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Chapitre 1

Topographie

Demandez à un géomètre la mesure de la terre, mais ne lui demandez pas celle
de son nez

- P. Masson, Les Pensées d'un Yoghi

1.1 Buts et objectifs du cours

La topographie est la science ayant pour objet la représentation sur un plan des formes du
terrain avec les détails naturels et arti�ciels qu'il porte [1]. Le but à atteindre est l'établissement
d'une minute de levé (établie sur papier ou sous forme numérique) qui reprend en détail
l'ensemble de ces mesures. Trois techniques sont reliées aux études topographiques :

� la géodésie est l'étude de la forme de la terre et la mesure de ses dimensions, elle vise
également l'établissement de la position de points de repère connus en altitude (repères
de nivellement) ou en altitude et position (repères géodésiques) ;

� la topométrie est l'application de procédures géométriques permettant d'exploiter les
mesures topographiques pour établir la position et l'altitude des points mesurés ;

� l'arpentage est la mesure de la super�cie des terrains.
La détermination des coordonnées et de diverses caractéristiques de points dans l'espace occupe
une place importante dans la plupart des études à buts environnementaux. L'objet de ce cours
est de balayer l'ensemble des méthodes et techniques à la disposition des bureaux d'études pour
acquérir des informations géométriques des objets tridimensionnels, qui composent nos paysages
urbains et naturels. Il ne s'agit évidemment pas de former des topographes chevronnés, mais
bien de donner une culture technique de base pour permettre d'une part un dialogue avec
les professionnels et d'autre part, lorsque c'est nécessaire, la mise en oeuvre de protocoles de
mesures élémentaires.



CHAPITRE 1. TOPOGRAPHIE

1.2 Contenu du cours

Le cours présentera tout d'abord l'établissement des cartes et des repères de base établis en
topographie (chapitre 2). Les références prises sont celles de l'institut géographique national
qui établit les règles et contrôle les canevas pour notre pays. Le principe du nivellement
sera développé au chapitre 3. Une présentation du matériel et des méthodes classiques de
relèvement topographique sera ensuite réalisée (�gure 4). Quelques méthodes courantes de
relevé planimétriques seront ensuite détaillées (chapitre 5). Les techniques d'implantation seront
détaillées au chapitre 6. Le cours se conclura par le chapitre 7 qui évoquera quelques techniques
avancées employées en topographie.

1.3 Vocabulaire de la mesure 1

1.3.1 Grandeur et unité

� Grandeur (mesurable) : attribut d'un phénomène, d'un corps ou d'une substance qui est
susceptible d'être distingué qualitativement et déterminé quantitativement. La longueur
est une grandeur générale ; la longueur d'une pièce donnée est une grandeur particulière.

� Unité (de mesure) : grandeur particulière, dé�nie et adoptée par convention, à laquelle
on compare les autres grandeurs de même nature pour les exprimer quantitativement
par rapport à cette grandeur. Exemple : le mètre est la longueur du trajet parcouru dans
le vide par la lumière pendant une durée de 1/299 792 458e de seconde.

1.3.2 Mesurages

� Mesurage : ensemble d'opérations ayant pour but de déterminer une valeur d'une
grandeur.

� Mesurande : grandeur particulière soumise à mesurage.
� Grandeur d'in�uence : grandeur qui n'est pas le mesurande mais qui a un e�et sur le

résultat du mesurage.

1.3.3 Résultats de mesure

� Exactitude de mesure : étroitesse de l'accord entre le résultat d'un mesurage et une
valeur vraie de mesurande.

� Répétabilité (des résultats de mesurage) : étroitesse de l'accord entre les résultats des
mesurages successifs du même mesurande, mesurages e�ectués dans la totalité des mêmes
conditions de mesure.

� Reproductibilité (des résultats de mesurage) : étroitesse de l'accord entre les résultats
des mesurages successifs du même mesurande, mesurages e�ectués en faisant varier les
conditions de mesure.

� Incertitude de mesure : paramètre, associé au résultat d'un mesurage, qui caractérise la
dispersion des valeurs qui pourraient raisonnablement être attribuées au mesurande.

1. La majeure partie de cette section est extraite de [2]
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CHAPITRE 1. TOPOGRAPHIE

1.3.4 Etalons

� Etalon : mesure matérialisée, appareil de mesure, matériau de référence ou système de
mesure destiné à dé�nir, réaliser, conserver ou reproduire une unité ou une ou plusieurs
valeurs d'une grandeur pour servir de référence.

� Etalonnage : ensemble des opérations établissant, dans des conditions spéci�ées, la
relation entre les valeurs de la grandeur indiquée par un appareil de mesure ou les
valeurs représentées par une mesure matérialisée ou par un matériau de référence, et les
valeurs correspondantes de la grandeur réalisée par des étalons.

� Traçabilité : propriété du résultat d'un mesurage ou d'un étalon tel qu'il puisse être
relié à des références déterminées par l'intermédiaire d'une chaîne ininterrompue de
comparaisons ayant toutes des incertitudes déterminées.

1.3.5 Caractéristiques des instruments de mesure

� Calibre (ou gamme de mesure) : étendue d'échelle que l'obtient pour une position donnée
des commandes d'un instrument de mesure.

� Sensibilité : quotient de l'accroissement de la réponse d'un instrument de mesure par
l'accroissement correspondant du signal d'entrée.

� Résolution (d'un dispositif a�cheur) : la plus petite di�érence d'indication d'un dispositif
a�cheur qui peut être perçue de manière signi�cative.

� Justesse : aptitude d'un instrument de mesure à donner des indications exemptes d'erreur
systématique.

� Fidélité : aptitude d'un instrument de mesure à donner des indications très voisines lors
de l'application répétée du même mesurande dans les mêmes conditions de mesure.

� Exactitude : aptitude d'un instrument à donner des réponses proches d'une valeur vraie.
� Hystérésis : propriété d'un instrument de mesure dont la réponse à un signal d'entrée

donné dépend de la séquence des signaux d'entrées précédents.

Figure 1.1 � Caractérisation d'un instrument de mesure ou d'une procédure.

3



CHAPITRE 1. TOPOGRAPHIE

1.4 Généralités concernant les mesures

La topographie est une forme particulière de métrologie à grande échelle. Les procédures à
mettre en oeuvre pour une mesure e�cace visent deux objectifs principaux contradictoires :

� la plus grande précision possible dans les mesures ;
� la minimisation du nombre de mesures pour minimiser le coût de la campagne.

Dans cette optique, il est nécessaire de préparer la campagne de mesure et de garder à l'esprit
l'utilisation qui sera faite des mesures pour une disposition optimale des essais.

1.4.1 Incertitude de mesure

Toute mesure est inévitablement entachée d'erreur qu'il faut estimer pour pouvoir les compenser
[2]. L'incertitude de mesure est l'étendue estimée des valeurs dans laquelle se situe la valeur
vraie de la grandeur mesurée. Toute indication de résultat de mesurage doit être accompagnée
de l'incertitude de mesurage. Les e�ets de faibles erreurs, ampli�ées par les grandes distances
mesurées peuvent être rapidement signi�catives. Par exemple, une erreur de 1 mgon 2 sur une
visée e�ectuée à 100 m équivaudra à une erreur de 100 · tan 2π

400
≈ 1, 6.10−3m pour une seule

visée. Ces écarts seront encore ampli�és lorsque la mesure d'un point résultera d'un ensemble
de mesures isolées. Le cas est encore plus problématique lorsqu'il s'agit d'un point résultant de
l'intersection de deux visées pour lesquelles les rayons de visée se coupent selon des angles très
aigus ou très obtus. Cette incertitude est la résultante de facteurs intrinsèques aux instruments
utilisés, de facteurs intrinsèques aux méthodes utilisées et de facteurs d'in�uence extérieurs.
Exemples de sources d'incertitude :

� environnement de la mesure (température, vibrations,...) ;
� matériel de mesure (guidage, règles,...) ;
� traitement des mesures (�ltrage, échantillonnage, algorithme,...) ;
� métrologue (expérience, connaissances,..) ;
� grandeur mesurée ;
� procédure de mesure ;
� constantes physiques et facteurs de conversion.

Une quanti�cation des incertitudes liées aux mesures est nécessaire pour pouvoir s'auto-juger
sur la qualité des mesures e�ectuées. Historiquement, on employait la notion de calcul d'erreur.
La tendance est à l'évolution vers la notion statistique d'incertitude de mesure. Dans cette
optique, on dé�nit le résultat d'une mesure comme une variable aléatoire, avec deux causes
produisant des écarts avec la valeur 'vraie' :

� les erreurs systématiques (écart constant avec la valeur vraie, pouvant être corrigé ou
non) ;

� les erreurs aléatoires (e�et non prévisible, de moyenne nulle et présentant une certaine
dispersion).

L'hypothèse la plus courante sur la distribution des erreurs aléatoires est la distribution normale.
Pour rappel, la fonction de densité d'une distribution normale de moyenne m et d'écart type σ
est :

f (x) =
1

σ
√

2π
e−

1
2(x−mσ )

2

(1.1)

La portion comprise entre −σ et σ englobe 68% de la distribution (95,5 % entre −2σ et 2σ,
99,7 % entre −3σ et 3σ).

2. L'unité de mesure d'angle en topographie est conventionnellement le grade noté gon, il correspond à l'angle
interceptant 1/400e de tour
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CHAPITRE 1. TOPOGRAPHIE

Figure 1.2 � Résultat de mesure comme variable aléatoire.

Pour rappel, si on e�ectue plusieurs mesures pour indiquer une grandeur, le résultat annoncé
est l'espérance mathématique de l'ensemble des mesures (moyenne arithmétique) :

x =
1

n

n∑
i=1

xi (1.2)

L'écart type associé à la distribution est :

σ =

√√√√ n∑
i=1

(xi − xR)2 =

√√√√ 1

n

n∑
i=1

(xi − xR)2 (1.3)

Avec xR qui est la moyenne de la distribution (inconnue, x étant un indicateur de cette valeur).
Un estimateur non biaisé de cet écart type est l'écart type expérimental :

σ =

√√√√ 1

n− 1

n∑
i=1

(xi − xi)2 (1.4)

L'écart type annoncé sera l'écart type de la moyenne à savoir :

σx =
s√
n

(1.5)

Le résultat sera annoncé comme x ± kσx avec k le coe�cient d'élargissement (k=1 pour
indiquer que 68 % est dans l'intervalle, k=2 pour considérer 95 % dans l'intervalle,...). On
prendra soin d'indiquer la mesure et l'incertitude dans les mêmes unités et en conservant le
même nombre de chi�res signi�catifs pour les deux (typiquement un ou deux pour l'incertitude).
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A titre d'exemple, si on compare les séries de dix mesures élémentaires (exemptes d'erreurs
systématiques) de distance x et y reprises dans le tableau 1.1

n◦ x (m) n◦ x (m) n◦ y (m) n◦ y (m)
1 100,123 6 100,023 1 100,002 6 100,003
2 100,225 7 100,544 2 100,005 7 100,004
3 99,876 8 99,975 3 99,997 8 99,995
4 99,456 9 99,889 4 99,999 9 99,996
5 99,777 10 100,112 5 99,997 10 100,002

Table 1.1 � Mesures expérimentales

Si à l'issue de ces mesures on n'annonce que la moyenne, on obtient des résultats équivalents à
savoir 100 m, ce qui ne permet pas de remarquer que la dispersion des mesures est nettement
plus importante pour la première série. Le calcul de l'incertitude donne lieu aux résultats
suivants :

sx = 0, 288 m sy = 0, 036 m (1.6)

σx = 0, 096 m σy = 0, 001 m (1.7)

en choisissant un coe�cient d'élargissement standard de 2, on peut donc annoncer les résultats
suivants :
x=100, 00 m ± 0, 19 m (k=2)
y=100, 00 m ± 0, 002 m (k=2)
ce qui permet de juger immédiatement d'une dispersion près de cent fois plus importante sur
les mesures x.

1.4.2 Incertitude liée aux instruments de mesure

Cette donnée est fournie dans la documentation technique de l'appareil de mesure sous forme
d'une valeur �xe ou d'une constante plus une partie fonction de la grandeur mesurée. Deux
commentaires peuvent être faits à ce sujet :

� les valeurs annoncées sont les valeurs en sortie d'usine (après calibration, suivant
le constructeur, les périodes de validités sont di�érentes, il faut veiller de manière
périodique à faire réétalonner l'appareil, typiquement tous les 6 à 24 mois) ;

� les valeurs annoncées sont valables pour un emploi correct du matériel ;
� les valeurs annoncées sont souvent une incertitude type multipliée par 2,7, on a donc

99% de chances d'être dans cet intervalle (ou 1 % d'être en-dehors !).
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1.5 Lexique

Français Anglais Français Anglais
arpentage (land) surveying justesse accuracy
erreur aléatoire random error mesurage measurement
erreur systématique systematic error mesurande mesurand
étalon standard répétabilité repeatability
étalonnage calibration reproductibilité reproducibility
exactitude de mesure accuracy of measurement résolution resolution
�délité reliability sensibilité sensitivity
gamme de mesure e�ective (measuring) range topographie topography
géodésie geodesy topométrie topometry
incertitude de mesure uncertainty of measurement traçabilité traceability

Table 1.2 � Lexique du chapitre 1

Références

[1] J-B Henry. Cours de topographie et de topométrie générale. Université Louis Pasteur
Strasbourg, 2008.

[2] E. Filippi. Métrologie dimensionnelle. Mutuelle d'édition FPMs, 2010.
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Chapitre 2

Notions fondamentales - projections

cartographiques

Since my youth geography has been for me the primary object of study. When
I was engaged in it, having applied the considerations of the natural and geometric
sciences, I liked, little by little, not only the description of the earth, but also the
structure of the whole machinery of the world, whose numerous elements are not
known by anyone to date

- G. Mercator, Introduction to Ptolemy's Geography

2.1 Historique

La géodésie est une science assez récente. L'établissement de cartes géographiques rigoureuses,
en-dehors des cartes maritimes, a débuté en France à la �n du dix-septième siècle. L'évolution
des techniques a permis l'établissement de relevés de plus en plus précis. Chaque pays s'est
progressivement doté d'un réseau géodésique (ensemble de points uniformément répartis sur
le territoire précisément mesurés et périodiquement véri�és) sur lequel s'appuient les mesures
secondaires. En Belgique, c'est l'Institut Géographique National (ING/NGI) qui est entre autre
chargé de la mesure et de l'entretien de ce réseau primaire.

Figure 2.1 � Logo de l'ING belge.

Les premiers réseaux de nivellement de la Belgique ont été établis sous la responsabilité du
Ministère de la Défense nationale [1] :

� Le Nivellement général exécuté de 1840 à 1879 comportait quelques 8500 points répartis
sur toute l'étendue du pays. Il servit de base au tracé des courbes de niveau de l'ancienne
carte topographique de base (dite d'état major). Ce réseau n'était pas repéré par des
marques particulières, seul l'emplacement des points cotés était décrit. La surface de
niveau Zéro était le Zéro du Dépôt de la Guerre ou Zéro D (celui-ci est dé�ni comme
étant le niveau de la marée basse moyenne à vive eau ordinaire à Ostende).
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� Le Nivellement de Précision exécuté de 1889 à 1892 comportait quelques 2000 repères
de nivellement jalonnant un polygone frontière et deux transversales, Anvers-Mons et
Liège-Dinant. La surface de niveau Zéro était le niveau moyen de la mer à Ostende (il
se situe à 2,012 mètres au-dessus du Zéro D).

� Di�érents réseaux locaux furent exécutés de 1892 à 1945, dans diverses parties du pays.
Certains d'entre eux furent repérés. La surface d'origine de certains de ces réseaux semble
douteuse.

Figure 2.2 � Relation entre les surfaces de niveau zéro (doc IGN).

Le réseau actuel est le Deuxième Nivellement Général (DNG), exécuté de 1947 à 1968.
Il comporte quelques 19000 repères, répartis sur tout le territoire. En 1950, une première
compensation du réseau de triangulation a été exécutée. Très vite on constata que le réseau, dont
la précision était su�sante pour une production cartographique à moyenne échelle, n'était pas
assez précis pour d'autres applications. Entre 1955 et 1969, des observations supplémentaires
ont été exécutées. Une compensation globale selon la méthode des moindres carrés a été réalisée
en 1972 (établissement du Belgian datum 72 �gure 2.3). Le renouvellement de ce réseau a été
réalisé de 1981 à 2000. Entre 1988 et 2003, l'IGN a réactualisé et densi�é le réseau des points
au sol pour atteindre une densité moyenne de 1 point par 8 km2.

Figure 2.3 � Belgian datum 72 (ref IGN). Figure 2.4 � Subdivision actuelle du réseau
belge.

Le réseau est constitué de repères planimétriques (coordonnées et altitude connues) et
altimétriques (altitude seule connue). Ces points peuvent être des points caractéristiques
d'ouvrages existants (�gure 2.5), des rivets dans le sol (�gure 2.6) ou des bornes en fonte
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(�gure 2.7). La référence de l'ensemble de ces points est maintenant consultable librement sur
le web.

Figure 2.5 � Exemple de repère planimétrique élevé : be�roi de Mons. Le pied de la girouette
au sommet de la tour sert de référence planimétrique ; le centre de la boule sert de référence
altimétrique.

Figure 2.6 � Exemple de repère
planimétrique au sol : rivet en cuivre
dans le béton, place de Flandre (document
IGN).

Figure 2.7 � Reprère altimétrique en fonte
sur la façade du bâtiment du Dolez, rue de
l'Alchimiste (document IGN).
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2.2 Modélisation de la surface terrestre

2.2.1 Vocabulaire de base

La seule référence absolue en tout point du globe est la direction du �l à plomb qui dé�nit la
direction de la pesanteur. Le champ de pesanteur est dé�ni comme −→g =

−→
∇W . Les surfaces iso

W correspondent aux courbes d'altitude constante.
La terre est un solide qui tourne autour de la ligne des pôles (ligne reliant le pôle nord au pôle
sud). Son intersection avec un plan contenant la ligne des pôles (�gure 2.8) dé�nit un méridien.
L'angle λ formé entre ce méridien et un méridien de référence (observatoire de Greenwitch)
dé�nit la longitude du lieu (λ valeur de 0 à 180 degrés est ou ouest). L'intersection de la terre
avec un plan perpendiculaire à la ligne des pôles dé�nit un parallèle. Le parallèle à égale distance
des deux pôles est appelé équateur. La latitude (φ) d'un lieu est l'angle entre la verticale locale
et le plan de l'équateur.
Les pôles autour desquels la terre tourne sont appelés pôles géographiques. La mesure par
l'intermédiaire d'un boussole donne la direction du nord magnétique. Le nord magnétique a
une position variable au cours du temps (la terre a connu plusieurs inversions de pôles), on
estime sa vitesse actuelle à 55 km par année, sa position en 2007 mesurée par L'institut polaire
français est à une latitude de 83, 95◦ nord et une longitude de 121.02◦ ouest, soit à une distance
de 673 km du pôle nord géographique.

