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a b s t r a c t 

The paper presents several multi-criteria decision-analysis methods for the purpose of assessing carbon 

dioxide utilization pathways, to identify and select the most relevant processes to convert captured CO 2 

from industrial gas streams into compounds of interest. This paper explores and illustrates the application 

of decision-analysis approaches, their associated outcomes and how these both differ and complement 

each other. It includes non-compensatory methods (LexiMin and LexiMax), aggregation-based methods 

(Weighted Sum Model and Analytic Hierarchy Process), and the elimination and choice expressing the re- 

ality approach. Nine indicators grouped into three performance criteria, involving engineering, economic, 

and environmental aspects, are considered to assess ten alternatives and help to identify the preference 

relation among them. The rankings and their tolerance to change in criterion and indicator weights are 

compared amongst the selected methods, highlighting the fact that some indicators are more sensitive 

than the others. Even though the results obtained by the aggregation methods are more decisive, the 

outranking method proposes more qualified conclusions, where the techno-economic and environmen- 

tal aspects are complementary but not interchangeable. Low degree compensatory methods might be 

advised in the specific field of CO 2 utilization, as well as in the wider issue of environmental decision- 

making. Also, this paper discusses the limitations of the proposed methods, while providing insights and 

some recommendations for applications of these approaches in similar contexts. Overall, the results show 

that methanol, methane, and dimethyl carbonate are CO 2 -based products that are the most promising to 

be implemented in very near future with respect to engineering, economic, and environmental perfor- 

mances. 

© 2020 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved. 
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1. Introduction 

Global energy-related CO 2 emissions reached an historic value

of 37 Gt ( International Energy Agency IEA, 2019 ). In 2018, the Inter-

governmental Panel on Climate Change (IPCC) released a report on

the impacts of global warming of 1.5 °C above pre-industrial lev-

els and related global greenhouse gas emission pathways ( Masson-

Delmotte et al., 2018 ). Limiting global warming to 1.5 °C would

require rapid, far-reaching and unprecedented changes in all as-

pects of society. Anthropic CO 2 is emitted by a large variety of

sources, including large stationary sources and industrial facili-

ties such as power plants, steel plants or cement plants, small-

to-medium sources, such as industrial and commercial buildings,
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s well as smaller sources such as transportation ( Muradov, 2014 ).

n this context, Carbon Capture Utilization and Storage (CCUS)

as acknowledged in almost every pathway IPCC authors used

o reach the 1.5 °C ( Rogelj et al., 2018 ). It was especially high-

ighted for its ability to defossilize the industrial sector, especially

hose with high process emissions, such as cement where the main

art of CO 2 emissions comes from the decarbonation of limestone

 Farfan et al., 2019 ). Kätelhön et al. (2019) also showed that CCUS

as the technical potential to decouple chemical production from

ossil resources, reducing annual greenhouse gasses emissions by

p to 3.5 GtCO 2 -eq in 2030, though it would require huge amount

f low-carbon electricity. 

CCUS has therefore gained significant attention from gov-

rnments, the energy industry, and other important players

uch as the International Energy Agency ( Bruhn et al., 2016 ).

orhasyima and Mahlia (2018) recently proposed a patent land-

cape review on CO 2 utilization technologies published between

ear 1980–2017, where more than 30 0 0 number of patents were
reserved. 
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e  
ethodologically identified worldwide, including enhanced oil re-

overy (EOR), enhanced coal-bed methane (ECBM), and enhanced

eothermal system (EGS), chemical and fuel, mineral carbona-

ion, and biological algae cultivation. Tcvetkov et al. (2019) re-

iewed how CO 2 has a changing role in the transition to a circu-

ar economy, and concluded that the development of CCUS tech-

ologies will invariably lead to a change in attitudes towards CO 2 ,

s well as the appearance of new CO 2 -based markets and indus-

ries. Castillo-Castillo and Angelis-Dimakis (2019) analyzed also all

uropean policies relevant to the development of CO 2 utilization,

nd outlined potential benefits of policies to foster the produc-

ion and uptake of several CO 2 -derived products, such as methanol,

olyurethane and aggregates. 

Following the capture and transport process, CO 2 can be dis-

osed of in natural sites such as deep geological sequestration

 Anwar et al., 2018 ; Tapia et al., 2018 ). CO 2 utilization is consid-

red as a valuable complement to storage ( Aldaco et al., 2019 ). Its

otential contribution to avoid CO 2 emissions in the short term has

een evaluated to 207 MtCO 2 per year in 2016 and is expected to

each about 332 MtCO 2 per year in 2030 ( Aresta, 2010 ). Its aim to

oth reducing carbon dioxide emissions directly by converting CO 2 

nto chemicals or fuels, and reducing the dependence of fossil re-

ource use has motivated a number of analyses. However, very few

hemical processes utilizing CO 2 as feedstock are currently of in-

ustrial relevance, except for the production of urea and salicylic

cid. With the emergence of a multitude of promising conversion

athways based on various chemical reactions ( Alper and Yuksel

rhan, 2017 ; Rafiee et al., 2018 ), the challenge is to identify the

ost advanced CO 2 -based technologies for short- to mid-term de-

loyment in industries. The decision to implement such emerging

echnologies should be supported by multiple dimensions or cri-

eria and involve techno-economic parameters, additionally to en-

ironmental perspectives to lower the risk of generating new CO 2 

mission sources. Given that, multi-criteria approaches imply ra-

ional decision-making where there are alternative choices to be

onsidered, that best fits with goals, objectives, values, and prefer-

nces of the decision maker to evaluate the trade-offs, in a trans-

arent and consistent way ( Cinelli et al., 2020 ). 

Up to now, only few studies focused on a global methodol-

gy involving several criteria to assess carbon capture and uti-

ization (CCU) options, mainly based on a simple scoring sys-

em, where scores of all criteria are summed up. Thybaud and

ebain (2010) performed a cross-sectional analysis for the French

nvironment and Energy Management Agency (ADEME), review-

ng the different pathways of CO 2 recycling and identified the

ain development opportunities in France. This work was ex-

ended in 2014 by ENEA Consulting and included a preliminary as-

essment of the performances, advantages and drawbacks, as well

s a brief analysis of the markets for several CO 2 -derived com-

ounds, including methanol, formic acid and calcium carbonates

 ADEME, 2014 ). The Global CCS Institute (2011) investigated how

O 2 utilization would accelerate the deployment of CCU, based

n a set of criteria comprising the maturity of the technology,

he potential for scale-up, the value for money, the CO 2 abate-

ent potential, as well as the environmental and social benefits.

imilarly, Ampelli et al. (2015) proposed an overview of options

o valorize CO 2 , based on the potential developments, the eco-

omic perspectives, the external use of energy, the potential vol-

me of use of CO 2 , the time of sequestration, and other envi-

onmental impacts. An initial assessment evaluating one-hundred

wenty-three reactions from the literature was also carried out by

tto et al. (2015) . The reactions, representing useful CO 2 utiliza-

ion options, were assessed using a scoring system to rank them.

apia et al. (2017) proposed an approach to screen CO 2 utiliza-

ion options using a hybrid Analytic Hierarchy Process- Data En-

elopment Analysis method. The selection was based on attributed
cores coming from a combination of quantitative data and expert

udgments on qualitative criteria. They presented two case studies

o illustrate their framework, involving mainly enhanced oil recov-

ry, enhanced coal bed methane and enhanced gas recovery from

hale gas as CCU options. Patricio et al. (2017) also proposed an an-

lytical tool to facilitate the identification of potential CCU indus-

rial symbiosis, based on the development of generic matrices for

O 2 sources and receivers. More recently, Chauvy et al. (2019) pro-

osed a framework to select the most relevant emerging options to

e implemented short- to mid-term, which included technical, eco-

omic, energetic, environmental, and market considerations, com-

rised in nine indicators grouped into the 3E performance cri-

eria (Engineering-Economic-Environmental). They considered the 

imple Weighted Sum (WSM) approach using the Analytic Hierar-

hy Process (AHP) method to address the criteria and indicators

eights. A ranking of emerging CO 2 utilization products was then

roposed ( Chauvy et al., 2019 ). Regarding the evaluation of car-

on capture and storage (CCS), Jakobsen et al. (2013 , 2014 ), and

oussanaly et al. (2013) developed means and tools for integrated

ulti-criteria assessment of the CCS value chain, involving several

conomic, environmental, and risk associated criteria to enable se-

ection of most promising options for CCS. Volkart et al. (2016) car-

ied out an interdisciplinary assessment of several power gener-

tion options with and without CCS in view of the new Swiss

nergy policy, showing the necessity to consider various criteria

hile making decision, as CO 2 storage faces sometimes adverse

ublic opinion. 

These studies consider methods that are all based on an addi-

ive score aggregation, where the alternatives with the highest to-

al scores are selected as the most promising. However, these ap-

roaches are compensatory as they permit trade-offs between at-

ributes. Thus, an unfavorable value in one attribute can be offset

y a favorable value in other attributes. In order to avoid this, non-

ompensatory Multi-criteria Decision Analysis (MCDA) techniques 

re often applied. It is worth noting that there are also possibil-

ties to add different levels of compensation to simple aggrega-

ion methods, i.e. if a decision maker is willing to allow that a

ow performance of one indicator can be compensated by another

ndicator fully, to a certain extent or not at all, as discussed by

asser et al. (2020) . 

