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A dynamical change of material properties induces a special
type of reflection and refraction at a temporal discontinuity.
Here, we study the interaction of graphene plasmons with
single and double temporal discontinuities or shocks, lead-
ing to controlled in-plane scattering. We analytically deter-
mine the Fresnel-like coefficients for graphene plasmons at
these boundaries, and validate our results by rigorous
numerical simulations. Temporally controlled doping of
two-dimensional materials such as graphene thus leads to
a new mechanism for planar and compact plasmonic
devices. © 2017 Optical Society of America

OCIS codes: (250.5403) Plasmonics; (130.7405) Wavelength conver-

sion devices; (320.5540) Pulse shaping.
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Graphene plasmonics has gained much attention, because the
particular plasmons are widely tunable, show extreme confine-
ment, and suffer relatively low losses [1–3]. In parallel studies,
dynamical modulation of materials was shown to provide for a
broad variety of unusual phenomena such as wavelength con-
version [4–9], optical isolation [10,11], and topological effects
[12,13]. In this context, the behavior of electromagnetic
waves incident on “time boundaries” has been known for a
long time [14], and these phenomena are very general, as a re-
cent implementation of time reflection for water waves illus-
trates [15].

However, guided optical modes (such as plasmons) with dis-
continuities have not yet been addressed, to the best of our
knowledge. Therefore, in this Letter, we merge the fields of
time boundaries with graphene plasmons, leading to an inter-
esting way to reflect plasmons in two-dimensional compact cir-
cuits. These plasmons are highly suitable for this application, as
the Fermi level can be modulated rapidly. Additionally, the
nature of the plasmonic modes leads to straightforward expres-
sions for the reflection and transmission properties at single or
double discontinuities (so-called temporal slabs). Importantly,
the phenomena and the analysis we report are general and valid
for other types of guided modes.

We study plasmons propagating in a graphene sheet incident
on two types of time boundaries: a single time step [Fig. 1(a)]

and a double time step [or slab, Fig. 1(b)]. The phenomenon at
a single time step is sketched in [Fig. 1(c)]: a forward propagating
plasmonic mode (or pulse) is split into a backward (reflected) and
forward (transmitted) wave after the shock (an abrupt change of
EF [16]).

Here, the time boundaries are abrupt changes in the Fermi
level EF of the graphene sheet. We employ a Drude-like model
for the graphene conductivity [17]:

σ�ω� � e2EF

πℏ2

j
ω� jτ−1gra

; (1)

which is valid for EF ≫ kBT , with kBT ≈ 0.026 eV. Since this
conductivity only takes into account intraband transitions, we
also require that ℏω ≪ 2EF . Close to a time interface (thus
without long propagation), we can ignore the losses τ−1gra � 0.
However, the phenomena remain even with losses, as they do
not depend on the mode amplitude.

The graphene plasmon dispersion in the nonretarded regime
(β ≫ ω∕c with β the mode propagation constant) directly
depends on EF [18]:

Re�β� � 2ε0εrπℏ2ω2

e2EF
; (2)

with εr the permittivity of the surrounding medium (we
use εr � 1).

Since the time derivatives of the electric displacementD and
magnetic induction B appear in Maxwell’s equations, D and B
must be continuous at a time interface at time t � 0 [19,20]:

D�t � 0−� � D�t � 0��; B�t � 0−� � B�t � 0��:
(3)

Here, graphene is modeled with a sheet current J , so Maxwell’s
equations read

∇ × E � −
∂B
∂t

; ∇ ×H � ∂D
∂t

� J : (4)

We consider a constant permittivity and permeability in the sur-
rounding medium, so there the electric field E and magnetic
field H are continuous. Moreover, in a dispersive medium such
as graphene, E and H are also continuous [21], so Eq. (3) re-
duces to temporal continuity of E and H . Graphene plasmons,
being transverse magnetic modes, are easily described by their
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transverse magnetic component (here along y). Using continuity
of H (and convention e−jωt ),