Figure 2.8 � Dé�nition de la longitude et de la latitude d'un point P.

2.3 Ellipsoïde de référence

Dès le deuxième siècle avant Jésus-Christ, les grecs avaient déterminé une approximation du
rayon terrestre (Eratostène avait estimé une circonférence de 39375 km en mesurant la di�érence
d'inclinaison des rayons solaires entre Alexandrie et Assouan, cette valeur est étonnement proche
de la réalité). La mesure de la circonférence de la terre a un temps servi de référence pour le
système métrique. Au début du dix-neuvième siècle, un important travail a été mené pour
mesurer la portion de méridien de Barcelone à Dunkerque. Suite à ce relevé, le mètre a été
dé�ni comme la dix-millionième partie du quart de méridien terrestre. Cette dé�nition a par la
suite évolué, mais la topographie en a conservé son unité de mesure angulaire : le grade (ayant
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pour symbole gon) qui est dé�ni par l'angle interceptant 1/400e de cercle (un angle d'un grade
sur un méridien correspondait donc à 100 km).
En réalité, les équipotentielles de la surface terrestre ont une forme plus complexe appelée
géoïde (�gure 2.9).

Figure 2.9 � Géoïde et ellipsoïde (Source : pôle ARD, adess, domaine public).

Les diverses observations ont permis d'observer que la terre se rapprochait de la forme d'une
ellipsoïde de révolution dont les dimensions sont les suivantes :

� demi-grand axe a 6378388 m ;
� demi petit axe b 6356912 m.

L'axe de révolution est le petit axe qui est dirigé selon la ligne des pôles géographiques. La
variation est donc assez minime (22 km) et du même ordre de grandeur que les extrêmes
variations d'altitudes sur le globe (20 km des fonds les plus profonds au sommet de l'Everest).
Malgré cela, chaque pays a également la possibilité de dé�nir sa propre ellipsoïde locale qui
tend à approcher au mieux la géoïde localement sur son territoire (�gure 2.9).

Figure 2.10 � Ellipsoïde.
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2.4 Projection cartographique

L'objectif des projections cartographiques est de reproduire sur plan la surface non développable
de la terre. La projection cartographique établit une application au sens mathématique du terme
qui à tout couple de coordonnées géographiques (φ, λ) fait correspondre un point de coordonnée
(x,y) sur un plan. Classiquement, la projection est établie sur un cylindre ou un cône tangent ou
sécant à l'ellipsoïde (�gure 2.11). La zone de tangence est naturellement celle qui est représentée
avec le moins d'altérations.

Figure 2.11 � Di�érents types de projections cartographiques [1].

Les projections peuvent être équivalentes (les surfaces se conservent) ou conformes (les
proportions sont conservées). Pour évaluer les déformations engendrées par la projection, il est
possible de superposer au plan l'image d'un cercle de rayon donné (indicateur de Tissot). Comme
il n'existe pas de projection à la fois conforme et équivalente, divers systèmes ont coexisté au
cours du temps. Il est clair que le passage d'une représentation spatiale à une représentation
plan amène immanquablement des distorsions. C'est pourquoi les mesures e�ectuées sur des
plans doivent être corrigées pour tenir compte de cet e�et. En pratique, les corrections étant
faibles, elles ne seront appliquées que pour les mesures à grande échelle.
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Les projections les plus fréquents sont les projections cylindriques de Mercator (�gure 2.13) et
la projection conique de Lambert (�gure 2.14) qui est la référence en topographie.

Figure 2.12 � Principe de la projection de
Mercator.

Figure 2.13 � Projection de Mercator avec
indicatrice de Tissot.

En fonction de l'étendue du territoire considéré, il peut être nécessaire d'avoir recours à plusieurs
projections Lambert pour un même pays (la France a dé�ni quatre zones Lambert dites I, II,
III et IV plus une projection pour la Corse). Pour la Belgique, deux références de projection

Figure 2.14 � Projection conique de Lambert. Figure 2.15 � Projection conique
de Lambert pour la Belgique.

Lambert ont été employées : Lambert 1972 (se référençant à l'ellipsoïde Hayfort datant de
1924) puis actuellement Lambert 2008 (se référençant à GRS 80 datant de 1980). Les données
principales sont reprise dans le tableau 2.1 ; le point central pour la Belgique est Uccle.

14



CHAPITRE 2. NOTIONS FONDAMENTALES - PROJECTIONS CARTOGRAPHIQUES

Projection Projection
Lambert 1972 Lambert 2008

Ellipsoïde Identité Hayford GRS80
Demi grande axe (a) 6378388, 0 m 6378137, 0 m
Aplatissement (f) 1 / 297,0 1/298,257222101
Parallèles standard φ1 49◦50′00′′00204 N 49◦50′ N

φ2 51◦10′ 00′′00204 N 51◦10′N
Origine Latitude origine 90◦ 50◦47 min52′′134 N

Méridien central 4◦22′02′′952 E 4◦21′ 33′′177 E
Coordonnées de l'origine x0 150.000, 013 m 649328, 0 m

y0 5400088, 438 m 665262, 0 m

Table 2.1 � Dé�nition des projections cartographiques belges

Un algorithme simple permet la correspondance directe (φ, λ) → (x, y) et inverse pour une
projection Lambert donnée. On calcule les constantes :

m1 =
cosφ1√

1− e2 sin2 φ1

m2 =
cosφ2√

1− e2 sin2 φ2

(2.1)

t1 =
tan (π/4− φ1/2)(

1− e sinφ1

1 + e sinφ1

)e/2 t2 =
tan (π/4− φ2/2)(

1− e sinφ2

1 + e sinφ2

)e/2 t0 =
tan (π/4− φ0/2)(

1− e sinφ0

1 + e sinφ0

)e/2 (2.2)

n =
lnm1 − lnm2

ln t1 − ln t2
g =

m1

ntn1
r0 = agtn0 (2.3)

La transformation directe suit le cheminement suivant :

t0 =
tan (π/4− φ/2)(

1− e sinφ

1 + e sinφ

)e/2 (2.4)

r = agtn (2.5)

θ = n (λ− λ0) (2.6)

x = x0 + r sin θ (2.7)

y = y0 + r cos θ (2.8)

La transformation inverse suit :

r =

√
(x− x0)2 + [r0 − (y − y0)]2 (2.9)

t =

(
r

ag

)1/n

(2.10)

θ = arctan
x− x0

r0 − (y − y0)
(2.11)

φ est calculé de manière itérative avec

φ0 = π/2− 2 arctan t (2.12)

φi+1 = π/2− 2 arctan

(
t

(
1− e sinφi
1 + e sinφi

)e/2)
(2.13)

Jusqu'à obtenir la convergence entre deux itérations avec un seuil déterminé.
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2.5 Lexique

Français Anglais Français Anglais
ellipsoïde ellipsoid projection conique conic projection
géoïde geoid projection cylindrique cylindrical projection
indicateur de Tissot Tissot's indicatrix projection équivalente equal-area projection
méridien meridian projection normale normal projection
parallèle parallel projection oblique oblique projection
pôle géographique geographic pole projection plane azimuthal projection
pôle magnétique magnetic pole projection sécante secant projection
projection cartographique map projection projection tangente tangential projection
projection conforme conformal projection projection transverse transverse projection

Table 2.2 � Lexique du chapitre 2 (les valeurs en italique sont des traductions littérales)

Références

[1] Site web de l'institut Géographique National. www.ngi.be.

[2] P. Tournois. Topographie : géodésie, toponomeétrie, arpentage. Techniques, C300 :1�21,
1984.

[3] S. Miles. Topographie et toponométrie moderne. Eyrolles, 1999.

[4] M. Brabant. Maîtriser la topographie - Des observations au plan. Eyrolles, 2003.
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Chapitre 3

Nivellement

That's the second biggest mountain I've ever seen

- G. Threepwood, Monkey island

3.1 Introduction

Le nivellement est l'opération qui consiste à relever les di�érences d'altitude entre di�érents
points d'un canevas. Cette information est importante dans les projets d'implantation pour
de nombreux aspects pratiques (écoulements, dévers, ...). Il existe di�érentes techniques qui se
démarquent par les outils et les méthodes mis en oeuvre. On distingue notamment :

� le nivellement direct qui mesure via des lectures sur mire les di�érences d'altitudes entre
points ;

� le nivellement indirect qui calcule les di�érences d'altitudes entre points à partir de
mesures de distances et angulaires ;

� le nivellement barométrique qui exploite la variation de pression atmosphérique avec
l'altitude ;

� le nivellement hydrostatique basé sur le principe des vases communicants.
Dans le cadre de ce cours, nous nous contenterons de présenter des techniques de nivellement
direct et indirect ordinaires qui sont les plus fréquemment employées en pratique.

3.2 Nivellement direct

Le nivellement direct consiste à lire à l'aide d'une lunette les graduations portées par deux mires
stationnées en des points judicieusement choisis. L'écart entre les lectures permet de déterminer
la di�érence d'altitude entre deux points selon :

ZP2 = ZP1 + AR− AV (3.1)

Z représente l'altitude d'un point, AR et AV les lectures arrière et avant (on oriente le travail
de P1 vers P2). On distingue dans ce type de méthodes :

� le nivellement par rayonnement (les di�érences sont prises par rapport à un seul point
de référence), cette méthode permet une véri�cation rapide d'un ensemble de points
à partir d'un seul stationnement de l'appareil (sondage, points de berges,...) mais ne
permet aucune détection d'erreurs de mesures ;
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� le nivellement par cheminement (les di�érences sont mesurées de proche en proche), cette
méthode permet d'employer des techniques de compensation des erreurs et de contrôle
du résultat ;

� le nivellement par franchissement (cas pour lequel un obstacle empêche le cheminement)
réalisé avec deux appareils en simultané) ;

� le nivellement d'auscultation (suivi dans le temps d'ouvrages) qui combine les
caractéristiques des précédentes techniques.

La précision typique varie de 0,1 millimètre à quelques millimètres selon le matériel et les
protocoles mis en oeuvre.

3.3 Matériel employé pour le nivellement direct

L'opération de nivellement est classiquement opérée en plaçant une mire (règle graduée, �gure
3.1) verticalement sur le point dont on souhaite déterminer l'altitude et sur un point de référence
et en e�ectuant une lecture à l'aide d'un niveau (instrument dé�nissant un plan horizontal de
visée, �gure 3.2). Les mires (ou stadia) sont des règles graduées généralement en aluminium
(parfois en invar) de section rectangulaire. Les mires sont graduées en centimètres (le millimètre
est estimé à la lecture) ou portent un code barre (�gure 3.3) pour des mesures automatisées.
Comme les anciens niveaux optiques inversaient l'image, les anciennes mires portaient les chi�res
à l'envers pour faciliter la lecture.

Figure 3.1 � Graduations portées par une
mire.

Figure 3.2 � Lecture sur une mire.
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Figure 3.3 � Mire en invar à code barre.

Les niveaux peuvent être :
� manuels (nécessitent le réglage du plan horizontal lors de la mise en station) ;
� automatiques (l'axe se règle de manière automatique si l'écart à l'horizontale est dans

une plage raisonnable, �gure 3.4) ;
� numériques (lecture automatique sur mire à code barre).

Figure 3.4 � Niveau automatique [1] . Figure 3.5 � Bulle coupée [2].

Le réglage des niveaux manuels nécessite de véri�er que l'axe optique est parfaitement
horizontal. pour véri�er ce réglage, les niveaux sont munis de nivelles (fonctionnant sur le
principe du niveau à bulle). Pour augmenter la sensibilité (et donc la précision), les niveaux
sont typiquement munis de systèmes optiques visant les deux extrémités de la bulle (on parle
de bulle coupée) ; le réglage est correct lorsque les deux ménisques sont en concordance (�gure
3.5).

3.4 Nivellement par cheminement

Le nivellement par cheminement consiste en la réalisation systématique de deux mesures en
maintenant �xe la lunette (on parlera de mesures 'en avant' et 'en arrière') pour déterminer de
proche en proche l'altitude de points entre lesquels on stationne une lunette (�gure 3.6).

Figure 3.6 � Principe du nivellement par cheminement.

Les mesures sont e�ectuées de manière séquentielle, on déplace un élément à la fois (mire ou
lunette) selon le canevas suivant :
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CHAPITRE 3. NIVELLEMENT

� réglage de la lunette si celle-ci n'intègre pas de mise à l'horizontale automatique ;
� lecture sur la mire (maintenue verticale) en un point 'arrière' ;
� déplacement de la mire sur le point avant et lecture sur la mire dans la nouvelle position ;
� déplacement de la lunette pour recommencer le cycle.

L'altitude des di�érents points de station de la mire se calcule de manière cumulée par :

ZPn = ZP0 +
n∑
i=1

ARi − AVi (3.2)

Une première véri�cation des mesures peut être e�ectuée en réalisant un cheminement fermé
(le dernier point de station correspond au point de départ) dans ce cas, on doit avoir :

ZPN = ZP0 +
N∑
i=1

ARi − AVi = ZPN ⇒ e =
N∑
i=1

ARi − AVi = 0 (3.3)

La quantité e est appelée écart de fermeture ; les erreurs de mesures font que cette valeur
n'est pas exactement nulle (cette valeur peut servir de référence pour attester de la qualité
d'une campagne de mesure). On peut corriger l'ensemble des mesures en retranchant l'erreur
de fermeture pondérée par la portée des di�érentes mesures.

corri = −Li
∑N

i=1ARi − AVi∑N
i=1 Li

(3.4)

Si les portées n'ont pas été relevées, la compensation se fera de manière uniforme sur l'ensemble
des mesures.
Si la con�guration du terrain empêche la mise en place de la lunette entre deux points
(franchissement d'un cours d'eau par exemple), on doit opérer par des visées réciproques (placer
l'instrument dans l'alignement de AB à quelques mètres de A en retrait puis à quelques mètres
de B en avant). Le dénivelé peut se calculer comme la moyenne des deux résultats obtenus :

∆ZAB = LA1 − LB1 = LA2 − LB2 (3.5)

Figure 3.7 � Nivellement indirect.
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Lors de mesures souterraines, il est parfois nécessaire de placer la mire 'au plafond' pour l'un
ou l'autre des points mesurés (�gure 3.8). Dans ce cas de �gure, la relation générale 3.1 peut
toujours être employée, en a�ectant d'un signe négatif les lectures e�ectuées au-dessus du plan
de visée.

Figure 3.8 � Nivellement en tunnel [2].

3.4.1 Erreurs de mesure

Parmi l'ensemble des erreurs de mesure pouvant a�ecter le processus de nivellement, on peut
noter :

� les erreurs parasites (défaut de calage, erreur de lecture ou de transposition) ;
� les erreurs systématiques (défaut d'étalonnage de la mire, défaut de verticalité de la

mire, colimation,...) ;
La colimation représente l'inclinaison de l'axe optique par rapport à l'horizontale lorsque le
calage est réalisé de manière correcte. Cette erreur peut être éliminée par l'égalité des portées
lors du cheminement (l'erreur s'additionne aux deux lectures qui sont soustraites l'une de l'autre,
son e�et résultant est donc nul). C'est pourquoi il est recommandé de manière générale d'essayer
de respecter l'égalité des portées lors de la réalisation de cheminement.

3.4.2 Exemple d'application

On réalise un cheminement fermé pour déterminer l'altitude de 6 points ; on considère que le
point 1 dé�nit la valeur Z=0. Les mesures sont reprises dans le tableau 3.1 (L est la portée de
la mesure).

mesure AV (cm) AR (cm) L (m)
1 113,4 144,8 40
2 132,7 156,2 35
3 145,7 142,3 50
4 123,5 113 45
5 142,7 121,7 40
6 137,4 117 40

Table 3.1 � Nivellement
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On calcule l'écart de fermeture en sommant les di�érences de lectures. On obtient une valeur
de -4 mm qui est tout à fait acceptable au vu de la précision des mesures (si un écart anormal
apparaissait à ce stade, une nouvelle campagne de mesures devrait être entreprise). Cet écart
sera réparti de manière proportionnelle aux portées L des visées :

corri = −Li
∑N

i=1ARi − AVi∑N
i=1 Li

(3.6)

On obtient �nalement les altitudes données dans le tableau 3.2 (les résultats sont arrondis au
dixième de millimètre). Le pro�l est représenté en �gure 3.9.

point ∆Z mes (cm) correction (cm) ∆Z �nal (cm) H (cm)
1 31,4 0,06 31,46 0,00
2 23,5 0,06 23,56 31,46
3 -3,4 0,08 -3,32 55,02
4 -10,5 0,07 -10,43 51,70
5 -21 0,06 -20,94 41,27
6 -20,4 0,06 -20,34 20,34

Table 3.2 � Calcul de l'altitude des points

Figure 3.9 � Exemple de nivellement par cheminement.
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3.5 Nivellement indirect

L'altitude d'un point peut être calculée à partir de la distance horizontale et de l'angle vertical
mesuré dans une campagne d'ajustement planimétrique (�gure 3.10).

Figure 3.10 � Calcul de l'altitude du point P.

Pour la station J, on peut calculer :

dh,JP =

√
(XJ −XP )2 + (YJ − YP )2 (3.7)

∆Z = dh,JP tan V̂PJ (3.8)

Cette relation peut être employée pour l'ensemble des mesures d'angle vertical ayant été
réalisées. Le résultat annoncé sera la moyenne des déterminations. On peut véri�er la cohérence
des mesures en constatant que les résultats sont bien identiques au premier ordre.
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3.6 Lexique

Français Anglais Français Anglais
altitude height - direct direct levelling
erreur de fermeture closing error - hydrostatique hydrostatic levelling
mesure 'arrière' backward measurement - indirect indirect levelling
mesure 'avant' forward measurement - mixte mixed levelling
mire survey rod - optique spirit (optical)

levelling
niveau level - par cheminement pas d'équivalent

(running a line of levels
and heights)

nivelle spirit (air, bubble) level - par cheminement fermé loop levelling
Nivellement levelling - par rayonnement pas d'équivalent
- barométrique barometric heighting (throwing heights and

levels from a known
point)

Table 3.3 � Lexique du chapitre 3 (les valeurs en italique sont des traductions littérales)

Références

[1] S. Miles. Topographie et toponométrie moderne. Eyrolles, 1999.

