Meet Your Expectations With Guarantees: Beyond Worst-Case Synthesis in Quantitative Games

> V. Bruyère (UMONS) E. Filiot (ULB) M. Randour (UMONS-ULB) J.-F. Raskin (ULB)

> > Brussels - 19.11.2013

MF&V seminar

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

The talk in one slide

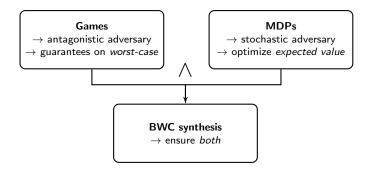
Games

 \rightarrow antagonistic adversary \rightarrow guarantees on *worst-case* MDPs

 \rightarrow stochastic adversary \rightarrow optimize *expected value*

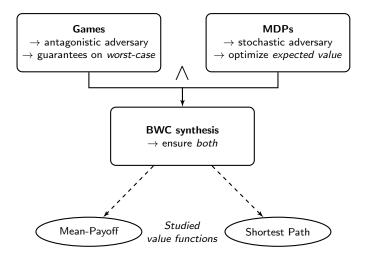
Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

The talk in one slide



Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

The talk in one slide



Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

Advertisement

Full paper available on arXiv: abs/1309.5439

Beyond Worst-Case Synthesis

Bruyère, Filiot, Randour, Raskin

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	000000000	000

- 2 BWC Synthesis
- 3 Mean-Payoff
- 4 Shortest Path
- 5 Conclusion

0000 0000 000 000 000 000 000	Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
	0000	0000			000

1 Context

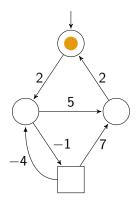
2 BWC Synthesis

3 Mean-Payoff

4 Shortest Path

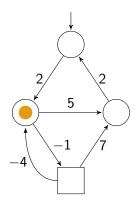
5 Conclusion

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
●000	0000	000	00000000	000



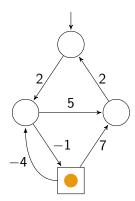
- Graph $\mathcal{G} = (S, E, w)$ with $w \colon E \to \mathbb{Z}$
- Two-player game $G = (\mathcal{G}, S_1, S_2)$
 - $\triangleright \mathcal{P}_1 \text{ states} = \bigcirc$
 - $\triangleright \ \mathcal{P}_2 \ \mathsf{states} = \Box$
- Plays have values
 - $\triangleright \ f: \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \operatorname{Prefs}_i(G) \to \mathcal{D}(S)$
 - $\triangleright \quad \mathsf{Finite memory} \Rightarrow \mathsf{stochastic Moore machine} \\ \mathcal{M}(\lambda_i) = (\mathsf{Mem}, \mathsf{m}_0, \alpha_{\mathsf{u}}, \alpha_{\mathsf{n}})$

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
●000	0000	000	000000000	000



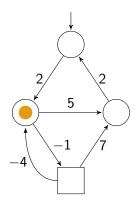
- Graph $\mathcal{G} = (S, E, w)$ with $w \colon E \to \mathbb{Z}$
- Two-player game $G = (\mathcal{G}, S_1, S_2)$
 - $\triangleright \mathcal{P}_1 \text{ states} = \bigcirc$
 - $\triangleright \ \mathcal{P}_2 \ \mathsf{states} = \Box$
- Plays have values
 - $\triangleright \ f: \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \operatorname{Prefs}_i(G) \to \mathcal{D}(S)$
 - $\triangleright \quad \mathsf{Finite memory} \Rightarrow \mathsf{stochastic Moore machine} \\ \mathcal{M}(\lambda_i) = (\mathsf{Mem}, \mathsf{m}_0, \alpha_{\mathsf{u}}, \alpha_{\mathsf{n}})$

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
●000	0000	000	000000000	000



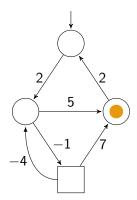
- Graph $\mathcal{G} = (S, E, w)$ with $w \colon E \to \mathbb{Z}$
- Two-player game $G = (\mathcal{G}, S_1, S_2)$
 - $\triangleright \mathcal{P}_1 \text{ states} = \bigcirc$
 - $\triangleright \ \mathcal{P}_2 \ \mathsf{states} = \Box$
- Plays have values
 - $\triangleright \ f: \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \operatorname{Prefs}_i(G) \to \mathcal{D}(S)$
 - $\triangleright \text{ Finite memory} \Rightarrow \text{stochastic Moore machine} \\ \mathcal{M}(\lambda_i) = (\text{Mem}, \text{m}_0, \alpha_u, \alpha_n)$

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
●000	0000	000	000000000	000



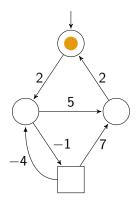
- Graph $\mathcal{G} = (S, E, w)$ with $w \colon E \to \mathbb{Z}$
- Two-player game $G = (\mathcal{G}, S_1, S_2)$
 - $\triangleright \mathcal{P}_1 \text{ states} = \bigcirc$
 - $\triangleright \ \mathcal{P}_2 \ \mathsf{states} = \Box$
- Plays have values
 - $\triangleright \ f: \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \operatorname{Prefs}_i(G) \to \mathcal{D}(S)$
 - $\triangleright \quad \mathsf{Finite memory} \Rightarrow \mathsf{stochastic Moore machine} \\ \mathcal{M}(\lambda_i) = (\mathsf{Mem}, \mathsf{m}_0, \alpha_{\mathsf{u}}, \alpha_{\mathsf{n}})$

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
●000	0000	000	000000000	000



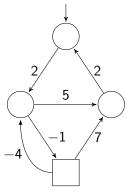
- Graph $\mathcal{G} = (S, E, w)$ with $w \colon E \to \mathbb{Z}$
- Two-player game $G = (\mathcal{G}, S_1, S_2)$
 - $\triangleright \mathcal{P}_1 \text{ states} = \bigcirc$
 - $\triangleright \ \mathcal{P}_2 \ \mathsf{states} = \Box$
- Plays have values
 - $\triangleright \ f: \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \operatorname{Prefs}_i(G) \to \mathcal{D}(S)$
 - $\triangleright \text{ Finite memory} \Rightarrow \text{stochastic Moore machine} \\ \mathcal{M}(\lambda_i) = (\text{Mem}, \text{m}_0, \alpha_u, \alpha_n)$

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
●000	0000	000	00000000	000



- Graph $\mathcal{G} = (S, E, w)$ with $w \colon E \to \mathbb{Z}$
- Two-player game $G = (\mathcal{G}, S_1, S_2)$
 - $\triangleright \mathcal{P}_1 \text{ states} = \bigcirc$
 - $\triangleright \ \mathcal{P}_2 \ \mathsf{states} = \Box$
- Plays have values
 - $\triangleright \ f: \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \operatorname{Prefs}_i(G) \to \mathcal{D}(S)$
 - $\triangleright \ \ \mathsf{Finite memory} \Rightarrow \mathsf{stochastic Moore machine} \\ \mathcal{M}(\lambda_i) = (\mathsf{Mem}, \mathsf{m}_0, \alpha_{\mathsf{u}}, \alpha_{\mathsf{n}})$

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
●000	0000	000	000000000	000

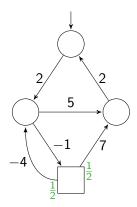


Then, $(2, 5, 2)^{\omega}$

- Graph $\mathcal{G} = (S, E, w)$ with $w \colon E \to \mathbb{Z}$
- Two-player game $G = (\mathcal{G}, S_1, S_2)$
 - $\triangleright \mathcal{P}_1 \text{ states} = \bigcirc$
 - $\triangleright \ \mathcal{P}_2 \ \mathsf{states} = \Box$
- Plays have values $f: Plays(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$
- Players follow *strategies*
 - $\triangleright \ \lambda_i \colon \mathsf{Prefs}_i(G) \to \mathcal{D}(S)$
 - $\vdash \text{ Finite memory} \Rightarrow \text{ stochastic Moore machine } \\ \mathcal{M}(\lambda_i) = (\text{Mem}, m_0, \alpha_u, \alpha_n)$

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

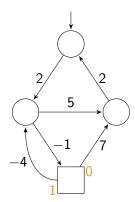
Markov decision processes



MDP P = (G, S₁, S_Δ, Δ) with Δ: S_Δ → D(S)
P₁ states = ○
stochastic states = □
MDP = game + strategy of P₂
P = G[λ₂]

