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Suppression of low-frequency fluctuations and stabilization
of a semiconductor laser subjected to

optical feedback from a double cavity: theoretical results
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We demonstrate numerically that low-frequency f luctuations (LFF’s) observed in a laser diode subjected to a
first optical feedback with a short delay are suppressed by means of an adequate second optical feedback. The
general idea of this technique is based on the observation that second feedback can suppress the antimodes that
are responsible for the crises in the LFF regime. Furthermore, we observe that the second optical feedback
can steer an unstable laser that is biased near threshold into a stable regime.  1999 Optical Society of
America
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A semiconductor laser subjected to external optical
feedback can present a large variety of dynamic behav-
iors, such as periodic and quasi-periodic oscillations,
chaos,1 coherence collapse,2 and low-frequency f luctua-
tions3 (LFF’s) that degrade the laser characteristics.
LFF’s occurs mainly when a laser that is subjected
to moderate feedback is biased near the solitary laser
threshold. This regime is characterized by a succes-
sion of sudden dropouts and slow recoveries of the
laser’s mean intensity.

From an application point of view it is interest-
ing to investigate practical methods of suppressing or
controlling chaos and LFF’s. Among several methods
(Refs. 4–6 and references therein) that are available, a
dynamic targeting technique was proposed by Wieland
et al.,4 who showed numerically that a single-mode
semiconductor laser that suffers from coherence col-
lapse when subjected to optical feedback can be steered
into the maximum gain mode by adjustment of the feed-
back phase as the feedback strength is varied. Be-
cause the maximum gain mode never undergoes a Hopf
bifurcation,7 the laser operates in a stable regime. Re-
cently Hohl and Gavrielides5 applied a dynamic target-
ing technique to the experimental control of a chaotic
semiconductor laser biased near threshold. Although
Wieland et al. proposed adjusting the feedback phase
by accurate positioning of the ref lection source4 (gen-
erally a mirror) within one half of an optical wave-
length, they achieved adjustment of the feedback phase
by slightly varying the pump current.5

One major diff iculty of the targeting technique is
that, because of spontaneous-emission noise and the
smallness of the attraction basin, the laser can be
kicked out of the maximum gain mode at the begin-
ning of the procedure that was proposed in Ref. 4 and
jump to the nearest mode, which is often but not always
stable. Furthermore, in both studies it was assumed
that either the positioning of the mirror4 or the laser
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pump current5 could be adjusted, whereas in practical
cases these parameters cannot be modified easily. It
is therefore interesting to investigate alternative meth-
ods of chaos and LFF suppression that do not require
modifications of the laser or feedback parameters. A
method in which a second optical feedback6 was used
was thus proposed for stabilizing a chaotic laser diode
that was pumped far above threshold (up to twice the
threshold current of the solitary laser).

In this Letter we investigate specifically the stabi-
lizing effects of a second optical feedback, as proposed
in Ref. 6, but with particular attention to the bifurca-
tion diagram of the steady-state solutions. We show
numerically for what is believed to be the first time
that a second optical feedback can suppress LFF that
is observed in a laser diode biased near threshold and
subjected to a first optical feedback with a short de-
lay. In addition, we show that one can steer a laser
biased near threshold to lock it into the stable maxi-
mum gain mode without any modif ications to the laser
or the first-feedback parameters. Because the posi-
tioning of the second external mirror does not need to
be accurate, our technique is easier from an experi-
mental point of view than dynamic targeting. More-
over, our technique works whatever the first-feedback
strength is.

The key ideas of our work are based on the follow-
ing observations. According to Sano,8 the dropouts
of the optical power in the LFF regime are caused
by crises, i.e., collisions of the system trajectory in
phase space with antimodes. Each crisis is preceded
by chaotic itinerancy of the system trajectory among
the attractor ruins of external-cavity modes, with a
drift toward the maximum gain mode. For small
feedback delays (as in the case under study), a few
antimodes are responsible for the crises. These ob-
servations suggest that one might be able to suppress
LFF by shifting these antimodes away from the other
 1999 Optical Society of America
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external-cavity modes or, better yet, by inducing them
to disappear. Without modifying any parameters of
the first optical feedback or the laser diode, one can
achieve this by means of a second optical feedback.

