
On the Topology of Package Dependency Networks

A Comparison of Three Programming Language Ecosystems

Alexandre Decan Tom Mens
Software Engineering Lab,

University of Mons, Belgium
{first.last}@umons.ac.be

Maelick Claes

ABSTRACT
Package-based software ecosystems are composed of thou-
sands of interdependent software packages. Many empiri-
cal studies have focused on software packages belonging to
a single software ecosystem, and suggest to generalise the
results to more ecosystems. We claim that such a general-
isation is not always possible, because the technical struc-
ture of software ecosystems can be very different, even if
these ecosystems belong to the same domain. We confirm
this claim through a study of three big and popular package-
based programming language ecosystems: R’s CRAN archive
network, Python’s PyPI distribution, and JavaScript’s NPM
package manager. We study and compare the structure of
their package dependency graphs and reveal some impor-
tant differences that may make it difficult to generalise the
findings of one ecosystem to another one.

CCS Concepts
•Software and its engineering → Software libraries
and repositories; Software architectures;

Keywords
software ecosystem, software distribution, component de-
pendency graph, Python, R, JavaScript

1. INTRODUCTION
Software engineering research has traditionally focused on

studying the development and evolution processes of individ-
ual software projects. With the omnipresence of the Inter-
net, collaborative open source software development tools
have become widely used. This has lead to bigger and more
geographically distributed communities of developers, and
made it possible to develop more complex software systems.
It gave rise to so-called software ecosystems, i.e., “collections
of software projects which are developed and evolve together
in the same environment” [16].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ECSAW ’16, November 28-December 02, 2016, Copenhagen, Denmark
c© 2016 ACM. ISBN 978-1-4503-4781-5/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2993412.3003382

An example of ecosystems are software package distribu-
tions. These ecosystems are often characterised by numerous
dependency relationships between their packages. Many re-
searchers have studied issues related to such dependencies
in different ecosystems. Wittern et al. [22] studied the evo-
lution of JavaScript packages in NPM. The R ecosystem has
been studied previously [7, 13], and dependencies have been
shown as an important cause of errors in R packages both on
CRAN and GitHub [8]. Problems in operating system distri-
butions, such as Debian [6, 1] and FreeBSD [14], have been
extensively studied and efficient tools have been proposed
to identify and solve these problems. Related to dependen-
cies inside a software ecosystem, Bavota et al. [2] studied
the evolution of dependencies in the Apache ecosystem and
found that developers were reluctant to upgrade the version
of the software they depend upon.

However, very few studies have compared different soft-
ware ecosystems. Therefore, this paper studies and com-
pares the dependency graphs of three ecosystems surround-
ing a particular programming language. We show that CRAN,
PyPI and NPM have some important differences. We provide
insights on the potential cause of these differences and how
they impact each ecosystem. These observed differences may
make it difficult to generalise the findings of one ecosystem
to another.

2. SELECTED ECOSYSTEMS
In the top 10 of most popular programming languages to-

day1, three languages have increased in popularity compared
to one year ago: Python, JavaScript and R. These will be
the focus of the current paper. These languages come with
an official distribution of software packages, which we will
consider as the software ecosystem corresponding to that
language. For R, the ecosystem is CRAN, the official distri-
bution of R packages, available on cran.r-project.org. For
Python, we have selected the official Python Package index
PyPI (see pypi.python.org/pypi) as ecosystem. For Java-
Script, we chose its NPM package manager (see npmjs.com).
Each of them is big, as summarised in Table 1.

We extracted all package metadata for those three ecosys-
tems, on April 2016 for CRAN and on June 2016 for PyPI
and for NPM. As PyPI lacks dependencies data for many
packages, we used the ones collected by Gullikson [10] on
February 2016.

Figure 1 shows the evolution of the monthly number of
new packages. It reveals that the considered ecosystems are

1Based on the september 2016 ranking of the PopularitY of
Programming Language Index pypl.github.io/PYPL.html.