[2] M. Brabant. Maîtriser la topographie - Des observations au plan. Eyrolles, 2003.
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Chapitre 4

Mesures et matériel employés en

planimétrie

L'ignorance coûte plus cher que les matériels

- A. Ribeau, Revue EPI intersection

4.1 Introduction

Un des problèmes historiques de la topographie était que la précision des mesures de distances
était nettement moins performante que les mesures angulaires. Les appareils de mesures
angulaires (théodolites �gure 4.1) assuraient une précision de mesure qui, jusqu'à un passé
récent, n'était pas accessible par des mesures de distances (mesures par report d'un étalon
comme une chaîne d'arpenteur, �gure 4.2). C'est ce qui justi�e l'existence de nombreuses
méthodes de mesure planimétriques basées sur des mesures angulaires. Ce chapitre présentera
les moyens de mesure d'angles et de distances ainsi que les précautions associées pour des
mesures de bonne qualité.

Figure 4.1 � Théodolite de 1737 ( c©National
Maritime Museum, Greenwich, London).

Figure 4.2 � Chaîne d'arpenteur.



CHAPITRE 4. MESURES ET MATÉRIEL EMPLOYÉS EN PLANIMÉTRIE

4.2 Mesure des angles

L'appareil de mesure des angles en topographie est appelé théodolite. Il est essentiellement
constitué de trois axes concourants et de deux goniomètres permettant la mesure d'angles.

Figure 4.3 � Théodolite numérique
(document Sokkia).

Figure 4.4 � Théodolite optique.

Il existe deux catégories d'instruments :
� les théodolites électroniques (�gure 4.3) à lecture automatique (le processeur intégré

permet de gérer la mesure, l'a�chage et la sauvegarde des angles) ;
� les théodolites optiques (�gure 4.4) pour lesquels la lecture est e�ectuée par l'opérateur.

Les instruments optiques sont en voie de disparition, supplantés par les versions électroniques.
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Figure 4.5 � Principe de base d'un théodolite.

On distingue (�gure 4.5) :
� le pivot (P) (ou axe principal) il doit via réglage être calé et centré, c'est-à-dire confondu

avec la verticale locale (on dit qu'il est alors mis en station) à l'aide des vis calantes ;
� l'axe des tourillons (T) (ou axe secondaire ou axe de basculement) perpendiculaire au

précédent ;
� l'axe optique de la lunette ;
� le cercle horizontal centré sur le pivot qui permet la mesure de l'angle horizontal

(constitué d'un limbe �xe et d'un alidade mobile) ;
� le cercle vertical centré sur l'axe de basculement qui permet la mesure de l'angle vertical.

La mesure sur des appareils numériques peut être incrémentale (comptage de graduations)
ou absolue. Les appareils fonctionnant avec une mesure incrémentale nécessitent une
réinitialisation (passage devant une graduation donnée) à la mise sous tension.
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4.2.1 Mise en station

Avant utilisation, les théodolites doivent être installés de manière optimale a�n de garantir des
conditions d'utilisation correctes. Cette étape dise de mise en station vise à :

� placer l'appareil à la vertical d'un point de référence (matérialisé par l'intermédiaire d'un
rivet par exemple) ;

� placer l'axe du pivot dans la direction de la verticale locale.
Le réglage de la position est contrôlé à l'aide d'un plomb qui peut être optique (oculaire coudé
qui permet de visualiser le point au sol dans l'alignement du pivot) ou laser (pointeur laser
matérialisant directement au sol le point à la verticale du pivot). Le réglage de la verticalité du
pivot est contrôlé à l'aide de nivelles (qui permettent en réalité de véri�er l'horizontalité de la
base de l'appareil) de deux types :

� une nivelle sphérique de faible précision qui est constituée d'un réservoir à sommet
sphérique de grand diamètre dans lequel une bulle d'air est enfermée (�gure 4.6) ;

� une nivelle torique de haute précision (appelée communément nivelle tubulaire �gure
4.7) qui s'utilise comme un niveau à bulle traditionnel.

Figure 4.6 � Nivelle sphérique. Figure 4.7 � Nivelle torique.

La mise en station peut par exemple s'e�ectuer de la sorte :
� installation du trépied au-dessus du point de référence et réglage grossier de

l'horizontalité en jouant sur la longueur des jambes (attention à garantir la stabilité
et à installer l'appareil à une hauteur de travail confortable en fonction de la taille de
l'opérateur) ;

� installation du théodolite sur l'embase et réglage approximatif du plomb sur le point de
référence et de la verticalité à l'aide de la nivelle sphérique 'jouer sur la longueur des
pieds) ;

� placement de la nivelle tubulaire entre deux vis calantes et réglage par l'intermédiaire
de ces deux vis calantes ;

� rotation d'un quart de tour et réglage par l'intermédiaire de la troisième vis ;
� répétition de ces deux dernières étapes pour faire un tour complet ;
� véri�cation �nale du point visé par le plombe et ajustement éventuel (en dévissant la vis

de �xation sur l'embase et en repositionnant l'appareil par translation).
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Figure 4.8 � Mise en station : réglage groissier [1].

Figure 4.9 � Réglage des vis calantes [1].

4.3 Lecture d'angle

Les lectures d'angle s'e�ectuaient sur des goniomètres manuels (rapporteurs d'angle et vernier,
�gure 4.10). Les appareils modernes possèdent un a�chage digital (�gure 4.11) en plus d'une
possibilité de sauvegarde automatique.

Idéalement, les lectures s'e�ectuent par séquences. On réalise n+1 lectures pour mesurer l'angle
par rapport à n directions. Pour une plus grande précision, on calcule de l'erreur de fermeture
pour véri�er le résultat (véri�er qu'après un tour, on a bien parcouru 400 gon). Pour la lecture
de l'angle de visée sur un point par exemple, voici la séquence :

� lecture en visant A pour obtenir Ld (départ) ;
� lecture en visant B pour obtenir LB ;
� continuer à tourner dans le même sens et pointer sur A pour lire Lf ;
� véri�er la cohérence entre Lf et Ld (Les normes en vigueur précisant les écarts maximum

admissibles) ;
� retenir la valeur moyenne pour la lecture sur A (LA = (Ld + Lf )/2).
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Figure 4.10 � Goniomètre manuel. Figure 4.11 � A�chage digital de la station
totale du service de Génie Mécanique.

Pour augmenter la précision des mesures et se prémunir des erreurs grossières, il est conseillé
de réaliser plusieurs séquences en alternant les sens, de procéder à des doubles retournements
(tourner de 200 gon les deux axes) et/ou des changements de l'origine entre deux séquences.
Le nombre de séquences dépend de la précision voulue (peut monter à 4 dans certains cas
extrêmes).

4.3.1 Erreurs de mesure

Les erreurs liées aux mesures angulaires peuvent être de plusieurs ordres, la plus fréquemment
rencontrée est l'erreur de verticalité. Si le pivot n'est pas calé de manière parfaite, il s'ensuit
une erreur évoluant comme le sinus de l'écart entre l'axe du pivot et la verticale. Une mise en
station correcte cherche à annuler cette erreur.
Les précisions typiques des théodolites peuvent valoir :

� 2 cgon pour des appareils de chantier ;
� 2 mgon pour des théodolites ordinaires ;
� 5 dmgon pour des théodolites de précision ;
� 0,5 à 1,5 dmgon pour des théodolites électroniques.

Figure 4.12 � Diverses cause d'erreurs comise avec un théodolite [1].
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4.4 Mesures de distances

Historiquement, les premières mesures de distances étaient réalisées par l'intermédiaire d'étalons
de longueur qui étaient directement reportés sur le terrain (chaînes d'arpenteur par exemple).
Les dispositifs modernes de mesure de distances emploient préférentiellement des mesures sans
contact lorsque la visibilité du terrain le permet. Au vu des progrès techniques, ces méthodes
permettent d'atteindre des précisions su�santes à des coûts abordables, et la quasi totalité des
théodolites modernes incluent un moyen de mesure de distances. On parle alors de tachéomètre
électronique (bien que le terme, impropre, de station totale est employé dans la pratique).
Pour le repérage des positions sur le terrain, on peut employer des jalons (�gure 4.13), tubes
métalliques de plus ou moins 2 m de long pouvant être enfoncés dans le sol ou soutenus par un
trépied (�gure 4.14) pour marquer les di�érents points intermédiaires considérés. L'alignement
des jalons peut se faire à l'oeil nu, au théodolite ou par l'intermédiaire d'un oculaire laser.

Figure 4.13 � Jalons. Figure 4.14 � Trépied. Figure 4.15 � Ruban.

4.4.1 Mesures à plat

On peut encore rencontrer de nos jours des mesures directes, par exemple au ruban (décamètre
ou double décamètre en acier, gradué tous les centimètres, �gure 4.15). Son emploi nécessite
de compenser les e�ets de chaînette (sous l'e�et de la gravité, le ruban prend l'allure d'une
fonction cosinus hyperbolique), de dilatation et de tension notamment (plus de détails dans
[2]). Il existe trois classes de précision notées de I à III (cf tableau 4.16).

Figure 4.16 � Norme européenne pour la précision des rubans [2].
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4.4.2 Mesurage optique

L'objectif de la mesure optique, tombant en désuétude, était de pouvoir mesurer des distances
à partir de l'utilisation de théodolites ou de lunettes ordinaires. L'idée de base est de mesurer
l'angle interceptant une distance connue ou inversement.

4.4.2.1 Mesure parallactique

On mesure avec un théodolite les extrémités d'une stadia horizontale en invar 1 (barre
horizontale de longueur calibrée) placée perpendiculairement à l'axe de visée (�gure 4.17).
La distance est mesurée à partir de l'angle α̂ selon

Dh =
L

2
cot

α̂

2
(4.1)

L'erreur de mesure évolue comme le carré de la distance, ce qui implique une précision médiocre
pour les grandes distances. Actuellement, les stadias ne sont pratiquement plus utilisées que
pour des applications de métrologie à courte distance.

Figure 4.17 � Principe de la mesure parallactique [3].

1. L'invar est un alliage de fer et de nickel à faible coe�cient de dilatation thermique
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4.4.2.2 Mesure stadimétrique

Une lunette stadimétrique (�gure 4.18) est une lunette dont le réticule porte deux traits
stadimétriques symétriques par rapport à l'axe optique. Ces deux traits dé�nissent deux lignes
de visées pour lesquelles l'angle Ŝ est connu comme une constante de l'appareil (�gure 4.19).
La lecture sur mire de la distance entre les deux traits l2 − l1 permet de déduire la distance
horizontale selon :

Dh =
l2 − l1

2
cot

α̂

2
(4.2)

Pour des raisons de facilité, une grande majorité des lunettes présente un rapport stadimétrique
cot α̂

2
égal à 100.

Figure 4.18 � Lecture sur mire par
une lunette stadimétrique.

Figure 4.19 � Mesure stadimétrique [3].

4.4.3 Mesurage électronique

La mesure électronique d'une distance se fait à l'aide d'un IMEL (Instrument de Mesure
ELectronique) ou distancemètre qui fonctionne le plus souvent par émission d'une onde
électromagnétique et mesure du déphasage de l'écho envoyé par un ré�ecteur (�gure 4.20).

Figure 4.20 � Principe de la mesure avec un IMEL [3].

Ils peuvent être autonomes (�gures 4.21 et 4.22) ou intégrés à un théodolite. Les plus employés
sont les infrarouges (moins coûteux mais portée plus faible) et les lasers (meilleure portée mais
plus coûteux et plus énergivores).
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La précision de mesure est classiquement donnée sous la forme ± (cste+ k · ppm) avec une
partie constante et une partie proportionnelle donnant l'ordre de grandeur de l'incertitude de
mesure. La gamme classique d'instruments sur le marché a une précision typique allant de
±(5 mm+5 ppm) à ±(1 mm+1 ppm).

Figure 4.21 � Distancemètre laser
(document Bosch).

Figure 4.22 � Distancemètre laser
(document Leica).

Les mesures e�ectuées par ce type de dispositifs sont sujettes à un ensemble de phénomènes
parasites qu'il faut contrôler ou corriger :

� les erreurs liées à la calibration du système (celle-ci doit être e�ectuée de manière
régulière) ;

� les erreurs liées à la variation de densité de l'atmosphère (liées par exemple à la
température et à la pression) qui peuvent être corrigées :
� automatiquement si l'appareil intègre une mesure des e�ets parasites ;
� semi-automatiquement via l'introduction de ces paramètres par l'utilisateur ;
� manuellement par lecture d'un facteur de correction dans des abaques (�gure 4.23).

� la limitation de la portée liée à l'absorption de l'atmosphère (les temps couverts ou
brumeux limitent les portées).

Figure 4.23 � Exemple de correction de lecture pour un distancemètre (document Wilde).
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Si la puissance de l'émetteur est su�sante, une simple paroi ré�échissante (paroi lisse en
béton, acier, verre,...) peut être su�sante pour e�ectuer la mesure (en particulier pour les
appareils laser grâce à leur puissance d'émission). Pour éviter de réduire fortement l'autonomie
des batteries lors de mesure sur le terrain, on cherche toutefois à employer l'énergie la plus
faible possible (les documents techniques fournissent typiquement un ordre de grandeur de
l'autonomie sous forme d'une durée de mesure avec une certaine cadence de mesures de
distances). On utilise donc un ré�ecteur spécial qui est un prisme rhomboédrique (coin de
cube tronqué pour limiter sa fragilité au niveau des coins, �gure 4.24). Ce système (�gure 4.25)
est le plus utilisé en raison de sa simplicité de fabrication et de sa propriété de ré�échir tout
rayon lumineux parallèlement à lui-même. Le rayon lumineux ne réalise pas un simple aller-
retour, mais un trajet un peu plus long. Pour tenir compte de ce phénomène dans des mesures
de haute précision, une constante de calibration (appelée constante d'addition) est ajoutée via
le logiciel de l'appareil de mesure.

Figure 4.24 � Schéma de fonctionnement
d'un prisme [3].

Figure 4.25 � Forme typique d'un prisme.
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4.4.4 Réduction des distances

Pour entrer dans les calculs de coordonnées du système de projection, une distance mesurée de
l'axe du théodolite A jusqu'au ré�ecteur B doit subir quatre réduction successives :

� la correction atmosphérique déjà évoquée précédemment ;
� la réduction à l'horizontale (si la mesure n'est pas e�ectuée entre deux points à la même

altitude) ;
� la réduction à l'ellipsoïde (les mesures sont e�ectuées en ligne droite et pas à altitude

constante) ;
� la réduction au système de projection (les écarts entre l'ellipsoïde et la géoïde peuvent

être signi�catifs aux extrémités des zones).
Il est bien évident que ces corrections n'ont de sens que si elles peuvent avoir un impact sur le
résultat �nal et pourront être négligées pour un chantier de dimensions réduites. La procédure
complète est détaillée par exemple dans [2] au �3.3.7.

Français Anglais Français Anglais
cercle horizontal horizontal circle nivelle torique toric level
cercle vertical vertical circle pivot vertical axis
chaîne d'arpenteur Gunter's chain plomb laser laser plummet
constante d'addition additive constant plomb optique optical plummet
distancemètre distance measuring

equipment
prisme prism

double retournement double revert ruban tape measure
IMEL (instrument de
mesure électronique)

EDM (electronic
distance
measurement)

station totale electronic tacheometer

jalon pole théodolite theodolite
mesure à plat horizontal

measurement
tour d'horizon round of horizontal

angle
mesure parallactique parallactic

measurement
tourillon sight axis

mesure stadimétrique optical distance
measurement

trépied tripod

mise en station exposure (setting up) vis calante foot screw

Table 4.1 � Lexique du chapitre 4 (les valeurs en italique sont des traductions littérales)

Références

[1] K. Zeiske. Mesurer en toute simplicité. Leica, 2006.

[2] M. Brabant. Maîtriser la topographie - Des observations au plan. Eyrolles, 2003.

[3] S. Miles. Topographie et toponométrie moderne. Eyrolles, 1999.

[4] Y. Durand. Topographie Fascicule I : Méthodes classiques de levés topographiques :
Généralités. Mutuelle d'édition FPMs, 2010.

[5] M. Gelman. Utilisation des théodolites en mécanique : Les systèmes de mesure par
intersections (smi). Techniques de l'ingénieur, R1382 :1�15, 1985.
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Chapitre 5

Etablissement d'un canevas planimétrique

Les citoyens Méchain et Delambre sont les commissaires chargés spécialement
de la mesure des angles, des observations astronomiques et de la mesure des bases
dépendantes de la méridienne

- base du système métrique décimal, ou mesure de l'arc méridien entre Dunkerque et
Barcelone, P. Méchain et J.B. Delambre

5.1 Introduction

De manière générale, le canevas est un ensemble de points répartis de manière judicieuse sur
la surface à lever. Selon l'ampleur des mesures à e�ectuer, on peut considérer trois niveaux de
détail :

� le canevas d'ensemble qui reprend un ensemble de points connus sur lesquels les mesures
s'appuieront (repères géodésiques ou points sur lesquels un instrument est mis en station)
qui est étayé par des bornes ou des repères adéquats ;

� le ra�nement de ce canevas par mesure de points (accessibles ou non) en se basant sur
les points du canevas d'ensemble ;

� le lever de détail qui intègre les éléments arti�ciels (clôtures, bâtiments,...) ou naturels
(cours d'eau, bois,...) nécessaires au projet.

Dans le cadre de ce cours, nous nous intéresserons plus particulièrement aux deux premiers
aspects.
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5.2 Notion de gisement

Le gisement d'une visée est l'angle horizontal que forme la projection horizontale du vecteur
de visée (vecteur reliant le point de station au point visé) et l'axe Y (�gure 5.1). Cet angle
est compté positivement dans le sens horlogique à partir de l'axe Y. On y fait fréquemment
référence dans les mesures topographiques.

Figure 5.1 � Calcul du gisement d'un point.

5.2.1 Calcul du gisement

Si le point de station a des coordonnées (XS, YS) et que le point visé a des coordonnées (XE, YE)
la résolution du triangle rectangle (�gure 5.1) donne immédiatement

g = arctan
XE −XS

YE − YS
+ kπ (5.1)

Les programmes de calcul donnent systématiquement une valeur d'arctangente comprise entre
−π/2 et π/2 ; a�n d'obtenir la valeur correcte du gisement, la constante k doit être adaptée en
fonction du signe de (XE −XS) et de (YE − YS) (�gure 5.2) :

� k=0 si ∆X et ∆Y sont positifs ;
� k=1 si ∆Y est négatif ;
� k=2 si ∆X est négatif et ∆Y est positif.