Following the aforementioned works and considerations, the

resent paper aims to test different MCDA approaches to select

O 2 -based products enabling both CO 2 mitigation and replacement

f fossil-derived carbon. This study is built on a case study con-

ucted by Chauvy et al. (2019) , which proposed a set of rele-

ant criteria and indicators to assess CO 2 -based products, and ini-

ially used the simple aggregation WSM approach and the AHP

o elicit the weights for the selection. It then retrospectively ex-

lores and illustrates the application of several MCDA approaches,

heir associated outcomes and how these both differ and comple-

ent each other. Several widely used MCDA methods – elimina-

ion and choice expressing the reality (ELECTRE), LexiMin and Lex-

Max methods, in addition to WSM and AHP ones – are applied

or the assessment of CO 2 -based pathways. The rankings of the al-

ernatives and their tolerance to change in criterion and indicator

eights are compared amongst selected MCDA methods. The com-

lementarity of these selected methods is thus explored in order to

how the extent to which they add value to a decision maker’s un-

erstanding, and their comparative analysis will aid them to make

n informed choice of the most favorable CO 2 conversion pathways

nd mitigate their contribution to global warming. 

. Literature review 

Proper decision-making is a very challenging task, and may be

specially difficult if there are various alternatives and criteria that
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Table 1 

Recent literature reviews on MCDA applied in various fields. The list is not intended to be exhaustive. 

Field of application Authors Key aspects 

Civil engineering and 

construction 

Zavadskas et al. (2016a) 138 studies incl. (up to 2015). Show that AHP (more used for measurement of intangible criteria 

when assessing sustainability or evaluating intelligent buildings), TOPSIS (technologies or 

structures), Fuzzy methods and ELECTRE are the most used methods. Zavadskas et al. (2016b) 

Environment Baumann et al. (2019) Applied to energy storage systems. Show that AHP, partially combined with other methods (e.g., 

outranking approaches) are the most frequently used. 

Martins et al. (2020) Applied to oil and gas decommissioning problems. Highlight that AHP, PROMETHEE, TOPSIS are the 

more frequently used. 

Finance Marqués et al. (2020) 94 studies incl. (2000–2018). Show that TOPSIS and ELECTRE models are the most popular to 

undertake the financial problems. 

Healthcare Adunlin et al. (2015) 66 studies incl. (1980–2013). AHP is the most used technique (50%). 

Information technology Zare et al. (2016) 42 studies incl. (2001–2015). Applied to E-learning systems. Highlight the most considered criteria 

in the field. Show that AHP is the most used in the field, 45% combines MCDA with fuzzy set 

theory. Integrated MCDA approaches such as DEMATEL ( a ) – ANP ( b ) are highly recommended. 

Logistics Chai et al. (2013) 123 studies incl. (2008–2012). Show that AHP (24%), TOPSIS (15%), ANP (12%), and ELECTRE (3%) are 

the most frequent methods. Highlight also the significant part of mathematical programming and 

artificial intelligence techniques. 

Chai and Ngai (2020) (2013–2018). Show that ELECTRE is not reported after 2013. AHP and ANP still dominate. 

Management Mahjouri et al. (2017) Applied to wastewater treatment. Fuzzy AHP combined with Fuzzy Delphi method to identify 

criteria and indicators. Show that AHP is the most applicated. 

Coban et al. (2018) Applied to municipal solid waste management. Show that AHP and ELECTRE are mainly used in 

strategy and location determination; PROMETHEE is mostly preferred to identify optimal waste 

management strategies. 

Jones et al. (2019) Applied to water management. Propose a framework combining life cycle assessment and MCDA 

and use an aggregation approach. 

Sitorus et al. (2019) 90 studies incl. (1999–2017). Applied to mine planning. Show that AHP is the most used, followed 

by the ELECTRE and PROMETHEE methods. Highlight a rise in application of hybrid MCDA methods 

(e.g., fuzzy AHP, fuzzy TOPSIS). 

a DEMATEL – Decision Making Trial and Evaluation Laboratory. 
b ANP – Analytic network process. 
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are often contradictory. MCDA methods designate a preferred al-

ternative and/or rank alternative partially or completely in a pref-

erence order ( Roy, 1996 ). The general procedure consists of several

steps: problem and alternatives’ formulation, criteria and indicators

selection, criteria and indicators weighting, evaluation, and final

treatment and conclusion. The problem is defined and involves dif-

ferent stakeholders. It identifies the goal, the assumptions and sys-

tems boundaries. The requirements imply constraints that any ac-

ceptable solution of the decision problem must fulfill. It is followed

by the identification of the possible alternatives that need to meet

the requirements. One of the most important part is the building

of a coherent set of criteria and indicators and attributing weights,

reflecting the stakeholders and decision maker. It is necessary to

define discriminating criteria and indicators as objective measures.

Weights can be assigned to individual criteria and indicators that

give them different relative importance. Assigning weights is often

perceived as subjective, depending on the approach used to deter-

mine and exploit them. One or several MCDA algorithms can then

be selected and applied leading to the choice of the appropriate

alternatives. 

MCDA research has developed immensely. Numerous MCDA

techniques are thus available, being different in the type of

research questions they aim to address, the type of problem,

the theoretical background, and the type of outcomes obtained

( Sitorus et al., 2019 ), and even small variation to existing ap-

proaches may cause the creation of new research areas. 

Some of literature reviews focused on the methodologies, such

as Mardani et al. (2015) . This study systematically reviewed a to-

tal of 393 articles published from 20 0 0 to 2014 on methodolo-

gies of MCDA techniques and approaches. A comparative study

was carried out among widely applied methods in MCDA by

Kolios et al. (2016) . Six methods were discussed together with

the best practice implementation of each method, and included

the weighted sum and weighted product methods, the analyti-

cal hierarchy process, the technique for the order of preference

by similarity to the ideal solution (TOPSIS), the elimination and

choice expressing the reality, and the preference ranking organi-
ation method for enrichment evaluation (PROMETHEE). More re-

ently, Celik et al. (2019) proposed an overview of stochastic multi-

riteria decision-making methods and applications, included a total

f 61 papers reviewed. 

Other reviews focused on applications in specific fields, as evi-

enced by recent literature reviews presented in Table 1 . It is no-

iced that AHP method has strong dominance regardless of the

eld of MCDA applications. The method is used for criteria ag-

regation and final comparison. Additionally, according to the lit-

rature, the evaluation criteria most used in decision-making pro-

esses can be grouped into four main categories, namely techni-

al, economic, environmental, and social. The strength of MCDA

elies on its capacity to cope with conflicting stakeholder per-

pectives, and address trade-offs between economic, environmen-

al, and social values, as discussed by Langemeyer et al. (2016) .

esce et al. (2018) also indicated the importance to involve local

xperts to weight the criteria, and highlighted the limit of MCDA

o assess long-term performance of alternatives. Finally, it can be

een that one of the improvements to the MCDA techniques, es-

ecially to handle uncertainties, is the combination of a MCDA

ethod with the fuzzy set theory, in order to accurately evaluate

he relative importance of criteria, and the performance ratings of

lternatives with respect to a criterion (see Table 1 ). 

Prior to discussing the developed methodology, an overview

f the following methods, including non-compensatory approaches

LexiMin and LexiMax), aggregation-based approaches (WSM,

HP), and the outranking method ELECTRE, is presented hereafter.

hey are representative of the various MCDA strategies and be-

ieved to be well suited for the purpose of this study. 

.1. LexiMin and LexiMax approaches 

In LexiMin and LexiMax decision-making, a sequential elimina-

ion strategy is used until a unique solution is found ( Sen, 1970 ).

or each alternative, all scores are ordered regardless of the crite-

ia and indicators. A sorted vector in ascending order (LexiMin) or

escending order (LexiMax) is then defined. LexiMin ranks alterna-
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ives, so the decision maker is insured that the worst outcomes are

voided as much as possible. In the comparison of two alternatives,

exiMin tries to rank them on the basis of their weakest attribute.

f the alternatives have the same value on their weakest attribute,

his attribute is somehow discarded. Then, LexiMin tries to perform

he comparison on the second weakest attribute of each alterna-

ive, and so on ( Kurokawa et al., 2018 ). LexiMax proceeds similarly,

n the basis of the strongest attribute of both alternatives. 

The LexiMin and LexiMax approaches are examples of non-

ompensatory methods. Comparisons are made on an attribute-by-

ttribute basis. 

.2. Weighted sum (WSM) 

The weighted sum is the most common MCDA method. If there

re m alternatives and n indicators then the best alternative is the

ne that satisfies the following Eq. (1) ( Triantaphyllou, 20 0 0 ). 

 W SM 

= ma x j 

n ∑ 

i =1 

d i j w i (1) 

here j = 1 , 2 , . . . , m , A WSM 

is the WSM score of the best alterna-

ive, d ij is the performance value of the j th alternative in terms of

 

th indicator, and w i is the weight allocated to the i th indicator. 

In this aggregation method, the weights depend on the ranges

nd the encoding of the scales and may be interpreted as substi-

ution rates ( Figueira et al., 2016 ). 

.3. Analytic hierarchy process (AHP) 

The AHP approach was proposed by Saaty (1980 , 1988 ). It is a

ethodology for solving decision-making problems by the priori-

ization of alternatives. The problem is structured in a hierarchy

f different levels constituting the main criteria and indicators. On

ach hierarchy level, elements are compared in pairs to assess their

elative preference with respect to each of the elements at the next

igher level. The intensity of preference between two elements is

stablished on the basis of Saaty’s scale from 1 to 9, where assign-

ng a numerical value of 1 means that both elements are of the

ame importance, and assigning a value equal to 9 indicates that

ne of the elements shows an extreme dominance over another.

his process results in a n × n reciprocal pairwise comparison ma-

rix format, where n is the number of elements compared. Based

n the matrix, criteria weights can be calculated in some meth-

ds, such as arithmetic mean method, geometric mean method or

haracteristic root method ( Wang et al., 2009 ). 