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

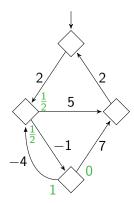
Markov decision processes



- MDP $P = (\mathcal{G}, S_1, S_\Delta, \Delta)$ with $\Delta : S_\Delta \to \mathcal{D}(S)$ $\triangleright \mathcal{P}_1$ states = \bigcirc \triangleright stochastic states = \square
- MDP = game + strategy of \mathcal{P}_2 ▷ $P = G[\lambda_2]$
- Important: we allow $E \setminus E_{\Delta} \neq \emptyset$, $E_{\Delta} = \{(s_1, s_2) \in E \mid s_1 \in S_{\Delta} \Rightarrow \Delta(s_1)(s_2) > 0\}$

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	000000000	000

Markov chains

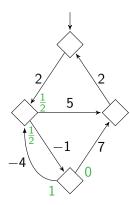


- MC $M = (\mathcal{G}, \delta)$ with $\delta \colon S \to \mathcal{D}(S)$
- $\blacksquare MC = MDP + strategy of \mathcal{P}_1$
 - = game + both strategies

$$\triangleright \ M = P[\lambda_1] = G[\lambda_1, \lambda_2]$$

Context BWC	Synthesis I	Mean-Payoff	Shortest Path	Conclusion
0000 0000		000	00000000	000

Markov chains



- MC $M = (\mathcal{G}, \delta)$ with $\delta \colon S \to \mathcal{D}(S)$
- $MC = MDP + strategy of P_1$
 - = game + both strategies

$$> M = P[\lambda_1] = G[\lambda_1, \lambda_2]$$

- Measurable f: Plays $(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$ \triangleright expected value $\mathbb{E}^{M}_{\text{sinit}}(f)$

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

Classical interpretations

System trying to ensure a specification $= \mathcal{P}_1$

▷ whatever the actions of its **environment**

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

Classical interpretations

- **System** trying to ensure a specification $= \mathcal{P}_1$
 - ▷ whatever the actions of its **environment**
- The environment can be seen as
 - ▷ antagonistic
 - \blacksquare two-player game, worst-case threshold problem for $\mu \in \mathbb{Q}$
 - $\blacksquare \exists ? \lambda_1 \in \Lambda_1, \forall \lambda_2 \in \Lambda_2, \forall \pi \in \mathsf{Outs}_G(\mathbf{s}_{\mathsf{init}}, \lambda_1, \lambda_2), f(\pi) \geq \mu$

0000	000	000000000000000000000000000000000000000	000 000

Classical interpretations

- **System** trying to ensure a specification $= \mathcal{P}_1$
 - ▷ whatever the actions of its **environment**
- The environment can be seen as
 - ▷ antagonistic
 - \blacksquare two-player game, worst-case threshold problem for $\mu \in \mathbb{Q}$
 - $\exists ? \lambda_1 \in \Lambda_1, \, \forall \, \lambda_2 \in \Lambda_2, \, \forall \, \pi \in \mathsf{Outs}_G(\mathbf{s}_{\mathsf{init}}, \lambda_1, \lambda_2), \, f(\pi) \geq \mu$
 - ▷ fully stochastic
 - **•** MDP, *expected value* threshold problem for $\nu \in \mathbb{Q}$
 - $\blacksquare \exists ? \lambda_1 \in \Lambda_1, \mathbb{E}_{s_{\text{init}}}^{P[\lambda_1]}(f) \geq \nu$

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

2 BWC Synthesis

3 Mean-Payoff

4 Shortest Path

5 Conclusion

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	000000000	000

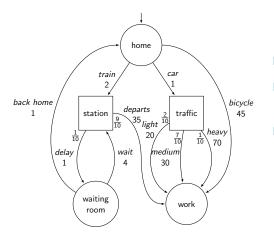
What if you want both?

In practice, we want both

- 1 nice expected performance in the everyday situation,
- strict (but relaxed) performance guarantees even in the event of very bad circumstances.

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

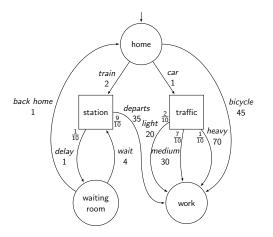
Example: going to work



- ▷ Weights = minutes
- Goal: minimize our expected time to reach "work"
- But, important meeting in one hour! Requires strict guarantees on the worst-case reaching time.

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	000000000	000

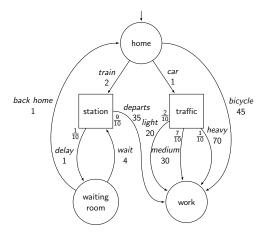
Example: going to work



- Optimal expectation strategy: take the car.
 - E = 33, WC = 71 > 60.
- Optimal worst-case strategy: bicycle.
 - $\mathbb{E} = WC = 45 < 60.$

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	000000000	000

Example: going to work



- Optimal expectation strategy: take the car.
 - $\mathbb{E} = 33$, WC = 71 > 60.
- Optimal worst-case strategy: bicycle.

• $\mathbb{E} = WC = 45 < 60.$

- Sample BWC strategy: try train up to 3 delays then switch to bicycle.
 - $\mathbb{E} \approx 37.56$, WC = 59 < 60.

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

Beyond worst-case synthesis

Formal definition

Given a game $G = (\mathcal{G}, S_1, S_2)$, with $\mathcal{G} = (S, E, w)$ its underlying graph, an initial state $s_{\text{init}} \in S$, a finite-memory stochastic model $\lambda_2^{\text{stoch}} \in \Lambda_2^F$ of the adversary, represented by a stochastic Moore machine, a measurable value function $f : \text{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$, and two rational thresholds $\mu, \nu \in \mathbb{Q}$, the *beyond worst-case (BWC) problem* asks to decide if \mathcal{P}_1 has a finite-memory strategy $\lambda_1 \in \Lambda_1^F$ such that

$$(\forall \lambda_2 \in \Lambda_2, \forall \pi \in \mathsf{Outs}_G(s_{\mathsf{init}}, \lambda_1, \lambda_2), f(\pi) > \mu$$
 (1)

$$\mathbb{E}_{s_{\text{int}}}^{G[\lambda_1,\lambda_2^{\text{stoch}}]}(f) > \nu$$
(2)

and the BWC synthesis problem asks to synthesize such a strategy if one exists.

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

Beyond worst-case synthesis

Formal definition

Given a game $G = (\mathcal{G}, S_1, S_2)$, with $\mathcal{G} = (S, E, w)$ its underlying graph, an initial state $s_{\text{init}} \in S$, a finite-memory stochastic model $\lambda_2^{\text{stoch}} \in \Lambda_2^F$ of the adversary, represented by a stochastic Moore machine, a measurable value function $f : \text{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$, and two rational thresholds $\mu, \nu \in \mathbb{Q}$, the *beyond worst-case (BWC) problem* asks to decide if \mathcal{P}_1 has a finite-memory strategy $\lambda_1 \in \Lambda_1^F$ such that

$$(\forall \lambda_2 \in \Lambda_2, \forall \pi \in \mathsf{Outs}_G(s_{\mathsf{init}}, \lambda_1, \lambda_2), f(\pi) > \mu$$
 (1)

$$\mathbb{E}_{s_{\text{init}}}^{G[\lambda_1,\lambda_2^{\text{stoch}}]}(f) > \nu \tag{2}$$

and the BWC synthesis problem asks to synthesize such a strategy if one exists.

Notice the highlighted parts!

Beyond Worst-Case Synthesis

0000 0000 000 0000 000 000 000 000	0000 0	0000	•00 0000000000000000000000	00000000	000

1 Context

2 BWC Synthesis

3 Mean-Payoff

4 Shortest Path

5 Conclusion

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000			000

Mean-payoff value function

•
$$\mathsf{MP}(\pi) = \liminf_{n \to \infty} \left[\frac{1}{n} \cdot \sum_{i=0}^{i=n-1} w((s_i, s_{i+1})) \right]$$

• Sample play $\pi = 2, -1, -4, 5, (2, 2, 5)^{\omega}$

 \triangleright MP(π) = 3 \rightsquigarrow prefix-independent

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

Mean-payoff value function

•
$$\mathsf{MP}(\pi) = \liminf_{n \to \infty} \left[\frac{1}{n} \cdot \sum_{i=0}^{i=n-1} w((s_i, s_{i+1})) \right]$$

• Sample play $\pi = 2, -1, -4, 5, (2, 2, 5)^{\omega}$

 \triangleright MP(π) = 3 \rightsquigarrow prefix-independent

Games: worst-case threshold problem [LL69, EM79, ZP96, Jur98, GS09]

Memoryless optimal strategies exist for both players and the problem is in NP \cap coNP.