Table 1: Characteristics of CRAN, PyPI and NPM
Characteristic CRAN PyPI NPM

snapshot date 2016-04-26 2016-02-17 2016-06-28
packages 9,568 56,231 317,159
dependencies 21,698 53,348 728,447
new pkg. in 2015 1,660 17,818 113,613
updates in 2015 8,140 131,072 711,317

Figure 1: Monthly evolution of the number of new
packages.

very active, but with a different rate of growth. To verify
this, we performed a linear regression using an ordinary least
square method on the logarithmic values of Figure 1. We
obtained 0.976, 0.926 and 0.976 as R2-values for respectively
CRAN, PyPI and NPM. We also performed a power law re-
gression but obtained lower R2-values (resp. 0.897, 0.57 and
0.845). This suggests an exponential increase in the monthly
number of new packages for all three ecosystems.

3. PACKAGE DEPENDENCIES
One of the main reasons why dependencies between com-

ponents emerge in an ecosystem is because of software reuse,
a basic principle of software engineering [20]. Software com-
ponents often rely on (i.e., reuse) the functionality offered
by other components (e.g., libraries), rather than reimple-
menting the same functionality.

In order to assess the extent of reuse in each ecosystem,
we computed and analysed their component dependency
graphs. Figure 2 shows the proportion of packages (rela-
tive to the total number of available packages) that have
dependencies, reverse dependencies, or none of both (i.e.,
isolated components).

with dependencies with reverse dependencies isolated
0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n

CRAN PyPI NPM

Figure 2: Proportion of packages with dependen-
cies, with reverse dependencies and packages that
are isolated

We observe an important difference between PyPI and
the other ecosystems. While only 31.5% of all PyPI pack-
ages have dependencies, this proportion jumps to more than
58.7% for NPM and to more than 69.8% for CRAN. Similarly,
while more than 62.3% of all PyPI packages are isolated, only

34.6% (resp. 22.2%) of the packages on NPM (resp. CRAN)
have neither dependencies nor reverse dependencies.

Considering the structure of the component dependency
graphs, we computed the set of weakly connected subgraphs
for each ecosystem. Figure 3 relates the size of these weakly
connected subgraphs to the number of subgraphs having this
size. The three ecosystems appear to exhibit a similar rela-
tion between the number and the size of weakly connected
subgraphs. The main difference comes from the size of the
largest subgraphs, proportionally to the size of the ecosys-
tem: NPM’s (resp. CRAN’s) largest weakly connected sub-
graph contains 202,417 (resp. 7,318) packages, amounting
to around 63.8% (resp. 76.5%) of the ecosystem. In compar-
ison, the largest subgraph for PyPI contains 20,167 packages
corresponding to only 35,6% of the ecosystem.

100 101 102 103 104 105 106

size of the subgraph

100

101

102

103

104

105

106

nu
m

be
r

of
 s

ub
gr

ap
hs CRAN

PyPI
NPM

Figure 3: Relation between the size of a weakly con-
nected subgraph and the number of subgraphs hav-
ing this size.

While dependencies tend to reduce development effort for
individual packages, they increase the overall complexity of
the ecosystem through the need to manage these dependen-
cies. This complexity can cause many maintainability issues
and failures in component based software ecosystems [3, 4,
5]. Leek’s blog summarises the concern for CRAN: “one of
the best things about the R ecosystem is being able to rely
on other packages so that you don’t have to write everything
from scratch. But there is a hard balance to strike with keep-
ing the dependency list small.” [15]

For each package in CRAN, PyPI and NPM, we computed
the set of direct and transitive dependencies. Figure 4 shows
the results obtained for the three ecosystems. Only packages
with at least one dependency are reported on this figure. We
primarily observe differences between the ecosystems for the
number of transitive dependencies.

dependencies transitive dependencies
100

101

102

103 CRAN PyPI NPM

Figure 4: Distribution of the number of (transi-
tive) dependencies by package, for packages having
at least one dependency.