L'emploi de la fonction atan2 des logiciels de calcul permet de résoudre en partie ce souci (la
valeur retournée est toutefois comprise entre −π et π). Dans tous les cas, la réalisation d'un
croquis préalable permet de visualiser l'angle recherché et donc d'éviter les erreurs grossières
dans cette évaluation.
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Figure 5.2 � Valeur de k en fonction de la position du point visé.
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5.2.2 Détermination de la constante d'orientation

Comme indiqué précédemment, le gisement est une notion relative au repère employé. Lors
de la mise en station d'un appareil, il faut déterminer la direction de l'axe Y par rapport
à la position angulaire 'zéro' (quelconque) de l'appareil de mesure (on parle de constante
d'orientation G0,moyen de station). Deux cas de �gure se présentent :

� l'opérateur travaille dans un repère local ;
� l'opérateur travaille dans un repère global.

Figure 5.3 � g0, repère local. Figure 5.4 � g0, repère global.

Lors du travail en repère local, il est possible de choisir arbitrairement comme axe Y la droite
joignant deux points du canevas S et P. Le g0,moyen est donc simplement l'opposé de la lecture
faite en visant le point P en étant stationné en S (�gure 5.3). Il est ensuite possible de repasser
dans un repère global au moyen des matrices de changement de repère.
Lors du travail en repère global, on peut calculer le gisement de la visée et déterminer le g0 en
notant que (�gure 5.4) :

gSP = g0 + LS→P (5.2)

donc :
g0 = gSP − LS→P (5.3)

Pour améliorer la précision, on peut e�ectuer la détermination de g0 en e�ectuant des mesures
sur plusieurs points connus ; dans ce cas, on prendra comme valeur de g0 la moyenne pondérée
par la distance entre les points de station des g0 obtenus ; on parle alors de g0,moyen :

g0,moyen =

n∑
i=1

di · g0,i

n∑
i=1

di

(5.4)
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5.3 Etablissement d'un canevas d'ensemble

Suivant l'ampleur du domaine étudié, le canevas d'ensemble peut être rattaché aux données
géodésiques ou limité à un repère local, sans précision sur son orientation globale. Le canevas
d'ensemble consiste en un ensemble de points dont les coordonnées ont été relevées avec une
précision su�sante pour servir de référence lors de mesures suivantes (insertion de points dans le
canevas principalement). Comme dans le cas du nivellement, les di�érents points de ce canevas
peuvent être organisés de manières notablement di�érentes :

� on parle de cheminement ouvert lorsque les di�érents points forment une ligne brisée
ouverte ;

� on parle de cheminement encadré lorsqu'on connait en plus un gisement à l'extrémité
du chemin ;

� on parle de cheminement fermé (ou polygonale) lorsque le point de départ correspond
au point d'arrivée.

L'avantage de l'emploi d'un canevas polygonal est la possibilité de véri�er les mesures e�ectuées
en s'assurant que les coordonnées du point initial sont bien obtenues lors de la fermeture. Il est
également possible de compenser les diverses erreurs de mesures sur l'ensemble du canevas par
une méthode analogue à celle rencontrée en nivellement par un cheminement fermé (� 3.4).

5.3.1 Réalisation d'une polygonale

On suppose que l'appareil a été mis en station sur n sommets d'un polygone et que pour
chacune des mesures, la distance au point suivant du canevas ainsi que les angles internes du
polygone été mesurés (�gure 5.5). La première étape de la démarche consiste à réaliser le calcul
des gisements des di�érentes visées. Si on travaille dans un repère local, on prend un des côtés
du polygone comme axe X de référence ; si on travaille dans un repère global, il faut établir la
constante d'orientation comme expliqué au � 5.2.2.

Figure 5.5 � Exemples de mesures relevées pour l'établissement d'un canevas polygonal.

Le calcul initial des coordonnées des sommets s'e�ectue par l'intermédiaire des formules
suivantes : {

∆xi = di sin gi
∆yi = di cos gi

(5.5)

Il est donc possible d'obtenir une première approximation des coordonnées des points de proche
en proche (x1 = x0 + ∆x1, x2 = x1 + ∆x2,...).
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Une fois tous les calculs menés, on peut constater l'écart entre le calcul de la coordonnée du
dernier point qui doit correspondre à celle du point initial :

xN = x0 +
N∑
i=1

∆xi

yN = y0 +
N∑
i=1

∆yi

(5.6)

Théoriquement, on doit obtenir xN = x0 et yN = y0, mais l'accumulation d'erreurs
expérimentales donne une valeur non nulle aux quantités suivantes :

ex,tot =
N∑
i=1

∆xi

ey,tot =
N∑
i=1

∆yi

(5.7)

qui sont les erreurs totales de fermeture en x et y. Pour réaliser la fermeture du canevas, on va
corriger l'ensemble des incréments en x et en y d'une correction proportionnelle aux distances
mesurées : 

kxi = di∑
di
ex,tot

kyi = di∑
di
ey,tot

(5.8)

les corrections s'appliquant selon : {
∆xi,corr = ∆xi − kxi
∆yi,corr = ∆yi − kyi

(5.9)

Ces relations permettent de recalculer les positions �nales des di�érents points et de véri�er
qu'après correction, on se retrouve bien avec une erreur de fermeture nulle.

5.4 Ajout de points dans un canevas

A partir des mesures sur le terrain, on peut procéder de deux manières di�érentes pour ra�ner
un canevas existant :

� méthodes points par points (on ajoute de manière successive les points mesurés au
canevas) ;

� méthodes par bloc.
Les méthodes par points o�rent une simplicité et une précision su�sante pour des projets
de mesures de dimensions raisonnables. Elles présentent toutefois le désavantage de ne pas
permettre d'enrichir le canevas par les di�érentes mesures successives. Les méthodes par bloc
ne seront pas évoquées dans ce cours, le lecteur intéressé est renvoyé au �5.3 de la référence [1].
Comme le matériel, les méthodes de mesure sont à classer selon deux grands types :

� les méthodes employant la mesure d'angles ;
� les méthodes employant la mesure de distances ;
� les méthode dite d'insertion permettant la combinaison des informations de distances et

d'angles (ce type de méthode ne sera pas détaillée dans ce cours).
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Deux méthodes employant la mesure d'angles seront étudiées : la méthode par intersection
de visée et par relèvement. La méthode par intersection sera détaillée au � 5.5, le point de
coordonnées inconnues P est visé par le théodolite successivement mis en station en di�érents
points connus A, B, C,... (�gure 5.6). Les angles horizontaux (ou plus précisément le gisement
cf � 5.2) sont mesurés à partir de chaque station.

Figure 5.6 � Principe de la méthode par
intersections des rayons de visée.

Figure 5.7 � Principe de la méthode par
relèvement.

La méthode par relèvement sera détaillée au chapitre 5.6, le théodolite est stationné sur le point
à mesurer, les gisements des visées vers un ensemble de points connus sont relevés (�gure 5.7).

La méthode par multilatération (� 5.7) utilise la mesure de distance horizontale à partir de
points connus pour retrouver les coordonnées du point inconnu (�gure 5.8).

Figure 5.8 � Principe de la méthode par multilatération.
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5.5 Méthode par intersections des rayons de visée

5.5.1 Introduction

On suppose disposer de N points connus en coordonnées et on cherche à déterminer la
position d'un nouveau point P dans le canevas. La méthode par intersection consiste à mesurer
uniquement le gisement du point inconnu vu des di�érents points connus (�gure 5.9) pour la
détermination des coordonnées X et Y du point.

Figure 5.9 � Principe de la méthode par intersections des rayons de visée.

On parle de méthode d'intersection car le point recherché se situe au sommet d'un triangle dont
la base relie deux points connus.

5.5.2 Résolution pour deux stations

Si on considère l'information juste su�sante pour trouver la position du point, il faut connaitre
les mesures à partir de deux points connus.

Figure 5.10 � Résolution du problème d'intersection pour deux stations.

Dans ce cas, on peut établir les formules suivantes :
tan gA =

XP −XA

YP − YA
tan gB =

XP −XB

YP − YB

(5.10)
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Avec (XA, YA) et (XB, YB) les coordonnées des points connus et gA et gB les gisements mesurés.
La résolution pour obtenir les coordonnées (XP , YP ) donne successivement :

{
(YP − YA) tan gA = XP −XA

(YP − YB) tan gB = XP −XB
⇒ XB −XA = (YP − YA) tan gA − (YP − YB) tan gB (5.11)

XB −XA = YP (tan gA − tan gB)− YA tan gA + YB tan gB (5.12)

ce qui donne �nalement :

YP =
(XB −XA) + YA tan gA − YB tan gB

tan gA − tan gB
(5.13)

YP = YA +
(XB −XA)− (YB − YA) tan gB

tan gA − tan gB
(5.14)

XP est obtenu en substituant cette valeur dans une des équations du système 5.10 :

XP = XA + (YP − YA) tan gA (5.15)

Il faut noter que le choix préférentiel devrait être fait pour des stations donnant des rayons de
visée orientés de manière privilégiée, c'est-à-dire le plus proche de l'angle droit.

Figure 5.11 � Sensibilité de la position du point à un écart angulaire de 5◦.

Si les rayons de visée sont presque parallèles, la position du point d'intersection est très sensible
à un écart de gisement même faible. On peut observer cet e�et en étudiant la sensibilité par
rapport au gisement des expressions 5.14 ou 5.15 (pour rappel, la sensibilité d'un résultat par
rapport à une variable est sa dérivée partielle par rapport à cette variable). En prenant la
sensibilité de YP par rapport à gA, on obtient :

∂YP
∂gA

= ((XB −XA)− (YB − YA) tan gB) · −

∂ tan gA
∂gA

(tan gA − tan gB)2 (5.16)

∂YP
∂gA

=
(XB −XA)− (YB − YA) tan gB

cos2 gA (tan gA − tan gB)2 (5.17)

qui prend des valeurs élevées si :
� gA est proche de ±π/2 (YP proche de YA, la tangente tend vers l'in�ni) ;
� gA est proche gB (les rayons tendent à devenir parallèles).

Les mêmes conclusions pourraient être tirées en étudiant les sensibilités de XP .
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5.5.3 Prise en compte de mesures excédentaires

Comme indiqué précédemment, pour permettre une minimisation des e�ets des erreurs de
mesure, le nombre de points connus du canevas est supérieur à deux. Si on e�ectue le calcul de
position du point P à partir de deux autres stations, les coordonnées du point P obtenues avec
les relations 5.14 et 5.15, bien que fort proches, seront di�érentes du résultat obtenu avec les
stations A et B. L'ensemble de ces résultats se concentrera sur une zone réduite du plan (�gure
5.12), et il faudra choisir une méthode pour déterminer la coordonnée du point P dans cette
zone.

Figure 5.12 � Zoom autour du point 'théorique'.

Plusieurs méthodes sont possibles, on peut citer :
� la méthode du point approché ;
� la méthode des moindres carrés.

La méthode du point approché consiste à prendre en compte le recouvrement des plages
d'incertitude des di�érentes visées pour rechercher un point qui se situe dans les zones
d'incertitude des di�érents capteurs. Cette méthode permet une visualisation graphique directe
du point déterminé. Son automatisation est toutefois plus délicate (plus de détails dans [2] et
[1]).

5.5.3.1 Principe de la méthode des moindres carrés

Nous allons développer la méthode des moindres carrés qui vise à rechercher le meilleur point
au sens statistique du terme résultant de l'ensemble des mesures. Elle se base sur l'étude des
variations du point autour d'une position calculée. Pour chacune des mesures e�ectuées aux
point J, le point recherché P est vu selon un gisement gaJ (l'indice 'a' indique qu'à ce stade, la
valeur est approchée, aux erreurs de mesure près).

Les coordonnées (XPa , YPa) ne sont pas encore dé�nitives. Si la valeur �nale pour le point P
était connue, il faudrait imposer une correction dgJ pour arriver à la valeur �nale gfJ (�gure
5.13) :

gfJ = gaJ + dgJ (5.18)

La correction est appelée compensation. En l'absence d'erreurs grossières, les compensations
sont faibles et peuvent être assimilées à des variations au sens de l'analyse mathématique. gaJ
est une valeur approchée, qui n'est pas équivalente à la valeur mesurée gmJ (sauf si la station
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Figure 5.13 � Compensation de gisement. Figure 5.14 � Variation de gisement.

J a été employée pour déterminer le point approché). Par analogie avec la relation précédente,
on peut écrire :

gfJ = gmJ + rJ (5.19)

rJ est appelé résidu de l'écart. Des relations 5.18 et 5.19, on peut tirer :

gaJ + dgJ = gmJ + rJ (5.20)

5.5.3.2 Calcul de variation

On a vu précédemment l'expression reliant les coordonnées du point au gisement de la forme :

tan gaJ =
XPa −XJ

YPa − YJ
(5.21)

en di�érenciant selon XPa et YPa et en remarquant queXJ et YJ sont des constantes, on obtient :

dg

cos2 g
=
dX

∆Y
− dY∆X

(∆Y )2 (5.22)

∆X = XPa −XJ , ∆Y = YPa − YJ . Si on pose D comme la distance calculée entre J et Pa, on
peut écrire que :

∆Y = D cos g ⇒ cos2 g =
(∆Y )2

D2
(5.23)

On peut donc réécrire l'expression 5.22 comme :

dg =
dX

∆Y

(∆Y )2

D2
− dY∆X

(∆Y )2

(∆Y )2

D2
(5.24)

Ou encore :

dg =
dX∆Y

D2
− dY∆X

D2
(5.25)

En injectant cette relation dans 5.20, on obtient la forme suivante :

rJ =
dX∆Y

D2
− dY∆X

D2
+ gaJ − gmJ (5.26)
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5.5.3.3 Forme matricielle

La résolution du problème va être de rechercher le meilleur point tel que la somme des carrés
des résidus soit minimale. On posera :

aJ =
∆Y

D2
(5.27)

bJ = −∆X

D2
(5.28)

cJ = gaJ − gmJ (5.29)

Avec cette notation, les N relations pour les stations 1,2,...,N peuvent se synthétiser sous la
forme matricielle suivante : 

a1dX + b1dY + c1 = r1

a2dX + b2dY + c2 = r2
...

aNdX + bNdY + cN = rN

(5.30)

Il s'agit d'un système de N équations à 2 inconnues dX et dY surdéterminé (sauf si on prend
exactement deux stations). La minimisation de la somme des carrés des résidus passe par
l'annulation de la dérivée de la somme des carrés des résidus par rapport à dX et dY :

∂ (
∑
r2
i )

∂dX
= 0

∂ (
∑
r2
i )

∂dY
= 0

(5.31)

La somme des carrés des résidus s'écrit :
N∑
i=1

r2
i =

N∑
i=1

(aidX + bidY + ci)
2 (5.32)

Ce qui permet de calculer les dérivées :

∂ (
∑
r2
i )

∂dX
=

N∑
i=1

2 (aidX + bidY + ci) ai = 0 (5.33)

∂ (
∑
r2
i )

∂dY
=

N∑
i=1

2 (aidX + bidY + ci) bi = 0 (5.34)

Ces deux relations peuvent s'écrire de manière synthétique :{
(
∑
a2
i ) dX + (

∑
aibi) dY + (

∑
aici) = 0

(
∑
aibi) dX + (

∑
b2
i ) dY + (

∑
bici) = 0

(5.35)

Le système peut donc s'écrire :[ ∑
a2
i

∑
aibi∑

aibi
∑
b2
i

]
·
{
dX
dY

}
= −

{ ∑
aici∑
bici

}
(5.36)

Par inversion matricielle, on obtient les valeurs de dX et dY qui permettent de trouver la
meilleure position de P au sens des moindres carrés. Ce raisonnement considère que l'ensemble
des mesures sont de qualité équivalente (réalisées avec le même appareil ou des appareils
semblables). Dans le cas contraire, il faudrait pondérer les di�érents termes d'observation par
un poids inversement proportionnel à l'écart type de la mesure pour compenser cet e�et.
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5.5.3.4 Unités d'emploi pratique

Les termes des relations d'observation sont adimensionnels, les angles doivent être exprimés en
radians. Comme les distances ∆X, ∆Y et D sont de l'ordre de la centaine de mètres voire plus
et les corrections de l'ordre du centimètre approximativement, les coe�cients des inconnues
auront un ordre de grandeur tributaire des unités choisies. D'un point de vue pratique, il peut
être intéressant pour l'a�chage de choisir des unités qui permettraient une lecture facilitée
(le km pour les distances et le centimètre pour les variations par exemple). Pour les calculs
informatiques, le choix de représentation de nombres en virgule �ottante permet d'exprimer les
longueurs dans les unités du système international (le mètre en l'occurrence) comme cela est
toujours recommandé en pratique.

5.5.3.5 Exemple d'application

On observe un point P à partir de quatre points connus en coordonnées dans un repère donné
(A(119579, 39 m ;114978, 08 m), B(119550, 92 m ;109329, 19 m), C(111317, 74 m ;106378, 76 m),
D(111306, 82 m.112962, 00 m)).

La constante d'orientation et le résultat des visées sur P permettent de déduire le g mesuré
pour P par rapport aux quatre stations (table 5.1) 1.

g0 (gon) g0 (rad) α (gon) α (rad) gm (gon) gm(rad)
A 330,6632 5,1940454 285,923 4,491267981 216,5862 3,402128074
B 365,1931 5,736439801 18,6413 0,292816856 383,8344 6,029256656
C 289,7528 4,551426339 168,5779 2,648015461 58,3307 0,916256493
D 38,1149 0,598707449 68,8417 1,081362895 106,9566 1,680070344

Table 5.1 � Mesures angulaires

Il faut ensuite faire le choix d'un point approché, par exemple celui obtenu en ne considérant
que les mesures e�ectuées en B et en D. Les formules 5.14 et 5.15 (page 45) donnent :

YP = YB +
(XD −XB)− (YD − YB) tan gmD

tan gmB − tan gmD
= 112137, 4931 m (5.37)

XP = XB + (YP − YB) tan gmB = 118822, 0784 m (5.38)

A ce stade, un croquis à petite échelle peut être réalisé pour situer les points les uns par rapport
aux autres (�gure 5.15).

Les gisements approchés peuvent maintenant être calculés pour les stations A et C (gaB et
gaD sont bien évidemment nuls. On obtient (en faisant attention au signe des écarts pour
l'arctangente) :

gaA = arctan
XPa −XA

YPa − YA
= 3, 402136454 rad = 216, 5867335 gon (5.39)

gaC = arctan
XPa −XC

YPa − YC
= 0, 91625997 rad = 58, 33092138 gon (5.40)

Ces valeurs permettent de calculer les di�érents coe�cients repris dans les tableaux 5.2 et 5.3

1. Il est clair qu'il est recommandé de conserver l'ensemble des décimales pour la réalisation des calculs, mais
que pour l'a�chage, il ne faut conserver qu'un nombre raisonnable de décimales
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Figure 5.15 � Croquis d'ensemble.

