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Abstract

A PNJL model is built, in which the Polyakov-loop potential is explicitly ZNc-symmetric in order

to mimic a Yang-Mills theory with gauge group SU(Nc). The physically expected large-Nc and

large-T behaviours of the thermodynamic observables computed from the Polyakov-loop potential

are used to constrain its free parameters. The effective potential is eventually U(1)-symmetric when

Nc is infinite. Light quark flavours are added by using a Nambu-Jona-Lasinio (NJL) model coupled

to the Polyakov loop (the PNJL model), and the different phases of the resulting PNJL model are

discussed in ’t Hooft’s large-Nc limit. Three phases are found, in agreement with previous large-Nc

studies. When the temperature T is larger than some deconfinement temperature Td, the system

is in a deconfined, chirally symmetric, phase for any quark chemical potential µ. When T < Td

however, the system is in a confined phase in which chiral symmetry is either broken or not. The

critical line Tχ(µ), signalling the restoration of chiral symmetry, has the same qualitative features

than what can be obtained within a standard Nc = 3 PNJL model.
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I. INTRODUCTION

The structure of the QCD phase diagram is intimately related to our understanding of

fundamental features of QCD, like for example confinement dynamics and chiral symmetry

breaking, and to their interplay with in-medium effects like a nonzero temperature or quark

density. This is the reason why a lot of effort is devoted to study this field, either on the

theoretical side, to which the present work belongs, or on the experimental side through

heavy-ion-collision experiments. Among the various effective frameworks used to study the

QCD phase diagram (see e.g. the review [1]), we will mostly focus on two of them: Polyakov-

loop effective models for the pure gauge part of QCD, and the Nambu-Jona-Lasinio (NJL)

model for the quark part.

The Polyakov loop is defined as

L(T, ~x) = P ei g
∫
1/T
0

dτA0(τ,~x), (1)

in which P is the path-ordering, g the strong coupling constant, A0 = Aa
0 Ta the temporal

component of the Yang-Mills field, Ta the generators of the gauge algebra, and T the tem-

perature. The integral runs on the compactified timelike dimension. The Polyakov loop is a

precious tool to study the phase structure of a given Yang-Mills theory since 〈L(T, ~x)〉 = 0

( 6= 0) when the theory is in a (de)confined phase [2]. Moreover, global gauge transformations

belonging to the center of the gauge algebra only cause L(T, ~x) to be multiplied by an over-

all factor. That is why it has been conjectured that the confinement/deconfinement phase

transition in a Yang-Mills theory with gauge algebra g might be related to the spontaneous

breaking of a global symmetry related to the center of g [3]. In the particular case of SU(Nc),

deconfinement might thus be driven by the breaking of a global ZNc symmetry. The order

parameter of the deconfinement phase transition should then be the traced Polyakov loop

φ =
1

Nc
TrcL, (2)

where the trace Trc is taken over the colour indices. The thermodynamic properties of pure

gauge SU(3) QCD can then be studied by resorting to an effective scalar field theory where

the potential energy density is Z3-symmetric [4]

U = T 4 λ

[

−b2(T )

2
|φ|2 + b4

4
|φ|4 + b6

6
(φ3 + φ∗3)

]

. (3)
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The real coefficients bi can be fitted on lattice data. Various applications of this formalism

can be found for example in [5]. Note that, in the following, φ and L will generally be

indifferently called Polyakov loop.

The NJL model is based on the Lagrangian [6]

LNJL = q̄(iγµ∂µ −mq)q +
G

2

[
(q̄q)2 + (q̄iγ5~τq)

2
]
, (4)

where q is the quark field, mq the mass matrix, and ~τ the Pauli matrices when an SU(2)

flavour symmetry is considered. The interaction terms are such that the Lagrangian is

chirally symmetric. The NJL model is designed to model chiral symmetry breaking and study

many related phenomenological problems; the interested reader may consult the review [7]

for more information. In the original NJL model, quarks are not coupled to the gauge

field: As shown in [8], the coupling of this model to the Polyakov loop can be achieved by

minimally coupling the quark field to a gauge field of the form Aµ = A0 δµ0, that formally

appears as an imaginary quark chemical potential. The so-called PNJL model resulting in

this coupling has motivated a lot of studies devoted to the QCD phase diagram [9, 10],

including cases with a nonzero magnetic field [11].