We statistically compared the number (≥ 1) of depen-
dencies and transitive dependencies for packages in CRAN,

PyPI and NPM using a one-sided non-parametric Mann-
Whitney’s U test. We verified the null hypothesis that the
distribution of both populations are equal. The alternative
hypothesis was that the distribution of one population is
greater than the distribution of the other population. The
null hypothesis was significantly rejected, with p-values re-
ported in Table 2.

As there is a huge difference in the number of packages
having at least one dependency in each ecosystem (6,682 in
CRAN versus 17,723 in PyPI and 186,027 in NPM), we report
in Table 2 the effect size of Mann-Whitney’s U tests using
Cohen’s d (using a pooled standard deviation) and Cliff’s δ.
Letters N, S, M and L stand respectively for a negligible, small,
medium and large effect size, as usually interpreted [19].

Table 2: Statistical comparison of the distributions
of the number (≥ 1) of (a) dependencies and (b)
transitive dependencies

alt. hypothesis p-value Cohen’s d Cliff’s δ

(a) PyPI < CRAN < 10−6
0.06 (N) 0.17 (S)

(a) PyPI < NPM < 10−6 0.18 (S) 0.18 (S)

(a) CRAN < NPM 0.001 0.13 (S) 0.02 (N)

(b) PyPI < CRAN < 10−6
0.07 (N) 0.20 (S)

(b) PyPI < NPM < 10−6 0.57 (L) 0.45 (M)
(b) CRAN < NPM < 10−6 0.55 (L) 0.33 (M)

Observed differenced between the three ecosystems may
be explained by the completeness of the standard library
in R, Python and JavaScript. Python comes with batter-
ies included : its standard library typically contains a wide
variety of packages that may be used to address many com-
mon tasks and problems. But this is not the case for R or
JavaScript, forcing developers to rely more often on third-
party packages. While R contains an extensive library to
manipulate data and conduct statistical analyses, it might
lack more generic programming tools that are provided by
packages such as XML, jsonlite, stringr, Rcpp or RCurl. Ac-
cording to JavaScript creator Brendan Eich, the standard
library that exists in JavaScript is kept intentionnaly small:
“The real standard library people want is more like what you
find in Python or Ruby, and it’s more batteries included,
feature complete, and that is not in JavaScript. That’s in
the NPM world or the larger world.” [12]

The high number of required packages in NPM can also be
explained by the desire to distribute micropackages (push-
ing the single-responsability principle to the package level)
and metapackages (packages whose features are provided
exclusively by dependencies): “In a lot of JavaScript en-
vironments, space is at a premium. [...] Several larger li-
braries like Underscore (and Lodash) have actually inten-
tionally split themselves into sub-modules because people usu-
ally only ever load them to use a single merge function.” [11]

4. DEPENDENT PACKAGES
Bavota et al. [3] highlighted that dependencies have an

exponential growth and must be taken care of by develop-
ers. When a change occurs in a package, this change may
break its dependent packages, the dependent packages of
their dependent packages, and so on. Haney confirms this
in his blog: “Dealing with the deeply nested dependencies has
caused us no end of frustrations. A dependency of a depen-
dency of a dependency breaks and we’re left trying to trace

the source of the error and figure out which repo to open an
issue on.” [11]

Robbes et al. [18] studied the ripple effect of API method
deprecation and revealed that API changes can have a large
impact on the system and remain undetected for a long time
after the initial change. In the context of package-based
ecosystems, Di Cosmo et al. [9] highlighted peculiarities of
package upgrades and discussed that current techniques are
not sufficient to overcome failures. Interestingly, CRAN al-
ready suffered from such an issue: “One recent example was
the forced roll-back of the ggplot2 update to version 0.9.0, be-
cause the introduced changes caused several other packages
to break.” [17]

In [8] we studied maintainability issues in CRAN related
to inter-repository dependencies between GitHub and CRAN.
While we are not aware of such problems in PyPI, the recent
removal of left-pad from NPM had huge consequences on
this ecosystem: “This impacted many thousands of projects.
[...] We began observing hundreds of failures per minute,
as dependent projects – and their dependents, and their de-
pendents... – all failed when requesting the now-unpublished
package.” [21]

For each package in each ecosystem, we counted the num-
ber of dependent packages, including the transitive ones.
The results are shown in Figure 5.

