances :
|AB|

2sin (a/2)
Si langle o n’est pas mesurable, on implante des point N et M respectivement sur les

alignements de A et de B de sorte que les distances entre S et M et N soient égales. On
peut ensuite placer A et B en respectant :

ISA| = |SB| = (6.14)

|AB]|
Al =|SB| = |SM| —— 1
|ISA| = |SB| = |SM| N (6.15)

Figure 6.28 — Pan coupé régulier.
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6.3 Implantation planimétrique

[’implantation de points consiste a reporter sur le terrain des points issus d’un plan
préétabli pour les matérialiser. On distingue les implantations courantes (précision typiquement
centimétrique) pouvant étre réalisées au ruban des implantations spéciales (précision
millimétrique) réalisées a la station totale.

De maniére générale, 'implantation consiste a reporter a partir d’éléments connus (un point de
référence et une direction de références) des points en coordonnées cartésiennes (implantation
en abscisses et ordonnées au ruban, figure 6.29) ou en coordonnées polaires (implantation par
rayonnement a la station totale, figure 6.30). L’implantation de batiments courants consiste a

Figure 6.29 — Implantation cartésienne. Figure 6.30 — Implantation polaire.

implanter des ’chaises’ (figure 6.31) qui délimitent le contour des fondations sur lesquelles des
clous permettent de matérialiser les alignements (figure 6.32).

Trait de niveau
Clou

Figure 6.31 — Chaises pour 'implantation.

Pour ce type d’implantation courante, on implante deux des points & la station totale par
rapport & une référence (borne cadastrale par exemple), les autres points sont implantés par
jalonnement (figure 6.33).

Il faut noter que, dans les procédures d’implantation, les erreurs grossiéres peuvent vite se
produire ce qui peut avoir des conséquences dramatiques sur la suite du projet. C’est pourquoi
il est fondamental de systématiquement controler les points implantés en fin de campagne a
partir de mesures redondantes par rapport a celles qui ont été effectuées pour 'implantation
(exemple : mesure des diagonales d’un rectangle dont les cotés ont été implantés). Cette étape
est au moins aussi importante que 'implantation elle-méme.
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Figure 6.32 — Implantation de chaise pour la réalisation de fondations [1].

o o
G
b7 W///"Wﬂ

Figure 6.33 — Implantation classique d’un plan de fondation [1].
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6.3.1 Exemple pratique

6.3.1.1 Présentation du probléme

Cet exemple, tiré de [1]| consiste & réaliser 'implantation de quatre pieux Py, P, P; et Py a
partir du plan donné en figure 6.34. Les points A et B sont connus dans un repére global :

X4 =100,000m Y4 = 500,000m
Xp =109,882m  Yp = 501,530m

Py

7,61

7,66

2,55 512

Figure 6.34 — Plan de I'implantation des pieux [1].

(6.16)
(6.17)

Le plan permet de retrouver facilement les coordonnées des différents pieux dans un repére

local Pyxyy; (tableau 6.1).
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Point | x(m) | y(m)
Py -2,550 | -7,610
P 0,000 | 0,000
P 2,120 | 0,000
P | 4,670 | 7,660

TABLE 6.1 — Coordonnées des points dans le repére local

6.3.1.2 Implantation

Pour repasser dans le repére global, il est nécessaire d’effectuer des changements de repére
successifs (figure 6.35) :

une rotation d’un angle o (a4 déterminer) autour de Pj permettant de placer PP
parallelement & AB (repére Poxoys);

translation de repére pour amener son origine en A (repére Az3ys);

une rotation d’un angle —f (a déterminer) autour de A permettant de placer les axes
parallélement au repére global ( Az4yy) ;

une translation de repére pour ramener I'origine commune avec le repére global.

o Pl P,
o

Figure 6.35 — Repéres employés pour 'exercice d’'implantation.
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Pour rappel, un changement de repére implique de modifier les coordonnées des points selon
la relation 6.18 pour une translation de repére (figure 6.36) et selon la relation 6.19 pour une
rotation de repére (figure 6.37).
/ e _
{x_x 1z (6.18)

y =y—T,

' cos sin 6 T
{y’ }_[—Sinﬁ cos@} {y } (6.19)

Figure 6.36 — Changement de repére par Figure 6.37 — Changement de repére par
translation. rotation.