Points ∆X = XPa −XJ(m) ∆Y = YPa −XJ(m) D2 = ∆X2 + ∆Y 2 (m2)
A -757,3115605 -2840,586856 8642454,487
B -728,8415605 2808,303144 8417776,569
C 7504,338439 5758,733144 89478102,84
D 7515,258439 -824,5068561 57158920,97

Table 5.2 � Calculs intermédiaires pour les coe�cients

Points aJ = ∆Y/D2(m−1) bJ = −∆X/D2(m−1) cJ = gaJ − gmJ (rad)
A -32,8678 · 10−5 8,76269 · 10−5 0,837957 · 10−5

B 33,3616 · 10−5 8,65836 · 10−5 0
C 6,43591 · 10−5 -8,38679 · 10−5 0,347737 · 10−5

D -1,44248 · 10−5 -13,148 · 10−5 0

Table 5.3 � Coe�cients de la matrice

A partir des calculs présentés au tableau 5.3, il est possible de calculer les di�érents coe�cients
servant à exprimer la relation matricielle de base :

4∑
i=1

a2
i = 2, 23679 · 10−7 m−2 (5.41)

4∑
i=1

b2
i = 3, 9496 · 10−8 m−2 (5.42)

4∑
i=1

aibi = −3, 41649 · 10−9 m−2 (5.43)

4∑
i=1

aici = −2, 53038 · 10−9 rad/m (5.44)

4∑
i=1

bici = 4, 42637 · 10−10 rad/m (5.45)

La relation matricielle 5.36 peut donc s'écrire :[
2, 23679 · 10−7 −3, 41649 · 10−9

−3, 41649 · 10−9 3, 9496 · 10−8

]
·
{
dX
dY

}
= −

{
−2, 53038 · 10−9

4, 42637 · 10−10

}
(5.46)
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Ce qui donne après inversion matricielle :{
dX = 0, 011156123 m
dY = −0, 010242096 m

(5.47)

Soit, comme attendu, des corrections de l'ordre du centimètre. Au �nal, la position �nale du
point P est donc : {

XP = 118822, 09 m
YP = 112137, 48 m

(5.48)

En vue de mesurer la qualité des mesures, il est intéressant de calculer la valeur des résidus.
Ceci peut être fait de deux manières di�érentes (donnant le même résultat) :

� soit en injectant les valeurs de dX et dY dans les équations 5.30 ;
� soit en recalculant le gisement vers le point P �nal.

Point r (rad) r (mgon)
A 3,8 · 10−6 0,24
B 2,8 · 10−6 0,18
C 5,0 · 10−6 0,32
D 1,2 · 10−6 0,08

Table 5.4 � Résidus calculés

On remarque que les valeurs des résidus sont faibles (de l'ordre du dmgon) et que les valeurs
ne sont pas égales pour les quatre stations car la méthode des moindres carrés vise à minimiser
l'écart global, pas à rechercher des écarts équivalents (c'est plutôt l'optique de la méthode du
point approché).
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5.6 Méthode par relèvement

5.6.1 Introduction

La méthode de relèvement (�gure 5.16) consiste à obtenir la coordonnée d'un point sur lequel le
théodolite est mis en station par l'intermédiaire de visées e�ectuées sur un ensemble de points
(éventuellement inaccessibles) dont les coordonnées sont connues (par exemple, les points de
repère cartographiés).

Figure 5.16 � Principe de la méthode par relèvement.

On e�ectuera un tour d'horizon qui permettre de mesurer les angles entre les rayons de
visée visant deux points successifs. Cette information sera ensuite traitée pour obtenir les
coordonnées du point de station. Comme dans la méthode précédente, il faut noter qu'un
nombre surabondant de mesures sera e�ectué et qu'il faudra donc à nouveau e�ectuer un calcul
permettant de rechercher le 'meilleur' point parmi l'ensemble des mesures e�ectuées. Pour
résumer la démarche, le principe général est le suivant :

� réalisation d'un croquis à petite échelle de la situation ;
� recherche de la constante de station pour obtenir le gisement des di�érentes stations ;
� recherche d'une première approximation des coordonnées du point à partir de mesures

juste su�santes pour le déterminer ;
� recherche des corrections à apporter pour obtenir le point minimisant les écarts par

rapport à l'ensemble des mesures (de nouveau, nous ne présenterons que la méthode des
moindres carrés, une méthode graphique est présentée dans [3]).

5.6.2 Etablissement d'un croquis

Après positionnement des points sur un croquis, une première approximation graphique de la
position d'un point peut être e�ectuée par l'intermédiaire de l'intersection de cercles. En e�et,
si un tour d'horizon a été e�ectué, on connait l'angle qui intercepte un ensemble de segments
de droites. Il est possible d'en déduire le tracé du cercle passant par les extrémités du segment
et le point de station par la méthode suivante (�gure 5.17) :

� le centre du cercle est sur la médiatrice du segment ;
� le centre du cercle est sur le segment faisant un angle π/2−α avec le segment AB passant

par A ou B (le triangle ABO est isocèle, l'angle au centre vaut deux fois l'angle inscrit).
Il faut donc connaître l'angle interceptant deux segments, soit faire les mesures sur trois ou
quatre points (�gure 5.18) qui nécessitent chacune la connaissance de deux angles. De manière
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Figure 5.17 � Recherche du cercle pour lequel P voit le segment AB selon un angle α.

générale, on privilégiera parmi l'ensemble (surabondant) de mesures celles qui conduisent à des
cercles dont les arcs se coupent avec un angle le plus proche de l'angle droit (constatations
identiques à celles e�ectuées en �gure 5.11 pour l'intersection de segments).

Figure 5.18 � Recherche d'une première approximation du point P.

5.6.3 Calcul de la position du point approché

Deux méthodes sont proposées pour mener cette démarche : la première se ramène à la notion
de gisement, la seconde passe par la résolution de triangles.

5.6.3.1 Calcul des gisements des rayons de visée

On a démontré précédemment que :

YMa − YPj =

(
XPi −XPj

)
−
(
YPi − YPj

)
tan gPi

tan gPj − tan gPi
(5.49)
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cette relation est valable ∀i 6= j. On peut écrire en particulier :

(XA −XB)− (YA − YB) tan gB
tan gB − tan gA

=
(XA −XC)− (YA − YC) tan gC

tan gC − tan gA
(5.50)

Les angles connus ne sont pas les gisements, mais bien les angles α, β entre les points A, B
et C. Nous allons tenter la réduction des expressions précédentes pour calculer le gisement en
un point à partir des valeurs connues. Une fois cette valeur connue, les autres gisements se
déduisent de manière évidente par :

gB = gA + α (5.51)

en prenant le soin de respecter la valeur algébrique des angles. Le numérateur des expressions
5.50 peut être exprimé par :

tan gB − tan gA =
sin gB
cos gB

− sin gA
cos gA

(5.52)

=
sin gB cos gA − sin gA cos gB

cos gA cos gB
(5.53)

=
sin (gB − gA)

cos gA cos gB
(5.54)

En combinant 5.54 et 5.50, on obtient :

cos gA cos gB
(XA −XB)− (YA − YB) tan gB

sinα
= · · · (5.55)

cos gA cos gC
(XA −XC)− (YA − YC) tan gC

sin β

qui se simpli�e en :

(XA −XB) cos gB − (YA − YB) sin gB
sinα

=
(XA −XC) cos gC − (YA − YC) sin gC

sin β
(5.56)

en introduisant 5.51 dans cette expression, on trouve :

(XA −XB) cos (gA + α)− (YA − YB) sin (gA + α)

sinα
= · · · (5.57)

(XA −XC) cos (gA + β)− (YA − YC) sin (gA + β)

sin β

Le développement des sinus et cosinus de sommes d'angles donne :

(XA −XB) cos gA cosα− (XA −XB) sin gA sinα

sinα
− · · · (5.58)

(YA − YB) cos gA sinα + (YA − YB) sin gA cosα

sinα
= · · ·

(XA −XC) cos gA cos β − (XA −XC) sin gA sin β

sin β
− · · ·

(YA − YC) cos gA sin β + (YA − YC) sin gA cos β

sin β

qui peut également s'écrire selon :

(XA −XB) cos gA cotα− (XA −XB) sin gA − · · · (5.59)

(YA − YB) cos gA + (YA − YB) sin gA cotα = · · ·
(XA −XC) cos gA cot β − (XA −XC) sin gA − · · ·
(YA − YC) cos gA + (YA − YC) sin gA cot β
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En divisant �nalement les deux membres par cos gA, on obtient l'expression

(XA −XB) cotα− (XA −XB) tan gA − · · · (5.60)

(YA − YB) + (YA − YB) tan gA cotα = · · ·
(XA −XC) cot β − (XA −XC) tan gA − · · ·
(YA − YC) + (YA − YC) tan gA cot β

dans laquelle il est possible de mettre les termes en tan gA en évidence pour obtenir �nalement :

tan gA = −(YC − YB)− (XA −XB) cotα + (XA −XC) cot β

(XC −XB)− (YA − YB) cotα + (YA − YC) cot β
(5.61)

qui permet de calculer le gisement en A à partir des éléments connus à savoir :
� les coordonnées des points P ;
� les angles horizontaux relevés entre les points.

A partir de cette information, les gisements des di�érents points sont obtenus par 5.51. En�n,
la position estimée du point mesuré peut être obtenue par les relations 5.14 et 5.15 rappelées
ici :

YM = YA +
(XB −XA)− (YB − YA) tan gB

tan gA − tan gB
(5.62)

XM = XA + (YP − YA) tan gA (5.63)

5.6.3.2 Méthode de Ponthenod (méthode de Gauss)

Une deuxième méthode est applicable pour l'établissement de la position initiale du point M.
Cette méthode consiste à simuler un levé du point par rayonnement. On va rechercher à résoudre
les triangles ABMa et BCMa à partir des mesures, à savoir les angles α et β (�gure 5.19). La

Figure 5.19 � Principe de la méthode de Ponthenod.

somme des angles intérieurs d'un quadrilatère vaut 400 gon, on a donc :

µ+ ν = 400gon− (α + β + γ) = m (5.64)

L'angle γ est calculable à partir des données du problème par :

γ = gBA − gBC = arctan
XB −XA

YB − YA
− arctan

XC −XB

YC − YB
(5.65)
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ce qui implique que m peut être directement calculé à partir des mesures et des données du
problème.
La relation des sinus appliquée aux triangles ABMa et BCMa fournit :

|BMa| = |BA|
sinµ

sinα
= |BC| sin ν

sin β
(5.66)

Cette relation peut également s'écrire :

sinµ

sin ν
=
|BC| sinα
|BA| sin β

= k (5.67)

k est entièrement calculable à partir des données. On examine ensuite l'expression :

sinµ− sin ν

sinµ+ sin ν
(5.68)

Cette expression peut se décomposer de deux manières di�érentes :
� En divisant le numérateur et le dénominateur par sin ν (relation 5.69) ;
� en employant les identités trigonométriques (relation 5.70) ;

sinµ− sin ν

sinµ+ sin ν
=

sinµ
sin ν
− 1

sinµ
sin ν

+ 1
=
k − 1

k + 1
(5.69)

sinµ− sin ν

sinµ+ sin ν
=

sin µ−ν
2
· cos µ+ν

2

sin µ+ν
2
· cos µ−ν

2

= tan
µ− ν

2
cot

µ+ ν

2
(5.70)

En combinant 5.69, 5.70 et 5.64, on peut tirer :

tan
µ− ν

2
=
k − 1

k + 1
tan

µ+ ν

2
(5.71)

qui peut également s'écrire selon :

µ− ν = 2 arctan

(
k − 1

k + 1
tan

m

2

)
= n (5.72)

n étant entièrement calculable à partir des données. Finalement, les angles sont calculés par :{
µ = m+n

2

ν = m−n
2

(5.73)

A partir de ces valeurs, il est possible de retrouver les coordonnées approchées du point M par
application de la règle des sinus dans le triangle ABMa :

|AMa| = |AB|
sin π − (α + µ)

sinα
= |AB| sinα + µ

sinα
⇒
{
XMa = XA + |AMa| sin gAMa

YMa = YA + |AMa| cos gAMa

(5.74)

Le gisement se calcule par gAMa = gAB + µ.

5.6.4 Recherche du point dé�nitif par la méthode des moindres carrés

A ce stade du calcul, nous disposons des éléments suivants :
� les coordonnées des points repères A, B, C,... ;
� les coordonnées approchées du point mesuré ;
� des mesures angulaires e�ectuées à partir du point inconnu sur les points repères.
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Il faut à partir de ces éléments déterminer le point �nalement retenu en compensant au mieux les
résidus. Le principe général est similaire aux calculs e�ectués pour la méthode des intersections,
à une di�érence fondamentale près : dans la méthode des intersections, le gisement initial
des stations était calculé par l'intermédiaire de mesures angulaires sur les points de station
uniquement. Il s'agissait donc d'une constante dans les calculs et sa di�érentiation donnait une
valeur nulle. Dans le cas du relèvement, le gisement initial pour les mesures angulaires dépend
de la position du point mesuré, il ne peut donc plus être considéré comme une constante dans
la minimisation de la somme des carrés des résidus. Il faudra donc introduire une troisième
variable dans la di�érenciation : en plus de dX et dY, interviendra un terme dg0 qui tiendra
compte de cet e�et. Dans le calcul du gisement, on considèrera donc des expressions de la
forme :

gmfJ = g0f + LJ = goa + dg0 + LJ (5.75)

avec gmfJ le gisement mesuré retenu, g0f la constante d'orientation retenue, goa la constante
d'orientation approchée, dg0 le résidu sur la constante d'orientation et LJ la lecture e�ectuée.
La constante d'orientation approchée peut se calculer de manière simple en considérant les
coordonnées des points de station connus et du point Ma qui vient d'être calculé. On e�ectue
une moyenne sur l'ensemble des constantes mesurées :

g0a =
1

n

∑
J

(gaJ − LJ) (5.76)

Pour rappel, le gisement se calcule par :

tan gaJ =
XJ −XMa

YJ − YMa

=
∆XJ

∆YJ
(5.77)

sa di�érenciation donne :

dgJ = −dx∆YJ
D2
J

+ dy
∆XJ

D2
J

(5.78)

C'est-à-dire une relation similaire à ce qui avait été obtenu dans la méthode des intersections,
au signe près (en e�et, dans le cas du relèvement, c'est le point origine qui est variable, pas le
point visé). En combinant cette relation avec 5.75, on obtient l'expression du résidu :

rJ = −dX∆YJ
D2
J

+ dY
∆XJ

D2
J

− dg0 + (gaJ − g0a − LJ) (5.79)

ou en posant :

aJ = −∆YJ
D2
J

bJ =
∆XJ

D2
J

cJ = gaJ − g0a − LJ (5.80)

rJ = aJ · dX + bJ · dY − dg0 + cJ (5.81)

La somme des carrés des résidus vaut donc :

N∑
i=1

r2
i =

N∑
i=1

(ai · dX + bi · dY − dg0 + ci)
2 (5.82)

pour minimiser cette expression, il faut annuler ses dérivées par rapport à dX, dY et dg0 :

∂

(
N∑
i=1

r2
i

)
∂dX

=
N∑
i=1

2ai (ai · dX + bi · dY − dg0 + ci) = 0 (5.83)
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∂

(
N∑
i=1

r2
i

)
∂dY

=
N∑
i=1

2bi (ai · dX + bi · dY − dg0 + ci) = 0 (5.84)

∂

(
N∑
i=1

r2
i

)
∂dg0

=
N∑
i=1

− (ai · dX + bi · dY − dg0 + ci) = 0 (5.85)

Ces trois expressions peuvent être regroupées sous la forme matricielle suivante :

N∑
i=1

a2
i

N∑
i=1

aibi −
N∑
i=1

ai

N∑
i=1

aibi

N∑
i=1

b2
i −

N∑
i=1

bi

N∑
i=1

ai

N∑
i=1

bi −N


·


dX
dY
dg0

 = −



N∑
i=1

aici

N∑
i=1

bici

N∑
i=1

ci


(5.86)

La résolution de ce système permet d'obtenir les corrections sur X, Y et g0 du point approché
pour trouver le point �nal.

5.6.5 Exemple d'application

5.6.5.1 Introduction

On dispose de quatre points connus A, B, C et D et on mesure les angles entre une référence
arbitraire et ces stations à partir d'un point M inconnu. Les données sont accessibles dans le
tableau 5.5.

X Y LJ (gon) LJ (rad)
A 9263601 10644321 148,4931 2,33252416
B 9476808 11097271 191,3829 3,00623556
C 10134285 10500274 303,3138 4,76444203
D 10037792 10051202 0,0002 3,1416 · 10−6

Table 5.5 � Données pour le problème de relèvement

Le croquis d'ensemble est proposé en �gure 5.20.

5.6.5.2 Recherche des coordonnées du point M approché

Nous allons employer les deux méthodes proposées dans la partie théorique pour retrouver ces
coordonnées, ce qui nous permettra de véri�er l'équivalence entre les deux approches.

5.6.5.2.1 Calcul des gisements Nous allons employer les visées interceptant les segments
AC et CD. Le croquis d'ensemble est complété par les mesures angulaires sur la �gure 5.21.

On calcule dans un premier temps les angles tirés de données, à savoir :{
α = LC − LA = 154, 8207 gon = 2, 431917869 rad
δ = LD − LA = 251, 5071 gon = 3, 950664288 rad

(5.87)
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Figure 5.20 � Croquis d'ensemble pour la méthode de relèvement.

Figure 5.21 � Croquis d'ensemble pour la méthode de relèvement.