[1, 500) [500, 1000) [1000, 5000) [5000, inf)
number of transitive reverse dependencies

100

101

102

103

104

105

nu
m

be
r

of
 p

ac
ka

ge
s CRAN PyPI NPM

Figure 5: Number of packages by (range of) number
of dependent packages

We observe that most packages have fewer than 500 de-
pendent packages. While CRAN (resp. PyPI) only has 34
(resp. 55) packages with more than 500 dependent pack-
ages, we observe that there are 1,636 NPM packages with
more than 500 dependent packages. This includes 420 pack-
ages having between 500 and 1,000 dependent packages, 696
packages between 1,000 and 5,000 dependent packages and
520 packages having more than 5,000 dependent packages.

While we expected NPM to have more packages with a
high number of dependents, due to the size of this ecosys-
tem, we didn’t expect to see such a big difference between
NPM and the other ecosystems. We identified some of these
packages: inherits (91K), lodash (89K), isarray (77K), util-
deprecate (72K), ansi-regex (69K), strip-ansi (69K), core-util-
is (69K), string decoder (68K), . . . The list includes many
micro-packages with very few lines of code but a huge num-
ber of dependent packages. For instance, inherits, isarray,
ansi-regex and strip-ansi all have fewer than 10 lines of code,
and have more than 60K dependent packages.

5. CONCLUSIONS AND FUTURE WORK
This empirical study compared the component dependency

graph of three popular programming language ecosystems.

We found differences in their structure and related these
differences to the specificities of each ecosystem. Most PyPI
packages are isolated in the dependency graph because they
only depend on the rather extensive standard library of
Python. While R, as a statistical language, also comes with
an extensive library for analysing data, it lacks general pur-
pose functions which are provided by packages. Moreover,
there are many popular packages that extend and improve
the basic R features. The consequences are that there are
much less isolated CRAN packages than in PyPI. Because
JavaScript lacks a proper standard library, most NPM pack-
ages are connected between them. Moreover, many pop-
ular packages are very small and provide basic functions
that are missing from JavaScript’s standard library. In par-
ticular, this micro-package phenomenon might cause major
problems in the ecosystem when one of those micro-package
breaks or is removed.

These findings reveal that conducting an empirical anal-
ysis on software ecosystems may give different results de-
pending on the ecosystem under study. Results are therefore
not necessarily generalisable because of the specifics of each
ecosystem. Thus, further studies spanning and comparing
multiple ecosystems are required to assess which findings
can be generalised across ecosystems.

Our study can be extended in many ways. We would
like to study how the ecosystem dependency graphs evolve
over time. Another direction is to consider more ecosystems,
e.g., RubyGems for the Ruby language and Maven for the
Java language. We expect to observe differences between
statistically and dynamically typed languages. Moreover,
extending the study to compare ecosystems that are not
centered around a programming language might reveal other
differences. For example, Linux distributions will probably
have few packages that are not weakly connected to all other
packages because of packages such as libc6 that are transi-
tively required by most packages.

Acknowledgements. This research was carried out in the
context of ARC research project AUWB-12/17-UMONS-3.

6. REFERENCES
[1] P. Abate, R. Di Cosmo, L. Gesbert, F. L. Fessant,

R. Treinen, and S. Zacchiroli. Mining component
repositories for installability issues. In Int’l Conf.
Mining Software Repositories, pages 24–33, 2015.

