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Abstract The status of classical stability in higher-deriv-
ative systems is still subject to discussions. In this note, we
argue that, contrary to general belief, many higher-derivative
systems are classically stable. The main tool to see this prop-
erty are Nekhoroshev’s estimates relying on the action-angle
formulation of classical mechanics. The latter formulation
can be reached provided the Hamiltonian is separable, which
is the case for higher-derivative harmonic oscillators. The
Pais–Uhlenbeck oscillators appear to be the only type of
higher-derivative harmonic oscillator with stable classical
dynamics. A wide class of interaction potentials can even be
added that preserve classical stability. Adiabatic invariants
are built in the case of a Pais–Uhlenbeck oscillator slowly
changing in time; it is shown indeed that the dynamical sta-
bility is not jeopardised by the time-dependent perturbation.

1 Introduction

Variational principles based on action functionals of the
form S[x] = ∫

L(x, ẋ) dt have a special status in the
sense that Newtonian mechanics can be recovered from
Lagrangians L(x, ẋ) depending only on position and veloc-
ity. Still, Lagrangians depending on higher time derivatives
of the position, i.e, higher-derivative (HD) Lagrangians, are
also worth of interest. Let us mention three areas in which
HD models are encountered:

a e-mail: nicolas.boulanger@umons.ac.be
b e-mail: buisseretf@helha.be
c e-mail: dierickf@helha.be
d e-mail: olivier.white@u-bourgogne.fr

1. Explicit construction of classically stable and unstable
HD dynamical systems: A class of classical HD har-
monic oscillators was proposed in Sect. II of [1] and is
still actively studied nowadays under the name of Pais–
Uhlenbeck (P–U) oscillator, see e.g. Refs. [2–13] and
references therein for recent contributions to the field;

2. Renormalizability of HD field theories: In their pioneer-
ing work [1], Pais and Uhlenbeck addressed the issue of
renormalizability in field theory through the inclusion of
HD terms. HD gravities, like Weyl gravity, are promising
renormalisable models of quantum gravity, see the semi-
nal paper [14,15] and recent references in [16,17]. These
HD models bring in the Einstein–Hilbert term upon radia-
tive corrections, see e.g. [18]. They are also interesting in
the context of cosmology and supergravity, see [19–22]
and Refs. therein;

3. HD effective dynamics of voluntary human motions:
The underlying dynamics of such motions is expected
to involve HD variational principles such as minimal
jerk, see e.g. Refs. [23–27]. In this case, higher deriva-
tive terms may be thought of as a way to account for an
intrinsic nonlocality (in time) of planified motion: Human
motor control may indeed add memory effects to standard
Newtonian dynamics, which may be translated into a HD
effective action.

A key feature of classical HD dynamics is that the energy
has no definite sign, as it is readily observed from the gen-
eral structure of HD Hamiltonians [28]. The presence of HD
terms may lead to unbounded trajectories at the classical level
– an explicit case is built in [2] – and to loss of unitarity at
the quantum level [10]. However several cases are known for
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which classical trajectories are bounded and unitarity is pre-
served at the quantum level [10]. Having these recent results
in mind, we think that providing a general method in order to
assess classical stability of HD models is worth of interest.
This is the main goal of the present paper, in which we focus
on the case of HD harmonic oscillators. In the case of per-
turbed harmonic oscillators, an important body of works con-
cerning their stability has been produced [29,30] that seems
to have gone unnoticed by the HD community, so far. In a
very specific case of a P–U oscillator with at most two time
derivatives in the Lagrangian, Pagani et al. proved stability
under a general class of cubic and quartic interactions [31].

The present paper is organised as follows. The Lagrangian
(Sect. 2) and Hamiltonian (Sect. 3) formulations of HD har-
monic oscillators are reviewed and the necessary conditions
for their classical trajectories to be bounded are established.
The dynamics is then formulated in terms of the action-angle
coordinates in Sect. 4 and adiabatic invariants are computed.
Finally, classical stability against time-dependent perturba-
tions is discussed by using Nekhoroshev’s estimates [32,33].