After deriving the numerical weights for each element of the

ierarchy, the final step of the process deals with the numerical

riorities that are calculated for each of the decision alternatives,

epresenting the alternatives’ relative ability to achieve the deci-

ion goal. Thus, a m × n matrix ( m alternatives and n indicators)

s constructed. According to the AHP approach, the best alterna-

ive in the maximization case is indicated by a similar relationship

han expression (1) . The AHP method is often considered to assist

ecision makers to calculate the weight for each criterion used in

he weighted sum. 

.4. ELECTRE (Elimination and choice expressing the reality) 

The outranking methods consist of establishing a preference re-

ation (degree of dominance) on a set of alternatives, which results

n a partial preference ranking of alternatives, instead of a cardinal

easure of their preference relation. They can deal with unclear

nd incomplete information ( Penadés-Plà et al., 2016 ). 

ELECTRE outranking methods have been developed in the mid-

960s ( Roy, 1968 ). They aim to assess whether option a is at least
s good as b . It is based on two major concepts: concordance,

hen an alternative a outranks an alternative b if a sufficient ma-

ority of criteria are in favor of alternative a ; and non-discordance,

hen the concordance condition holds and none of the criteria in

he minority should be opposed too strongly to the outranking of

 by a . It allows to handle heterogeneous criteria, both quantitative

nd qualitative, where aggregation in a common scale is difficult.

t prevents compensation behavior. 

.5. Summary of the MCDA methods 

Table 2 presents a summary of the different MCDA methods

reviously briefly introduced as well as their strengths and weak-

esses. 

. Methodology 

The following statements are considered for the selected meth-

ds: 

• G = { g i } is the finite set of indicators, where i = 1 , 2 , . . . n . 
• A = { a j } is the finite set of alternatives, where j = 1 , 2 , . . . m . 
• g i ( a j ) denotes the performance of alternative a j against indica-

tor g i . For the sake of simplicity, it is assumed that the higher

the performance value, the better. All the performance data

are gathered in the decision table D = { d i j } , where d i j = g i ( a j ) ,

i = 1 , 2 , . . . n and j = 1 , 2 , . . . m . This way, the performances of

all the alternatives against indicator g i are read in row i of D ,

whereas the performances of alternative a j against all the indi-

cators are read in column j of D . 
• W = { w i } is the finite set of weights eventually (i.e., depend-

ing on the algorithm) assigned to the indicators, where i =
1 , 2 , . . . n and 

n ∑ 

i =1 

w i = 1 . 

• The dominance relation between the alternatives is defined as

follows. The alternative a 1 is said to dominate the alternative

a 2 with respect to the set of indicators G , i.e. a 1 ≥ a 2 , when for

all i, g i ( a 1 ) ≥ g i ( a 2 ). 

.1. LexiMin and LexiMax methodology 

The LexiMin ordering is a simple aggregation method

 Bouyssou et al., 2006 ), based on the lowest performance value

hatever the indicator. g ↑ ( a j ) denotes the performance vector

 ( a j ) when reordered in ascending order. 

When two alternatives, for example, a 1 and a 2 , are evaluated,

he reordered vectors, g ↑ ( a 1 ) and g ↑ ( a 2 ), are built and compared

s follows. All elements of both reordered vectors, from index 1 to

aximum n , are compared until a difference is found, say at index

alue s , i.e. g 
↑ 
1 
( a 1 ) = g 

↑ 
1 
( a 2 ) ; . . . ; g 

↑ 
s −1 

( a 1 ) = g 
↑ 
s −1 

( a 2 ) . It is worth

oting that the reordering for a 1 may be different than the reorder-

ng for a 2 . 

If g 
↑ 
s ( a 1 ) > g 

↑ 
s ( a 2 ) , a 1 is LexiMin-preferred to a 2 and the result

s noted a 1 �leximin a 2 . In contrast, if g 
↑ 
1 
( a 1 ) < g 

↑ 
1 
( a 2 ) , a 2 is LexiMin-

referred to a 1 and the result is noted a 2 �leximin a 1 . If no difference

s found over all the elements, i.e., g 
↑ 
i 
( a 1 ) = g 

↑ 
i 
( a 2 ) , the result is

oted a 1 ~ leximin a 2 . 

The commensurability of the scales is crucial for this method as

he performances against different indicators need to be compared.

or example, if 3 and 4 are two performance values against criteria

 1 and g 2 , respectively, then the decision maker must consider 4 as

etter than 3, regardless of the indicators. 

As shown by the algorithm, the LexiMin method lies on a

orst-performance basis, irrespective of the indicators considered.

he LexiMax method is similar to the LexiMin one, however lies

n a best-performance basis. Selecting one method or the other

epends on the decision maker’s objectives. 
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Table 2 

Summary of the MCDA methods considered in this paper. 

Adapted from Kumar et al. (2017) . 

Methods Steps Strength Weakness Ref. 

LexiMin/ LexiMax Define sorted vector in 

ascending order (LexiMin) or 

descending order (LexiMax). 

Compare then each component. 

Simple aggregation method. Performances must be able to 

be compared on different 

criteria. 

Bouyssou et al. (2006) 

Weighted Sum Method 

( WSM ) 

Develop evaluation matrix 

Set the weights for each 

criterion. 

Calculate weighted score of each 

alternative by multiplying each 

criterion value by its 

corresponding weight. 

Aggregate. 

Does not involve complex 

mathematics; 

Easily adaptable. 

Difficulty when applied to 

multi-dimensional 

decision-making problems; 

High sensitivity to changes in 

scale. 

Mulliner et al. (2016) 

Analytical hierarchy 

process ( AHP ) 

Define objective into a 

hierarchical model. 

Determine weights for each 

criterion. 

Calculate score of each 

alternative considering criteria. 

Calculate overall score of each 

alternative. 

Determine the consistency index 

and consistency ratio. 

Adaptable; 

Evaluate the consistency of 

the decision matrix. 

Interdependency between 

objectives and alternatives 

leading sometimes to 

hazardous results. 

Saaty (1980 , 1988 ) 

Penadés-Plà et al. (2016) 

Elimination and choice 

( ELECTRE ) 

Determine the threshold 

function. 

Determine the Concordance 

index. 

Determine the Discordance 

index. 

Determine the Outranking 

relations. 

Assign rank. 

Deals with both quantitative 

and qualitative features of 

criteria; 

Deals with heterogeneous 

scales; 

Less sensitive to any changes 

in data. 

Not suitable to calculate an 

overall score; 

Requires an additional 

threshold to be introduced: no 

“correct value”. 

Pohekar and 

Ramachandran (2004) 

Papadopoulos and 

Karagiannidis (2008) 

Bottero et al. (2015) 

Penadés-Plà et al. (2016) 
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3.2. AHP methodology 

Once the decision problem is structured and indicators defined,

the AHP approach comprises mainly two steps to first define the

weights of the indicators, and then obtain an overall score for each

option leading to the optimum alternatives. 

Weighting the indicators is not a trivial task and, among several

weighting methods, the AHP method has been considered here. Let

first note that the indicators, denoted g 1 , g 2 ,… g n , can be grouped

in sets based on their technical affinity, which leads to higher-level

criteria. This way, the calculation of the scores, thus the ranking

of the alternatives can be achieved according to two hierarchical

levels of the indicators/criteria. 

At the lower level, the weighting factors w 

( ind ) were determined

using the AHP method described by Saaty (1980 , 1988 ) and from

the initial case study proposed by Chauvy et al. (2019) . In this

method, the criteria are compared two by two, each pair being

given a comparison value according to the following linear scale:

1: Equal importance; 3: Weak importance; 5: Essential or strong

importance; 7: Very strong or demonstrated importance; 9: Ab-

solute importance. For example, giving pair ( g 1 , g 2 ) a value of 7

means that g 1 exhibits a ‘very strong or demonstrated importance’

with respect to g 2 . The intermediate values 2, 4, 6 and 8 are used

in particular compromising situations ( Saaty, 1980 ). At the higher

level, the weighting factors w 

( crit ) were determined similarly. 

Let describe how the weights are computed whatever the hi-

erarchical level h (i.e., indicators w 

( ind ) and criteria w 

( crit ) ) and the

number n of indicators or criteria. 

The pairwise comparison and evaluation process allows the

building of the n × n matrix B ( h ) . 

B 

( h ) = 

⎡ 

⎢ ⎢ ⎣ 

1 b 12 . . . 

b 21 1 . . . 

. . . 
b n 1 

. . . 
b n 2 

. . . 

. . . 

b 1 n 
b 2 n 

. . . 
1 

⎤ 

⎥ ⎥ ⎦ 

(2)
More exactly, when comparing two elements k and l , the com-

arison value of the linear scale is given to element b kl , if element

 is better than element l ; and to b lk otherwise. Then the other ele-

ents are computed according to constraint b kl . b lk = 1 . Diagonal

lements are obviously equal to 1. 

The weight vectors w k 
( h ) are computed from matrix B ( h ) us-

ng the approximate eigenvector method from Saaty (1980) (see

q. (3) ). 

 k 
( h ) = 

n 
√ ∏ n 

i =1 b ik ∑ n 
k =1 

n 
√ ∏ n 

i =1 b ik 
(3)

The computation of the weight vector w 

( h ) guarantees that the

eighting constraint 
n ∑ 

k =1 

w k 
(h ) = 1 is verified. To this extent, for

ach group of indicators (corresponding to a criterion), a weight

ector v is derived by multiplying the local weight vector w 

( ind ) 

y the corresponding criterion weight element in w 

( crit ) . The global

eight vector is obtained by concatenation of the three v weight

ectors. 