MDPs: expected value threshold problem [Put94, FV97]

Memoryless optimal strategies exist and the problem is in P.

Beyond Worst-Case Synthesis

Bruyère, Filiot, Randour, Raskin

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

BWC MP problem: overview

Theorem (algorithm & complexity)

The BWC problem for the mean-payoff is in $NP \cap coNP$ and at least as hard as deciding the winner in mean-payoff games.

▷ Additional modeling power for free!

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

BWC MP problem: overview

Theorem (algorithm & complexity)

The BWC problem for the mean-payoff is in $NP \cap coNP$ and at least as hard as deciding the winner in mean-payoff games.

▷ Additional modeling power for free!

Theorem (memory bounds)

Memory of **pseudo-polynomial** size may be necessary and is always sufficient to satisfy the BWC problem for the mean-payoff: polynomial in the size of the game and the stochastic model, and polynomial in the weight and threshold values.

ontext	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
000	0000	000	00000000	000

Algorithm: overview

Co

Algorithm 1 BWC_MP($G^i, \lambda_2^i, \mu^i, \nu^i, s_{init}^i$)

- Require: $G^i = (G^i, S_1^i, S_2^i)$ a game, $G^i = (S^i, E^i, w^i)$ its underlying graph, $\lambda_2^i \in \Lambda_2^F(G^i)$ a finite-memory stochastic model of the adversary, $\mathcal{M}(\lambda_2^i) = (Mem, m_0, \alpha_0, \alpha_0)$ its Moore machine, $\mu^i = \frac{\mu}{6}, \nu^i \in Q, \ \mu^i < \nu^i$, resp. the worst-case and the expected value thresholds, and $A_{i,w}^i \in S^i$ the initial state
- Ensure: The answer is YEs if and only if \mathcal{P}_1 has a finite-memory strategy $\lambda_1 \in \Lambda_1^F(G^i)$ satisfying the BWC problem from s_{init}^i , for the thresholds pair (μ^i, v^i) and the mean-payoff value function

{Preprocessing}

- 1: if $\mu^i \neq 0$ then
- 2: Modify the weight function of \mathcal{G}^i s.t. $\forall e \in E^i$, $w_{new}^i(e) := b \cdot w^i(e) a$, and consider the new thresholds pair $(0, \mathbf{v} := b \cdot \mathbf{v}^i a)$
- 3: Compute $S_{WC} := \{s \in S^i \mid \exists \lambda_1 \in \Lambda_1(G^i), \forall \lambda_2 \in \Lambda_2(G^i), \forall \pi \in \mathsf{Outs}_{G^i}(s, \lambda_1, \lambda_2), \mathsf{MP}(\pi) > 0\}$
- 4: if $s_{init}^i \notin S_{WC}$ then
- 5: return No
- 6: else
- Let G^w := Gⁱ | S_{WC} be the subgame induced by worst-case winning states
- 8: Build G := G^w ⊗ M(λ¹₂) = (Ḡ, S₁, S₂), G = (S, E, w), S ⊆ (S_{WC} × Mem), the game obtained by product with the Moore machine, and s_{init} := (s¹_{init}, m₀) the corresponding initial state
- Let λ₂^{stoch} ∈ Λ₂^M(G) be the memoryless transcription of λ₂ⁱ on G

10: Let
$$P := G[\lambda_2^{\text{stoch}}] = (\mathcal{G}, S_1, S_\Delta = S_2, \Delta = \lambda_2^{\text{stoch}})$$
 be the MDP obtained from G and λ_2^{stoch}

{Main algorithm}

- 11: Compute U_W the set of maximal winning end-components of P
- 12: Build $P' = (\mathcal{G}', S_1, S_{\Delta}, \Delta)$, where $\mathcal{G}' = (S, E, w')$ and w' is defined as follows:

$$\forall e = (s_1, s_2) \in E, w'(e) := \begin{cases} w(e) \text{ if } \exists U \in \mathcal{U}_W \text{ s.t. } \{s_1, s_2\} \subseteq U \\ 0 \text{ otherwise} \end{cases}$$

13: Compute the maximal expected value v* from sinit in P'

14: if $v^* > v$ then

- 15: return YES
- 16: else
- 17: return No

Beyond Worst-Case Synthesis

Bruyère, Filiot, Randour, Raskin

Context	BWC Synthesis	Mean-Payoff	Shortest Path
0000	0000	000 •000000000000000000000	00000000

Algorithm: overview

Algorithm 1 BWC_MP($G^i, \lambda_2^i, \mu^i, v^i, s_{init}^i$)

Require: $G^i = [G^i, g^i, S_2^i) = (\operatorname{Men}, \mathfrak{m}_0, \mathfrak{a}_a, \mathfrak{a}_b)$ is underlying graph, $\lambda_2^i \in \Lambda_2^k [G^i)$ a finite-memory stochastic model of the adversary, $\mathcal{M}(\lambda_2^i) = (\operatorname{Men}, \mathfrak{m}_0, \mathfrak{a}_a, \mathfrak{a}_b)$ is Moore machine, $\mu^i = \frac{\mu}{2}, \nu^i \in \mathbb{Q}, \ \mu^i < \nu^i$, resp. the worst-case and the expected value thresholds, and $\mathcal{J}_{abt} \in S^i$ the initial state

Ensure: The answer is YES if and only if \mathcal{P}_1 has a finite-memory strategy $\lambda_1 \in \Lambda_1^F(G^i)$ satisfying the BWC problem from s_{init}^i , for the thresholds pair (μ^i, v^i) and the mean-payoff value function

{Preprocessing} 1: if $\mu^i \neq 0$ then

Boolean output + by-product strategy

- 2: Modify the weight function of \mathcal{G}^i s.t. $\forall e \in E^i$, $w_{new}^i(e) := b \cdot w^i(e) a$, and consider the new thresholds pair $(0, v) := b \cdot v^i a)$
- 3: Compute $S_{WC} := \{s \in S^i \mid \exists \lambda_1 \in \Lambda_1(G^i), \forall \lambda_2 \in \Lambda_2(G^i), \forall \pi \in Outs_{G^i}(s, \lambda_1, \lambda_2), MP(\pi) > 0\}$
- 4: if $s_{init}^i \notin S_{WC}$ then
- 5: return No
- 6: else
- Let G^w := Gⁱ | S_{WC} be the subgame induced by worst-case winning states
- 8: Build G := G^w ⊗ M(λ¹₂) = (Ḡ, S₁, S₂), G = (S, E, w), S ⊆ (S_{WC} × Mem), the game obtained by product with the Moore machine, and s_{init} := (s¹_{init}, m₀) the corresponding initial state
- Let λ₂^{stoch} ∈ Λ₂^M(G) be the memoryless transcription of λ₂ⁱ on G

10: Let
$$P := G[\lambda_2^{\text{stoch}}] = (\mathcal{G}, S_1, S_\Delta = S_2, \Delta = \lambda_2^{\text{stoch}})$$
 be the MDP obtained from G and λ_2^{stoch}

{Main algorithm}

- 11: Compute U_W the set of maximal winning end-components of P
- 12: Build $P' = (\mathcal{G}', S_1, S_{\Delta}, \Delta)$, where $\mathcal{G}' = (S, E, w')$ and w' is defined as follows:

$$\forall e = (s_1, s_2) \in E, w'(e) := \begin{cases} w(e) \text{ if } \exists U \in \mathcal{U}_W \text{ s.t. } \{s_1, s_2\} \subseteq U \\ 0 \text{ otherwise} \end{cases}$$

13: Compute the maximal expected value v* from sinit in P'

14: if $v^* > v$ then

- 15: return YES
- 16: else
- 17: return No

Beyond Worst-Case Synthesis

Bruyère, Filiot, Randour, Raskin

Conclusion

000 0000000000000000000000000000000000	Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
	0000	0000			000

Algorithm: overview

Algorithm 1 BWC_MP($G^i, \lambda_2^i, \mu^i, \nu^i, s_{init}^i$)