Moreover, using a single-optical-feedback configura-
tion with a short delay, Hohl and Gavrielides5,9 recently
observed that the laser underwent a cascade of bifurca-
tions as the feedback strength was increased, exhibit-
ing alternately stable and unstable behaviors, such as
chaos and LFF. In the stable regions of the bifurca-
tion cascade the laser was locked into the stable maxi-
mum gain mode. The second idea of our work is that
such stable regions might also be observed in a double-
cavity configuration as the second-feedback strength is
increased, whatever the strength of the first is. Con-
sequently laser stabilization will always be achieved in
several ranges of the second-feedback strength.

A single-mode semiconductor laser that is sub-
jected to weak or moderate external optical feedback
is described by the Lang–Kobayashi equations.10

Extended to the problem of a laser subjected to optical
feedback from a double cavity (see Fig. 1), those equa-
tions can be formulated in dimensionless form as11

dE�ds � �1 1 ia�NE 1 k1E�s 2 t1�exp�2iVt1�

1 k2E�s 2 t2�exp�2iVt2� ,

T �dN�ds� � P 2 N 2 �1 1 2N� jE j 2, (1)

where s is time measured in units of the photon life-
time, E�s� � A�s�exp�if�s�� is the normalized slowly
varying complex electric field, N�s� is the normalized
excess carrier number, k1 and k2 are the normalized
feedback strengths of the first and second external
cavities, respectively, t1 and t2 are the ratios of the
round-trip time to the photon lifetime for both exter-
nal cavities, a is the linewidth-enhancement factor, and
V is the dimensionless angular frequency of the soli-
tary laser. P is the dimensionless pumping current
above the solitary laser threshold, and T is the ratio
of the carrier lifetime to the photon lifetime. Here we
choose parameter values of a 780-nm laser diode, first-
feedback phase Vt1, and delay t1 that are identical to
those described in Ref. 5: a � 4, P � 0.001, T � 1000,
Vt1 � 21.45, and t1 � 1000. We also choose the first
feedback strength k1 � 4.6 3 1023 at which LFF is ob-
served in a single-feedback configuration (i.e., k2 �
0).5 The second cavity round-trip time and the feed-
back phase are t2 � 200 and Vt2 � 0.8, respectively.

The steady-state solutions of Eqs. (1) are of the form
E � Asexp�i�D 2 V�s� and N � Ns, where D is a
stationary angular frequency and the corresponding As
and Ns are constants:

D � V 2 k1�a cos�Dt1� 1 sin�Dt1��

2 k2�a cos�Dt2� 1 sin�Dt2�� , (2)

As
2 �

P 2 Ns

1 1 2Ns

,

Ns � 2k1 cos�Dt1� 2 k2 cos�Dt2� . (3)

Figure 2(a), obtained from Eq. (2), shows the typical
evolution of the product of the stationary angular fre-
quencies and the first-feedback delay Dt1 with re-
spect to k2. New steady-state solutions are created in
pairs by a saddle-node bifurcation with one external-
cavity mode and one antimode; the latter is always
unstable. Similarly to the single-feedback case,12 an-
timodes also satisfy the condition dV�dD , 0 in the
double-feedback case. But, contrary to the single-
feedback case, pairs of steady-state solutions can dis-
appear when the feedback strength k2 of the second
cavity increases for a given feedback strength k1 of
the first cavity. In Fig. 2(b) we present the corre-
sponding bifurcation diagram of the phase-difference
function f�t� 2 f�t 2 t1� 1 Vt1 for k1 � 4.6 3 1023,
with k2 as the bifurcation parameter. The choice of
this phase-difference function for the bifurcation dia-
gram is convenient, since it reduces to Dt1 for sta-
tionary behaviors and can be directly compared with
Fig. 2(a). For the value of k1 chosen here, LFF is ob-
served in the single-feedback configuration (i.e., k2 �
0).5 Figure 3(a) shows chaotic itinerancy of the phase
trajectory among successive external-cavity modes, fol-
lowed by collision of the trajectory with the antimode
that corresponds to the stable maximum gain mode.

Fig. 1. Schematic configuration of a laser diode subjected
to optical feedback from a double cavity.