When many pairwise comparisons are performed, inconsisten-

ies may typically arise. An important feature of the AHP method

s to guarantee overall consistency. 

Consistency is measured by the Consistency Ratio ( CR ), which is

efined in Eq. (4) : 

 R = 

C I 

RI 
(4)

here CI is the consistency index of the matrix, and RI the consis-

ency index of a reference, random-like matrix. 

CI is estimated using Eqs. (5) and (6) , the closer the ɛ max to n ,

he more consistent the computed weights. 

I = 

ε max − n 

n − 1 

(5)
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Table 3 

Values of the Random Index ( RI ) ( Saaty, 1980 ). 

n 1 2 3 4 5 6 7 8 9 

RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 
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Table 4 

Graphical representation of the outranking relations. 

Outranking relation Graphical representation 

a 1 Pa 2 

a 1 P 
−a 2 

a 1 Ia 2 

a 1 Ra 2 
 max = 

1 

n 

n ∑ 

k =1 

(
B 

( h ) w 

( h ) 
)

k 

w k 

(6) 

Reference RI values have been provided by Saaty (1980) for dif-

erent values of n , as shown in Table 3 . 

An overall consistency ratio integrating both hierarchy levels,

.e. criterion and indicator levels, is defined as the ratio of a

eighted consistency index ( CI ) to a weighted random consistency

ndex ( RI ). If the consistency ratio is greater than 0.10, it is neces-

ary to revise the judgments in order to identify the cause of the

nconsistency ( Saaty, 1980 ). 

The next step in the AHP method is to evaluate the alternatives

ith respect to the criteria. A real n × m score matrix S = { s i j }
s defined, where each entry s ij represents the score of the j th al-

ernative with respect to the i th indicator. To compute the scores, a

airwise comparison m × m matrix R ( i ) is built for each indicator g i 
eparately, where m is the number of alternatives evaluated. Each

lement r j j ′ (i ) of R ( i ) represents the evaluation of the j th alternative

ompared to the j 
′ th alternative, with respect to the i th indicator.

he elements r j j ′ (i ) and r j ′ j (i ) satisfy the constraint r j j ′ (i ) . r j ′ j (i ) = 1 ,

nd r j j 
(i ) = 1 . An evaluation scale similar to the one previously in-

roduced is used to translate the decision table D to the compari-

on matrix R ( i ) , according to a predefined translation table, T . 

The procedure described for the pairwise comparison B ( h ) is ap-

lied to each matrix R ( i ) . Score vectors s ( i ) are computed similarly

o w k 
( h ) , with i = 1 . . . n . Hence, the vector s ( i ) contains the scores of

he evaluated alternatives, with respect to the i th indicator, defin-

ng the table S . 

Finally, the best alternative is the one that has the greatest

lobal score ( Eq. (7) ): 

H P j = 

n ∑ 

i =1 

s i j w i (7) 

here AHP j is the global score of the alternative a j , and where w i ,

 ij , and n are defined as above. 

.3. Integrated multi–criteria decision-making AHP–WSM 

ethodology 

In this method, for each alternative, a score is computed as the

eighted sum of the performances against the indicators, as ex-

ressed in Eq. (8) : 

 

(
a j 

)
= 

n ∑ 

i =1 

d i j w i (8) 

here j = 1 , 2 , . . . , M, d ij is the performance value of the alterna-

ive a j against indicator g i , and w i is the weight allocated to indica-

or g i . The weights determined by the first step of the AHP method

ay be used, ensuring that they correspond to what the decision

aker mean, i.e. the relative importance placed on each indicator,

y comparing for instance alternatives with similar attributes. Then

he alternatives are ranked according to the scores, e.g., in decreas-

ng order. 

It is worth noting that the weighted sum method is a com-

ensatory method, where a bad performance on criterion g 1 can

e compensated by a good performance on criterion g 2 . Non-

ompensatory method might be more desirable when comparison

cross criteria are difficult. 
.4. ELECTRE methodology 

ELECTRE is a set of non-compensatory methods allowing in the

nd for preference modeling of alternatives ( Figueira et al., 2016 ).

he preference model is based on an outranking binary relation

etween alternatives, noted S . For example, relation a 1 Sa 2 means

a 1 is at least as good as a 2 over a sufficient subset of the set G of

he indicators”, and its validation conditions are explained later in

his section. 

The preference concept is defined based on the outranking oc-

urrences between alternatives a 1 and a 2 , and graphical represen-

ation of the outranking relations is given in Table 4 . 

• a 1 Sa 2 and not a 2 Sa 1 : a 1 Pa 2 ( a 1 is strictly preferred to a 2 ) 
• a 2 Sa 1 and not a 1 Sa 2 : a 1 P 

−a 2 ( a 2 is strictly preferred to a 1 , or

a 1 is inversely preferred to a 2 ) 
• a 1 Sa 2 and a 2 Sa 1 : a 1 Ia 2 ( a 1 is indifferent to a 2 ); implying a 2 Ia 1 
• Not a 1 Sa 2 and not a 2 Sa 1 : a 1 Ra 2 ( a 1 is incomparable to a 2 ); im-

plying a 2 Ra 1 

The outranking relation a 1 Sa 2 is true if a sufficient majority of

riteria are in favor of it (concordance) and if none of the criteria

f the minority oppose too strongly (non-discordance or non-veto).

oncordance and discordance are evaluated by using appropriate

ndices and threshold values. 

Concordance . The strength of the concordant coalition is mea-

ured by a concordance index C ( a 1 Sa 2 ), which is defined by Eq. (9) .

n this general definition, the weights w i allow to adjust the

mportance of the indicators. The index is compared to a con-

ordance level c ∗, which is generally selected within the range

 0 . 5 , 1 − mi n i w i ] , calculated by Eq. (10) 

. 

( a 1 S a 2 ) = 

∑ 

i ∈ I C ′ 
w i (9) 

here I C ′ = { i : g i ( a 1 ) ≥ g i ( a 2 ) } , i.e., the index set of criteria in fa-

or of a 1 Sa 2 (at least as good as). 

 

∗ = 

∑ m 

a 1 

∑ m 

a 2 
C( a 1 S a 2 ) 

m ( 1 − m ) 
(10) 

here m is the number of alternatives. 

The coalition is considered to be strong enough if

q. (11) holds: 

( a 1 S a 2 ) ≥ c ∗ (11) 

Discordance . Discordance to relation a 1 Sa 2 is concretely defined

ere by Eq. (12) i.e., discordance is established as soon a 2 is suffi-

iently better than a 1 for some indicator. 

 ( a 1 S a 2 ) = 

{
1 iff ∃ j : g i ( a 2 ) ≥ g i ( a 1 ) + δi 

0 

(12)
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Table 5 

Values of the weights ( �) to estimate weighted distance of Kendall’s tau ( K �) ( Kumar and Vassilvit- 

skii, 2010 ). 

Position j 1 2 3 4 5 6 7 8 9 10 

( �j ) 0.488 0.146 0.089 0.066 0.051 0.041 0.033 0.029 0.027 0.027 
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where δi is a positive veto threshold, which is defined for each

indicator g i ∈ G ( Vincke, 1989 ). 

To summarize, the outranking relation a 1 Sa 2 holds as defined

by Eq. (13) : 

a 1 S a 2 iff 

{ 

C( a 1 , a 2 ) ≥ c ∗

and 

D ( a 1 S a 2 ) = 0 

(13)

This outranking relation is usually not a weak order (i.e., a rank-

ing) and a complementary analysis is often necessary, using for ex-

ample the kernel ( Bouyssou et al., 2006 ). 

A Graph Kernel is used to identify the best alternatives. A kernel

of a graph K ⊂ A is defined as: 

• ∀ a 1 ∈ K, �a 2 : a 1 Sa 2 : no alternative a 1 inside the kernel K is bet-

ter than any other alternative a 2 inside K 

• ∀ a 1 , a 2 ∈ K : a 1 Ra 2 : within the kernel K, a 1 is incomparable to

a 2 
• ∀ a 3 �∈ K , ∃ a 1 ∈ K : a 1 Sa 3 : each alternative a 3 outside of the kernel

K is worse than at least one alternative inside K . 

The kernel is unique if the graph has no cycle. In case of cycle,

each cycle can be replaced by a single node. The kernel K of a set

A forms a set of preferred alternatives. 

To represent a finite partially ordered set, in the form of a

drawing of the transitive reduction of Graph Kernels, the Hasse

Graph is preferably considered, based on this axiom of transitivity:

• a 1 Sa 2 and a 2 Sa 3 implies a 1 Sa 3 . 

Beside the Graph Kernel, the Net Flow Score (NFS) procedure

( Bouyssou et al., 2006 ; Szel ̨ag et al., 2014 ) is used to order the al-

ternatives, for example in decreasing order of preference strength.

For each alternative a j , it accounts for the number of other alterna-

tives that it outranks and for the number of those that do outrank

it. Concretely, assuming that the outranking relation a j S a j ′ is equal

to 1 when it is true and to 0 otherwise, Eq. (14) can be used to

calculate the net flow score of a j : 

NF S( a j ) = 

∑ 

a j ∈ A 

[(
a j ′ S a j 

)
−

(
a j S a j ′ 

)]
(14)

The alternatives are then ranked in decreasing order of NFS. 

3.5. Comparative analysis of alternative rankings using different 

MCDA methods 

The different MCDA methods do not necessarily provide the

same ranking among the alternatives. To compare the rankings,

one can use either the Kendall rank correlation coefficient, the

Kendall’s tau distance or a weighted analogue. 