- Require: $G^i = (G^i, S^i_1, S^i_2)$ a game, $G^i = (S^i, E^i, w^i)$ its underlying graph, $\lambda^i_1 \in \Lambda^F_2(G^i)$ a finite-memory stochastic model of the adversary, $\mathcal{M}(\lambda^i_2) = (Mem, m_0, \alpha_i, \sigma_n)$ its Moore machine, $\mu^i = \frac{\sigma}{6}, \nu^i \in Q, \ \mu^i < \nu^i$, resp. the worst-case and the expected value thresholds, and $A^i_{ijk} \in S^i$ the initial state
- Ensure: The answer is YES if and only if \mathcal{P}_1 has a finite-memory strategy $\lambda_1 \in \Lambda_1^F(G^i)$ satisfying the BWC problem from s_{init}^i , for the thresholds pair (μ^i, v^i) and the mean-payoff value function

{Preprocessing}

- 1: if $\mu^i \neq 0$ then
- 2: Modify the weight function of \mathcal{G}^i s.t. $\forall e \in E^i$, $w_{\text{new}}^j(e) := b \cdot w^i(e) a$, and consider the new thresholds pair $(0, \mathbf{v} := b \cdot \mathbf{v}^i a)$
- 3: Compute $S_{WC} := \left\{ s \in S^i \mid \exists \lambda_1 \in \Lambda_1(G^i), \forall \lambda_2 \in \Lambda_2(G^i), \forall \pi \in \mathsf{Outs}_{G^i}(s, \lambda_1, \lambda_2), \mathsf{MP}(\pi) > 0 \right\}$
- 4: if $s_{init}^i \notin S_{WC}$ then
- 5: return No
- 6: else
- Let G^w := Gⁱ | S_{WC} be the subgame induced by worst-case winning states
- 8: Build G := G^w ⊗ M(λ¹₂) = (Ḡ,S₁,S₂), G = (S,E,w), S ⊆ (S_{WC} × Mem), the game obtained by product with the Moore machine, and s_{init} := (s¹_{init}, m₀) the corresponding initial state
- Let λ₂^{stoch} ∈ Λ₂^M(G) be the memoryless transcription of λ₂ⁱ on G

10: Let
$$P := G[\lambda_2^{\text{stoch}}] = (\mathcal{G}, S_1, S_\Delta = S_2, \Delta = \lambda_2^{\text{stoch}})$$
 be the MDP obtained from G and λ_2^{stoch}

{Main algorithm}

Preprocessing

- 11: Compute U_W the set of maximal winning end-components of P
- 12: Build $P' = (\mathcal{G}', S_1, S_{\Delta}, \Delta)$, where $\mathcal{G}' = (S, E, w')$ and w' is defined as follows:

$$\forall e = (s_1, s_2) \in E, w'(e) := \begin{cases} w(e) \text{ if } \exists U \in \mathcal{U}_W \text{ s.t. } \{s_1, s_2\} \subseteq U \\ 0 \text{ otherwise} \end{cases}$$

13: Compute the maximal expected value v* from sinit in P'

14: if $v^* > v$ then

- 15: return YES
- 16: else
- 17: return No

Beyond Worst-Case Synthesis

Bruyère, Filiot, Randour, Raskin

ontext	BWC Synthesis	Mean-Payoff ○○○ ●○○○○○○○○○○○○○○○○○	Shortest Path 000000000	Conclusion 000

Algorithm: overview

Algorithm 1 BWC_MP($G^i, \lambda_2^i, \mu^i, \nu^i, s_{init}^i$)

- Require: $G^i = (G^i, S^i_1, S^i_2)$ a game, $G^i = (S^i, E^i, w^i)$ is underlying graph, $\lambda_i^i \in \Lambda_i^E(G^i)$ a finite-memory stochastic model of the adversary, $\mathcal{M}(\lambda_2^i) = (Mem, m_0, \alpha_i, \alpha_n)$ is Moore machine, $\mu^i = \frac{a}{b}, v^i \in \mathbb{Q}, \ \mu^i < v^i$, resp. the worst-case and the expected value thresholds, and $A_{ijk} \in S^i$ the initial state
- Ensure: The answer is YES if and only if \mathcal{P}_1 has a finite-memory strategy $\lambda_1 \in \Lambda_1^F(G^i)$ satisfying the BWC problem from s_{init}^i , for the thresholds pair (μ^i, v^i) and the mean-payoff value function

{Preprocessing}

- 1: if $\mu^i \neq 0$ then
- 2: Modify the weight function of \mathcal{G}^i s.t. $\forall e \in E^i$, $w_{new}^i(e) := b \cdot w^i(e) a$, and consider the new thresholds pair $(0, \mathbf{v} := b \cdot \mathbf{v}^i a)$
- 3: Compute $S_{WC} := \{s \in S^i \mid \exists \lambda_1 \in \Lambda_1(G^i), \forall \lambda_2 \in \Lambda_2(G^i), \forall \pi \in \mathsf{Outs}_{G^i}(s, \lambda_1, \lambda_2), \mathsf{MP}(\pi) > 0\}$
- 4: if $s_{init}^i \notin S_{WC}$ then
- 5: return No
- 6: else
- Let G^w := Gⁱ | S_{WC} be the subgame induced by worst-case winning states
- 8: Build G := G^w ⊗ M(λ²₂) = (Ḡ,S₁,S₂), G = (S,E,w), S ⊆ (S_{WC} × Mem), the game obtained by product with the Moore machine, and s_{init} := (s¹_{init}, m₀) the corresponding initial state
- Let λ₂^{stoch} ∈ Λ₂^M(G) be the memoryless transcription of λ₂ⁱ on G
- 10: Let $P := G[\lambda_2^{\text{stoch}}] = (\mathcal{G}, S_1, S_\Delta = S_2, \Delta = \lambda_2^{\text{stoch}})$ be the MDP obtained from G and λ_2^{stoch}

Main algorithm

{Main algorithm}

- 11: Compute U_W the set of maximal winning end-components of P
- 12: Build $P' = (\mathcal{G}', S_1, S_{\Delta}, \Delta)$, where $\mathcal{G}' = (S, E, w')$ and w' is defined as follows:

$$\forall e = (s_1, s_2) \in E, w'(e) := \begin{cases} w(e) \text{ if } \exists U \in \mathcal{U}_W \text{ s.t. } \{s_1, s_2\} \subseteq U \\ 0 \text{ otherwise} \end{cases}$$

Compute the maximal expected value v^{*} from s_{init} in Pⁱ
 if v^{*} > v then
 return YES
 l6: else
 l7: return NO

Beyond Worst-Case Synthesis

Bruyère, Filiot, Randour, Raskin

Context 0000	BWC Synthesis	Mean-Payoff ○○○ ○●○○○○○○○○○○○○○○○	Shortest Path 000000000	Conclusion 000
1				

1 Modify weights and use thresholds $(\mu = 0, \nu)$

 \triangleright simple trick to ease the following technicalities

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

- Modify weights and use thresholds (µ = 0, ν)
 ▷ simple trick to ease the following technicalities
- 2 Remove all worst-case losing states

$$egin{aligned} \mathcal{S}_{W\!C} &:= \left\{ s \in \mathcal{S}^i \mid \exists \, \lambda_1 \in \Lambda_1(\mathcal{G}^i), \, orall \, \lambda_2 \in \Lambda_2(\mathcal{G}^i), \, orall \, \pi \in ext{Outs}_{\mathcal{G}^i}(s, \lambda_1, \lambda_2), \, \mathsf{MP}(\pi) > 0
ight\} \ \mathcal{G}^w &:= \mathcal{G}^i \mid \mathcal{S}_{W\!C} \end{aligned}$$

- \triangleright BWC satisfying strategies must avoid $S \setminus S_{WC}$: an antagonistic adversary can force WC losing outcomes from there (due to prefix-independence)
- ▷ Answer No if $s_{init} \notin S_{WC}$

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

Modify weights and use thresholds (µ = 0, ν)
 ▷ simple trick to ease the following technicalities

2 Remove all worst-case losing states

$$\mathcal{S}_{WC} := \left\{ s \in S^i \mid \exists \, \lambda_1 \in \Lambda_1(G^i), \, orall \, \lambda_2 \in \Lambda_2(G^i), \, orall \, \pi \in \operatorname{Outs}_{G^i}(s, \lambda_1, \lambda_2), \, \operatorname{MP}(\pi) > 0
ight\}$$
 $G^w := G^i \mid \mathcal{S}_{WC}$

- \triangleright BWC satisfying strategies must avoid $S \setminus S_{WC}$: an antagonistic adversary can force WC losing outcomes from there (due to prefix-independence)
- ▷ Answer No if $s_{init} \notin S_{WC}$
- \triangleright In G^w , \mathcal{P}_1 has a memoryless WC winning strategy from all states

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

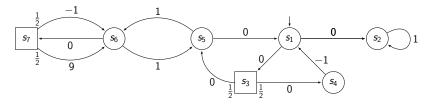
- Build G := G^w ⊗ M(λⁱ₂), the game obtained by product with the Moore machine
 - ▷ Corresponding stochastic model $\lambda_2^{\text{stoch}} \in \Lambda_2^M(G)$ is **memoryless**

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

- Build G := G^w ⊗ M(λⁱ₂), the game obtained by product with the Moore machine
 - ▷ Corresponding stochastic model $\lambda_2^{\text{stoch}} \in \Lambda_2^M(G)$ is **memoryless**
 - \triangleright Obtain the MDP $P := G[\lambda_2^{\text{stoch}}]$, sharing the same graph
 - helps for elegant proofs

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

Main algorithm: end-components



▷ An **EC** of the MDP $P = G[\lambda_2^{\text{stoch}}]$ is a subgraph in which \mathcal{P}_1 can ensure to stay despite stochastic states [dA97], i.e., a set $U \subseteq S$ s.t.