L’angle v peut étre calculé par résolution de triangle rectangle, on trouve :

—2.5
2,12

o = arcsin

= 15,157gon (6.20)

Dans le repére 2, les points ont donc pour coordonnées les valeurs données dans le tableau 6.38
(apére application de la formule 6.19). La translation de repére permet de replacer 'origine en

Point | x(m) | y(m) Point | x(m) | y(m)

P -0,683 | 7,997 P 1,317 | 10,997

P 0,000 | 0,000 P 2,000 | 3,000

P 2,060 | -0,500 P 4,060 | 2,500

P 6,345 | 6,342 P 8,345 | 9,342
Figure 6.38 — Coordonnées des points dans Figure 6.39 — Coordonnées des points dans
le repére 2 le repére 3

A (suivant la relation 6.18), ce qui donne les résultats repris dans le tableau 6.39. On peut déja
a ce stade réaliser I'implantation a partir du point A en prenant AB comme origine des angles.
Dans ce cadre, il est plus simple de réaliser une implantation polaire, et donc de convertir les
coordonnées cartésiennes du tableau 6.39 en coordonnées polaires (cf tableau tab :coord3pol).

Point | Dh (m) | Hz (gon)
Py 11,075 | 307,586
P, |3,606 | 337,432
Py 4,768 364,863
P, | 12,527 | 346,412

TABLE 6.2 — Coordonnées polaires des points dans le repére 3
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6.3.1.3 Retour au repére global

Si on veut raccrocher les points au repére global, il est nécessaire d’effectuer deux nouveaux
changements de repére :
— rotation de —f autour de A (f = 100 — gap = 100 — arctan 2—‘;) pour obtenir les
coordonnées du tableau 6.40 ;
— translation pour ramener l'origine au point de référence pour obtenir les coordonnées du
tableau 6.41.

Point | x(m) | y(m) Point | x(m) y(m)

P -0,381 | 11,069 P 99,619 | 511,069

P 1,517 | 3,271 P 101,517 | 503,271

P 3,630 | 3,092 P 103,630 | 503,092

P 6,817 | 10,509 P 106,817 | 510,509
Figure 6.40 — Coordonnées des points dans Figure 6.41 — Coordonnées des points dans
le repére 4 le repére global

6.3.1.4 Vérification de I’implantation

La vérification de I'implantation doit se faire sur des éléments qui n’ont pas été implantés. C’est
pourquoi la vérification va passer par la mesure des distances entre les pieux et de leur position
par rapport au point B. Les distances se calculent immédiatement par :

deyp, =\ (0 = 0)° + (i — y)° (6.21)

Le tableau 6.42 reprend les distances entre les pieux, le tableau 6.43 les distances entre les pieux
et le point B.

Distance | d(m)

PPy 8,026 Distance | d(m)

P Ps 8,929 BP 14,012

PP, 7,220 BP, 8,544

PPy 2,120 BP; 6,444

PP, 8,971 BP, 9,488

PP, 8,073 . . .

Figure 6.43 — Distances entre le point B et

Figure 6.42 — Distances entre les points les points implantés
implantés

6.4 Implantation altimétrique

[’implantation altimétrique consiste a repérer le niveau des éléments implantés par rapport a
une référence. Les techniques sont présentées au chapitre 3 de ce cours. On peut envisager de
poser un trait de niveau servant de repére en mettant en station un niveau puis en repérant
Ialtitude du plan de visée par lecture sur une mire posée sur la référence. il suffit ensuite de
reporter la différence d’altitude entre le plan de visée et la hauteur souhaitée du trait de niveau
a l'aide d’un métre ruban (figure 6.44).
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Trait de niveau

L+AL [

référence

Figure 6.44 — Pose d’un trait de niveau.

On peut éventuellement employer un niveau laser (figures 6.45 et 6.46) pour marquer un plan
de référence (horizontal, éventuellement vertical ou incling) sur un chantier de faible étendue. Il
faut rester conscient de 'incertitude qui peut y étre liée (incertitude donnée de 1’appareil, erreur
sur l'altitude proportionnelle & la distance entre I'instrument et la surface visée, typiquement
de l'ordre de 0,1 mm/m & 10 mm/m suivant la qualité du matériel).