Deconfined , chiral symmetry

Confined , Confined ,
Broken chiral symmetry Chiral

symmetry
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FIG. 1. Phase diagram obtained by taking the large-Nc limit of the PNJL model used in [12]. The

solid lines signal first-order phase transitions.

The phase structure of the PNJL model at arbitrary Nc has been discussed in [12], as

well as its large-Nc limit. One of the ingredients of this last work is to set λ ∝ (N2
c − 1)

in (3) so that the gluon potential has the correct scaling in Nc. The phase diagram that

has been found at large-Nc is given in Fig. 1. The chirally symmetric but confined phase

that appears for quark chemical potentials larger than about a third of the nucleon mass,
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µ & MN/3, can presumably be identified with the quarkyonic phase, that has been first

proposed in [13] and further studied in [14] in particular.

In the present work, we propose to re-build a PNJL model valid at large-Nc, but in which

the Polyakov-loop potential is explicitly ZNc symmetric, that is typically with a term in

φNc +φ∗Nc instead of the standard Z3-symmetric term φ3+φ∗3. Such a potential is proposed

in Sec. II, and the corresponding PNJL model is written in Sec. III. Then, the issue of

deconfinement and chiral symmetry restoration when varying T and µ are discussed in

Sec. IV in ’t Hooft’s large-Nc limit. The obtained phase diagram and concluding comments

are given in Sec. V.

II. PURE GAUGE SECTOR

A. Explicit ZNc-symmetry

The simplest effective potential energy density depending on φ, defined in (2), and being

explicitly ZNc-invariant has been proposed in [15] and reads

Vg(T,Nc, φ, φ
∗) = A(T,Nc) |φ|2 +B(T,Nc) |φ|4 + C(T,Nc) (φ

Nc + φ∗Nc), (5)

where, besides a mass term (|φ|2) and a simple interaction term (|φ|4), the term in φNc+φ∗Nc

accounts for the ZNc-symmetry [16]. The real coefficients A, B, and C appearing in (5) are

functions of T and Nc a priori, and their explicit form will be specified in the following.

Note that φ, which depends on T , Nc, and ~x a priori, is here assumed to be independent of

~x.

Various parametrizations of Z3-symmetric potentials, fitted on pure gauge lattice data,

have been proposed so far [8, 9, 17], the one of [9] being the most widely used. Here, we

are rather interested in obtaining an effective potential valid at large Nc, i.e. Nc > 4 at

least. All these values of Nc have in common that the asymptotic (large |φ|) behaviour of

Vg is driven by the ZNc-symmetric term, a feature that will be implicitly assumed in the

analysis below. The present formalism will thus not be valid for Nc = 3 in particular, where

the asymptotic behaviour is driven by the interaction term. Nevertheless, our results in the

large-Nc limit will be compared to Nc = 3 lattice data as it is usually done in the literature.

The following expected qualitative behaviours have to be imposed in order to constrain the

shape of the functions A, B, and C:

4



• The pressure pg = −minφ(Vg) is proportional to N2
c T

4 at large Nc and T in order to

recover asymptotically the Stefan-Boltzmann limit of a free gluon gas.

• The norm, |φ0|, of the optimal value of the Polyakov loop, φ0 = |φ0| eiδ0, is Nc-

independent at the dominant order. |φ0| = 0 in the confined phase, and > 0 in the

deconfined phase.

• There exists a critical temperature Td signalling a first-order phase transition. At the

critical temperature, |φ0| = 0 and 1/2 are two degenerate minima of Vg. This last value

is chosen so that it will ensure a good compatibility between our model and existing

lattice data but it has only to be nonzero in order to lead to a deconfined phase. Td

has to be seen as a typical value for the deconfinement temperature in SU(Nc) Yang-

Mills theory since the deconfinement temperature appears to be Nc-independent up

to corrections in 1/N2
c [18].