(i) (U, E_Δ ∩ (U × U)) is strongly connected,
(ii) ∀s ∈ U ∩ S_Δ, Supp(Δ(s)) ⊆ U, i.e., in stochastic states, all outgoing edges either stay in U or belong to E \ E_Δ.

 \triangleright Beware arbitrary adversaries may use edges in $E \setminus E_{\Delta}$!

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000 000 0 00000000000000000000000000000	00000000	000

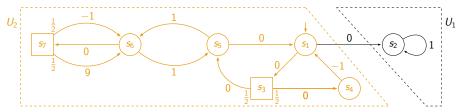
Main algorithm: end-components



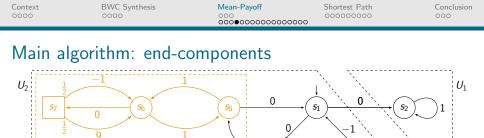
ECs: $\mathcal{E} = \{ U_1 \}$

Context BWC	Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000 0000		000	00000000	000

Main algorithm: end-components



ECs: $\mathcal{E} = \{U_1, U_2\}$



0

s3

2

1

0

 S_4

ECs: $\mathcal{E} = \{U_1, U_2, U_3\}$

S3

 $\frac{1}{2}$

 $\frac{1}{2}$

 s_1

0

s₂

 S_4

S5

0

ECs: $\mathcal{E} = \{U_1, U_2, U_3, \{s_5, s_6\}, \{s_6, s_7\}, \{s_1, s_3, s_4, s_5\}\}$

s6

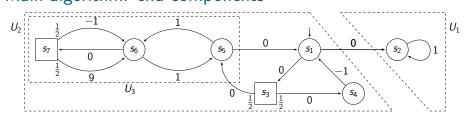
Ū3

0

9

S7

±2



ECs:
$$\mathcal{E} = \{U_1, U_2, U_3, \{s_5, s_6\}, \{s_6, s_7\}, \{s_1, s_3, s_4, s_5\}\}$$

Lemma (Long-run appearance of ECs [CY95, dA97]) Let $\lambda_1 \in \Lambda_1(P)$ be an arbitrary strategy of \mathcal{P}_1 . Then, we have that $\mathbb{P}_{s_{\text{init}}}^{P[\lambda_1]} (\{\pi \in \text{Outs}_{P[\lambda_1]}(s_{\text{init}}) \mid \text{Inf}(\pi) \in \mathcal{E}\}) = 1.$

\triangleright The expectation on $P[\lambda_1]$ depends uniquely on ECs

Beyond Worst-Case Synthesis

Bruyère, Filiot, Randour, Raskin

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

How to satisfy the BWC problem?

 Expected value requirement: reach ECs with the highest achievable expectations and stay in them (optimal expected value in EC [FV97])

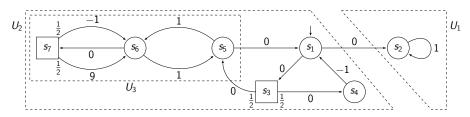
Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

How to satisfy the BWC problem?

- Expected value requirement: reach ECs with the highest achievable expectations and stay in them (optimal expected value in EC [FV97])
- Worst-case requirement: some ECs may need to be eventually avoided because risky!

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

Classification of ECs

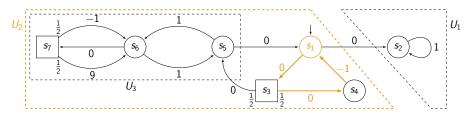


▷ $U \in W$, the winning ECs, if \mathcal{P}_1 can win in $G_{\Delta} \downarrow U$, from all states:

 $\exists \lambda_1 \in \Lambda_1(\underline{G}_{\Delta} \mid U), \forall \lambda_2 \in \Lambda_2(\underline{G}_{\Delta} \mid U), \forall s \in U, \forall \pi \in \mathsf{Outs}_{(\underline{G}_{\Delta} \mid U)}(s, \lambda_1, \lambda_2), \mathsf{MP}(\pi) > 0$

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

Classification of ECs



▷ $U \in W$, the winning ECs, if \mathcal{P}_1 can win in $G_{\Delta} \downarrow U$, from all states:

 $\exists \lambda_1 \in \Lambda_1(\underline{G_{\Delta}} \downarrow U), \forall \lambda_2 \in \Lambda_2(\underline{G_{\Delta}} \downarrow U), \forall s \in U, \forall \pi \in \mathsf{Outs}_{(\underline{G_{\Delta}} \downarrow U)}(s, \lambda_1, \lambda_2), \mathsf{MP}(\pi) > 0$

▷
$$\mathcal{W} = \{U_1, U_3, \{s_5, s_6\}, \{s_6, s_7\}\}$$

▷ U_2 **losing**: from state s_1, \mathcal{P}_2 can force the outcome $\pi = (s_1 s_3 s_4)^{\omega}$ of MP $(\pi) = -1/3 < 0$

Beyond Worst-Case Synthesis

Context BWC	Synthesis N	Aean-Payoff S	Shortest Path (Conclusion
0000 0000		000000000000000000000000000000000000000	00000000	000

Winning ECs: usefulness

Lemma (Long-run appearance of winning ECs)

Let $\lambda_1^f \in \Lambda_1^F$ be a finite-memory strategy of \mathcal{P}_1 that satisfies the BWC problem for thresholds $(0, \nu) \in \mathbb{Q}^2$. Then, we have that

$$\mathbb{P}^{P[\lambda_1^f]}_{s_{\mathsf{init}}}\left(\left\{\pi\in\mathsf{Outs}_{P[\lambda_1^f]}(s_{\mathsf{init}})\mid\mathsf{Inf}(\pi)\in\mathcal{W}\right\}\right)=1.$$

Winning ECs: usefulness

Lemma (Long-run appearance of winning ECs)

Let $\lambda_1^f \in \Lambda_1^F$ be a finite-memory strategy of \mathcal{P}_1 that satisfies the BWC problem for thresholds $(0, \nu) \in \mathbb{Q}^2$. Then, we have that

$$\mathbb{P}^{P[\lambda_1^f]}_{s_{\mathsf{init}}}\left(\left\{\pi\in\mathsf{Outs}_{\mathcal{P}[\lambda_1^f]}(s_{\mathsf{init}})\mid\mathsf{Inf}(\pi)\in\mathcal{W}\right\}\right)=1.$$

A good finite-memory strategy for the BWC problem should maximize the expected value achievable through winning ECs

0000 0000 0000 0000 0000 000 000	Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
	0000	0000			000

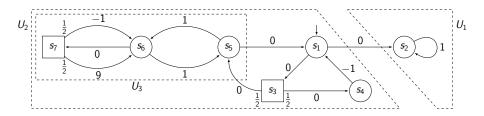
Winning ECs: computation

- ▷ Deciding if an EC is winning or not is in NP \cap coNP (worst-case threshold problem)
- $\triangleright \ |\mathcal{E}| \leq 2^{|\mathcal{S}|} \rightsquigarrow \text{ exponential } \# \text{ of ECs}$

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000000000000000000000000000000000000000	00000000	000

Winning ECs: computation

- ▷ Deciding if an EC is winning or not is in NP ∩ coNP (worst-case threshold problem)
- $arpropto |\mathcal{E}| \leq 2^{|\mathcal{S}|} \rightsquigarrow$ exponential # of ECs
- \triangleright Considering the maximal ECs **does not** suffice! See $U_3 \subset U_2$



Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000000000000000000000000000000000000000	00000000	000

Winning ECs: computation

- \triangleright Deciding if an EC is winning or not is in NP \cap coNP (worst-case threshold problem)
- $\triangleright \ |\mathcal{E}| \leq 2^{|\mathcal{S}|} \rightsquigarrow \text{ exponential } \# \text{ of ECs}$
- \triangleright Considering the maximal ECs **does not** suffice! See $U_3 \subset U_2$

But,

- ▷ possible to define a recursive algorithm computing the **maximal winning ECs**, such that $|U_W| \le |S|$, in NP \cap coNP.
- ▷ Uses polynomial number of of calls to
 - max. EC decomp. of sub-MDPs (each in $\mathcal{O}(|S|^2)$ [CH12]),
 - worst-case threshold problem (NP \cap coNP).
- \vartriangleright Critical complexity gain for the overall algorithm $BWC_MP!$

0000 000000000000000000000000000000000	Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
	0000	0000			000

Winning ECs: what can we expect?