Figure 6.45 — Niveau laser (document Figure 6.46 — Niveau laser (document CST
Bosch). Berger).

87



CHAPITRE 6. IMPLANTATION

6.5 Piquetage de pentes

Le piquetage de pentes consiste & matérialiser des pentes a créer par l'intermédiaire de piquets
réguliérement espacés. Les piquets sont enfoncés jusqu’a ce que leur sommet matérialise la
pente recherchée. Le piquetage de pente peut se faire avec un niveau ; dans ce cas, on mesure le
dénivelé entre deux piquets et on s’arrange pour que ce dénivelé soit compatible avec la pente
recherchée (figure 6.47). On peut également régler la pente a ’aide d’un théodolite en réglant
I'angle vertical & la valeur recherchée (figure 6.48).

Plan de visée
=

=TT i T T

-
et

=
-~
o ]

Figure 6.48 — Piquetage de pentes avec un théodolite [2].
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6.6 Lexique

Francais Anglais Francais Anglais
alignement alignment implantation polaire polar setting out
chaise batter boards jalonnement ranging
contournement pas d’équivalent parallele parallel

(ranging between || perpendiculaire perpendicular

points that don’t see

each other)
équerre optique | optical square piquetage de pente inclination  setting

out

fouilles
implantation
altimétrique
implantation
cartésienne

digging
altimetric
out

cartesian setting out

setting

prolongement

transformation
homogéne

pas d’équivalent
(ranging outside an
interval)
homogeneous
coordinate matrix

TABLE 6.3 — Lexique du chapitre 6 (les valeurs en italique sont des traductions littérales)

Références

[1] M. Brabant. Maitriser la topographie - Des observations au plan. Eyrolles, 2003.

[2] S. Miles. Topographie et toponométrie moderne. Eyrolles, 1999.
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Chapitre 7

Techniques modernes employées en
topographie

The U.S. Global Positioning System (GPS) Standard Positioning Service (SPS)
consists of space-based positioning, navigation, and timing (PNT) signals delivered
free of direct user fees for peaceful civil, commercial, and scientific uses worldwide

- GPS Performance Standard, Department of defense

7.1 Introduction

Ce chapitre a pour but de présenter les principes de bases de deux techniques avancées utilisables
en topographie : le positionnement par systéme GPS et la restitution par photogrammeétrie.

7.2 GPS

GPS (Global Positioning System) ou NAVSTAR, (NAVigation System by Timing And Ranging)
est a lorigine un systéme militaire américain cong¢u dans les années 70 et controlé par le
département de la défense. Il s’agit d’un systéme spatial de radio-positionnement et de transfert
de temps. Il fournit & un nombre illimité d’utilisateurs, dans un systéme global et unique, une
information de position, de vitesse et de temps [1]. Le maillon principal du systéme est la flotte
de 24 satellites (21 opérationnels et 3 de réserve). Son utilisation en topographie permet a
tout utilisateur de repérer un point sur le globe dans un repére absolu, donc de simplifier les
opérations dans lesquelles les mesures doivent étres reprises dans un canevas global.

Il faut noter que l'union Européenne a lancé depuis 2001 le projet de lancer sa propre
constellation de satellites pour le géopositionnement (Gallileo) qui est a I'heure actuelle en
début de déploiement. Ce systéme a pour objectif d’augmenter la couverture du globe terrestre
(le systéme GPS couvre globalement mal les hautes latitudes) et de proposer une précision
supérieure a celle fournie pas le GPS. Le projet devrait étre pleinement opérationnel en 2020.
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7.2.1 Principe général

Le systéme GPS est constitué de trois composants essentiels :
— le segment spatial ;
— le segment de controle;
— le segment utilisateur.

7.2.1.1 Segment spatial

La composante principale du segment spatial est la constellation de 24 satellites (21
opérationnels et 3 de réserve) qui est pleinement opérationnelle depuis 1994. Les satellites
orbitent & 20200 km d’altitude dans six plans orbitaux décalés de 60° (figure 7.1 ).