The Kendall rank correlation coefficient ( τ ), as it is defined by

Eq. (15) , was chosen to measure the correlation between the rank-

ing methods. Values of τ range from −1 (100% negative associa-

tion, or perfect inversion) to + 1 (100% positive association, or per-

fect agreement). A value of zero indicates the absence of associa-

tion. 

τ = 

C − D 

C ( M, 2 ) 
(15)
here C is the number of concordant pairs, D the number of dis-

ordant pairs, and C ( M , 2) is the total number of distinct alterna-

ive pairs (number of combinations of two elements in a set of M

lements). 

Let x and y refer to two ranking methods, j and j ′ refer to two

lternative indices, therefore x j , y j , x j ′ , and y j ′ refer to the cor-

esponding ranks. Concordance holds if ( x j > x j ′ and y j > y j ′ ) or

 x j < x j ′ and y j < y j ′ ); discordance holds if ( x j > x j ′ and y j < y j ′ )
r ( x j < x j ′ and y j > y j ′ ); Neither (i.e., tied) if x j = x j ′ or y j = y j ′ . If
here are no ties, then C( M, 2 ) = C + D . 

The higher the Kendall’s tau ( τ ), the better is the similarity be-

ween the two compared rankings. 

Complementarily, the Kendall’s tau distance counts the number

f pairwise disagreements between two ranking lists (see Eq. (16) )

 Kumar and Vassilvitskii, 2010 ). The larger the distance, the more

issimilar the two ranks are. 

 τ = 

∑ 

( j, j ′ ) : j > j ′ 

[
y j < y j ′ 

]
(16)

However, both Kendall’s rank correlation coefficient τ and

endall’s tau distance K τ penalize equally inversions near the head

nd near the tail of a rank. To this extent, the weighted distance

f Kendall’s tau ( K �) is estimated by Eq. (17) ( Kumar and Vas-

ilvitskii, 2010 ). It penalizes each inversion proportionally to the

roduct of the weights ( �) of the two elements being inverted.

q. (17) applies when alternatives are sorted according to the rank

n x . 

 � = 

∑ 

( j, j ′ ) : j > j ′ 
� j � j ′ 

[
y j < y j ′ 

]
(17)

The higher the weighted distance K �, the stronger are the dis-

imilarities between the two compared rankings, with respect to

he weights �. 

The weights ( �) considered are presented in Table 5 . Defined

y Kumar and Vassilvitskii (2010) on the basis of a click-through

ate, these weights have been chosen to focus on the head of the

ankings. 

.6. Sensitivity analysis 

Ranking results in MCDA depends on the weights distribution

mong criteria and indicators. A sensitivity analysis with respect

o the weights is performed to provide the decision maker with

 better comprehension of the robustness of the methods under

eight uncertainty. 

.7. Summary of the suggested methodology 

Fig. 1 presents the methodological framework of the MCDA ap-

roaches under consideration in the decision-making problem. It

s worth noticing that this scheme of operation is in line with

he procedure developed by the OECD (2008) . This approach iden-

ified a ten-step process, with the aim to establish a common

uideline as a basis for the development of composite indices

i.e., aggregations of a set of indicators), generally applied to mul-

idimensional concepts like welfare, well-being, human develop-

ent, environmental sustainability, and industrial competitiveness.

reco et al. (2019) recently proposed a more recent outlook on the

dvances made in this field over the past years, comprising details

n the issues of weighting, aggregation, and robustness. 
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Fig. 1. Methodological framework of the MCDA. 
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. Results and discussion 

This paper aims to assess CO 2 conversion pathways for short-

o mid-term deployment in industry offering the best trade-

ffs between economic and environmental outcomes. The MCDA

ethods (LexiMin/LexiMax approaches, AHP, WSM and ELEC-

RE) were applied to the case study data, where the alterna-

ives were evaluated against criteria and indicators, to designate

 preferred alternative and/or rank alternative in a preference

rder. 
.1. Identification of the finite set of alternatives 

Potential CO 2 -based products were identified from previous

ork ( Chauvy et al., 2019 ). The products were selected together

ith the routes used to synthetize them from carbon dioxide. To

educe the panel of alternatives and define the finite set, it was

ecided that (i) the processes must have a Technology Readiness

evel (TRL) higher than TRL 6, to ensure that the technology will

e brought to commercialization in the next fifteen years; (ii) the

O 2 -based products that involve CO 2 -based intermediates should
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Table 6 

Shortlist of CO 2 conversion options for short- to mid-term deploy- 

ment. 

CO 2 -based products CO 2 -conversion process 

a 1 Calcium carbonate Mineral carbonation 

a 2 Dimethyl carbonate Organic synthesis 

a 3 Ethanol Microbial process 

a 4 Formic acid Electrochemical reduction 

a 5 Methane Hydrogenation 

a 6 Methanol Hydrogenation 

a 7 Microalgae Biological process 

a 8 Polycarbonates Organic synthesis 

a 9 Sodium carbonates Mineral carbonation 

a 10 Syngas Dry reforming 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8 

Pairwise comparison matrix for the 3E criteria. 

Criteria no C 1 C 2 C 3 Local weights Level one 

C 1 1.00 0.50 0.50 0.20 

C 2 2.00 1.00 0.50 0.31 

C 3 2.00 2.00 1.00 0.49 

CR 5% 

Table 9a 

Pairwise comparison matrices of indicators with respect to the 3E 

criteria. 

The comparison matrix of indicators with respect to criterion C 1 . 

Criterion C 1 g 1 g 2 g 3 Local weights Level two 

g 1 1.00 0.33 0.14 0.08 

g 2 3.00 1.00 0.20 0.19 

g 3 7.00 5.00 1.00 0.73 

CR 6% 

Table 9b 

Pairwise comparison matrices of indicators with respect to the 3E 

criteria. 

The comparison matrix of indicators with respect to criterion C 2 . 

Criterion C 2 g 4 g 5 g 6 Local weights Level two 

g 4 1.00 2.00 0.14 0.15 

g 5 0.50 1.00 0.20 0.11 

g 6 7.00 5.00 1.00 0.74 

CR 10% 

Table 9c 

Pairwise comparison matrices of indicators with respect to the 3E 

criteria. 

The comparison matrix of indicators with respect to criterion C 3 . 

Criterion C 3 g 7 g 8 g 9 Local weights Level two 

g 7 1.00 0.25 3.00 0.22 

g 8 4.00 1.00 6.00 0.69 

g 9 0.33 0.17 1.00 0.09 

CR 5% 

 

e  

w  

i  
not be shortlisted, such as polyurethanes (polyols and isocyanates

involved); and (iii) the CO 2 -based products should not be currently

produced using CO 2 as raw material, such as salicylic acid and

urea. 

Ten products were therefore selected for further assessment,

presented in Table 6 . 

4.2. Building a coherent set of criteria and indicators 

4.2.1. Definition of the criteria and indicators 

Based primarily on an extensive literature review,

Chauvy et al. (2019) defined nine key performance indicators

(KPIs) to evaluate the shortlisted CO 2 technologies, that were

grouped into the 3E performance criteria (see Table 7 ), involving

Engineering, Economic and the Environmental performances. These

indicators consider the characteristic of the CCU processes and

are consistent with the decision maker’s objective. They reflect

the performances of alternatives from different aspects. For more

details about these indicators, additional information is provided

in the Supporting Information file (SI. 1). 

4.2.2. Definitions of the weights 

To determine the weighting factors at both levels, the AHP

method was performed using the steps and equations described

in the previous section, reflecting the initial decision maker’s pref-

erences established in Chauvy et al. (2019) . Table 8 provides the

pairwise comparison matrix for the main criteria. Pairwise com-

parison matrices of indicators with respect to the 3E criteria are

given in Tables 9 (a) , ( b ) and ( c ). 
Table 7 

Criteria and key performance indicators to evaluate the CO 2 utilization technologies. 

Criteria Key Performances Indicators (KPIs) D

C 1 Engineering 

Performance 

g 1 Technological maturity In

ti

g 2 Geographical constraints Ta

te

fe

g 3 Fossil-free operations Re

in

C 2 Economic Performance g 4 Size of the market Id

g 5 Competitiveness with other 

technologies 

Ev

pr

al

g 6 Relative added value In

ec

re

fo

C 3 Environmental, health 

and safety 

performance 

g 7 CO 2 uptake potential D

ba

g 8 Environmental potential Ev

fo

g 9 Health and safety 

considerations 

Li

su
The overall consistency was calculated by summing for all lev-

ls, with weighted consistency index ( CI ) in the numerator and

eighted random consistency index ( RI ) in the denominator, and

t equals to 5.6%. It follows from the calculations that the pairwise
efinition 

dicates the level of maturity of the different pathways and the estimated 

me needed to reach commercial technological maturity. 

kes into consideration geographical constraints that may prevent the 

chnology from reaching its full-scale potential, or limit its application to a 

w advantageous locations across the globe. 

ferences the co-reactants and determines whether it is possible to be 

dependent from fossil sources. 

entifies how big the overall market is today in Mton per year. 

aluates if the CO 2 use is price-competitive with alternative technology, 

oducts or processes, achieving the same outcome, including low-carbon 

ternatives e.g., hybrid and electric vehicles; other green building products. 

dicates the economic viability of the process, i.e. a CO 2 conversion process is 

onomically feasible if the production unit cost is less than or equal to a 

ference case, usually the conventional way of production, or if the process is 

recast as being close to profitability. 

efines the maximum quantitative CO 2 uptake potential on a stoichiometric 

sis, corresponding to the amount of CO 2 that can be fixed by the reaction. 

aluates two environmental impacts: the global warming potential and the 

ssil depletion potential. 

sts of health and safety considerations (in terms of the use of hazardous 

bstances, etc.) for each alternative. 
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Table 10 

Weighting factors determined using the AHP method. 