La formule 5.61

tan gA = −(YD − YC)− (XA −XC) cotα + (XA −XD) cot δ

(XC −XD)− (YA − YC) cotα + (YA − YD) cot δ
(5.88)

= 122, 9531324 gon = 1, 931343288 rad

On en déduit la valeur du gisement en C par :

gC = gA + α = 277, 7738324 gon = 4, 363261157 rad (5.89)

Ce qui permet �nalement le calcul des coordonnées de Ma par les formules classiques :{
YMa = YA + (XA−XC)−(YA−YC) tan gC

tan gC−tan gA
= 10409775, 87 cm

XMa = XA + (YMa − YA) tan gA = 9885691, 36 cm
(5.90)

5.6.5.2.2 Méthode de Ponthenod Dans cette méthode, nous avons besoin des gisements
relatifs entre A et C et entre C et D ainsi que l'angle γ :

tan gCA = XA−XC
YA−YC

⇒ gCA = 4, 876345069 rad = 310, 4377688 gon

tan gCD = XD−XC
YD−YC

⇒ gCD = 3, 353246468 rad = 213, 4743003 gon

γ = tan gCA − tan gCD = 1, 523098601 rad = 96, 96346844 gon

(5.91)

Par la formule 5.64, on obtient :

m = µ+ ν = 400gon− (α + β + γ) = 51, 52943156 gon = 0, 809422418 rad (5.92)
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On calcule ensuite la constante k par la relation 5.67 :

k =
|CD| sinα
|CA| sin β

= 0, 339589282 (5.93)

On peut ensuite calculer la constante n par la relation 5.72 :

n = µ− ν = 2 arctan

(
k − 1

k + 1
tan

m

2

)
= −0, 416240673 rad = −26, 49870422 gon (5.94)

Les angles µ et ν sont �nalement calculés par :{
µ = m+n

2
= 0, 196590873 rad = 12, 51536367 gon

ν = m−n
2

= 0, 612831545 rad = 39, 01406789 gon
(5.95)

Les coordonnées du point approché sont obtenues par l'intermédiaire du gisement gAMa :

gAMa = gAC + µ = 1, 931343288 rad = 122, 9531324 gon (5.96)

On peut également calculer la distance |AMa| par la relation 5.74 :

|AMa| = |AC|
sin (α + µ)

sinα
= 664836, 6985 cm (5.97)

Ce qui permet au �nal le calcul de la position du point A approché :{
XMa = XA + |AMa| sin gAMa = 9885691, 36 cm
YMa = YA + |AMa| cos gAMa = 10409775, 87 cm

(5.98)

5.6.5.3 Recherche de la position dé�nitive du point M

On commence par rechercher la constante d'orientation approchée en faisant la moyenne sur
les constantes qui seraient calculées à partir des di�érents points (g0a = gaJ − LJ). Les valeurs
sont reprises dans le tableau 5.6 :

gaJ (rad) gaJ (gon) gaJ - LJ (rad) gaJ - LJ (gon)
5,07293594 322,953132 2,74041178 174,460032
5,74663974 365,842448 2,74040418 174,459548
1,2216685 77,7738324 2,74041178 174,460032
2,74041492 174,460232 2,74041178 174,460032

Table 5.6 � Recherche de la constante d'orientation approchée

La moyenne des valeurs donne comme valeur retenue g0a=2, 74040988 rad=174, 4599114 gon.
On peut ensuite calculer les di�érents termes intervenant dans la relation matricielle 5.86 à
partir des calculs présentés au tableau 5.7. 8, 69442 · 10−12 −7, 89647 · 10−13 5, 34612 · 10−7

−7, 89647 · 10−13 1, 60104 · 10−11 −2, 50802 · 10−6

−5, 34612 · 10−7 2, 50802 · 10−06 −4

 ·


dX
dY
dg0

 = −


−7, 15583−12

−9, 62937−12

0


(5.99)

Ce qui permet d'obtenir : 
dX = −0, 866443872 cm
dY = −0, 694223113 cm
dg0 = −3, 19479 · 10−7 rad

(5.100)
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Station ∆X (cm) ∆Y (cm) DJ (cm) aJ (cm−1) bJ (cm−1) cJ (rad)
A -622090,36 234545,133 664836,6985 -5,3063610−7 -1,4074210−6 1,9014610−6

B -408883,36 687495,133 799896,9683 -1,0744910−6 -6,3904510−7 -5,7043810−6

C 248593,64 90498,1327 264553,7936 -1,2930410−6 3,5519110−6 1,9014610−6

D 152100,64 -358573,867 389499,4517 2,3635510−6 1,0025810−6 1,9014610−6

Table 5.7 � Calculs intermédiaires pour l'exemple du relevement

Les coordonnées �nales du point seront donc :
XMa = 9885690, 5 cm
YMa = 10409775, 2 cm
g0 = 2, 7404 rad = 174, 4599 gon

(5.101)

Comme contrôle, il est possible de recalculer les résidus après optimisation par la méthode de
Gauss (tableau 5.8).

résidu résidu
initial (rad) �nal (rad)

A 1,90146 · 10−06 3,65777 · 10−06

B -5,70438 · 10−06 -4,01027 · 10−06

C 1,90146 · 10−06 8,75465 · 10−07

D 1,90146 · 10−06 -5,22958 · 10−07

Table 5.8 � Calcul des résidus.

On véri�e que la somme des carrés des résidus �naux (≈ 3, 05−11) est inférieure à la somme des
carrés des résidus initiaux (≈ 4, 33−11).
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5.7 Méthode par multilatération

La méthode de multilatération consiste à viser le point inconnu à partir d'un ensemble de points
de station (dont les coordonnées sont connues) et de relever la distance horizontale (�gure 5.22).

Figure 5.22 � Principe de la méthode par multilatération.

Ce type de méthode était d'emploi assez limité à cause de la faible précision de la mesure de
distance par rapport aux mesures angulaires mais les progrès techniques les rendent de plus
en plus compétitives. La multilatération présente l'avantage de proposer des calculs nettement
plus simples que les méthodes basées sur les mesures angulaires.
Le principe général de la méthode est similaire aux méthodes angulaires, à savoir :

� l'établissement d'un croquis à petite échelle ;
� la détermination d'un point approché ;
� le calcul de la correction pour tenir compte des mesures redondantes.
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5.7.1 Coordonnées du point approché

Le point approché est obtenu à partir de la mesure de distances par rapport à deux points
connus. Le problème se réduit à la recherche de l'intersection de deux cercles.

Figure 5.23 � Recherche du point approché par multilatération.

Dans la �gure 5.23, on peut écrire la relation de pythagore généralisé dans le triangle I1C1C2 :

R2
2 = R2

1 + d2
C1C2
− 2R1dC1C2 cosα (5.102)

avec :

dC1C2 =

√
(XC2 −XC1)

2 + (YC2 − YC1)
2 (5.103)

L'angle α peut donc être calculé à partir des données. Pour obtenir le gisement des di�érentes
visées, on applique : 

gC1C2 = arctan
XC2
−XC1

YC2
−YC1

gC1I1 = gC1C2 − α
gC1I2 = gC1C2 + α

(5.104)

Les coordonnées des points d'intersection sont ensuite classiquement obtenues par :{
XI1 = XC1 +R1 sin gC1I1

YI1 = YC1 +R1 cos gC1I1

{
XI2 = XC1 +R1 sin gC1I2

YI2 = YC1 +R1 cos gC1I2

(5.105)

Pour décider entre ces deux possibilités le point à retenir, il faut employer l'information
provenant d'une troisième mesure de distance.
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5.7.2 Calcul du point dé�nitif

Comme pour les deux méthodes précédentes, nous nous concentrerons sur une méthode des
moindres carrés pour la résolution du système surabondant reprenant l'ensemble des mesures.
Comme dans le cas des méthodes employant les mesures angulaires, on peut exprimer la distance
�nale de deux manières di�érentes :

� distance dé�nitive = distance mesurée + résidu
� distance dé�nitive = distance approchée + variation

Figure 5.24 � E�et d'une variation selon X. Figure 5.25 � E�et d'une variation selon Y.

Pour calculer la variation, on peut décomposer l'e�et d'une variation selon X et selon Y.

5.7.2.1 Variation selon X

La �gure 5.24 présente la situation. Sous l'e�et d'une variation dX. La variation de distance
correspond à la longueur du segment |K ′M ′|. Comme dX est une variation, on peut assimiler
l'arc K ′Ma à la corde. Ceci permet de dire que dans le triangle rectangle K ′M ′Ma :

|K ′M ′| = dX sin gJMa (5.106)

5.7.2.2 Variation selon Y

La �gure 5.25 présente la situation. Sous l'e�et d'une variation dY. La variation de distance
correspond à la longueur du segment |K ′M ′|. Comme dY est une variation, on peut assimiler
l'arc K ′Ma à la corde. Ceci permet de dire que dans le triangle rectangle K ′M ′Ma :

|K ′M ′| = dY cos gJMa (5.107)

5.7.2.3 Moindres carrés

Comme dX et dY sont indépendants, la variation globale peut s'exprimer selon

d |JMa| = sin gJMadX + cos gJMadY (5.108)

On peut donc écrire en synthèse :

résidu|JM | = sin gJMadX + cos gJMadY + ∆DJM (5.109)
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∆DJM valant l'écart entre la distance approchée et la distance mesurée. Le calcul procède à la
minimisation de la somme des carrés des résidus, c'est-à-dire l'annulation des dérivées selon x
et y. On obtient :

d

dX

n∑
J=1

résidu2
|JM | = 2

n∑
J=1

(sin gJMadX + cos gJMadY + ∆DJM) sin gJMa = 0 (5.110)

d

dY

n∑
J=1

résidu2
|JM | = 2

n∑
J=1

(sin gJMadX + cos gJMadY + ∆DJM) cos gJMa = 0 (5.111)

Ces deux expressions peuvent être mises sous forme matricielle :
n∑
j=1

sin2 gJMa
1
2

n∑
j=1

sin 2gJMa

1
2

n∑
j=1

sin 2gJMa

n∑
j=1

cos2 gJMa

 ·
{
dX
dY

}
= −



n∑
j=1

DJM sin gJMa

n∑
j=1

DJM cos gJMa

 (5.112)

La résolution de ce système permet le calcul des résidus, donc la recherche de la position
dé�nitive du point.

5.7.3 Exemple d'application

On dispose de mesures de distance entre un point inconnu M et quatre stations A, B, C et D
selon le tableau 5.9.

Points X (cm) Y (cm) Distances à M (cm)
A 9263601 10644321 664837,8
B 9476808 11097271 799894,4
C 10134285 10500274 264552,9
D 10037792 10051202 389499,7

Table 5.9 � Données de base pour l'exemple de la multilatération

Le calcul de la position approchée de M en employant par exemple les mesures à partir des
points A et C donne en employant les relations 5.102 et 5.103 :

‖AC‖ =

√
(XA −XC)2 + (YA − YC)2 = 882519, 2157 cm (5.113)

cosα =
‖MA‖2 + ‖AC‖2 − ‖MC‖2

2 ‖MA‖ ‖AC‖
= 0, 980738196 (5.114)

L'angle α vaut donc 0, 196590739 rad ou 12, 51535514 gon. On peut donc calculer :
gAC = arctan XC−XA

YC−YA
= 110, 4377688 gon

gAM1 = gAC − α = 97, 92241364 gon
gAM2 = gAC + α = 122, 9531239 gon

(5.115)
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Ce qui permet de calculer les coordonnées des deux points potentiels :{
XM1 = XA +R1 sin gAM1 = 9928084, 799 cm
YM1 = YA +R1 cos gAM1 = 10666013, 9 cm

(5.116){
XM2 = XA +R1 sin gAM2 = 9885692, 422 cm
YM2 = YA +R1 cos gAM2 = 10409775, 56 cm

(5.117)

Pour sélectionner le point parmi les deux possibilités, on calcule la distance à un troisième
point, par exemple le point B, qu'on peut comparer à la mesure. On obtient une distance de
624206, 2455 cm pourM1 et de 799897, 7735 cm pourM2 à comparer à la mesure (799894, 4 cm).
On conserve donc le pointM2 comme première approximation de la position du point (Ma=M2),
ce qui permet d'établir le croquis présenté en �gure 5.26.

Figure 5.26 � Croquis à petite échelle pour l'exemple d'application.

Une fois cette information connue, il est possible de calculer l'ensemble des données permettant
de remplir les matrices pour la relation 5.112 (tableau 5.10).

Points Gisements Gisements Distances Distances ∆DJM

approchés (rad) approchés (gon) approchées (cm) mesurées (cm) (cm)
A 1,9313432 122,95312 664837,8 664837,8 0
B 2,6050461 165,84239 799897,77 799894,4 3,37352619
C 4,3632587 277,77368 264552,9 264552,9 0
D 5,8820098 374,46037 389498,76 389499,7 -0,94402613

Table 5.10 � Calculs pour l'exemple de multilatération
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La relation matricielle donne donc :[
2, 172309387 −0, 80749681
−0, 80749681 1, 827690613

]
·
{
dX
dY

}
=

{
−2, 093091203
3, 768548234

}
(5.118)

qui donne après résolution : {
dX = −0, 235796125 cm
dY = 1, 957740325 cm

(5.119)

Après correction, la position �nale du point (coordonnées arrondies au mm) est :{
XMf

= 9885692, 2 cm
YMf

= 10409777, 5 cm
(5.120)

On peut calculer les résidus �naux qui valent :
résiduA = −0, 891796425 cm
résiduB = 1, 594209178 cm
résiduC = −0, 453925332 cm
résiduD = 0, 926906158 cm

(5.121)

dont la somme des carrés vaut 4, 4 cm2 (à comparer à une valeur initiale de 12, 27 cm2) ; On
remarque une distribution plus homogène des résidus.

5.8 Lexique

Français Anglais Français Anglais
boussole compass insertion par

relèvement
resection

canevas planimétrique network of control
points

levé survey

clisimètre clinometer lever survey
constante d'orientation station constant méthode des

moindres carrés
root mean square
method

erreur de fermeture closing error point approché approximate position
gisement grid bearing polygonale transverse line
insertion par intersection intersection résidu residual value
insertion par multilatération multilateration

Table 5.11 � Lexique du chapitre 5
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Chapitre 6

Implantation

You build a beautiful superstructure, but it may be standing on air

- I. Asimov, Foundation and Earth

6.1 Introduction

L'implantation reprend l'ensemble des opérations consistant à matérialiser sur le terrain les
points qui sont présents sur les plans d'éléments à construire (position de bâtiments, axes
ou points isolés) dans un but de construction ou de repérage. Suivant la précision souhaitée,
les implantations emploient di�érents instruments (ruban, équerre optique, théodolite,...)
et di�érentes méthodes. On recherche typiquement une précision décimétrique pour les
terrassements, centimétrique pour les ouvrages courants et millimétrique pour les fondations
d'ouvrages spéciaux. Deux principes doivent être respectés [1] :

� aller de l'ensemble vers le détail ce qui implique de s'appuyer sur un canevas existant ou
à créer ;

� prévoir des mesures surabondantes pour un contrôle sur le terrain.

6.2 Implantation d'alignements

6.2.1 Jalonnement

Le jalonnement est l'opération consistant à positionner un ou plusieurs jalons sur un alignement
existant, soit entre les points matérialisant cet alignement, soit en prolongement de l'alignement.

Figure 6.1 � Jalonnement sans obstacles. Figure 6.2 � Jalonnement à l'équerre.
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6.2.1.1 Jalonnement sans obstacles

On matérialise l'alignement initial AB par des jalons (idéalement réglés au �l à plomb). Un
opérateur se place en retrait du jalon A et l'aligne visuellement avec le jalon B. Un deuxième
opérateur se déplace avec un jalon C et le place sous les instructions du premier opérateur
(lorsque les trois jalons sont alignés, �gure 6.1). Une mesure au ruban aligné sur deux des
jalons permet ensuite de placer dé�nitivement le jalon C.
On peut également employer une équerre optique (�gure 6.3) pour réaliser le jalonnement. Une
équerre optique est instrument qui permet de construire rapidement des perpendiculaires par
l'alignement de jalons. Elle est constituée de deux prismes renvoyant la lumière (�gure 6.4).
Elle est associée à un �l à plomb ou à une canne à plomber sur laquelle elle est vissée.

Un seul opérateur peut également réaliser le jalonnement à l'aide d'une équerre optique. Il se
place entre A et B, les épaules parallèles à la direction AB. Il se déplace perpendiculairement à
la direction AB jusqu'à observer l'alignement des deux jalons en A et B dans l'équerre optique,
ce qui permet de marquer le point C.

Figure 6.3 � Equerre optique (Doc Leica).

Figure 6.4 � Principe de fonctionnement de l'équerre optique [2].
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6.2.1.2 Franchissement d'une butte

S'il n'est pas possible de voir les deux jalons d'un point donné suite à la con�guration du terrain,
on emploie une méthode itérative (procédé Fourier, �gure 6.5) :

� poser un jalon en 1, visible de A et de B ;
� poser un jalon en 2, visible de B et sur l'alignement A-1 ;
� poser un jalon en 3, visible de A et sur l'alignement B-2 ;
� répéter jusqu'à obtenir un alignement entre A et B.

Ce procédé permet d'obtenir un alignement satisfaisant en quelques itérations.

Figure 6.5 � Franchissement d'une butte par le procédé Fourier.

6.2.2 Intersection d'alignements

L'intersection de deux alignements peut s'e�ectuer :
� avec un cordex (corde laissant une trace sur un support bétonné par exemple) en

matérialisant l'intersection des deux alignements ;
� en tendant des cordeaux (�ls de fer) et en reportant le point à leur intersection (�gure

6.6) ;
� avec un théodolite (par approximations successives).

Figure 6.6 � Intersection d'alignements aux courdeaux.
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6.2.3 Perpendiculaire à un alignement

Le tracé de perpendiculaires est une opération très fréquente, que ce soit pour l'implantation
de points ou pour la réalisation de constructions intermédiaires. Nous allons lister di�érentes
méthodes possibles suivant le matériel à disposition (ruban, équerre optique, théodolite) pour
réaliser un alignement perpendiculaire à un autre à partir d'un point de l'alignement ou d'un
point extérieur (�gure 6.7).

Figure 6.7 � Perpendiculaire à un alignement.

6.2.3.1 Perpendiculaire au ruban

La réalisation de perpendiculaires au ruban utilise des triangles particuliers. On exploite par
exemple la propriété des triangles isocèles d'avoir la hauteur issue du troisième côté confondue
avec la médiatrice de ce côté. Pour la construction d'une perpendiculaire à partir d'un point
C de l'alignement (�gure 6.8), on décale deux points D et E d'une même distance de part et
d'autre de C, puis on tend le ruban en le maintenant par la graduation qui garantit l'égalité
des côtés DP et EP (dans ce cas, deux aides sont nécessaires). On peut également tracer deux
arcs de cercle de même rayon dont l'intersection donne le point P recherché (dans ce cas, une
seule aide est nécessaire). Si le point n'appartient pas à l'alignement, on trace un arc de cercle
centré en ce point coupant l'alignement en D et E. Le pied de la perpendiculaire est au milieu
de ce segment DE (�gure 6.9).

Figure 6.8 � Perpendiculaire au ruban
(triangle isocèle) par un point de
l'alignement.

Figure 6.9 � Perpendiculaire au ruban
(triangle isocèle) par un point extérieur à
l'alignement.
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Pour une meilleure précision, il est recommandé de prendre des distances les plus grandes
possibles. La méthode du triangle isocèle permet une véri�cation directe de l'implantation, il
su�t de véri�er, après mesure au ruban, qu'on a bien PD2 + CD2 = PD2.
On peut également exploiter le théorème de Pythagore : un angle droit est obtenu par la
réalisation d'un triangle rectangle (carré de l'hypoténuse valant la somme des carrés des autres
côtés). On parle de règle des 3-4-5 (trois côtés dans ces proportions conduisent à la réalisation
d'un triangle rectangle, �gure 6.10).