Figure 7.1 — Satellites GPS.

Le signal GPS est émis sous forme d’ondes électromagnétiques se composant de deux fréquences
porteuses (L1 a 1575,42 MHz et .2 & 1227,60 MHz) correspondant a des longueurs d’ondes de
19 et 24 cm. Le cadencement est assuré par l'intermédiaire d’horloges atomiques. Ces deux
fréquences sont portées par une fréquence dite fondamentale fy, & 10,23 MHz (f;; = 154 fo,
fr1 =120fp). Ces fréquences sont modulées par des codes pseudo-aléatoires :
— code C/A (Coarse/Acquisition ou Clear/Access) modulant L1 accessible a tout
utilisateur (fréquence de 1,023 MHz se répétant toutes les millisecondes) ;
— code P (Precise) modulant L1 et L2 se répétant une fois par semaine (ce code n’est
accessible qu’aux utilisateurs habilité suite a son chiffrement ;
— le message de navigation contenant diverses informations (temps GPS, position du
satellite,...) & 50 Hz.
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293 m
CODE C/A
1,023 MHZ
1 0 0 1 Usage civil
29,3 m
| —

CODE P

10,23 MHz

Usage restreint
1,1{0 0]1]0 0{1]0 0|1 1 1{0 0 0}1{0f{1 110 0 0f{1{0 0 0)1 1 1/0 0]1 1{0[1]0 010

T R I R R 31
—F -+ +—— +— +— ———t——+—

Figure 7.2 — Message GPS.

Par convention, le temps GPS est défini par le numéro de la semaine et le temps dans la semaine
(origine le 6 janvier 1980 & 0h00, I'origine de la semaine est le dimanche a 0h00).

7.2.1.2 Segment de controle

Le segment de controle rassemble les éléments permettant d’assurer le controle de la flotte de
satellites. Les stations au sol sont notamment chargées de :
— enregistrer les signaux et envoyer les éventuelles corrections (compenser les dérives
d’horloges) ;
— prédire les éphémérides (prédiction précise des position de I'ensemble des satellites au
cours du temps);
— collecte des informations météorologiques.

A Kwajalein

Figure 7.3 — Stations de controle GPS.

7.2.1.3 Segment utilisateur

Le segment utilisateur regroupe les appareils capables de recevoir le signal GPS pour en
déduire (suivant plusieurs modes comme expliqué plus loin) la position de l'appareil sur le
globe terrestre. On distingue plusieurs types principaux de récepteurs :
— les récepteurs grand public de navigation simples ou associés a un logiciel cartographique ;
— les récepteurs professionnels mono ou bi fréquences.
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7.2.2 Techniques de positionnement

Le positionnement par GPS utilise deux techniques qui présentent chacune leurs avantages et
leurs inconvénients : la mesure de pseudo-distances par observation du code et le mesure de
phase.
La mesure de pseudo-distances consiste a examiner la corrélation entre le code émis par le
satellite et celui généré par le récepteur. Le décalage temporel est ainsi estimé ce qui donne
accés a la distance entre le récepteur et le satellite. Si quatre satellites sont visibles, la position
est obtenue par intersection des sphéres. Cette technique nécessite une haute précision dans la
détermination du temps (la précision peut aller jusqu’au dixiéme de nanosecondes pour certains
modéles).
De fortes imprécisions peuvent entacher la mesure de pseudo distances ; ¢’est pourquoi une autre
méthode employant la mesure du déphasage entre le signal regu et le signal généré (mesure de
la fréquence de battement en fait). Ce type de mesure est beaucoup moins sensible aux erreurs
de mesure, mais fournit une information ambigiie (le déphasage est connu a n longueurs d’ondes
prés) qui nécessite un traitement plus complexe.
on peutr évaluer la précision de la mesure par des indicateurs nommés DOP (Dilution Of
Precision) :

— en positionnement planimétrique (HDOP : Horizontal DOP)

— en positionnement altimétrique (VDOP : vertical DOP)

— en détermination du temps (TDOP : Time DOP)

— en positionnement 3D (PDOP : Position DOP)

Mawrais GDOP Bon GDOF Mmrvais GDOP dus auwx obstacles
Figure 7.4 — Dilution of precision |2].