Criteria Local weights Level one KPIs Local weights Level two Global weights 

C 1 0.20 g 1 0.08 0.0158 

g 2 0.19 0.0369 

g 3 0.73 0.1431 

C 2 0.31 g 4 0.15 0.0466 

g 5 0.11 0.0328 

g 6 0.74 0.2314 

C 3 0.49 g 7 0.22 0.1074 

g 8 0.69 0.3409 

g 9 0.09 0.0451 
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omparisons for the evaluation of the weights are consistent, be-

ause the overall consistency is less than 10%. 

Table 10 presents the aggregated weighting factors for the nine

ndicators, the local weights being rounded to two decimal places. 

Based on the AHP results, the environmental potential was

eemed the most important indicator ( g 8 = 34%) for the evalua-

ion of the alternatives, followed by the relative added value ( g 6 =
3%) and fossil-free operation ( g 3 = 14%). The least important indi-

ator is the technological maturity, which was assigned a relative

mportance of 2%. This is mainly due to the fact that the techno-

ogical maturity was already considered as a threshold (TRL 6) to

licit the final set of alternatives. 

Thus, it appears in particular that g 8 is necessary, and { g 3 , g 6 ,

 8 } and { g 6 , ( g 7 , g 8 , g 9 )} are both sufficient conditions to determine

f an alternative outranks another one. 

.3. Building the decision table 

The decision table was built and presented in Table 11 . A five-

evel score scale was considered, following the scoring guide estab-

ished in previous work (Please refer to the Supporting Information

le (SI. 1) and Chauvy et al. (2019) for more details). First dom-

nance relations between alternatives can be highlighted directly

rom the decision table. 

 1 � a 10 a 5 � a 1 � a 10 

 5 � a 1 a 5 � a 3 

 5 � a 3 a 6 � a 9 

−−−−−−−−→ 

by 
t ransit i v it y 

 5 � a 10 

 � a 
6 9 

Table 11 

Decision table ( Chauvy et al., 2019 ). 

Color code: from dark red for the lowest score to dark green the highest score. 
In all the MCDA approaches applied hereafter, these aforemen-

ioned dominance relations have to be validated. 

.4. Ranking alternatives and comparison of alternative rankings 

sing different MCDA methods 

.4.1. LexiMin/LexiMax approaches 

The LexiMin and LexiMax approaches were applied directly on

he decision table. LexiMin ranked methanol ( a 6 ), dimethyl carbon-

te ( a 2 ), sodium carbonate ( a 9 ) and microalgae ( a 7 ) as best alter-

atives, where their scores on their weakest performances were

he highest. Ethanol ( a 3 ), formic acid ( a 4 ) and syngas ( a 10 ) were

dentified as the worst alternatives. Selecting the alternative with

he minimum lowest performance as the optimal solution, LexiMax

pproach ranked microalgae ( a 7 ), methanol ( a 6 ), methane ( a 5 ) and

imethyl carbonate ( a 2 ) as best alternatives, and sodium carbonate

 a 9 ), syngas ( a 10 ) and formic acid ( a 4 ) as worst (see Table 14 where

he results of all approaches are compared). In particular, the dis-

repancy in the sodium carbonate rank may be explained by un-

ertainties linked to input data due to lack of information regard-

ng the process. 

.4.2. AHP method 

The score matrix was built following the procedure introduced

n the Methodology section (See Table 12 ). The predefined transla-

ion table T as well as the pairwise comparison matrix R ( i ) related

o each indicator are presented in the Supporting Information File,

able SI. 6. and SI. 7, respectively. 

Total AHP scores in Table 12 indicate that methanol ( a 6 ),

imethyl carbonate ( a 2 ), microalgae ( a 7 ), and polycarbonates ( a 8 )

xhibit higher scores, while syngas ( a 10 ), ethanol ( a 3 ), and formic
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Table 12 

Score matrix. 

Color code: from dark red for the lowest score to dark green the highest score. 

Fig. 2. Total weighted scores of the selected CO 2 -based compounds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Hasse Graph identifying the best CO 2 -based alternatives using the ELECTRE 

approach. 
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d  
acid ( a 4 ) are the worst performing alternatives. The full order is

displayed in Table 14 . 

4.4.3. AHP-WSM integrated method 

Fig. 2 displays the total weighted scores of the selected alter-

natives. Methanol ( a 6 ), dimethyl carbonate ( a 2 ) and methane ( a 5 )

have higher scores and are the CO 2 -based compounds to further

investigate. Formic acid ( a 4 ), syngas ( a 10 ), and ethanol ( a 3 ) are

the worst performing alternatives. The full order is displayed in

Table 14 . The contributions of individual indicators to the final

scores of alternatives are presented in the Supporting Information

File, Table SI. 9. 

4.4.4. ELECTRE method 

Concordance and discordance matrices with respect to the ten

alternatives are given in the Supporting Information File, Table

SI. 10 (a) and (b), respectively. The concordance level c ∗ equals

to 0.710. The veto threshold ( δi ) was set at 3 for indicators

g 2 , g 3 , g 6 , g 7 , and g 8 . By setting a high threshold value, a veto is ef-

fective only when an alternative is by far worse than another one.

This way, veto thresholds have a reinforcement effect and express

the power attributed to the given indicators to be against the as-

sertion “a outranks a ”. No veto was set for g , g , g , and g . 
1 2 1 4 5 9 
In addition, the global weights w i are kept as previously, which

as validated by the decision maker. 

Table 13 presents the final results exploiting concordance and

iscordance matrices with respect to the ten alternatives. 

Fig. 3 displays the Hasse Graph to identify the CO 2 -based alter-

atives outranking using the ELECTRE approach. 

In Fig. 3 , methanol ( a 6 ) outranks the other alternatives.

imethyl carbonate ( a 2 ) and methane ( a 5 ) are incomparable.

ethane may be categorized at higher rank than dimethyl carbon-

te as two arcs are derived from the node a 5 , leading to six sub-

issive alternatives. Formic acid ( a 4 ) is outranked by all the other

lternatives. Microalgae ( a 7 ) and polycarbonates ( a 8 ) are also in-

omparable alternatives (see Table 13 ). 

As there is no cycle, a unique kernel K of the set A forms the

ominating subset: { a }, i.e. methanol. This kernel might be too
6 
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Table 13 

ELECTRE final results. 

Alternatives Incomparable alternatives Outranked alternatives 

Calcium carbonate a 1 − a 3 , a 4 , a 10 

Dimethyl carbonate a 2 a 5 a 1 , a 3 , a 4 , a 10 

Ethanol a 3 − a 4 , a 10 

Formic acid a 4 − −
Methane a 5 a 2 a 3 , a 4 , a 7 , a 8 , a 9 , a 10 

Methanol a 6 − a 1 , a 2 , a 3 , a 4 , a 5 , a 7 , a 9 , a 10 

Microalgae a 7 a 8 a 3 , a 4 , a 9 , a 10 

Polycarbonates a 8 a 7 a 4 , a 10 

Sodium carbonate a 9 − a 3 , a 4 , a 10 

Syngas a 10 − a 4 

Table 14 

Ranking results of the alternatives using different MCDA methods. 

Color code: from dark red for the lowest rank to dark green the highest rank. 
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Table 15 

Kendall’s tau coefficient ( τ) between alternative rankings using different MCDA 

methods. 

Color code: from dark red for the lowest score to dark green the highest score. 

Table 16 

Weighted distance K � between alternative rankings using different MCDA methods. 

Color code: from dark red for the lowest score to dark green the highest score. 
estrictive for the decision maker. Additional values for both the

oncordance level c ∗ and δi are therefore tested in the sensitivity

nalysis. 

Finally, the Net flow score procedure indicates the following re-

ation: 

 6 ≥ a 5 ≥ a 2 ≥ a 7 ≥ a 1 
a 9 

≥ a 8 ≥ a 3 ≥ a 4 
a 10 

.4.5. Comparison of alternative rankings 

The obtained ranking results for the methods leading to a lin-

ar ranking are displayed in Table 14 . It is worth noting the con-

istency of the results through the methods regarding the top-

anked alternatives. Methanol ( a 6 ) is ranked at the first place in

hree of the methods (and second in the remaining one). Dimethyl

arbonate ( a 2 ) is ranked second in three of the methods (and

ourth in the remaining one). On the other hand, the results are

lso consistent regarding the bottom-ranked methods: ethanol ( a 3 ),

ormic acid ( a 4 ), and syngas ( a 10 ) exhibit low ranking whatever the

ethod. This means that with no further investigation, which is

chieved in subsequent sections, than visual inspection, five alter-

atives out of ten can be clearly classified. Also, the results are in

ine with generally accepted intuition in the industry. 

The rankings’ tolerance to change in criterion and indicator

eights are compared amongst the selected MCDA methods (i.e.,

HP and WSM methods) in the next section (see 4.5.1). 

Table 15 presents the Kendall’s tau coefficient between alterna-

ive rankings computed using the different MCDA methods. 

MCDA methods pairs that have equal rankings lead to a

endall’s tau coefficient value equal to 1. All tested methods con-

lude that methanol ( a ), dimethyl carbonate ( a ), and methane
6 2 
 a 5 ) are CO 2 -based products to investigate. They also highlight that

ormic acid ( a 4 ), syngas ( a 10 ), and ethanol ( a 3 ) were the worst per-

orming alternatives. LexiMin and WSM act most correspondingly;

ith the two methods prioritizing 30% of the alternatives in iden-

ical position, followed by WSM and AHP where 20% of the alter-

atives have identical position (see Table 15 ). 