We know we can only benefit from the expectation of winning ECs. But how can we compute it?

Winning ECs: what can we expect?

We know we can only benefit from the expectation of winning ECs. But how can we compute it?

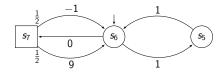
Theorem (BWC satisfaction from winning ECs)

Let $U \in W$ a winning EC, $s_{init} \in U$ an initial state inside the EC, and $\nu^* \in \mathbb{Q}$ the maximal expected value achievable by \mathcal{P}_1 in $P \downarrow U$. Then, for all $\varepsilon > 0$, there exists a finite-memory strategy of \mathcal{P}_1 that satisfies the BWC problem for the thresholds pair $(0, \nu^* - \varepsilon)$.

We can be arbitrarily close to the optimal expectation of the EC while ensuring the worst-case!

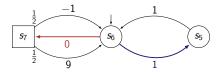
Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

Consider the WEC $U_3 \subseteq S$ and $E \setminus E_\Delta = \emptyset$



Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000000000000000000000000000000000000000	00000000	000

Consider the WEC $U_3 \subseteq S$ and $E \setminus E_\Delta = \emptyset$



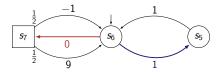
Two particular memoryless strategies exist:

- **1** Optimal expected value strategy $\lambda_1^e \in \Lambda_1^{PM}(P)$, yielding $\mathbb{E} = 2$
- 2 Optimal worst-case strategy λ^{wc}₁ ∈ Λ^{PM}₁(G), ensuring MP = 1 > 0

Remark: $\nu^* = 2 > \mu^* = 1$

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000000000000000000000000000000000000000	00000000	000

Consider the WEC $U_3 \subseteq S$ and $E \setminus E_{\Delta} = \emptyset$



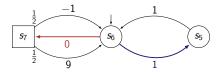
We define $\lambda_1^{cmb} \in \Lambda_1^{PF}$ as follows, for some well-chosen $K, L \in \mathbb{N}$.

(a) Play λ_1^e for K steps and memorize Sum $\in \mathbb{Z}$, the sum of weights encountered during these K steps.

(b) If Sum > 0, then go to (a).
Else, play
$$\lambda_1^{wc}$$
 during L steps then go to (a).

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

Consider the WEC $U_3 \subseteq S$ and $E \setminus E_{\Delta} = \emptyset$



- Phase (a): try to increase the expectation and approach the optimal one
- \triangleright *Phase (b)*: compensate, if needed, losses that occured in (a)

Context 0000	BWC Synthesis	Mean-Payoff ○○○ ○○○○○○○○○○○○○○○○○	Shortest Path 00000000 00	Conclusion 000
Combin	ed strategy: p	arameters		

Key result: $\exists K, L \in \mathbb{N}$ for any thresholds pair $(0, \nu^* - \varepsilon)$

■ plays = sequences of periods starting with phase (a)

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

Combined strategy: parameters

Key result: $\exists K, L \in \mathbb{N}$ for any thresholds pair $(0, \nu^* - \varepsilon)$

- plays = sequences of periods starting with phase (a)
- Worst-case requirement
 - $\triangleright \ \forall K, \ \exists L(K) \text{ s.t. } (a) + (b) \text{ has } MP \geq 1/(K+L) > 0$
 - ▷ Periods (a) induce MP $\ge 1/K$ (not followed by (b))
 - $\,\triangleright\,$ Weights are integers and period length bounded \rightsquigarrow inequality remains strict for play

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000 0000000000000000000000000000000000	00000000	000

Combined strategy: parameters

Key result: $\exists K, L \in \mathbb{N}$ for any thresholds pair $(0, \nu^* - \varepsilon)$

- plays = sequences of periods starting with phase (a)
- Worst-case requirement
 - $\triangleright \ \forall K, \ \exists L(K) \text{ s.t. } (a) + (b) \text{ has } MP \geq 1/(K+L) > 0$
 - ▷ Periods (a) induce MP $\ge 1/K$ (not followed by (b))
 - $\triangleright~$ Weights are integers and period length bounded \sim inequality remains strict for play
- Expected value requirement
 - \triangleright When $K \to \infty$, $\mathbb{E}_{(a)} \to \nu^*$
 - \triangleright We need the *overall contribution* of (b) to tend to zero when $K \rightarrow \infty$
 - $\mathbb{P}_{(b)}$ decreases faster than increase of L(K): exponential vs. polynomial
 - proved using results related to Chernoff bounds and Hoeffding's inequality on MCs [Tra09, GO02]: bound on the probability of being far from the optimal after K steps of (a)

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

Witness-and-secure strategy

What if $E \setminus E_{\Delta} \neq \emptyset$?

- arbitrary adversaries can produce bad behaviors
- add the possibility to react using a worst-case winning strategy (existing everywhere thanks to the preprocessing)
 - > guarantees worst-case
 - ▷ no impact on expected value (probability zero)

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

Back to the algorithm

So we know we should only use WECs and we know how to play ε -optimally when starting in a WEC. *What remains to settle?*

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

Back to the algorithm

So we know we should only use WECs and we know how to play ε -optimally when starting in a WEC. *What remains to settle?*

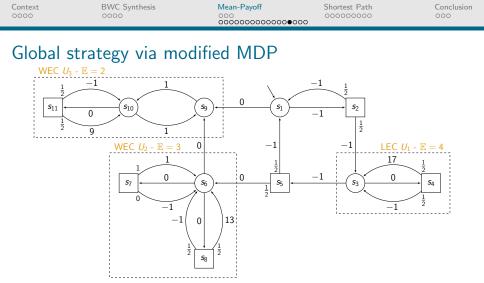
▷ Determine **which** WECs to reach and **how**!

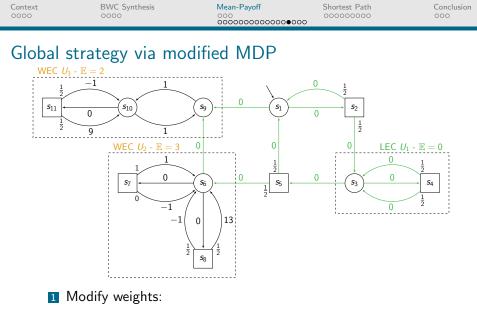
Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

Back to the algorithm

So we know we should only use WECs and we know how to play ε -optimally when starting in a WEC. *What remains to settle?*

- ▷ Determine **which** WECs to reach and **how**!
- ▷ Key idea: define a **global strategy** that will go towards the highest valued WECs and avoid LECs

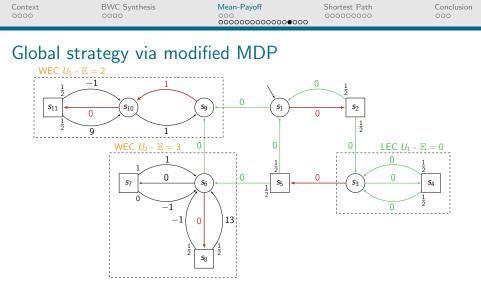




$$\forall e = (s_1, s_2) \in E, w'(e) := \begin{cases} w(e) \text{ if } \exists U \in \mathcal{U}_w \text{ s.t. } \{s_1, s_2\} \subseteq U, \\ 0 \text{ otherwise.} \end{cases}$$

Beyond Worst-Case Synthesis

Bruyère, Filiot, Randour, Raskin



2 Compute memoryless optimal expectation strategy λ_1^e on P'

 \triangleright the probability to be in a good WEC (here, U_2) after N steps tends to one when $N \rightarrow \infty$

Beyond Worst-Case Synthesis

Bruyère, Filiot, Randour, Raskin

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

Global strategy via modified MDP

3
$$\lambda_1^{glb} \in \Lambda_1^{PF}(G)$$
:
(a) Play $\lambda_1^e \in \Lambda_1^{PM}(G)$ for N steps.
(b) Let $s \in S$ be the reached state.
(b.1) If $s \in U \in U_W$, play corresponding $\lambda_1^{wns} \in \Lambda_1^{PF}(G)$ forever.
(b.2) Else play $\lambda_1^{wc} \in \Lambda_1^{PM}(G)$ forever.