Cette imprécision est fonction de la position des différents satellites visibles; lorsque plus de
quatre satellites sont visibles, cette valeur est calculée pour toutes les configurations possible
pour permettre de déterminer les satellites les mieux placés pour obtenir les meilleurs résultats.

7.2.2.1 Types de positionnements basés sur les pseudo-distances

Le positionnement basé sur la mesure de pseudo-distance est la méthode implantée dans la
majorité des appareils grand public. On distingue :

— la méthode autonome (basée sur Uintersection de sphéres) qui offre une précision de
l'ordre de la dizaine de métres pour une mesure instantanée (I'erreur diminue si on
prend 1 moyenne de mesures sur une durée déterminée) ;

— la méthode différentielle qui se base sur un récepteur fixe (station de contréle ou pivot)
qui envoi des corrections au récepteur mobile servant a la mesure (pour que la méthode
soit utilisable, il faut toutefois s’assurer que les deux récepteurs observent toujours les
quatre mémes satellites. Au vu de leur lourdeur, les calculs peuvent s’effectuer en temps
réel ou en post-traitement.
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7.2.2.2 Types de positionnements basés sur la mesure de phase

La mesure de phases est également employée dans des récepteurs professionnels, avec deux
types de méthodes (on parle de modes) :
— le mode statique dans lequel on mesure 'information en au moins deux points durant
une longue durée (de une & dix heures typiquement) ;
— le mode dynamique se déclinant en quatre variantes :
— le mode cinématique qui permet de mesurer en continu la position d'un mobile en
mouvement (anciennement, I'initialisation devait se faire a partir d’un point fixe, ce
qui n’est plus le cas actuellement) ;
— le mode semi-cinématique dans lequel on stationne quelques secondes sur les différents
points & relever ;

— le mode pseudo-cinématique consiste a stationner au moins deux fois sur chaque
points avec un décalage donné (au moins une heure) pour obtenir une optimisation sur

la précision de positionnement (cette méthode est toutefois assez lourde d’emploi) ;

— le mode statique rapide dans lequel des informations additionnelles sont employées
(lecture de code ou emploi de plus de quatre satellites par exemple) pour accélérer

la convergence des calculs.

Le tableau 7.1 issu de la référence [1]| récapitule les performances classiques pour les différents

modes de mesure.

Méthode Nb. mini de Durée Exactitude | Commentaires
récepteur(s) | d’observation
Autonome 1 15 & 20 min 6 a8 cm Trés simple
Statique 2 1h 1 cm Complexité variable
Cinématique 2 - 10 cm a 1 m | Difficulté du maintient
du verrouillage
Semi-cinématique 2 1 min / point qq cm Bases courtes, maintien
du verrouillage
Pseudo-cinématique 2 1 a 3 min qq ppm Méthode lourde
Statique rapide 2 3 a 5 min qq cm Bases courtes, observations

supplémentaires

TABLE 7.1 — Récapitulatif des méthodes GPS
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7.3 Photogramétrie

7.3.1 Principe de base

La photogrammeétrie regroupe 'ensemble des techniques permettant d’exploiter la prise de vue
d’une méme scéne de plusieurs points de vue différents. Le principe général est celui de la vision
stéréoscopique (principe permettant au cerveau de reconstituer le relief & partir des observations
effectuées par nos deux yeux, figure 7.5).

Figure 7.5 — Principe de la vision stéréoscopique : les deux points sont vus de la méme facon
par l'oeil gauche, mais pas par 'oeil droit.

La photogrammétrie a des applications & grande échelle (établissement de cartes a partir de
clichés en altitude) ou a petite échelle (restitution de la géométrie d’'un batiment & partir de
différents clichés. Le principe de base consiste a repérer des éléments communs aux deux clichés
pour établir les transformations géométriques entre les deux prises de vue.

Il est ensuite possible de retrouver les coordonnées de points d’éléments qui sont visibles sur
les deux clichés suivant une procédure mathématique présentée plus en détail dans la référence
[2]. Dans le cadre de ce cours, nous nous contenterons d’établir les principes généraux ainsi que
les usages classiques de cette technique.
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7.3.2 Photogrammétrie terrestre

Figure 7.6 — Matériel de Figure 7.7 — Matériel de Figure 7.8 — Matériel de
photogramétrie |2]. photogramétrie [2]. photogramétrie |2].