The above constraints are actually satisfied by the following Lagrangian

Vg = N2
c T

4 a(T )

[

|φ|2 − 4|φ|4 + l(T )2−Nc

Nc

[8l(T )2 − 1](φNc + φ∗Nc)

]

, (6)

where

l(T ) >
1√
8
, l(Td) =

1

2
, l′(T ) > 0. (7)

Explicit forms of a(T ) and l(T ) will be given in the next section. The potential (6) has

the following absolute minimum: φ0(T < Td) = 0 and φ0(T ≥ Td) = |φ0(T )| e2iπk/Nc , where

k = 0, . . . , Nc − 1 and where |φ0(T )| is a solution of

1− 8|φ0(T )|2 + l(T )2−Nc
[
8l(T )2 − 1

]
|φ0(T )|Nc−2 = 0. (8)

It is straightforwardly checked that

|φ0(T )| = l(T ) (9)

actually solves (8).

A more compact expression for the optimal value of the Polyakov loop is thus

φ0 = l(T ) e2iπk/Nc Θ(T − Td), (10)

where Θ is the Heaviside function. The constraints (7) ensure not only that the absolute

minimum of Vg is always 0 below Td, but also that the phase transition is of first order

because of the discontinuity in |φ0|. As seen from (8), |φ0| only depends on T as required.
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FIG. 2. Schematic evolution of the effective potential (11) versus the temperature (solid lines).

Restricting ourselves to the values φ = |φ| e2iπk/Nc, we get at the limit Nc → ∞ a quite

simple shape for the effective potential (6), namely

Vg

N2
c T

4
≡ ωg

T 4
= a(T ) |φ|2(1− 4|φ|2) |φ| ≤ l(T ),

→ +∞ |φ| > l(T ). (11)

Hence, a U(1) invariance is recovered at infinite Nc as a limiting case of the ZNc-symmetry.

The schematic evolution of the large-Nc limit of Vg with the temperature is plotted in Fig. 2;

the behaviour (11) is readily observed, as well as the change of global minimum in T = Td.

Finally, the large-Nc limit of the pressure reads

pg(T,Nc) = N2
c T

4 a(T ) l(T )2
[
4l(T )2 − 1

]
. (12)

Provided that l(∞) = 1 according to the large-T behaviour of the Polyakov loop, pg would

tend toward the Stefan-Botlzmann limit for a free gluon gas if a(∞) = π2/135.

B. Numerical data

The function l(T ) is constrained by the relations (7) in order for the structure of the

potential and its evolution with the temperature to have the required behaviour. Moreover,

l(T ) is equal to the norm of the Polyakov loop as soon as T > Td. The physical constraint

l(∞) = 1 could be imposed, but it is not sufficient to write down an explicit expression for

l(T ). That is why a better way of proceeding is to fit available lattice computations of the

Polyakov loop in pure Yang-Mills theory. To our knowledge, large-Nc values have not been
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FIG. 3. Norm of the Polyakov loop minimizing the potential (6) versus the temperature in units

of Td (solid line). The norm of the Polyakov loop computed in pure gauge SU(3) lattice QCD has

been added for comparison (points); data are taken from [19].

obtained so far, but accurate SU(3) ones have been computed in [19]. Since the Polyakov

loop should not depend on Nc at the dominant order, it is relevant to fit l(T ) on SU(3) data;

the ad hoc form

l(T ) = 0.74− 0.37 tanh

(

1.41
Td

T
− 0.60

T

Td

)

(13)

leads to a satisfactory parametrization of the results of [19] as it can be seen in Fig. 3. It is

also worth noting that Fig. 2 has been obtained using the form (13) for l(T ), with T = 1.2 Td

for the curve labelled T > Td.

The function a(T ) is only present as an overall factor in Vg, so it does not come into

play in the qualitative features of the effective potential. However, it is relevant in view of

reproducing the absolute value of the pressure in pure gauge QCD, for which lattice data

are known at Nc = 3, 4, 5, 6, 8 and ∞ through an extrapolation of these data [20]. The

simple empirical choice

a(T ) =
0.053

l(T )4
(14)

leads to a good agreement between the lattice data of [20] and formula (12), as shown in

Fig. 4.