2 Lagrangian formulation

In this section we review the Lagrangian formulation of HD
classical systems with finitely many degrees of freedom, in
essentially the way that was presented long ago by Ostro-
gradki [28]. We then review the Pais–Uhlenbeck parametri-
sation [1] of HD Lagrangians.

2.1 Generalities

Let L(x (0), x (1), . . . , x (N )) be a Lagrangian depending on the
N first derivatives of the dynamical variables x(t) := x (0)(t),
x (1)(t) := ẋ(t) etc. possibly upon adding total derivatives in
order to lower as much as possible the order of derivatives
of x(t) . The action, evaluated between time t1 and time t2 ,
is S[x] = ∫ t2

t1
L dt . Hamilton’s variational principle δS = 0

implies the equations of motion

0 = δL

δx
≡

N∑

j=0

(

− d

dt

) j
∂L

∂x ( j)
, (1)

together with the vanishing of the boundary terms

N−1∑

i=0

δx (i) pi

∣
∣
∣
∣
∣

t2

t1

= 0 ,

pi := δL

δx (i+1)
≡

N−i−1∑

j=0

(

− d

dt

) j
∂L

∂x (i+ j+1)
,

i ∈ {0, . . . , N − 1} . (2)

One chooses to cancel the above boundary terms by imposing
the following conditions at the boundaries of the integration
domain:

δx (i)(t2) = 0 = δx (i)(t1) , ∀ i ∈ {0, . . . , N − 1}.
It amounts to declaring that the initial data needed for solving
the equation (1) is given by the values of x (0) , x (1) , . . . ,
x (N−2) and x (2N−1) at initial time t1 . Indeed, provided one
assumes the regularity condition

∂2L

∂x (N )∂x (N )
�= 0 ,

the above initial data give a well-posed Cauchy problem for
the ordinary differential equation (1).

2.2 Toy model

The simple HD harmonic oscillator

L toy = λ

2

(
x (N )

)2 − (−)N+1

2
λβ2N x2 , (3)

with N ∈ N0 and λ, β ∈ R
+ can be used to illustrate some

features of HD dynamics. It reduces to the standard harmonic
oscillator for N = 1, in which case λ is a mass-parameter.
The case N = 2 has already been used as a toy model in
[34].

The equation of motion (1) reads

x (2N ) + β2N x = 0 , (4)

and its classical solution is given by

x(t) =
2N−1∑

j=0

A j eβ j t with β j = β ei θ j and

θ j = π

2N
+ jπ

N
. (5)

It can be observed from x(t) that the allowed trajectories go
beyond a standard periodic motion since, up to an appropriate
choice of A j , there may appear:

– unbounded when Re β j > 0 . This occurs for j such that
0 < 2 j + 1 < N and 3N < 2 j + 1 � 4N − 1 ;

– damped when Re β j < 0 . This occurs for j such that
N < 2 j + 1 < 3N ;

– periodic with period 2π/β if Re β j = 0: This can happen
for N odd and the two values j = (N − 1)/2 and j =
(3N − 1)/2 .

The standard case N = 1 is the only value for which all the
possible trajectories are periodic. When N > 1, damping
or “blowing-up” phenomena occur at time scales of order
β cos(π/2N ) .
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2.3 General case: Pais–Uhlenbeck oscillator

Lagrangian (3) always allows for unbounded classical
motions. It can be showed that adding intermediate deriva-
tives x (0<i<N ) may reduce and even suppress such instabili-
ties.1 Lagrangian (3) may be generalised as follows

L(x (0), x (1), . . . , x (N )) = 1
2

N∑

j=0

a j (x
( j))2 , a j ∈ R , (6)

and the corresponding equation of motion reads

N∑

j=0

(−) j a j x
(2 j) = 0 . (7)

The characteristic polynomial of the above differential equa-
tion is

p(ω) =
N∑

j=0

(−) j a j ω
2 j . (8)

If the signs of ai are alternating, i.e. a j = (−) j+1b j with
b j ∈ R

+
0 , then p(ω) can be factorised under the form p(ω) ∼

ΠN
j=1

(
ω2 − (iω j )

2
)

with ω j ∈ R0 and all the trajectories
x(t) will be bounded. The further choice a0 < 0 is such that
a standard potential energy is recovered for N = 1 .