In addition, Table 16 presents the weighted distance K �. 
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A low K � indicates a high similarity at the top of the rankings,

as illustrated by the low K � between the LexiMin and AHP ap-

proaches (see Table 14 ). 

All methods produced different ranking results. The LexiMax

approach is the most inconsistent method, in this specific appli-

cation case, compared to the other tested methods in terms of al-

ternatives rankings. 

4.5. Sensitivity analysis 

4.5.1. Impact of weights’ changes on the ranking for AHP and WSM 

methods 

For analyzing the impact of the weights on the ranking, a sen-

sitivity analysis was conducted. It was completed by changing one

weight such that the highest-ranked alternatives in the prefer-

ence ranking remain on top of the ranking, while all the other

weights were adjusted to keep the weighting constraint 
n ∑ 

i =1 

w i = 1

( Mareschal, 1988 ). Subsequently, the rankings were repeated, and

the results were compared with the initial state. The stability in-

tervals of the 3E criteria (Local weights - Level one) for both AHP

and WSM methods are displayed in Fig. 4 . The initial value of

the weights is marked with a dot. The intervals show the range

in which the weight can be varied without changing the highest-

ranked alternatives. 

Similarly, Fig. 5 presents the stability intervals of the nine in-

dicators’ weighting factors (i.e., Global weights) for both AHP and
W
ei

gh
ts

C1 C2 C3

0.20

0.31

0.49

0.00

0.20

0.80

0.60

0.40

1.00

WSM AHP

3E criteria

Fig. 4. Sensitivity analysis on the 3E criteria weights. 
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Fig. 5. Sensitivity analysis on the indicators’ weights. 
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SM methods, showing the range in which the global weights can

e varied without changing the highest-ranked alternatives. It can

e observed that some indicators are more sensitive than others,

.e. a small change in the weight would result in a new ranking.

or instance, the indicators g 3 , g 6 , g 7 , and g 8 are more sensitive,

hile the remaining are more stable for both methods. This can

e explained by the compensatory nature of AHP and WSM meth-

ds, which have high dependency to the weights of some domi-

ant indicators. Concretely, this means for example that methanol

 a 6 ) will remain the best performing alternative when the weight

llocated to the indicator g 8 (environmental potential) changes be-

ween 23.86% and 40.91% for the AHP methodology. If the weight

hould become either lower than 23.86% or higher than 40.91% for

he AHP methodology, another CO 2 -based alternative will come on

op of the ranking. Also, the top of the ranking will be insensitive

o changes in the weight of indicators that present large weight

tability intervals. For instance, methanol ( a 6 ) will remain the best

erforming alternative when the weight allocated to the first indi-

ator ( g 1 ) changes between 0% and 93.15% for the AHP methodol-

gy. If the weight should become higher than 93.15%, another CO 2 -

ased alternative will come on top of the ranking. 

.5.2. Impact of thresholds changes on outranking relations for the 

LECTRE method 

To test the robustness of the results obtained by the ELECTRE

ethod, the values of the concordance and veto thresholds ( c ∗and

i ) were varied and the effects on the final outcome were observed

sing the NFS (see Table 17 ). 

If there is no veto, or if the veto thresholds δi are too high,

he outranking relation bails down to the concordance. Thus, a de-

rease in the veto threshold allows to prevent more comparisons

n the outranking relations. On the other hand, a value of 1 on the

oncordance threshold keeps only the obvious comparisons, where

n alternative dominates another. Then, the NFS is used to summa-

ize the outranking relation in a ranking. A decrease in the concor-

ance threshold c ∗ includes more comparisons in the outranking

elations. 

The NFS rankings presented in Table 17 demonstrate that

imethyl carbonate ( a 2 ), methanol ( a 6 ), and methane ( a 5 ) are in

eneral at the highest position, regardless of the threshold values

onsidered. The change of the thresholds permits to elicit the or-

er when the concordance index varied between 0.7 and 0.9 and

hen the discordance set of thresholds is sufficiently restrictive. 

.6. Study limitations and recommendations 

Some limitations and recommendations can be derived based

n the previous analysis and discussion, which can be summarized

s follows. 

.6.1. Criteria and indicators formulation 

The indicators chosen to perform the analysis were

rouped into the 3E performance criteria, as explained by

hauvy et al. (2019) . While this approach has been utilized

or assessments of new energy technologies or sustainability

rends ( Pan et al. (2016) and references herein), it excluded from a

ustainability perspective the societal pillar, even though the social

cceptance is a key aspect for technology deployment. However,

s discussed by Jones et al. (2017) , to date very few researches

nto the social acceptance of CO 2 utilization have been carried

ut. These studies mainly highlight the lack of awareness and

echnical knowledge, but with a positive general perception of

CU ( Arning et al., 2018 ). To this extent, discretizing the societal

illar to one or several indicators and performing a complete eval-

ation was considered, at this stage of CCU deployment, beyond

he scope of this present work. It is worth noting that a social
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Table 17 

Sensitivity analysis for the ELECTRE method. 

δi 

No veto. 

4 for all the indicators 

(more restrictive than 

Base case). 

Base case – 3 for indicators 

g 2 , g 3 , g 6 , g 7 , and g 8 . No veto 

for g 1 , g 4 , g 5 , and g 9 . 

2 for all the indicators (less 

restrictive than Base case). 

c ∗ 0.60 a 6 ≥
a 1 
a 2 
a 5 

≥ a 8 
a 9 

≥ a 7 ≥

a 10 ≥ a 3 ≥ a 4 

a 6 ≥
a 1 
a 2 
a 5 

≥
a 7 
a 8 
a 9 

≥ a 3 
a 10 

≥ a 4 a 6 ≥ a 1 
a 5 

≥ a 2 ≥ a 9 ≥ a 7 ≥ a 8 ≥

a 3 ≥ a 4 
a 10 

a 5 
a 6 

≥ a 7 ≥ a 2 ≥ a 1 
a 9 

≥ a 4 
a 8 

≥ a 3 
a 10 

0.71 

Base case 

a 6 ≥ a 5 ≥ a 7 ≥ a 2 
a 8 

≥

a 1 
a 9 

≥ a 3 ≥ a 10 ≥ a 4 

a 6 ≥ a 5 ≥ a 2 ≥ a 7 
a 8 

≥ a 1 
a 9 

≥

a 3 ≥ a 4 
a 10 

a 6 ≥ a 5 ≥ a 2 ≥ a 7 ≥ a 1 
a 9 

≥ a 8 ≥

a 3 ≥ a 4 
a 10 

a 5 
a 6 

≥ a 7 ≥ a 2 ≥ a 1 
a 9 

≥ a 4 
a 8 

≥ a 3 
a 10 

0.80 a 6 ≥ a 7 ≥
a 1 
a 2 
a 5 

≥ a 4 
a 8 

≥

a 9 ≥ a 3 ≥ a 10 

a 2 ≥ a 6 ≥ a 7 ≥ a 5 ≥ a 1 
a 8 

≥
a 9 ≥ a 3 ≥ a 4 ≥ a 10 

a 2 ≥ a 6 ≥ a 7 ≥ a 5 ≥ a 1 ≥ a 8 ≥ a 9 ≥
a 3 ≥ a 4 ≥ a 10 

a 5 
a 6 

≥ a 7 ≥ a 2 ≥ a 1 ≥
a 4 
a 8 
a 9 

≥

a 3 ≥ a 10 

1.00 More 

restrictive 

a 5 ≥ a 6 ≥

a 1 
a 2 
a 4 
a 7 
a 8 

≥ a 3 
a 9 

≥

a 10 

a 5 ≥ a 6 ≥

a 1 
a 2 
a 4 
a 7 
a 8 

≥ a 3 
a 9 

≥ a 10 a 5 ≥ a 6 ≥

a 1 
a 2 
a 4 
a 7 
a 8 

≥ a 3 
a 9 

≥ a 10 a 5 ≥ a 6 ≥

a 1 
a 2 
a 4 
a 7 
a 8 

≥ a 3 
a 9 

≥ a 10 
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ndicator was somehow integrated into the environmental criteria

indicator g 9 , Health and safety considerations). Overall, it is ac-

nowledged that social aspects should be included in future work

s the deployment of CCU technologies grows, to take into account

ow key stakeholders involved in CCU affect the development and

nnovation, the deployment, and the investment of CCU facilities

nd CO 2 -based products. 

Regarding the environmental performance, it is worth noting

hat the indicator g 8 (environmental potential) – which has been

dentified as the most important indicator – only focuses on cli-

ate change (CO 2 -eq) and fossil depletion (oil-eq) as proxy in

he suggested method. Nevertheless, within a broader sustain-

bility perspective, the environmental impacts of each alternative

hould also be evaluated in a full life cycle assessment (LCA) in

rder to cover a broad set of environmental areas of concern.

urthermore, depending on the scenario, optimizing one indica-

or may lead to negative effects in other environmental aspects

or economic and/or social aspects) and thus trade-offs between

ultiple objectives may be desirable, as recently illustrated by

andepaer et al. (2020) . 