Figure 6.10 � Perpendiculaire au ruban (triangle rectangle).

6.2.3.2 Perpendiculaire à l'équerre optique

On dispose deux jalons sur A et B. Si le point C est sur l'alignement, l'opérateur se positionne
au moyen de l'équerre sur l'alignement AB en alignant les images des deux jalons de A et B
puis un deuxième opérateur se déplace un jalon jusqu'à ce que la correspondance soit établie. Si
le point C est en-dehors de l'alignement, c'est l'opérateur qui se déplace le long de AB jusqu'à
aligner le troisième jalon avec les deux premiers.

Figure 6.11 � Perpendiculaire à l'équerre
optique (point sur l'alignement).

Figure 6.12 � Perpendiculaire à l'équerre
optique (point hors de l'alignement).
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6.2.3.3 Perpendiculaire au théodolite

Si le point C est sur l'alignement, il su�t d'y stationner puis de pivoter de 100 gon par rapport
à une visée sur un des points de l'alignement. Si le point est extérieur, on peut procéder de
plusieurs façons :

� tracer une perpendiculaire d'essai en un point M visuellement proche du pied de la
perpendiculaire, puis mesurer la distance d par rapport au point C (�gure 6.13) ; on
peut répéter l'opération pour plus de précision ;

� stationner en A et mesurer l'angle α entre AB et AC, puis stationner en C et reporter
un angle (100 gon -α) (�gure 6.14) ;

� marquer le milieu M de AB, stationner en C et mesurer les angles α1 et α2 (�gure 6.15),
en déduire l'angle à reporter α en résolvant l'équation 6.1 .

cos (α1 + α2 + α)

cosα
=

sinα1

sinα2

(6.1)

Figure 6.13 � Perpendiculaire
au théodolite : première
méthode.

Figure 6.14 � Perpendiculaire
au théodolite : deuxième
méthode.

Figure 6.15 � Perpendiculaire
au théodolite : troisième
méthode.

6.2.4 Parallèle à un alignement

Le tracé de parallèles à un alignement au ruban peut être réalisé simplement en traçant deux
perpendiculaires successives à l'alignement initial ou en reportant la même distance sur deux
perpendiculaires à l'alignement initial (�gure 6.16).

Figure 6.16 � Tracé d'un alignement parallèle au ruban.
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Un tracé plus précis est obtenu en employant un théodolite. En stationnant au point A, on
e�ectue une rotation d'un angle α par rapport à l'alignement AB. On implante le point C à
une distance calculée selon (d étant la distance souhaitée entre les deux alignements) :

AC =
d

sinα
(6.2)

Ensuite, on stationne en C et on reporte un angle −α pour matérialiser l'alignement CC'
parallèle à AB (�gure 6.17).

Figure 6.17 � Alignement parallèle au
théodolite.

Figure 6.18 � Véri�cation du parallélisme de
deux alignements.

Dans tous les cas, une véri�cation simple peut être opérée : les diagonales d'un parallélogramme
se coupent en leur milieu. Il su�t donc de construire un parallélogramme ABCD (D est situé à
la même distance de C que A de B) et de véri�er que ses diagonales se coupent en leur milieu
(�gure 6.18).

6.2.5 Prolongement d'alignements

Le prolongement consiste à poser des jalons supplémentaires pour étendre un alignement
existant.

Figure 6.19 � Prolongement d'alignement au théodolite
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6.2.5.1 Prolongement sans obstacles

Lorsqu'il n'y a pas d'obstacles, le prolongement peut s'e�ectuer selon les méthodes de
jalonnement présentée au � 6.2.1.1 ; il est recommandé dans ce cas de ne pas prolonger d'une
distance supérieure au quart de la longueur de l'alignement existant pour conserver une bonne
précision.

Si on dispose d'une lunette, on stationne en l'extrémité B de l'alignement à prolonger, puis on
tourne de 200 gon pour viser le nouveau point à implanter. Si on dispose d'un théodolite, on
peut e�ectuer un double retournement pour avoir deux mesures ; si le point obtenu est di�érent,
on prend comme point �nal le milieu du segment obtenu (�gure 6.19).

6.2.5.2 Prolongement avec obstacle

6.2.5.2.1 Au ruban Le prolongement avec obstacle peut se réaliser au ruban seul. On
implante une parallèle à l'alignement original à une distance donnée d (qui permet le
contournement de l'obstacle) puis on trace une perpendiculaire auxiliaire sur laquelle on reporte
la même distance d pour �nalement implanter l'alignement prolongé sur une perpendiculaire à
ce segment (�gure 6.21).

Figure 6.20 � Prolongement sans visibilité au ruban

6.2.5.2.2 Au théodolite Si on dispose d'un théodolite, on implante à partir de A un point
P qui permet de voir l'autre côté de l'obstacle et on mesure l'angle α entre l'alignement initial
et le rayon de visée vers P. En stationnant en P, on reporte la distance d (d=|AP |) selon un
angle 2α pour trouver un point dans le prolongement de AB. En stationnant en ce point, on
peut matérialiser l'alignement en reportant l'angle α (�gure 6.21).

Figure 6.21 � Prolongement sans visibilité au ruban
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6.2.6 Contournement d'obstacle

Lorsque la ligne joignant les deux extrémités du segment à mesurer est interrompue par un
obstacle, il est nécessaire de le contourner pour réaliser la mesure.

6.2.6.1 Contournement au ruban

On se base sur le théorème de Thalès : on construit par un point de l'alignement initial un
alignement sécant en A qui contourne l'obstacle. On implante ensuite sur cet alignement le
pied B' de la perpendiculaire issue du point �nal de l'alignement extrême. Il ne reste plus
qu'à jalonner entre A et B' et reporter les points correspondants via des perpendiculaires à
l'alignement AB'.

Figure 6.22 � Contournement au ruban.

Comme toutes ces perpendiculaire à AB' sont parallèles entre elles ; le théorème de Thalès
garantit d'avoir :

|BB′|
|AB′|

=
|CC ′|
|AC ′|

=
|DD′|
|AD′|

(6.3)
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6.2.6.2 Contournement au théodolithe

Dans ce cas de �gure, on stationne en un point M duquel on peut voir A et B. On mesure
l'angle β selon lequel on voit le segment AB et les distances |AM | et |BM |. La résolution du
triangle ABC donne successivement :

sinα1

|BM |
=

sinα2

|AM |
=

sin (200− α1 − β)

|AM |
=

sin (α1 + β)

|AM |
(6.4)

⇒ |AM | sinα1 = |BM | (sinα1 cos β + sin β cosα1) (6.5)

⇒ cotα1 =
|AM |

|BM | sin β
− cot β (6.6)

La distance AB est ensuite déduite de la règle des sinus

sinα1

|BM |
=

sinα2

|AM |
=

sin β

|AB|
(6.7)

Figure 6.23 � Contournement au théodolite.

Si des obstacles multiples ne permettent pas de stationner en un point où A et B sont visibles,
il est nécessaire de suivre un cheminement planimétrique entre A et B (cf chapitre 5) trouver
les coordonnées de points, et donc déterminer la distance les séparant.
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Figure 6.24 � Contournement au théodolite, obstacles multiples.

6.2.7 Alignement faisant un angle donné avec un autre alignement

L'objectif est de matérialiser un alignement faisant un angle α avec un alignement AB existant
dont un des points est à une distance h de A.

6.2.7.1 Au théodolite, intersection accessible

La méthode la plus simple consiste à implanter le point S (intersection des alignements) à une
distance |AS| de A telle que

|AS| = h

sinα
(6.8)

Ensuite, il su�t de stationner en S et de reporter l'angle α. On peut véri�er en traçant la
perpendiculaire au nouvel alignement passant par A et véri�er la distance entre A et le pied de
cette perpendiculaire A' vaut bien h (�gure 6.26).

Figure 6.25 � Alignement faisant un angle
avec un autre.

Figure 6.26 � Alignement faisant un angle
avec un autre, intersection inaccessible.
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6.2.7.2 Au théodolite, intersection inaccessible

Si l'intersection n'est pas accessible, on peut implanter le point A' à partir de A (reporter
la distance h selon un angle de 100+α) puis tracer le perpendiculaire à AA' pour obtenir
l'alignement recherché (�gure 6.25). La véri�cation doit se baser sur des informations qui n'ont
pas été implantées, par exemple en véri�ant que

|BA′| =
√

(d+ h sinα)2 + (h cosα)2 (6.9)

6.2.7.3 Au ruban

Si l'alignement doit être réalisé au ruban, on implante les point C et D sur des perpendiculaires
à l'alignement initial issues de A et de B telles que (�gure 6.27) :

|AC| =
h

cosα
(6.10)

|BD| = AC + d tanα (6.11)

Figure 6.27 � Alignement faisant un angle avec un autre au ruban.

Le contrôle consiste par exemple à véri�er que

CB =

√
d2 +

(
h

cosα

)2

(6.12)

AD =

√
d2 +

(
h

cosα
+ d tanα

)2

(6.13)
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6.2.8 Pan coupé régulier

Un pan coupé régulier est un alignement coupant deux pans de murs selon des angles égaux.
Cette solution permet d'optimiser la visibilité aux intersections de voiries. Typiquement, la
longueur du pan est imposée et l'implantation est réalisée à partir du point d'intersection entre
les alignements. Si l'angle α entre les alignements est connu, on peut directement reporter les
distances :

|SA| = |SB| = |AB|
2 sin (α/2)

(6.14)

Si l'angle α n'est pas mesurable, on implante des point N et M respectivement sur les
alignements de A et de B de sorte que les distances entre S et M et N soient égales. On
peut ensuite placer A et B en respectant :

|SA| = |SB| = |SM | |AB|
|MN |

(6.15)

Figure 6.28 � Pan coupé régulier.
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6.3 Implantation planimétrique

L'implantation de points consiste à reporter sur le terrain des points issus d'un plan
préétabli pour les matérialiser. On distingue les implantations courantes (précision typiquement
centimétrique) pouvant être réalisées au ruban des implantations spéciales (précision
millimétrique) réalisées à la station totale.

De manière générale, l'implantation consiste à reporter à partir d'éléments connus (un point de
référence et une direction de références) des points en coordonnées cartésiennes (implantation
en abscisses et ordonnées au ruban, �gure 6.29) ou en coordonnées polaires (implantation par
rayonnement à la station totale, �gure 6.30). L'implantation de bâtiments courants consiste à

Figure 6.29 � Implantation cartésienne. Figure 6.30 � Implantation polaire.

implanter des 'chaises' (�gure 6.31) qui délimitent le contour des fondations sur lesquelles des
clous permettent de matérialiser les alignements (�gure 6.32).

Figure 6.31 � Chaises pour l'implantation.

Pour ce type d'implantation courante, on implante deux des points à la station totale par
rapport à une référence (borne cadastrale par exemple), les autres points sont implantés par
jalonnement (�gure 6.33).

Il faut noter que, dans les procédures d'implantation, les erreurs grossières peuvent vite se
produire ce qui peut avoir des conséquences dramatiques sur la suite du projet. C'est pourquoi
il est fondamental de systématiquement contrôler les points implantés en �n de campagne à
partir de mesures redondantes par rapport à celles qui ont été e�ectuées pour l'implantation
(exemple : mesure des diagonales d'un rectangle dont les côtés ont été implantés). Cette étape
est au moins aussi importante que l'implantation elle-même.
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Figure 6.32 � Implantation de chaise pour la réalisation de fondations [1].

Figure 6.33 � Implantation classique d'un plan de fondation [1].
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6.3.1 Exemple pratique

6.3.1.1 Présentation du problème

Cet exemple, tiré de [1] consiste à réaliser l'implantation de quatre pieux P1, P2, P3 et P4 à
partir du plan donné en �gure 6.34. Les points A et B sont connus dans un repère global :

XA = 100, 000m YA = 500, 000m (6.16)

XB = 109, 882m YB = 501, 530m (6.17)

Figure 6.34 � Plan de l'implantation des pieux [1].

Le plan permet de retrouver facilement les coordonnées des di�érents pieux dans un repère
local P2x1y1(tableau 6.1).
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Point x(m) y(m)
P1 -2,550 -7,610
P1 0,000 0,000
P1 2,120 0,000
P1 4,670 7,660

Table 6.1 � Coordonnées des points dans le repère local

6.3.1.2 Implantation

Pour repasser dans le repère global, il est nécessaire d'e�ectuer des changements de repère
successifs (�gure 6.35) :

� une rotation d'un angle α (à déterminer) autour de P3 permettant de placer P2P3

parallèlement à AB (repère P2x2y2) ;
� translation de repère pour amener son origine en A (repère Ax3y3) ;
� une rotation d'un angle −β (à déterminer) autour de A permettant de placer les axes

parallèlement au repère global ( Ax4y4) ;
� une translation de repère pour ramener l'origine commune avec le repère global.

Figure 6.35 � Repères employés pour l'exercice d'implantation.
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Pour rappel, un changement de repère implique de modi�er les coordonnées des points selon
la relation 6.18 pour une translation de repère (�gure 6.36) et selon la relation 6.19 pour une
rotation de repère (�gure 6.37). {

x′ = x− Tx
y′ = y − Ty

(6.18){
x′

y′

}
=

[
cos θ sin θ
− sin θ cos θ

]
·
{
x
y

}
(6.19)

Figure 6.36 � Changement de repère par
translation.

Figure 6.37 � Changement de repère par
rotation.

L'angle α peut être calculé par résolution de triangle rectangle, on trouve :

α = arcsin
3− 2, 5

2, 12
= 15, 157gon (6.20)

Dans le repère 2, les points ont donc pour coordonnées les valeurs données dans le tableau 6.38
(apère application de la formule 6.19). La translation de repère permet de replacer l'origine en

Point x(m) y(m)
P1 -0,683 7,997
P1 0,000 0,000
P1 2,060 -0,500
P1 6,345 6,342

Figure 6.38 � Coordonnées des points dans
le repère 2

Point x(m) y(m)
P1 1,317 10,997
P1 2,000 3,000
P1 4,060 2,500
P1 8,345 9,342

Figure 6.39 � Coordonnées des points dans
le repère 3

A (suivant la relation 6.18), ce qui donne les résultats repris dans le tableau 6.39. On peut déjà
à ce stade réaliser l'implantation à partir du point A en prenant AB comme origine des angles.
Dans ce cadre, il est plus simple de réaliser une implantation polaire, et donc de convertir les
coordonnées cartésiennes du tableau 6.39 en coordonnées polaires (cf tableau tab :coord3pol).

Point Dh (m) Hz (gon)
P1 11,075 307,586
P1 3,606 337,432
P1 4,768 364,863
P1 12,527 346,412

Table 6.2 � Coordonnées polaires des points dans le repère 3
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6.3.1.3 Retour au repère global

Si on veut raccrocher les points au repère global, il est nécessaire d'e�ectuer deux nouveaux
changements de repère :

� rotation de −β autour de A (β = 100 − gAB = 100 − arctan ∆x
∆y

) pour obtenir les
coordonnées du tableau 6.40 ;

� translation pour ramener l'origine au point de référence pour obtenir les coordonnées du
tableau 6.41.

Point x(m) y(m)
P1 -0,381 11,069
P1 1,517 3,271
P1 3,630 3,092
P1 6,817 10,509

Figure 6.40 � Coordonnées des points dans
le repère 4

Point x(m) y(m)
P1 99,619 511,069
P1 101,517 503,271
P1 103,630 503,092
P1 106,817 510,509

Figure 6.41 � Coordonnées des points dans
le repère global

6.3.1.4 Véri�cation de l'implantation

La véri�cation de l'implantation doit se faire sur des éléments qui n'ont pas été implantés. C'est
pourquoi la véri�cation va passer par la mesure des distances entre les pieux et de leur position
par rapport au point B. Les distances se calculent immédiatement par :

dPiPj =

√
(xi − xj)2 + (yi − yj)2 (6.21)

Le tableau 6.42 reprend les distances entre les pieux, le tableau 6.43 les distances entre les pieux
et le point B.

Distance d(m)
P1P2 8,026
P1P3 8,929
P1P4 7,220
P2P3 2,120
P2P4 8,971
P3P4 8,073

Figure 6.42 � Distances entre les points
implantés

Distance d(m)
BP1 14,012
BP2 8,544
BP3 6,444
BP4 9,488

Figure 6.43 � Distances entre le point B et
les points implantés

6.4 Implantation altimétrique

L'implantation altimétrique consiste à repérer le niveau des éléments implantés par rapport à
une référence. Les techniques sont présentées au chapitre 3 de ce cours. On peut envisager de
poser un trait de niveau servant de repère en mettant en station un niveau puis en repérant
l'altitude du plan de visée par lecture sur une mire posée sur la référence. il su�t ensuite de
reporter la di�érence d'altitude entre le plan de visée et la hauteur souhaitée du trait de niveau
à l'aide d'un mètre ruban (�gure 6.44).
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Figure 6.44 � Pose d'un trait de niveau.

On peut éventuellement employer un niveau laser (�gures 6.45 et 6.46) pour marquer un plan
de référence (horizontal, éventuellement vertical ou incliné) sur un chantier de faible étendue. Il
faut rester conscient de l'incertitude qui peut y être liée (incertitude donnée de l'appareil, erreur
sur l'altitude proportionnelle à la distance entre l'instrument et la surface visée, typiquement
de l'ordre de 0,1 mm/m à 10 mm/m suivant la qualité du matériel).

Figure 6.45 � Niveau laser (document
Bosch).

Figure 6.46 � Niveau laser (document CST
Berger).
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6.5 Piquetage de pentes

Le piquetage de pentes consiste à matérialiser des pentes à créer par l'intermédiaire de piquets
régulièrement espacés. Les piquets sont enfoncés jusqu'à ce que leur sommet matérialise la
pente recherchée. Le piquetage de pente peut se faire avec un niveau ; dans ce cas, on mesure le
dénivelé entre deux piquets et on s'arrange pour que ce dénivelé soit compatible avec la pente
recherchée (�gure 6.47). On peut également régler la pente à l'aide d'un théodolite en réglant
l'angle vertical à la valeur recherchée (�gure 6.48).

Figure 6.47 � Piquetage de pentes avec un niveau [2].

Figure 6.48 � Piquetage de pentes avec un théodolite [2].
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6.6 Lexique

Français Anglais Français Anglais
alignement alignment implantation polaire polar setting out
chaise batter boards jalonnement ranging
contournement pas d'équivalent parallèle parallel

(ranging between
points that don't see
each other)

perpendiculaire perpendicular

équerre optique optical square piquetage de pente inclination setting
out

fouilles digging prolongement pas d'équivalent
implantation
altimétrique

altimetric setting
out

(ranging outside an
interval)

implantation
cartésienne

cartesian setting out transformation
homogène

homogeneous
coordinate matrix

Table 6.3 � Lexique du chapitre 6 (les valeurs en italique sont des traductions littérales)

Références

[1] M. Brabant. Maîtriser la topographie - Des observations au plan. Eyrolles, 2003.