Fig. 2. (a) Stationary angular frequencies D as a
function of k2. Thick curves, antimodes; thin curves,
external-cavity modes. (b) Bifurcation diagram of the
phase-difference function f�t� 2 f�t 2 t1� 1 Vt1. The
second-feedback strength k2 is the bifurcation variable.
Arrow 1 indicates the disappearance of the antimode that
is responsible for the crisis, and arrow 2 indicates the
corresponding LFF suppression.
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Fig. 3. Phase trajectories observed in the space �f�t� 2
f�t 2 t1� 1 Vt1, N�t��. Asterisks, antimodes; open cir-
cles, unstable external-cavity modes; filled circles, stable
external-cavity modes. (a) LFF for k2 � 0. (b) Quasi-
periodic behavior with frequency locking for k2 � 0.5 3
1023. (c) Limit cycle corresponding to periodic behavior
for k2 � 1 3 1023. (d) Stationary behavior for k2 � 4 3
1023: The laser locks into a stable external-cavity mode.
The first-feedback strength is k1 � 4.6 3 1023 in all cases.

The trajectory then is repelled to higher values of the
excess carrier number N , where the chaotic itinerancy
toward lower values of the phase-difference function
starts again.

The maximum gain mode and its corresponding an-
timode collide and disappear for k2 � 0.45 3 1023

[arrow 1 in Fig. 2(a)]. As this pair of modes disap-
pears, LFF, which is observed from k2 � 0 to k2 �
0.45 3 1023, suddenly stops, and chaotic behavior is
observed [arrow 2 in Fig. 2(b)] because the phase tra-
jectory can no longer collide with the antimode and
stays close to the nearest mode. This chaotic behav-
ior is observed in a very small range of k2, and, as
k2, increases further, quasi-periodic behaviors appear
[from k2 � 0.5 3 1023 to k2 � 0.8 3 1023 in Fig. 2(b)]
with frequency locking near k2 � 0.5 3 1023 [Fig. 3(b)].
The quasi-periodic regime is followed by periodic be-
haviors up to k2 � 3 3 1023. Figure 3(c) shows the
limit cycle that corresponds to the periodic behavior
observed for k2 � 1 3 1023. Figures 2(a) and 2(b)
show that, from k2 � 3 3 1023 to k2 � 5.7 3 1023, the
laser locks into a stable external-cavity mode whatever
the initial conditions are [see, for instance, Fig. 3(d)].
For further increases of k2 the laser undergoes a cas-
cade of bifurcations composed of successive intervals
within which it exhibits unstable behavior, such as pe-
riodic, quasi-periodic, and chaotic behavior and LFF
(e.g., from k2 � 5.7 3 1023 to k2 � 8.3 3 1023 in the
bifurcation diagram) and stable behavior when it locks
into the new stable maximum gain mode (e.g., from
k2 � 8.3 3 1023 to k1 � 10.9 3 1023).

We performed numerical calculations for larger first-
feedback strength, as great as k2 � 5 3 1022, and
always observed LFF suppression. Physically, this
result could be interpreted in terms of an effective
reduction of the linewidth-enhancement factor. In a
laser with a single optical feedback the large value of
the linewidth-enhancement factor is propitious for LFF
since it causes the external-cavity modes with the low-
est stationary angular frequencies to lie close to anti-
modes. With a second optical feedback, however, LFF
is avoided because the antimodes that are responsi-
ble for the crises are suppressed or shifted away from
external-cavity modes, as can be verif ied on the ba-
sis of Eqs. (2) and (3). This second feedback effect is
analogous to an effective reduction of the linewidth-
enhancement factor. Indeed, the same equations show
that the reduction of this parameter also moves anti-
modes away from external-cavity modes.

In all cases the laser diode undergoes a cascade of bi-
furcations as the second-feedback strength is increased
with successive regions in which it exhibits chaos or
LFF and regions in which it exhibits stable behav-
ior. In these regions the system trajectories in phase
space are captured by the new stable maximum gain
mode and stay there. We emphasize the fact that LFF
suppression and laser stabilization are achieved what-
ever the second-feedback phase is, and therefore accu-
rate positioning of the second mirror is not required.
By contrast, the second-feedback delay must be suffi-
ciently short for one to observe a cascade of bifurcations
with stable regions.

In summary, we have shown numerically that LFF
in a laser diode that is subjected to a single external
optical feedback with a short delay and biased near
threshold can be suppressed by means of a second
external optical feedback.
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