It is worth saying that the forms (13) and (14) are not meant to be valid at asymptotically

high temperatures. They have been chosen instead to agree with current lattice data up to

12 Td (for l(T )) and 3 Td (for a(T )). It is not problematic since the rest of this work will be

devoted to study the phase structure of our PNJL model at large Nc: As it will be shown
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FIG. 4. Large-Nc pure gauge pressure computed from Eq. (12) and normalized to N2
c T

4 (solid line).

The corresponding lattice data, taken from [20], are plotted for comparison in the case Nc = 3

(gray points) and Nc → ∞ (black points).

in the next sections, no phase transition is expected to occur at energy scales well above Td.

III. PNJL MODEL

As shown in [8], a minimal coupling of the NJL Lagrangian (4) to a gauge field of the

form Aµ = A0 δµ0 makes eventually appear the Polyakov loop in the quark grand potential.

In the mean field approximation, one is led indeed to the quark potential [8]

Vq(µ, T, σ, L, L
†)

NcNf

=
σ2

2g
− 2

∫
d3p

(2π)3
× (15)

{

Ep +
T

Nc

Trcln
[
1 + L e−(Ep−µ)/T

]
+

T

Nc

Trcln
[
1 + L† e−(Ep+µ)/T

]
}

,

where the Polyakov loop L has been defined in (1). In the above equality,

Ep =
√

p2 + (mq − σ)2 (16)

is the quark dispersion relation, with mq the quark bare mass and σ related to the chiral

condensate as follows

σ = G 〈q̄ q〉 . (17)

The coupling G has to scale as (NcNf )
−1 in order for the potential (15) to scale as Nc Nf ,

so it is convenient to define the coupling g as

g = GNcNf . (18)
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Since the pure gauge part of the potential only involves the traced Polyakov loop φ, it is

interesting to express Vq in terms of φ rather than L. Terms of the form Trcln [1 + z L] can be

expressed as functions of TrcL ∝ φ, TrcL
2, TrcL

3, . . . through a Taylor expansion. A possible

way of proceeding is to expand the quark potential at the first order in L. This eventually

leads to formulas in which only φ appears in Vq [12]. This scheme has the advantage of

being independent of the parametrization of L. Here we adopt an inequivalent procedure,

consisting in choosing the following ansatz for L:

L = diag(eiθ, . . . , eiθ
︸ ︷︷ ︸

(Nc−1)/2

, 1, e−iθ, . . . , e−iθ

︸ ︷︷ ︸

(Nc−1)/2

) odd−Nc (19)

= diag(eiθ, . . . , eiθ
︸ ︷︷ ︸

Nc/2

, e−iθ, . . . , e−iθ

︸ ︷︷ ︸

Nc/2

) even −Nc.

This ansatz is such that L†L = 1 and detL = 1 as demanded for an SU(Nc) element.

Moreover, it reduces to the parametrization of [8] at Nc = 3. It has also the advantage of

allowing to compute exactly the color traces appearing in (15), but the price to pay is that

L is assumed to depend only on one real parameter θ.

It is readily computed that

φ = 1
Nc

[1 + (Nc − 1) cos θ] odd−Nc (20)

= cos θ even −Nc

by using of the ansatz (19) in (2). Moreover,

Trcln
[
1 + L e−(Ep−µ)/T

]
= ln detc

[
1 + L e−(Ep−µ)/T

]

=
Nc − 1

2
ln

[

1 + 2
Ncφ− 1

Nc − 1
e−(Ep−µ)/T + e−2(Ep−µ)/T

]

+ln
[
1 + e−(Ep−µ)/T

]
odd−Nc, (21)

=
Nc

2
ln
[
1 + 2φe−(Ep−µ)/T + e−2(Ep−µ)/T

]

even−Nc,

and, taking into account a cutoff for the momentum integration of the vacuum term, one

finally arrives at the quark potential, whose large-Nc limit is given by

ωq(µ, T, σ, φ) =
Vq(µ, T, σ, φ)

NcNf

=
σ2

2g
− 1

π2

∫ Λ

0

dp p2Ep −
T

2π2

∫ ∞

0

dp p2
{
ln
[
1 + 2φe−(Ep−µ)/T + e−2(Ep−µ)/T

]

+(µ → −µ)} . (22)
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This last potential reduces to the genuine NJL potential once φ = 1, as it is the case in

previous studies [8, 12].