[2] S. Miles. Topographie et toponométrie moderne. Eyrolles, 1999.
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Chapitre 7

Techniques modernes employées en

topographie

The U.S. Global Positioning System (GPS) Standard Positioning Service (SPS)
consists of space-based positioning, navigation, and timing (PNT) signals delivered
free of direct user fees for peaceful civil, commercial, and scienti�c uses worldwide

- GPS Performance Standard, Department of defense

7.1 Introduction

Ce chapitre a pour but de présenter les principes de bases de deux techniques avancées utilisables
en topographie : le positionnement par système GPS et la restitution par photogrammétrie.

7.2 GPS

GPS (Global Positioning System) ou NAVSTAR (NAVigation System by Timing And Ranging)
est à l'origine un système militaire américain conçu dans les années 70 et contrôlé par le
département de la défense. Il s'agit d'un système spatial de radio-positionnement et de transfert
de temps. Il fournit à un nombre illimité d'utilisateurs, dans un système global et unique, une
information de position, de vitesse et de temps [1]. Le maillon principal du système est la �otte
de 24 satellites (21 opérationnels et 3 de réserve). Son utilisation en topographie permet à
tout utilisateur de repérer un point sur le globe dans un repère absolu, donc de simpli�er les
opérations dans lesquelles les mesures doivent êtres reprises dans un canevas global.
Il faut noter que l'union Européenne a lancé depuis 2001 le projet de lancer sa propre
constellation de satellites pour le géopositionnement (Gallileo) qui est à l'heure actuelle en
début de déploiement. Ce système a pour objectif d'augmenter la couverture du globe terrestre
(le système GPS couvre globalement mal les hautes latitudes) et de proposer une précision
supérieure à celle fournie pas le GPS. Le projet devrait être pleinement opérationnel en 2020.
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7.2.1 Principe général

Le système GPS est constitué de trois composants essentiels :
� le segment spatial ;
� le segment de contrôle ;
� le segment utilisateur.

7.2.1.1 Segment spatial

La composante principale du segment spatial est la constellation de 24 satellites (21
opérationnels et 3 de réserve) qui est pleinement opérationnelle depuis 1994. Les satellites
orbitent à 20200 km d'altitude dans six plans orbitaux décalés de 60◦ (�gure 7.1 ).

Figure 7.1 � Satellites GPS.

Le signal GPS est émis sous forme d'ondes électromagnétiques se composant de deux fréquences
porteuses (L1 à 1575,42 MHz et L2 à 1227,60 MHz) correspondant à des longueurs d'ondes de
19 et 24 cm. Le cadencement est assuré par l'intermédiaire d'horloges atomiques. Ces deux
fréquences sont portées par une fréquence dite fondamentale f0 à 10,23 MHz (fL1 = 154f0,
fL1 = 120f0). Ces fréquences sont modulées par des codes pseudo-aléatoires :

� code C/A (Coarse/Acquisition ou Clear/Access) modulant L1 accessible à tout
utilisateur (fréquence de 1,023 MHz se répétant toutes les millisecondes) ;

� code P (Precise) modulant L1 et L2 se répétant une fois par semaine (ce code n'est
accessible qu'aux utilisateurs habilité suite à son chi�rement ;

� le message de navigation contenant diverses informations (temps GPS, position du
satellite,...) à 50 Hz.
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Figure 7.2 � Message GPS.

Par convention, le temps GPS est dé�ni par le numéro de la semaine et le temps dans la semaine
(origine le 6 janvier 1980 à 0h00, l'origine de la semaine est le dimanche à 0h00).

7.2.1.2 Segment de contrôle

Le segment de contrôle rassemble les éléments permettant d'assurer le contrôle de la �otte de
satellites. Les stations au sol sont notamment chargées de :

� enregistrer les signaux et envoyer les éventuelles corrections (compenser les dérives
d'horloges) ;

� prédire les éphémérides (prédiction précise des position de l'ensemble des satellites au
cours du temps) ;

� collecte des informations météorologiques.

Figure 7.3 � Stations de contrôle GPS.

7.2.1.3 Segment utilisateur

Le segment utilisateur regroupe les appareils capables de recevoir le signal GPS pour en
déduire (suivant plusieurs modes comme expliqué plus loin) la position de l'appareil sur le
globe terrestre. On distingue plusieurs types principaux de récepteurs :

� les récepteurs grand public de navigation simples ou associés à un logiciel cartographique ;
� les récepteurs professionnels mono ou bi fréquences.
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7.2.2 Techniques de positionnement

Le positionnement par GPS utilise deux techniques qui présentent chacune leurs avantages et
leurs inconvénients : la mesure de pseudo-distances par observation du code et le mesure de
phase.
La mesure de pseudo-distances consiste à examiner la corrélation entre le code émis par le
satellite et celui généré par le récepteur. Le décalage temporel est ainsi estimé ce qui donne
accès à la distance entre le récepteur et le satellite. Si quatre satellites sont visibles, la position
est obtenue par intersection des sphères. Cette technique nécessite une haute précision dans la
détermination du temps (la précision peut aller jusqu'au dixième de nanosecondes pour certains
modèles).
De fortes imprécisions peuvent entacher la mesure de pseudo distances ; c'est pourquoi une autre
méthode employant la mesure du déphasage entre le signal reçu et le signal généré (mesure de
la fréquence de battement en fait). Ce type de mesure est beaucoup moins sensible aux erreurs
de mesure, mais fournit une information ambigüe (le déphasage est connu à n longueurs d'ondes
près) qui nécessite un traitement plus complexe.
on peutr évaluer la précision de la mesure par des indicateurs nommés DOP (Dilution Of
Precision) :

� en positionnement planimétrique (HDOP : Horizontal DOP)
� en positionnement altimétrique (VDOP : vertical DOP)
� en détermination du temps (TDOP : Time DOP)
� en positionnement 3D (PDOP : Position DOP)

Figure 7.4 � Dilution of precision [2].

Cette imprécision est fonction de la position des di�érents satellites visibles ; lorsque plus de
quatre satellites sont visibles, cette valeur est calculée pour toutes les con�gurations possible
pour permettre de déterminer les satellites les mieux placés pour obtenir les meilleurs résultats.

7.2.2.1 Types de positionnements basés sur les pseudo-distances

Le positionnement basé sur la mesure de pseudo-distance est la méthode implantée dans la
majorité des appareils grand public. On distingue :

� la méthode autonome (basée sur l'intersection de sphères) qui o�re une précision de
l'ordre de la dizaine de mètres pour une mesure instantanée (l'erreur diminue si on
prend l moyenne de mesures sur une durée déterminée) ;

� la méthode di�érentielle qui se base sur un récepteur �xe (station de contrôle ou pivot)
qui envoi des corrections au récepteur mobile servant à la mesure (pour que la méthode
soit utilisable, il faut toutefois s'assurer que les deux récepteurs observent toujours les
quatre mêmes satellites. Au vu de leur lourdeur, les calculs peuvent s'e�ectuer en temps
réel ou en post-traitement.
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7.2.2.2 Types de positionnements basés sur la mesure de phase

La mesure de phases est également employée dans des récepteurs professionnels, avec deux
types de méthodes (on parle de modes) :

� le mode statique dans lequel on mesure l'information en au moins deux points durant
une longue durée (de une à dix heures typiquement) ;

� le mode dynamique se déclinant en quatre variantes :
� le mode cinématique qui permet de mesurer en continu la position d'un mobile en

mouvement (anciennement, l'initialisation devait se faire à partir d'un point �xe, ce
qui n'est plus le cas actuellement) ;

� le mode semi-cinématique dans lequel on stationne quelques secondes sur les di�érents
points à relever ;

� le mode pseudo-cinématique consiste à stationner au moins deux fois sur chaque
points avec un décalage donné (au moins une heure) pour obtenir une optimisation sur
la précision de positionnement (cette méthode est toutefois assez lourde d'emploi) ;

� le mode statique rapide dans lequel des informations additionnelles sont employées
(lecture de code ou emploi de plus de quatre satellites par exemple) pour accélérer
la convergence des calculs.

Le tableau 7.1 issu de la référence [1] récapitule les performances classiques pour les di�érents
modes de mesure.

Méthode Nb. mini de Durée Exactitude Commentaires
récepteur(s) d'observation

Autonome 1 15 à 20 min 6 à 8 cm Très simple
Statique 2 1 h 1 cm Complexité variable
Cinématique 2 - 10 cm à 1 m Di�culté du maintient

du verrouillage
Semi-cinématique 2 1 min / point qq cm Bases courtes, maintien

du verrouillage
Pseudo-cinématique 2 1 à 3 min qq ppm Méthode lourde
Statique rapide 2 3 à 5 min qq cm Bases courtes, observations

supplémentaires

Table 7.1 � Récapitulatif des méthodes GPS
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7.3 Photogramétrie

7.3.1 Principe de base

La photogrammétrie regroupe l'ensemble des techniques permettant d'exploiter la prise de vue
d'une même scène de plusieurs points de vue di�érents. Le principe général est celui de la vision
stéréoscopique (principe permettant au cerveau de reconstituer le relief à partir des observations
e�ectuées par nos deux yeux, �gure 7.5).

Figure 7.5 � Principe de la vision stéréoscopique : les deux points sont vus de la même façon
par l'oeil gauche, mais pas par l'oeil droit.

La photogrammétrie a des applications à grande échelle (établissement de cartes à partir de
clichés en altitude) ou à petite échelle (restitution de la géométrie d'un bâtiment à partir de
di�érents clichés. Le principe de base consiste à repérer des éléments communs aux deux clichés
pour établir les transformations géométriques entre les deux prises de vue.

Il est ensuite possible de retrouver les coordonnées de points d'éléments qui sont visibles sur
les deux clichés suivant une procédure mathématique présentée plus en détail dans la référence
[2]. Dans le cadre de ce cours, nous nous contenterons d'établir les principes généraux ainsi que
les usages classiques de cette technique.
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7.3.2 Photogrammétrie terrestre

Figure 7.6 � Matériel de
photogramétrie [2].

Figure 7.7 � Matériel de
photogramétrie [2].

Figure 7.8 � Matériel de
photogramétrie [2].

La photogrammétrie terrestre vise à reconstituer la con�guration du terrain à partir de clichés
aériens. Des caméras (cf �gures 7.6 à 7.8) sont embarquées dans des avions qui balayent le
terrain à couvrir en bandes parallèles se chevauchant (�gure 7.9 et 7.10).

Figure 7.9 � Principe de prise de vue en photogrammétrie aérienne.
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Figure 7.10 � Chevauchement des bandes.

7.3.3 Photogrammétrie numérique

L'évolution des possibilités de calcul graphique permet actuellement une analyse automatique
des clichés pour la restitution du relief à partir de di�érents points de vue. On parle alors
de photogrammétrie numérique. Le recalage entre les di�érents clichés peut s'e�ectuer en
mesurant la corrélation entre les images. Cette corrélation exprime la correspondance plus
ou moins forte entre deux éléments (ici les pixel des deux images). La position relative de
deux clichés présentant le plus forte corrélation renseigne sur la transformation permettant
la superposition des points homologues sur un cliché. Mathématiquement si f(x,y) et g(x,y)
représentent l'intensité d'un pixel de l'image respectivement pour le cliché 1 et le cliché 2 1, la
corrélation se calcule selon :

f(x, y)og(x, y) =
1

MN

M−1∑
m=0

N−1∑
n=0

f ∗(m,n)g(x+m, y + n) (7.1)

En pratique, les algorithmes employés ne font pas le calcul sur l'ensemble des pixels mais bien
une fenêtre de taille variable pour établir la corrélation entre deux images.

1. dans l'hypothèse où l'image est en niveau de gris, pour une image en couleur, on calcule la corrélation sur
les trois composants RGB
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Figure 7.11 � Corrélation entre deux images.

Figure 7.12 � Corrélation entre deux images, traitement de points cachés sur un des clichés.

Figure 7.13 � Corrélation, problème lié aux éléments mobiles (voitures par exemple).

L'image utilisée pour le traitement mathématique est généralement prétraitée pour mettre en
avant les éléments pertinents qui serviront au recalage par la suite. Par exemple, dans le cas
d'un échangeur autoroutier (cf �gure 7.14), l'application successive de �ltres numériques permet
de rehausser les contours des voiries au détriment du reste du cliché.

Figure 7.14 � Application de �ltres.
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7.3.4 Restitution de bâtiments

La photogrammétrie à petite échelle peut être employée pour la restitution 3D de bâtiments.
Le principe général est identique à celui présenté précédemment, à savoir la mise en évidence
de points communs à plusieurs clichés pour obtenir leur position spatiale. Il existe de nombreux
logiciels (dont certains libres) dont l'interface propose des fonctions de base communes :

� a�chage des clichés en vis à vis ;
� possibilité de traitement numérique (�ltre, transformation géométrique,...) ;
� sélection de points communs sur les clichés (on parle de feature matching, cf �gure 7.15) ;
� sauvegarde des coordonnées des points identi�és et possibilité de restitution

tridimensionnelle (cf �gures 7.16 et 7.17).

Figure 7.15 � Feature matching.

Figure 7.16 � Rendu �laire. Figure 7.17 � Rendu 3D.

Ce type de logiciel présente un grand intérêt dans les projets de restauration pour lesquels
aucune donnée n'est disponible sur les objets existants.
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RÉFÉRENCES

7.4 Lexique

Français Anglais Français Anglais
photogrammétrie photogrammetry - di�érentiel di�erential location
- aérienne aerial photogrammetry segment de contrôle control segment
- terrestre ground photogrammetry segment spatial space segment
positionnement location segment utilisateur user segment
- autonome autonomous location

Table 7.2 � Lexique du chapitre 7.
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Annexe A

Formulaire de topographie

Incertitude expérimentale

Moyenne arithmétique Ecart type expérimental Ecart type de la moyenne

x = 1
n

n∑
i=1

xi σ =

√
1

n− 1

n∑
i=1

(xi − xi)2 σx =
s√
n

Planimétrie

Figure A.1 � Exemples de mesures relevées pour l'établissement d'un canevas polygonal.

Canevas polygonal

Le calcul initial des coordonnées : {
∆xi = di sin gi
∆yi = di cos gi

(A.1)
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Erreur de fermeture :
ex,tot =

N∑
i=1

∆xi

ey,tot =
N∑
i=1

∆yi

(A.2)

Corrections :
kxi =

di∑
di
ex,tot

kyi =
di∑
di
ey,tot

(A.3)

{
∆xi,corr = ∆xi − kxi
∆yi,corr = ∆yi − kyi

(A.4)

Insertion

Méthode d'intersection

Point approché

YP = YA +
(XB −XA)− (YB − YA) tan gB

tan gA − tan gB
(A.5)

XP = XA + (YP − YA) tan gA (A.6)

Figure A.2 � Principe de la méthode par intersections des rayons de visée.

Méthode des moindres carrés Résidus :

rJ =
dX∆Y

D2
− dY∆X

D2
+ gaJ − gmJ (A.7)

Minimisation de la somme des carrés des résidus :[ ∑
a2
i

∑
aibi∑

aibi
∑
b2
i

]
·
{
dX
dY

}
= −

{ ∑
aici∑
bici

}
(A.8)

avec :

aJ =
∆Y

D2
(A.9)

bJ = −∆X

D2
(A.10)

cJ = gaJ − gmJ (A.11)

D2 = ∆X2 + ∆Y 2 (A.12)
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Méthode par relèvement

Point approché Méthode du calcul du gisement :

tan gA = −(YC − YB)− (XA −XB) cotα + (XA −XC) cot β

(XC −XB)− (YA − YB) cotα + (YA − YC) cot β
(A.13)

Figure A.3 � Principe de la méthode par relèvement.

Point approché :

YMa = YA +
(XB −XA)− (YB − YA) tan gB

tan gA − tan gB
(A.14)

XMa = XA + (YP − YA) tan gA (A.15)

Méthode de Ponthenod

µ+ ν = 400gon− (α + β + γ) = m (A.16)

γ = gBA − gBC = arctan
XB −XA

YB − YA
− arctan

XC −XB

YC − YB
(A.17)

Figure A.4 � Principe de la méthode de Ponthenod.

sinµ

sin ν
=
|BC| sinα
|BA| sin β

= k (A.18)

µ− ν = 2 arctan

(
k − 1

k + 1
tan

m

2

)
= n (A.19)
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 µ =
m+ n

2

ν =
m− n

2

(A.20)

Point approché :

|AMa| = |AB|
sin π − (α + µ)

sinα
= |AB| sinα + µ

sinα
⇒
{
XMa = XA + |AMa| sin gAMa

YMa = YA + |AMa| cos gAMa

(A.21)

Méthode des moindres carrés Résidus :

rJ = aJ · dX + bJ · dY − dg0 + cJ (A.22)

N∑
i=1

a2
i

N∑
i=1

aibi −
N∑
i=1

ai

N∑
i=1

aibi

N∑
i=1

b2
i −

N∑
i=1

bi

N∑
i=1

ai

N∑
i=1

bi −N


·


dX
dY
dg0

 = −



N∑
i=1

aici

N∑
i=1

bici

N∑
i=1

ci


(A.23)

Avec :

aJ = −∆YJ
D2
J

bJ =
∆XJ

D2
J

cJ = gaJ − g0a − LJ (A.24)

Méthode de multilatération

Figure A.5 � Principe de la méthode par multilatération.

Point approché
R2

2 = R2
1 + d2

C1C2
− 2R1dC1C2 cosα (A.25)

avec :

dC1C2 =

√
(XC2 −XC1)

2 + (YC2 − YC1)
2 (A.26)
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Figure A.6 � Recherche du point approché par multilatération.

Gisement de visée : 
gC1C2 = arctan

XC2
−XC1

YC2
−YC1

gC1I1 = gC1C2 − α
gC1I2 = gC1C2 + α

(A.27)

Points d'intersection :{
XI1 = XC1 +R1 sin gC1I1

YI1 = YC1 +R1 cos gC1I1

{
XI2 = XC1 +R1 sin gC1I2

YI2 = YC1 +R1 cos gC1I2

(A.28)

Méthode des moindres carrés
n∑
j=1

sin2 gJMa
1

2

n∑
j=1

sin 2gJMa

1
2

n∑
j=1

sin 2gJMa

n∑
j=1

cos2 gJMa

 ·
{
dX
dY

}
= −



n∑
j=1

∆DJM sin gJMa

n∑
j=1

∆DJM cos gJMa

 (A.29)
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