[2] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and
S. Panichella. The evolution of project
inter-dependencies in a software ecosystem: the case
of Apache. In Int’l Conf. Software Maintenance, 2013.

[3] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and
S. Panichella. How the Apache community upgrades
dependencies: an evolutionary study. Empirical
Software Engineering, 20(5):1275–1317, 2015.

[4] C. Bogart, C. Kästner, and J. Herbsleb. When it
breaks, it breaks: How ecosystem developers reason
about the stability of dependencies. In Automated
Software Engineering Workshop, pages 86–89, Nov.
2015.

[5] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung.
How to break an API: Cost negotiation and
community values in three software ecosystems. In
Int’l Symp. Foundations of Software Engineering,
2016.

[6] M. Claes, T. Mens, R. D. Cosmo, and J. Vouillon. A
historical analysis of Debian package incompatibilities.
In Int’l Conf. Mining Software Repositories, pages
212–223, 2015.

[7] A. Decan, T. Mens, M. Claes, and P. Grosjean. On the
development and distribution of R packages: An
empirical analysis of the R ecosystem. In European
Conference on Software Architecture Workshops,
pages 41:1–41:6, 2015.

[8] A. Decan, T. Mens, M. Claes, and P. Grosjean. When
GitHub meets CRAN: An analysis of inter-repository
package dependency problems. In Int’l Conf. Software
Analysis, Evolution, and Reengineering, pages
493–504. IEEE, Mar. 2016.

[9] R. Di Cosmo, S. Zacchiroli, and P. Trezentos. Package
upgrades in FOSS distributions: details and
challenges. CoRR, abs/0902.1610, 2009.

[10] K. Gullikson. Python dependency analysis –
adventures of the datastronomer.
http://kgullikson88.github.io/blog/pypi-analysis.html,
February 2016.

[11] D. Haney. NPM & left-pad: Have we forgotten how to
program? http://www.haneycodes.net/npm-left-pad-
have-we-forgotten-how-to-program/, March 2016.

[12] Z. Hemel. Javascript: A language in search of a
standard library and module system.
http://zef.me/blog/2856/javascript-a-language-in-
search-of-a-standard-library-and-module-system,
February 2010.

[13] K. Hornik. Are there too many R packages? Austrian
Journal of Statistics, 41(1):59–66, 2012.

[14] N. LaBelle and E. Wallingford. Inter-package
dependency networks in open-source software. CoRR,
cs.SE/0411096, 2004.

[15] J. Leek. How I decide when to trust an R package.
http://simplystatistics.org/?p=4409, November 2015.

[16] M. Lungu. Towards reverse engineering software
ecosystems. In Int’l Conf. Software Maintenance,
pages 428–431, 2008.

[17] J. Ooms. Possible directions for improving dependency
versioning in R. R Journal, 5(1):197–206, June 2013.

[18] R. Robbes, M. Lungu, and D. Röthlisberger. How do
developers react to API deprecation? the case of a
Smalltalk ecosystem. In Int’l Symp. Foundations of
Software Engineering. ACM , 2012.

[19] J. Romano, J. Kromrey, J. Coraggio, and
J. Skowronek. Appropriate statistics for ordinal level
data: Should we really be using t-test and Cohen’s d
for evaluating group differences on the NSSE and
other surveys? In annual meeting of the Florida
Association of Institutional Research, pages 1–3, 2006.

[20] J. Sametinger. Software Engineering with Reusable
Components. Springer, 1997.

[21] I. Z. Schlueter. The npm blog: kik, left-pad, and npm.
http://blog.npmjs.org/post/141577284765/kik-left-
pad-and-npm, March 2016.

[22] E. Wittern, P. Suter, and S. Rajagopalan. A look at
the dynamics of the JavaScript package ecosystem. In
Int’l Conf. Mining Software Repositories, pages
351–361. ACM, 2016.