- ▷ Parameter $N \in \mathbb{N}$ can be chosen so that overall expectation is arbitrarily close to optimal in P', or equivalently, optimal for BWC strategies in P
- \triangleright Algorithm BWC_MP answers YES iff $\nu^* > \nu$

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

Correctness and completeness

Algorithm $\rm BWC_MP$ is

- correct: if answer is YES, then λ₁^{g/b} satisfies the BWC problem for the given thresholds
- complete: if answer is No, then the BWC problem cannot be satisfied by a finite-memory strategy

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

BWC MP problem: bounds

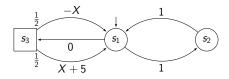
Complexity

- \triangleright algorithm in NP \cap coNP (P if MP games proved in P)
- \triangleright lower bound via reduction from MP games

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

BWC MP problem: bounds

- Complexity
 - \triangleright algorithm in NP \cap coNP (P if MP games proved in P)
 - \triangleright lower bound via reduction from MP games



Memory

- pseudo-polynomial upper bound via global strategy
- ▷ matching lower bound via family (G(X))_{X∈N₀} requiring polynomial memory in W = X + 5 to satisfy the BWC problem for thresholds (0, ν ∈]1, 5/4[)
 - \sim need to use (s_1, s_3) infinitely often for \mathbb{E} but need pseudo-poly. memory to counteract -X for the WC requirement

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	•00000000 000	000

1 Context

2 BWC Synthesis

3 Mean-Payoff

4 Shortest Path

5 Conclusion

0000 0000 000 000000000	000000000	000

Shortest path - truncated sum

- Assume strictly positive integer weights, $w: E \to \mathbb{N}_0$
- Let $T \subseteq S$ be a *target set* that \mathcal{P}_1 wants to reach with a path of bounded value (cf. introductory example)

 \triangleright inequalities are reversed, $\nu < \mu$

• $\mathsf{TS}_{\mathcal{T}}(\pi = s_0 s_1 s_2 \dots) = \sum_{i=0}^{n-1} w((s_i, s_{i+1}))$, with *n* the first index such that $s_n \in \mathcal{T}$, and $\mathsf{TS}_{\mathcal{T}}(\pi) = \infty$ if $\forall n, s_n \notin \mathcal{T}$

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000 000	000

Shortest path - truncated sum

- Assume strictly positive integer weights, $w: E \to \mathbb{N}_0$
- Let $T \subseteq S$ be a *target set* that \mathcal{P}_1 wants to reach with a path of bounded value (cf. introductory example)

 \triangleright inequalities are reversed, $\nu < \mu$

• $\mathsf{TS}_{\mathcal{T}}(\pi = s_0 s_1 s_2 \dots) = \sum_{i=0}^{n-1} w((s_i, s_{i+1}))$, with *n* the first index such that $s_n \in \mathcal{T}$, and $\mathsf{TS}_{\mathcal{T}}(\pi) = \infty$ if $\forall n, s_n \notin \mathcal{T}$

Games: worst-case threshold problem

Memoryless optimal strategies as cycles are to be avoided, and the problem is in P, solvable using attractors and computation of the worst cost.

MDPs: expected value threshold problem [BT91, dA99]

Memoryless optimal strategies exist and the problem is in P.

Beyond Worst-Case Synthesis

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

BWC SP problem: overview

Theorem (algorithm)

The BWC problem for the shortest path can be solved in pseudo-polynomial time: polynomial in the size of the game graph, the Moore machine for the stochastic model of the adversary and the encoding of the expected value threshold, and polynomial in the value of the worst-case threshold.

Theorem (memory bounds)

Pseudo-polynomial memory may be necessary and is always sufficient to satisfy the BWC problem for the shortest path.

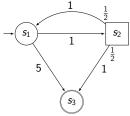
Theorem (complexity lower bound)

The BWC problem for the shortest path is NP-hard.

Beyond Worst-Case Synthesis

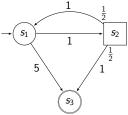
Bruyère, Filiot, Randour, Raskin

Context 0000	BWC Synthesis 0000	Mean-Payoff 000 0000000000000000000000000000000	Shortest Path	Conclusion 000



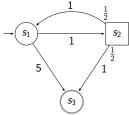
1 Start from $G = (\mathcal{G}, S_1, S_2)$, $\mathcal{G} = (S, E, w)$, $T = \{s_3\}$, $\mathcal{M}(\lambda_2^{\text{stoch}})$, $\mu = 8$, and $\nu \in \mathbb{Q}$

Context 0000	BWC Synthesis 0000	Mean-Payoff 000 0000000000000000000000000000000	Shortest Path 00000000	Conclusion 000

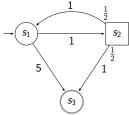


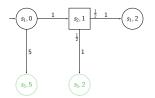
- Start from $G = (\mathcal{G}, S_1, S_2)$, $\mathcal{G} = (S, E, w)$, $T = \{s_3\}$, $\mathcal{M}(\lambda_2^{\text{stoch}})$, $\mu = 8$, and $\nu \in \mathbb{Q}$
- 2 Build G' by unfolding G, tracking the current sum up to the worst-case threshold μ, and integrating it in the states of G'.

Context 0000	BWC Synthesis	Mean-Payoff 000 0000000000000000000000000000000	Shortest Path 00000000	Conclusion 000

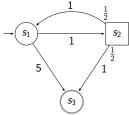


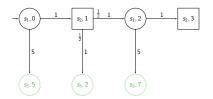
Context 0000	BWC Synthesis	Mean-Payoff 000 0000000000000000000000000000000	Shortest Path 000●00000	Conclusion 000



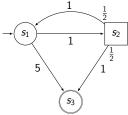


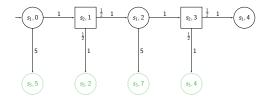
Context 0000	BWC Synthesis	Mean-Payoff 000 0000000000000000000000000000000	Shortest Path 000000000	Conclusion 000



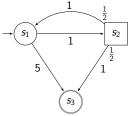


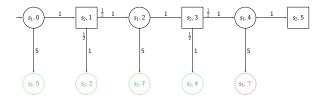
Context 0000	BWC Synthesis	Mean-Payoff 000 0000000000000000000000000000000	Shortest Path 000000000	Conclusion 000
/		/ / / / / / / / / / / / / / / / / / / /	/	



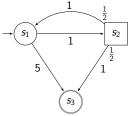


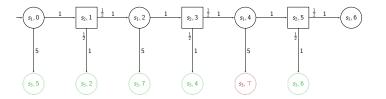
Context 0000	BWC Synthesis	Mean-Payoff 000 0000000000000000000000000000000	Shortest Path 000000000	Conclusion 000
/		/ / / / / / / / / / / / / / / / / / / /	/	



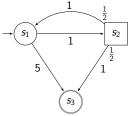


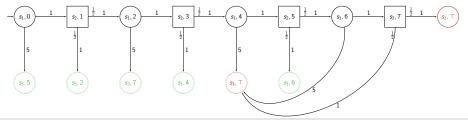
Context 0000	BWC Synthesis	Mean-Payoff 000 0000000000000000000000000000000	Shortest Path 000000000	Conclusion 000
/		/ / / / / / / / / / / / / / / / / / / /	/	





Context 0000	BWC Synthesis	Mean-Payoff 000 0000000000000000000000000000000	Shortest Path 000000000	Conclusion 000



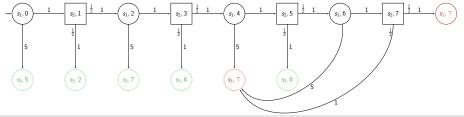


Beyond Worst-Case Synthesis

Bruyère, Filiot, Randour, Raskin

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

- **3** Compute *R*, the attractor of *T* with cost $< \mu = 8$
- 4 Consider $G_{\mu} = G' \downarrow R$