The total potential of the large-Nc PNJL model under study is finally given by

V(µ, T, σ, φ) = N2
c ωg(T, φ) +NcNf ωq(µ, T, σ, φ). (23)

IV. PHASE DIAGRAM AT LARGE Nc

In ’t Hooft’s large-Nc limit, the number of quark flavours stays finite and V is dominated

by the gluonic contribution. Consequently, the optimal value φ0 can be found by minimizing

ωg only. According to (11), the large-Nc solution reads

φ0(T ) = l(T ) Θ(T − Td). (24)

The physical value of σ, denoted σ0 and depending on T and µ, is then such that it minimizes

ωq(T, µ, σ, φ0(T )). ωg does not depend on σ. Since σ ∝ 〈q̄q〉, chiral symmetry is present when

σ0 = 0 and broken when σ0 6= 0. As a consequence of (24), the deconfined phase appears

as soon as T > Td, independently of the value of µ: As pointed out in [13], quarks have no

influence on the deconfinement phase transition at large-Nc because of the suppression of

internal quark loops in this limit.

As a consequence of the large-Nc limit, the confined/deconfined phases are straightfor-

wardly identified in our model. The situation is less simple as far as chiral symmetry is

concerned; numerical computations are needed. As a first step, the parameters of the model

have to be fixed. The values

mq = 5.5 MeV, g = 60.48 GeV−2, Λ = 651 MeV, Td = 270 MeV, (25)

are used in most of the PNJL studies and will be taken in the following also. The first three

parameters have been fitted so that the zero-temperature pion mass and decay constant are

reproduced within the standard NJL model with Nc = 3 and Nf = 2 [7, 21]. Td is a typical

value for the deconfinement temperature in SU(Nc) Yang-Mills theory.

Using the parameters (25), the optimal value σ0 can now be computed for any couple

(µ, T ), and can be linked to the quark condensate thanks to (17)

〈q̄q〉 (µ, T ) = NcNf

g
σ0(µ, T ). (26)
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FIG. 5. Chiral condensate, normalized to its zero temperature value, versus T in units of Td, and

plotted for µ/Td = 0, 1, and 1.11 (solid lines). The optimal value of the Polyakov loop is also

plotted (dotted line).

In the limit where T and µ both tend toward zero, we get

lim
µ,T→0

〈q̄q〉 (µ, T ) = −Nc Nf 5.29 10
6MeV3, (27)

corresponding to a quite common value of -(317 MeV)3 for Nc = 3 and Nf = 2. Notice that,

although formally valid in the large-Nc limit, our model leads to a satisfactory estimate for

the chiral condensate at Nc = 3 also.

The chiral condensate versus the temperature is plotted in Fig. 5 for some values of the

quark chemical potential. The most salient feature of this plot is the simultaneity of the

first-order deconfinement phase transition and of the complete restoration of chiral symmetry

through a first-order phase transition occuring at Tχ = Td. However, when µ/Td & 0.8 (µ &

200 MeV), the quick decrease of the chiral condensate suggests a progressive restoration of

chiral symmetry through a crossover at temperatures smaller than Td. As shown in [8], the

crossover temperature can be computed thanks to the determination of the peak position in

the dimensionless quark susceptibility reading, at large-Nc,

χqq(T, µ) =
Λ T

∂2
σωq|σ=σ0

. (28)

A plot of χqq(T, µ) for some values of µ/Td is given in Fig. 6. Several observations can be

made by observing this figure together with Fig. 5. First, the peak of the quark susceptibility

is located in Td when µ/Td ≤ 0.79; this corresponds to a first-order-type chiral symmetry

restoration in the deconfined phase. The point (0.79, 1) × Td actually corresponds to a

11
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FIG. 6. Dimensionless quark susceptibility (28) versus the temperature in units of Td (solid lines)

with, from left to right, µ/Td =1.24, 1.15, 1.04, 0.93, 0.79. χqq(T, 0) is also ploted for completeness

(dashed line).

triple point in the (µ, T )-plane: At large µ the peak of χqq is located below Td – a larger µ

corresponds to a lower peak position –, leading to the existence of a confined phase in which

chiral symmetry is progressively restored through a crossover. A careful look at σ0 actually

shows that the chiral phase transition below Td becomes of first order when µ/Td ≥ 1.24:

There exists thus a critical-end-point that we find to be (1.23, 0.26)× Td in the (µ, T )-plane.