La photogrammeétrie terrestre vise & reconstituer la configuration du terrain a partir de clichés
a¢riens. Des caméras (cf figures 7.6 a4 7.8) sont embarquées dans des avions qui balayent le
terrain a couvrir en bandes paralléles se chevauchant (figure 7.9 et 7.10).

Base

Focale

Hauteur de vol

e . Distance entre
“ Latér . bandes

Figure 7.9 — Principe de prise de vue en photogrammeétrie aérienne.
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Figure 7.10 — Chevauchement des bandes.

7.3.3 Photogrammeétrie numérique

L’évolution des possibilités de calcul graphique permet actuellement une analyse automatique
des clichés pour la restitution du relief & partir de différents points de vue. On parle alors
de photogrammeétrie numérique. Le recalage entre les différents clichés peut s’effectuer en
mesurant la corrélation entre les images. Cette corrélation exprime la correspondance plus
ou moins forte entre deux éléments (ici les pixel des deux images). La position relative de
deux clichés présentant le plus forte corrélation renseigne sur la transformation permettant
la superposition des points homologues sur un cliché. Mathématiquement si f(x,y) et g(x,y)
représentent I'intensité d'un pixel de I'image respectivement pour le cliché 1 et le cliché 21, Ia
corrélation se calcule selon :

M-1N-1

Fy)ogr.y) = sre S S flmomgla -+ m.y + ) (7.1)

m=0 n=0

En pratique, les algorithmes employés ne font pas le calcul sur 'ensemble des pixels mais bien
une fenétre de taille variable pour établir la corrélation entre deux images.

1. dans ’hypothése ou 'image est en niveau de gris, pour une image en couleur, on calcule la corrélation sur
les trois composants RGB
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Figure 7.13 — Corrélation, probléme lié¢ aux éléments mobiles (voitures par exemple).

L’image utilisée pour le traitement mathématique est généralement prétraitée pour mettre en
avant les éléments pertinents qui serviront au recalage par la suite. Par exemple, dans le cas
d’un échangeur autoroutier (cf figure 7.14), 'application successive de filtres numériques permet
de rehausser les contours des voiries au détriment du reste du cliché.

:/:,7;,&

A filtre Somme des contours

Figure 7.14 — Application de filtres.
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7.3.4 Restitution de batiments

La photogrammétrie a petite échelle peut étre employée pour la restitution 3D de batiments.
Le principe général est identique & celui présenté précédemment, & savoir la mise en évidence
de points communs a plusieurs clichés pour obtenir leur position spatiale. Il existe de nombreux
logiciels (dont certains libres) dont Pinterface propose des fonctions de base communes :

— affichage des clichés en vis a vis;

— possibilité de traitement numérique (filtre, transformation géométrique,...);

— sélection de points communs sur les clichés (on parle de feature matching, cf figure 7.15) ;

— sauvegarde des coordonnées des points identifiés et possibilité de restitution

tridimensionnelle (cf figures 7.16 et 7.17).
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Figure 7.17 — Rendu 3D.

Figure 7.16 — Rendu filaire.

Ce type de logiciel présente un grand intérét dans les projets de restauration pour lesquels

aucune donnée n’est disponible sur les objets existants.
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7.4 Lexique

Francais Anglais Francais Anglais
photogrammeétrie | photogrammetry - différentiel differential location
- aérienne aerial photogrammetry segment de controle | control segment

- terrestre ground photogrammetry || segment spatial space segment
positionnement location segment utilisateur | user segment

- autonome autonomous location

TABLE 7.2 — Lexique du chapitre 7.

Références

[1] J-B Henry. Cours de topographie et de topométrie générale. Université Louis Pasteur
Strasbourg, 2008.

[2] M. Kasser and Y. Egels. Photogrammétrie numérique. Lavoisier, 2001.
[3] S. Miles. Topographie et toponométrie moderne. Eyrolles, 1999.
[4] M. Brabant. Maitriser la topographie - Des observations au plan. Eyrolles, 2003.
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Annexe A

Formulaire de topographie

Incertitude expérimentale

Moyenne arithmétique  Ecart type expérimental  Ecart type de la moyenne

E:%ilmz 0:\/ni1i(mi_m2 a‘r:%

=1

Planimétrie

vA !