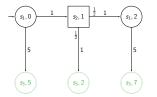


Beyond Worst-Case Synthesis

Bruyère, Filiot, Randour, Raskin

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	000000000 000	000

- **3** Compute *R*, the attractor of *T* with cost $< \mu = 8$
- 4 Consider $G_{\mu} = G' \downarrow R$

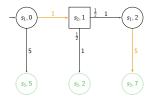


Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000 000	000

5 Consider
$$P = {\sf G}_\mu \otimes {\cal M}(\lambda_2^{\sf stoch})$$

6 Compute memoryless optimal expectation strategy

7 If $\nu^* < \nu$, answer YES, otherwise answer NO

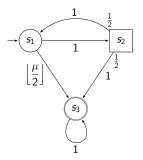


Here,
$$\nu^* = 9/2$$

Context 0000	BWC Synthesis	Mean-Payoff 000 0000000000000000000000000000000	Shortest Path	Conclusion 000

Memory bounds

- > Upper bound provided by synthesized strategy
- ▷ Lower bound given by family of games $(G(\mu))_{\mu \in \{13+k\cdot 4 | k \in \mathbb{N}\}}$ requiring memory linear in μ
 - \rightsquigarrow play (s_1, s_2) exactly $\lfloor \frac{\mu}{4} \rfloor$ times and then switch to (s_1, s_3) to minimize expected value while ensuring the worst-case



Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	000000000	000

Complexity lower bound: NP-hardness

- Truly-polynomial algorithm very unlikely...
- Reduction from the *K*th largest subset problem
 - commonly thought to be outside NP as natural certificates are larger than polynomial [JK78, GJ79]

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

Complexity lower bound: NP-hardness

- Truly-polynomial algorithm very unlikely...
- Reduction from the *K*th largest subset problem
 - commonly thought to be outside NP as natural certificates are larger than polynomial [JK78, GJ79]

Kth largest subset problem

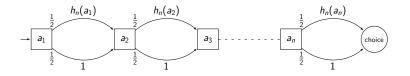
Given a finite set A, a size function $h: A \to \mathbb{N}_0$ assigning strictly positive integer values to elements of A, and two naturals $K, L \in \mathbb{N}$, decide if there exist K distinct subsets $C_i \subseteq A$, $1 \le i \le K$, such that $h(C_i) = \sum_{a \in C_i} h(a) \le L$ for all K subsets.

Build a game composed of *two gadgets*

Beyond Worst-Case Synthesis

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	000000000	000

Random subset selection gadget

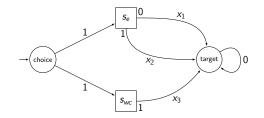


Stochastically generates paths representing subsets of A: an element is selected in the subset if the upper edge is taken when leaving the corresponding state

▷ All subsets are equiprobable

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	000000000 00	000

Choice gadget



- \triangleright s_e leads to lower expected values but may be dangerous for the worst-case requirement
- \triangleright s_{wc} is always safe but induces an higher expected cost

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	00000000	000

Crux of the reduction

Establish that there exist values for thresholds and weights s.t.

- (i) an optimal (i.e., minimizing the expectation while guaranteeing a given worst-case threshold) strategy for P₁ consists in choosing state s_e only when the randomly generated subset C ⊆ A satisfies h(C) ≤ L;
- (ii) this strategy satisfies the BWC problem *if and only if* there exist K distinct subsets that verify this bound.

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	000	000000000	● 00

1 Context

2 BWC Synthesis

3 Mean-Payoff

4 Shortest Path

5 Conclusion

Context 0000	BWC Synthesis	Mean-Payoff 000 0000000000000000000000000000000	Shortest Path 00000000	Conclusion O●O

In a nutshell

- BWC framework combines worst-case and expected value requirements
 - \triangleright a natural wish in many practical applications
 - \triangleright few existing theoretical support

Context 0000	BWC Synthesis 0000	Mean-Payoff 000 0000000000000000000000000000000	Shortest Path 00000000	Conclusion ○●○

In a nutshell

- BWC framework combines worst-case and expected value requirements
 - ▷ a natural wish in many practical applications
 - \triangleright few existing theoretical support
- Mean-payoff: additional modeling power for no complexity cost (decision-wise)
- Shortest path: harder than the worst-case, pseudo-polynomial with NP-hardness result

Context 0000	BWC Synthesis	Mean-Payoff 000 0000000000000000000000000000000	Shortest Path 00000000	Conclusion O●O

In a nutshell

- BWC framework combines worst-case and expected value requirements
 - ▷ a natural wish in many practical applications
 - \triangleright few existing theoretical support
- Mean-payoff: additional modeling power for no complexity cost (decision-wise)
- Shortest path: harder than the worst-case, pseudo-polynomial with NP-hardness result
- In both cases, pseudo-polynomial memory is both sufficient and necessary
 - but strategies have natural representations based on states of the game and simple integer counters

Beyond BWC synthesis?

Possible future works include

- study of other quantitative objectives,
- extension of our results to more general settings (multi-dimension [CDHR10, CRR12], decidable classes of games with imperfect information [DDG⁺10], etc),
- application of the BWC problem to various practical cases.

Beyond BWC synthesis?

Possible future works include

- study of other quantitative objectives,
- extension of our results to more general settings (multi-dimension [CDHR10, CRR12], decidable classes of games with imperfect information [DDG⁺10], etc),
- application of the BWC problem to various practical cases.

Thanks!

Do not hesitate to discuss with us!

References I

D.P. Bertsekas and J.N. Tsitsiklis.

An analysis of stochastic shortest path problems. Mathematics of Operations Research, 16:580–595, 1991.

K. Chatterjee, L. Doyen, T.A. Henzinger, and J.-F. Raskin.

Generalized mean-payoff and energy games. In Proc. of FSTTCS, LIPIcs 8, pages 505–516. Schloss Dagstuhl - LZI, 2010.

K. Chatterjee, L. Doyen, M. Randour, and J.-F. Raskin. Looking at mean-payoff and total-payoff through windows. In Proc. of ATVA, LNCS 8172, pages 118–132. Springer, 2013.

K. Chatterjee and M. Henzinger.

An $\mathcal{O}(n^2)$ time algorithm for alternating Büchi games. In Proc. of SODA, pages 1386–1399. SIAM, 2012.

K. Chatterjee, M. Randour, and J.-F. Raskin. Strategy synthesis for multi-dimensional quantitative objectives. In Proc. of CONCUR, LNCS 7454, pages 115–131, Springer, 2012.

C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification. J. ACM, 42(4):857–907, 1995.

References II

L. de Alfaro.

Formal verification of probabilistic systems. PhD thesis, Stanford University, 1997.

L. de Alfaro.

Computing minimum and maximum reachability times in probabilistic systems. In Proc. of CONCUR, LNCS 1664, pages 66–81. Springer, 1999.

A. Degorre, L. Doyen, R. Gentilini, J.-F. Raskin, and S. Torunczyk. Energy and mean-payoff games with imperfect information. In Proc. of CSL, LNCS 6247, pages 260–274. Springer, 2010.

A. Ehrenfeucht and J. Mycielski.

Positional strategies for mean payoff games. Int. Journal of Game Theory, 8(2):109–113, 1979.

J. Filar and K. Vrieze.

Competitive Markov Decision Processes. Springer, 1997.

M.R. Garey and D.S. Johnson.

Computers and intractability: a guide to the Theory of NP-Completeness. Freeman New York, 1979.

P.W. Glynn and D. Ormoneit.

Hoeffding's inequality for uniformly ergodic Markov chains. Statistics & Probability Letters, 56(2):143–146, 2002.

References III

T. Gawlitza and H. Seidl.

Games through nested fixpoints. In Proc. of CAV, LNCS 5643, pages 291–305. Springer, 2009.

D.B. Johnson and S.D. Kashdan.

Lower bounds for selection in X + Y and other multisets. Journal of the ACM, 25(4):556–570, 1978.

M. Jurdziński.

Deciding the winner in parity games is in UP \cap co-UP. Inf. Process. Lett., 68(3):119–124, 1998.

T.M. Liggett and S.A. Lippman.

Stochastic games with perfect information and time average payoff. Siam Review, 11(4):604–607, 1969.

M.L. Puterman.

Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1994.

M. Tracol.

Fast convergence to state-action frequency polytopes for MDPs. Oper. Res. Lett., 37(2):123–126, 2009.

U. Zwick and M. Paterson.

The complexity of mean payoff games on graphs. Theoretical Computer Science, 158:343–359, 1996.

References IV