.6.2. MCDA approaches selection 

Various representative MCDA strategies that are believed to be

ell suited for the purpose of this study were selected together

ith the decision maker. This choice was mainly motivated by the

ecision maker’s and authors’ knowledge of the given methods and

vailability of software supporting the methods. However, as seen

n this work, applying various methods can lead to different results

or the same problem, so the selection of a proper MCDA approach

or a given situation is important. The authors recommend thus

o properly chose a suitable method for solving a specific deci-

ion problem, as also recently discussed by W ̨atróbski et al. (2019) .

dditionally, in the specific context of CCU, the authors recom-

end selecting methods that have a low degree of compensa-

ion, such as outranking approaches, leading to strong sustainabil-

ty (i.e., the economic, social, and environmental aspects are com-

lementary but not interchangeable, by contrast to weak sustain-

bility), similarly to what it is recommended in the wider issue of

nvironmental policy and sustainability assessment ( Cinelli et al.,

014 ). 
.6.3. Scores and weights determination 

The relevance, quality and robustness of MCDA results

trongly depend on the quantification of the indicators, which

ay be questionable. The set of scoring guides proposed by

hauvy et al. (2019) to evaluate the performance of each alter-

ative against the criteria and indicators, including the evaluation

ethod and the detailed five-level scoring factors assigned for each

ndicator, was peer-reviewed by experts, increasing the credibility

f the value indicators. However, sensitivity analysis on the quan-

ification of the indicators, i.e. by varying performance measure-

ent, should be performed to assure to what extent it is affected

y subjectivity. 

Additionally, the choices of the weighting factors may be also

isputed, as it strongly depends on cultural factors, as well as the

ccupation, location and background of the decision maker. For in-

tance, the environmental concerns were given much more impor-

ance than the economic indicators, which might be related to the

cademic background of the authors and decision maker. Thus, a

epresentative group of stakeholders across the field of CCU, in-

luding industry, policy, general public, etc. allows avoiding bi-

sed weights and accounting for all needs of the sector. The au-

hors suggest performing a deep sensitivity analysis to determine

he impacts of the weight choices on the results, such as the one

roposed in this work. Also, the application of outranking MCDA

pproaches allows establishing preference relations, where refer-

nces are used to assign higher preference to specific criteria than

thers. 

Finally, it is worth mentioning that there are discussions relat-

ng to the interpretation of weights ( Munier et al., 2019 ), especially

n the AHP, where the weights derived from preferences (pair-

ise comparison) are trade-off values, indicating how the weight

f an indicator changes when another indicator weight varies.

unier et al. (2019) thus advocate to use objective weights (e.g.,

licited by entropy method). In the present work, although the

uthors use the weights derived from AHP in other MCDA meth-

ds, they ensure that these weights represent well the decision

aker’s preferences, given that there is no bias from the deci-

ion maker. Indeed, while weights in compensatory models rep-

esent trade-off factors between criteria evaluation scales, weights

n non-compensatory models (as ELECTRE) are associated to the



208 R. Chauvy, R. Lepore and P. Fortemps et al. / Sustainable Production and Consumption 24 (2020) 194–210 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L  

t  

b  

t  

e

 

b  

u  

r  

c  

T  

a  

a  

a  

s  

o  

b  

g  

r

 

K  

T  

d  

v  

f  

y  

a  

p  

i  

m  

o  

t  

t  

g  

t  

c  

a

 

t  

d  

g  

r  

q  

m  

w  

e  

i  

s  

o  

s  

t  

M  

r

 

o  

C  

s  

(  

t  

e

 

o  

i  

m  

l  

g

power of each criterion to impact the decision, in favor of one or

the other alternative, with respect to a coalition threshold. There-

fore, the meaning of the elicited weights should be explained

to the decision maker in the spirit of the chosen MCDA ap-

proach and validated by him. Also, to find out whether the as-

signed weights to criteria and indicators really reflect the deci-

sion maker’s true opinions, behavioral and procedural biases re-

lated to the size and structure of the criteria and indicators’ hi-

erarchy and to weight elicitation should be further examined, as

argued by Marttunen et al. (2018) and references herein. 

4.6.4. Robustness analysis 

Traditional MCDA preference models have been considered.

In particular, the exact values for the weights were elicited

by applying dedicated weight elicitation technique, such as the

AHP model. It was then followed by a sensitivity analysis

to explore the robustness of the model, especially related to

small changes in the weight values. However, as discussed by

Tervonen et al. (2013) , many decision makers may have doubts

about the exact values provided for the weights and/or criteria.

To this extent, the Stochastic Multicriteria Acceptability Analysis

(SMAA) ( Lahdelma et al., 1998 ) and/or the Robust Ordinal Regres-

sion (ROR) ( Greco et al., 2008 ) could be considered. 

4.6.5. Interpretation of results 

The present study does not include any deliberative component

allowing to make flexible interpretations of the results. Even if de-

cision maker and end users agree with the results, it might ne-

glect additional considerations that are specific to the CCU tech-

nology under scrutiny. The authors thus recommend organizing

deliberative components in MCDA prior to make the conclusion,

as also advocated by Workman et al. (2020) . Overall, the rankings

provided in this work should be seen as indicative. Additionally,

the combination of several MCDA models of different spirits (com-

pensatory and non-compensatory ones) can enhance the decision

maker’s trust in the results. Finally, visual presentation of sensitiv-

ities and their impacts on choices, such as the visual feature GAIA

(geometrical analysis for interactive aid) initially developed for the

PROMETHEE method, could be an option to further explore in or-

der to provide the decision maker with a synthetic visual repre-

sentation of the main characteristics of the decision problem, in-

cluding synergies and conflicts between the preference measures

or alternatives, as discussed by Arcidiacono et al. (2018) and refer-

ences herein. 

5. Conclusion 

This paper aimed to identify the most promising CO 2 -based

conversion processes by application of several MCDA methods, i.e.

the LexiMin/LexiMax approaches, AHP, weighted sum, and ELECTRE

methods. Applying these MCDA approaches allowed to explore and

illustrate their associated outcomes and how these both differ and

complement each other, with regard to the process and the nature

of the outcome, i.e. evaluation, ranking, outranking, etc., and the

final conclusions per se. Also, comparing resulting rankings using

a different MCDA method is also a way to assure the robustness of

the results. 

The proposed MCDA approaches aid the decision maker for

solving different reference problematics; either by building a

complete order of alternatives according to preferences (Lex-

iMin/LexiMax approaches, AHP, weighted sum methods), or by

providing aid in choosing a small subset of alternatives (ELEC-

TRE method). Also, an important characteristic of the investigated

MCDA methods is the degree of compensation of the criteria.

While the AHP and WSM methods lead to full compensation, i.e.

the gain on one indicator can compensate the loss on another, the
exiMin/LexiMax methods lead to no compensation, in a way that

he low values of some indicators could not be compensated for

y other indicators. In the outranking ELECTRE method, compensa-

ion is only allowed at the level of criteria coalitions and may be

xcluded by using veto thresholds. 

Thus, the LexiMin/LexiMax approaches proposed a weak order

y the direct exploitation of the decision table. The AHP method,

sed to first elicit the criteria and indicators’ weights and then to

ank the alternatives, as well as the WSM approach, proposed full

omparability of all alternatives in the ranking (i.e., total order).

he decision-making results were directly influenced by criteria

nd indicators’ weights. Hence, the ELECTRE method was relevant

s there was a strong heterogeneity with the nature of evaluations

mong criteria (e.g., CO 2 uptake potential, technological maturity,

ize of the market, etc.). In addition, the compensation of the loss

n a given criterion by a gain on another one was not acceptable

y the decision maker. Overall, using methods that have a low de-

ree of compensation is recommended in the wider issue of envi-

onmental policy and sustainability assessment. 

Additionally, the different methods were compared using both

endall tau coefficient and weighted distance of Kendall’s tau.

he score scales and distributions within criteria and indicators

id not have the same impact on all the MCDA approaches in-

estigated in this paper. Moreover, the defined weights had ef-

ects on the result, that were observed when the sensitivity anal-

sis was carried out. The sensitivity analysis took into consider-

tion that the weights were established on the basis of authors

erception, which may be subjective. It led to weight stability

ntervals in which the highest-ranked alternatives were not per-

uted. Some indicators were therefore more sensitive than the

thers, in particular the indicators Fossil free operations, Rela-

ive added value, CO 2 uptake potential, and Environmental poten-

ial. Therefore, it is recommended to have an intensive investi-

ation on these indicators and the chosen weights. Additionally,

he sensitivity analysis helps the decision maker to address un-

ertainty in the decision problem and find out the least sensitive

pproach. 

In environmental decision-making, it appears to be necessary

hat several MCDA methods are applied to get the ranking or-

ers of alternatives. Even though the results obtained by the ag-

regation methods (i.e., AHP, WSM) are more rational, the out-

anking methods propose outranking relations that provide more

ualified conclusions in expressing their preferences. The former

ethods lead to weak sustainability (high level of compensation),

hile the latter to strong sustainability, meaning that the techno-

conomic and environmental aspects are complementary but not

nterchangeable. Also, outranking methods also deepen the under-

tanding of the decision-making problem and focus on the quality

f the decision process itself, instead of on determining an optimal

olution. Thus, combining and/or performing aggregation methods

ogether with outranking methods can mitigate disadvantages of

CDA methods when used alone, and direct the analysis to a more

obust conclusion. 

In the framework of CCUS, making decision using MCDA meth-

ds will play an important role, improving the quality of decisions.

onsidering the relatively small differences in the results, they

howed that methanol ( a 6 ), dimethyl carbonate ( a 2 ), and methane

 a 5 ) are CO 2 -based products considered the best courses of action

o be implemented in near future with respects to engineering,

conomic, and environmental performances. 

Areas for future work includes considering fuzzy set methodol-

gy to take care of the qualitative criteria, the imprecision inherent

n the information, and uncertainties in authors and experts judg-

ent especially for weights elicitation. Also, the discussions of the

imitations of this study lead to several recommendations that can

uide further assessments in this field. 
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