Gathering all these observations, the phase diagram of our model in the (µ, T )-plane can

be established; it is shown in Fig. 7. The three phases we find correspond to those found

in [12], see Fig. 1, but the structure of the chiral phase transition is a bit more involved under

Td: The chemical potential at which chiral symmetry is restored now depends on T , and

there exists a critical-end-point at large enough µ. Although the deconfining phase transition

corresponds to what is expected in the large-Nc limit of QCD from generic arguments [13],

the critical line Tχ(µ) we find under Td quite resembles to what can be observed within

previously known Nc = 3 PNJL studies [8, 9].

V. CONCLUSION

Effective “Polyakov-loop-based” approaches have proven to be a relevant tool in view of

modelling the thermodynamic properties of pure gauge QCD. The traced Polyakov loop is

then the order parameter associated to confinement, itself seen as correlated with a global

center symmetry, ZNc when the gauge group is SU(Nc). Following a suggestion made in [15],
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FIG. 7. Phase diagram of the large-Nc PNJL model (23) with explicit ZNc symmetry. The solid

lines denote first-order phase transitions while the dashed line denotes a crossover. The triple point

(0.212, 0.270) GeV and the critical end-point (0.335, 0.063) GeV have been also plotted. The end

of the lower curve is reached at (0.343, 0) GeV.

an explicitly ZNc-symmetric potential involving the traced Polyakov loop has been built and

leads to: A first-order phase transition at large-Nc, a gluonic pressure scaling as N2
c , and an

Nc-independent optimal value for the Polyakov loop. The coupling of the pure gauge sector

to light quarks has then been performed within a PNJL approach. Thanks to a particular

ansatz for the Polyakov loop, the quark potential is such that in only involves the traced

Polyakov loop that appears in the pure gauge potential. It has to be said that the resulting

PNJL model is designed to be relevant in the large-Nc limit, although it compares favourably

with some Nc = 3 observables. It is moreover inequivalent to the model proposed in [12].

The phase diagram of our PNJL model has been explored in ’t Hooft’s large-Nc limit. At

any µ, it shows a deconfined, chirally symmetric, phase above the deconfinement temperature

(Td =270 MeV). The deconfinement phase transition and the restoration of chiral symmetry

are found to be simultaneous first-order phase transitions, in agreement with [12, 13]. At

temperatures lower than Td, thus in the confined phase, there is a critical line Tχ(µ) separat-

ing a phase with broken chiral symmetry at small µ and a chirally symmetric phase at large

µ. The phase transition is found to be a crossover from the triple point (0.212, 0.270) GeV

to the critical-end-point (0.335, 0.063) GeV. It is then of first order until the boundary

(0.343, 0) GeV is reached, corresponding to the estimate µ ≈ MN/3 [13]. It is worth saying

that a confined, chirally symmetric, phase has also been found by solving Schwinger-Dyson
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equations at nonzero µ in [22], and that evidences for the existence of such a phase has been

found in Coulomb gauge QCD calculations [23].

Finally, we remark that the large-Nc limit of the proposed pure gauge effective potential

has a U(1) symmetry, which emerges as the limit of a ZNc symmetry. This large-Nc effective

potential could be used in an approach where the traced Polyakov loop is allowed to depend

on the position, typically via a Lagrangian of the type L ≈ ∂µφ ∂µφ∗ − Vg. Of particular

interest would then be to search for localised, solitonic, solutions of L: One could then take

advantage of the fact that finding solutions of a complex scalar field theory with a U(1)

invariance is a topic that has attracted a considerable attention, mostly since Coleman’s

work on Q-balls [24], and for which many results are already available. We hope to present

such a study in future works.
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