H �ωi�
i;y h�ωi�

i;y �x�ejβi z � H �ωr�
r;y h�ωr �

r;y �x�ejβr z �H �ωt �
t;y h�ωt �

t;y �x�ejβt z ;
(5)

where H �ωα�
α;y is the mode amplitude, h�ωα�

α;y �x� the mode profile,
and β the propagation constant. Superscripts �ωα� indicate the
frequency, and subscripts α � i; r; t stand for the incident, re-
flected, or transmitted. At a regular spatial interface (a change
of index in space), the frequency is conserved across the spatial
discontinuity. In contrast, for a temporal discontinuity, the wave-
vector is conserved [22]: the z dependence in Eq. (5) imposes
that all the propagation constants βα are equal:

βi � βt � βr : (6)

Since we change the Fermi level at the time interface, the fre-
quency of the incident mode has to adapt to keep the wavevector
unchanged [Eq. (2) and Fig. 2]. Consequently, when an incident
mode with a propagation constant βi is incident on a time boun-
dary (when the medium suddenly changes), it produces a re-
flected and a transmitted (“refracted”) mode with the same
propagation constants (βr , βt ), but at a different frequency.
Using the dispersion [Eq. (2)], we link the frequencies to the
Fermi levels around the temporal interface:

γωi � ωt � −ωr ; (7)

where ωi, ωr , and ωt are the incident, reflected and transmitted
frequencies, respectively. The minus sign accounts for backward

propagation. γ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EF1∕EF0

p
is the shock amplitude, with EF0

(EF1) the Fermi level before (after) the time boundary.
Since β is conserved, and we are in the nonretarded regime,

the plasmonic mode profiles h�ω�α;y �x� are very similar on both
sides of the temporal interface. This is why we cancel them
out in the remainder (using the same normalization
h�ωα�
α;x �0�� � 1), which is a very useful approximation stemming
from the extreme confinement of graphene plasmons. For lower-
index modes, this assumption should be reconsidered. We define
the Fresnel-like reflection and transmission coefficients as

H �ωr�
r;y � rstepH

�ωi�
i;y ; H �ωt �

t;y � t stepH
�ωi�
i;y : (8)

By further imposing the continuity of the time derivative of H
[see Eq. (4), as∇ × E is continuous everywhere, except at x � 0]
in Eq. (5), one finds

−jωiejβi z � jωr rstepejβr z − jωt t stepejβt z : (9)

Combining Eqs. (5)–(9), the transmittance and reflectance
become

T step � jt stepj2 �
�
γ� 1

2γ

�
2

; Rstep � jrstepj2 �
�
γ − 1

2γ

�
2

:

(10)

A slab time profile consists of two successive time steps
[Fig. 1(b)], so that with the step coefficients and the phase picked
up between,

Rslab �
1

4
�γ − γ−1�2 sin2�γωτ�; T slab � 1� Rslab; (11)

with τ the slab time duration and ω the incident (and transmit-
ted) angular frequency. It is interesting to note that in the case of
a spatial slab, interferences occur because of a phase βl (with l the
slab length), whereas here the phase is described γωτ (with τ the
slab duration and γω the frequency “inside” the slab).

Equations (10) and (11) describe graphene plasmons at time
steps and slabs. Before interpreting these results, we examine
how the energy of the modes is affected, which allows for a
better comparison with simulations. Using the Poynting vector,
we can define the total incident energy. The power (per unit
y-length) at a given frequency for TM polarization is

P�ω�
α � 1

2
jH �ω�

α;y j2
Z

h��ω�α;y �x�e�ω�α;x �x�dx� 1

2ωε0
jH �ω�

α;y j2; (12)

where e�ω�α;x and h�ω�α;y are the E and H mode profiles. We used
h�ω�α;y �x� � e−κjxj, e�ω�α;x � β∕�ωε0�h�ω�α;y , and κ ≃ β for high-index
modes. Then we can define the energy U α of a pulse (per unit
y-length) as