Figure A.1 — Exemples de mesures relevées pour ’établissement d’un canevas polygonal.

Canevas polygonal

Le calcul initial des coordonnées :

Ax; = d; sin g;
{ Ay; = d; cos g; (A1)
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Erreur de fermeture : Corrections :

N I d;
wtot = A : i — —'eaz,tot
o = 2 2% A9

N (A2) kyi = —iey tot
€y tot = Z Ay; 2. d;
i=1

Axi,cm‘r - Amz - k:m
{ Ayi,corr = Ayz - kyi (A4)
Insertion
Méthode d’intersection
Point approché
Xg—X4)— (Y=Yt
YP:YA+< B a)— (Yp 4) tan g (A.5)
tangs — tangp
Xp=Xa+ (Yp—Yy)tangy (A.6)
v !
Figure A.2 — Principe de la méthode par intersections des rayons de visée.
Méthode des moindres carrés Résidus :
dXAY dYAX
ry= DQ — D2 -+ Ga; — 9my (A?)

Minimisation de la somme des carrés des résidus :

20, B ] )= { B s

avec .
AY
ay = ﬁ (Ag)
AX
cjg = ga(] - gm(] (Al]‘)
D?* = AX?+ AY? (A.12)
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Méthode par relévement

Point approché Meéthode du calcul du gisement :

(Yo —Yg) — (X4 — Xp)cota+ (X4 — X¢)cot 5

tangy = —

Figure A.3 — Principe de la méthode par relévement.

Point approché :

(Xp — Xa) — (Yp — Y4)tangp
tangy — tangp
Xy, = Xa+(Yp—Ya)tangy

a

Yvu, = Ya+

a

Meéthode de Ponthenod

p+ v =400gon — (a+ B +7)=m

B_XA XC_XB

X
= — = arctan ———— — arctan
Y = 9BA — YBC Y5 — Y2 Yo — Yy

AN

Y )

XY

Figure A.4 — Principe de la méthode de Ponthenod.

sing  |BC|sina
sinv  |BAlsinf

(Xe — XB) — (Ya—Yp)cota+ (Ya — Yo)cot 3

(A.13)

(A.18)
(A.19)
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m—+n
M:
mZ (A.20)
UV =
2

Point approché :

sinm — (a + p) sin o + X, = Xa+ |AM,|singan
AM,| = |AB =|AB| —— = “ @ A21
| | =148 sin o |45 sin o { Y, = Ya+ |AM,| cos gan, ( )
Méthode des moindres carrés Résidus :
ry=ay-dX +by-dY —dgy+cy (A.22)
- N N N 1 ¢ N \
St Yan Y >
iE1 iEI iEI dX iEI
Daiby Db =Y b |9 dY p=—9 ) b (A.23)
i=1 i=1 i=1 dgo i=1
N N N
Y OTD DU >
L =1 i=1 J \ =1 V,
Avec :
AY; AX;
aj=——5 by= CJ = Gas — Yoa — Lj (A.24)
D3 D3
Méthode de multilatération
v
P
Figure A.5 — Principe de la méthode par multilatération.
Point approché
R} = R} + df, ¢, — 2Ridc,c, cos (A.25)
avec :
dCICQ = \/(XCZ - X01)2 + (YC2 - YC1)2 (A26)
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Figure A.6 — Recherche du point approché par multilatération.

Gisement de visée :

gc,c, = arctan %
gcir, = 9go,c; — (A27)
gci1, = 9cic, + «
Points d’intersection :
Xy, = Xeo, + Risinge, g, X1, = Xo, + Risingo,r, (A 28)
Y]l = YCl + R1 COSs gcljl Y]2 = YCl + R1 COSs 901[2 )
Méthode des moindres carrés
Z sin® gyva = Z SN 2g7na Z AD jysingyaa
dX j=1
. = — o (A.29)
dY
Z sin 297114 Z cos” §yra Z AD jn €os gma
j=1
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