U α �
Z

P�ω�
α dω ≃

Z
1

2ωε0
jH �ω�

α;y j2dω: (13)

In Eq. (8), we defined

Rstep�jH �ωr �
r;y j2∕jH �ωi�

i j2; T step�jH �ωt �
t;y j2∕jH �ωi�

i j2: (14)

Using these relations, along with Eq. (13), one can show that the
pulse energies are immediately quantified by our coefficients:

Rstep � Ur∕Ui; T step � Ut∕Ui; (15)

where Ui, Ur , and Ut are the incident, reflected, and transmit-
ted energies, respectively. Note that the power fraction for mono-
chromatic waves includes a factor γ: P�ωt �

t ∕P�ωi�
i � T step∕γ,

Fig. 1. (a) Time step and (b) slab. (c) Step effect: an incident
plasmon generates a reflected and transmitted plasmon at a different
frequency.
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Fig. 2. Time step and plasmon dispersion: the propagation constant
is conserved, while the frequency changes. Here, EF1 > EF0.
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whereas Eq. (15) does not. Indeed, the pulses experience
a stretching of the envelope [19], described by a factor γ.

For the temporal slab, since the transmittance T slab and re-
flectance Rslab are frequency dependent, the energy conserva-
tion at the interface needs to be calculated asZ

Rslab�ω�P�ω�
i dω�Ur;

Z
T slab�ω�P�ω�

i dω�Ut: (16)

Therefore, because of the specific graphene plasmon dispersion,
we can directly interpret the analytical reflectance and transmit-
tance in terms of energy for both steps and slabs (even if the
frequency changes for steps).

We run finite element method (FEM) simulations [23] to
validate our results. We model the carrier density by a step
function, which is an approximation, but this avoids the use
of microscopic transport equations for the graphene electrons.
We record (in time domain) the field profiles at two specific
points in space, and then separate incident, reflected, and trans-
mitted pulses. When there are multiple reflected or transmitted
pulses, the Fresnel coefficients are obtained by integrating the
fields of all pulses. The simulations of a step interface (Fig. 3)
from EF0 � 0.6 eV to EF1 � 0.36 eV (γ � 0.77) show that
the reflected and transmitted plasmons indeed have a different
frequency, in accordance with Eq. (7). The simulations agree
well with the theory [Eq. (10)]: rth � 0.1455, rFEM �
0.1452, t th � 1.1455, and tFEM � 1.1454. (Note that the
coefficients are frequency-independent for steps.) In this case,
energy is injected in the system, as we will comment on later.
We remark also that the spectrum of the pulse is compressed by
a factor γ. Since an abrupt step does not take into account
potential carrier dynamic delays, the inset of Fig. 3 shows sim-
ulations with a “smoother” transition. One notices that the
transmission stays similar, while the reflection decreases.
However, a variation of graphene on a scale of 10 fs was dem-
onstrated [24–26], so our abrupt model produces similar values
to more realistic transitions.

For the slab interface, we compare Eq. (11) to FEM sim-
ulations in Fig. 4 for various time slabs (varying τ). The
numerical results (lines) are in good agreement with the theory
(open circles). This shows that energy is injected into the plas-
mon, since the transmittance is always greater than one.
Furthermore, a significant reflectance is possible (e.g., R can
be 100% when γ � ffiffiffi

2
p � 1, and even larger for other γ).

The oscillations in transmittance and reflectance correspond
to interferences between the plasmons reflected and transmit-
ted at both interfaces (steps) of the slab.

Figure 5 shows simulated snapshots of a plasmon pulse at a
temporal slab, visualizing clearly the reflection and transmission
effects. In this case, energy is injected in the system
(T slab � 2.02 and Rslab � 1.02 at the central incident fre-
quency ω0). Notice also the dispersion effects: modes with a
lower β (thus a higher effective wavelength) propagate faster
in graphene sheets [see the leading edge of the “transmitted”
pulse, Fig. 5(c)]. In contrast, the reflected pulse is the same
as the incident pulse, showing the dispersion compensation
[15]. Note that the simulations are spatially two-dimensional
(x, z), but we only show the field along the sheet, as radiation
is negligible because of the large impedance mismatch.

Now we discuss the parameter dependencies of steps and
slabs using our model, since the simulations are in good agree-
ment. For a step, the only available parameter is the shock
amplitude γ [see Eq. (10)]. Surprisingly, the specific start
and end Fermi level, and the incident plasmon frequency,
do not play a role: the only relevant parameter is the ratio
EF1∕EF0. It may seem that high γ values are difficult to achieve
in practice, but this is feasible if one starts from a low EF0.
Figure 6 represents the transmittance and reflectance [which
directly corresponds to the energies [see Eq. (15)] as a function
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the evolution of FEM calculated transmission tFEM and reflection rFEM
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of γ at a step. Energy is injected (reduced) in the forward propa-
gating pulse for shocks with γ < 1 (>1). This profile is some-
what similar to the transmission (not transmittance) of spatial
interfaces in a function of the index fraction n2∕n1.

In contrast, the slab characteristics depend on the length τ,
the amplitude γ, and the incident frequency ω. These param-
eters allow for a large tunability; see Figs. 7(a) and 7(b). The
slab transmittance is always greater than one, and this forward
energy injection is frequency dependent. The maximum trans-
mittance (thus, also reflectance) is the same for γ and γ−1, as
seen in Eq. (11). A larger shock (γ more distant from 1) leads to
an overall higher transmittance, but interference gives oscilla-
tions [Fig. 7(a)]. For the same reason, the slab length allows
tuning of the reflectance and transmittance [Fig. 7(b)]. This
mechanism thus provides plasmon amplification, perhaps lead-
ing to loss compensation [27]. Note also that Rslab is fairly large
in comparison with Rstep. This is because a slab consists of two
steps with amplitudes γ and γ−1, and the intricate interference
leads to adding r�γ�stept

�1∕γ�
step with t�γ�stepr

�1∕γ�
step .

In these effects, the Fermi level variation occurs within a
time comparable to the graphene plasmon period, which is ex-
perimentally challenging. One could use lower frequency gra-
phene plasmons to lift this limitation. One may also use a
longer slab duration, leading to more oscillations in the trans-
mittance. In the end, if the transmittance oscillates many times
in the pulse bandwidth, it is expected that the system will ex-
perience an average (increased) transmittance for the whole
pulse. In order to achieve ultrafast switching, one can consider
a direct external pump to excite carriers on a timescale faster
than the electron relaxation time (on the order of 10−12 s ).
Alternatively, one could exploit nonlinear Kerr-type effects,
or switch to other two-dimensional materials [28].

Using the highly tunable framework of graphene, we de-
scribe the behavior of plasmons at temporal interfaces. Our
analytical approach leads to very simple relations for reflectance
and transmittance, which are in very good agreement with rig-
orous simulations. These results show that energy is injected via
a temporal slab into the plasmons. This process is highly tun-
able via the duration, shock height, and plasmon frequency. In
this Letter, we used a Drude dispersion: we did not take into
account the detailed microscopic dynamics of the carriers, par-
ticularly at the time interface, which is a subject for future stud-
ies. Possible applications include frequency selective filters,
amplifiers, and modulators. The phenomenon is very general,
and our analysis can be adjusted for other guided mode reso-
nances, plasmonic or not.
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Fig. 7. Analytical transmittance T slab [Eq. (11)] with EF0 � 0.6 eV as
a function of ω and (a) γ (τ � 1.67 × 10−13 s) or (b) τ (γ � 2).
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