Therefore, replacing (x ( j))2 by (−) j x x (2 j) up to total
derivatives, Lagrangian (6) can be rewritten as

L(x (0), x (1), . . . , x (N )) = − 1
2 x

N∑

j=0

b j x
(2 j) . (9)

Lagrangian (9) is nothing but the P–U oscillator [1], origi-
nally written under the equivalent form

L = − 1
2 x FN

(
d

dt

)

x where FN (D) =
N−1∏

i=0

(

1 + D2

ω2
i

)

(10)

where the frequencies ωi are assumed to be real and distinct.
It has been shown in [1] that equal or imaginary frequen-
cies lead to unbounded trajectories so these cases will not be
considered in the following.

The solution of the equation of motion related to (10),
FN

( d
dt

)
x = 0 , reads x(t) = ∑N

k=1 Ak sin(ωk t + ϕk) with
Ak, ϕk ∈ R . All classical trajectories are therefore bounded.
Note that x(t) may describe the motion of a given mass in an
N−body coupled harmonic oscillator whose normal modes
have frequencies ωi : The formal analogy between the P–
U oscillator and the dynamics of an N -body spring-mass
system has been explored in the N = 2 case in Ref. [36].

1 Adding degrees of freedom coupled to x is another way of addressing
the problem, see. e.g. [35].

An equivalent writing of (10) makes use of the oscillator
variables

Qi :=
N−1∏

0= j �=i

(

1 + 1

ω2
j

d2

dt2

)

x (11)

and shows that (10) can formally be written as a Lagrangian
describing N decoupled harmonic oscillators:

L = −1

2

N−1∑

i=0

ηi Qi

(

ω2
i + d2

dt2

)

Qi , (12)

where it can be deduced from [1], see [37], that

ηi = 1

ω2
i

∑
0≤m0<···<mN−2≤N−1

m j �=i
ω2
m0

· · · ω2
mN−2

∏N−1
m=0
m �=i

(ω2
m − ω2

i )
. (13)

The signs of ηi are alternating, which is a typical signature
of HD dynamics, eventually leading to a total energy whose
sign is undefined. The equation of motion for the Qi ’s reads

Q̈i + ω2
i Qi = 0 , i = 0, . . . , N − 1 . (14)

Generalization of the P–U oscillator in more than one spa-
tial dimension is straightforward and will be left for future
works. New integrals of motion such as HD angular momenta
are naturally expected: We refer the interested reader to [38–
40] for explicit definitions.

3 Hamiltonian formalism

The Ostrograski construction that we have reviewed in Sect.
2.1 canonically leads to Hamiltonians that are not separable
in the variables pi (2) and

qi := x (i) , ∀ i ∈ {0, . . . , N − 1} . (15)

In this section we show in some particular cases that a suit-
able change of canonical variables allows to recast the P–U
Hamiltonian under a separable form.

3.1 Ostrogradski’s approach

As in the standard N = 1 case, Hamilton’s variational prin-
ciple naturally leads to a symplectic structure and an Hamil-
tonian function H . Provided that the regularity condition (3)
holds one can invert the last relation (2) defining the momen-
tum pN−1 in order to express x (N ) in terms of pN−1 and the
x (i)’s, i ∈ {0, . . . , N − 1} :

∂2L

∂x (N )∂x (N )
�= 0 ⇒ x (N ) = V (x (0), . . . , x (N−1), pN−1) .

(16)
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Details about singular HD Lagrangians can be found in [41,
42]. The Hamiltonian function H is defined as

H({qi , pi }i=0,...,N−1) :=
N−2∑

j=0

piq
i+1

+ pN−1V − L(q0, q1, . . . , qN−1,V ) . (17)

The symplectic structure, as already apparent from the struc-
ture of the boundary terms in the variation δS in the equation
above (2), is given by the two-form � = ∑N−1

i=0 dpi ∧ dqi .
In particular, the Poisson–Ostrogradski bracket between any
two functions in the phase space T ∗

Q locally coordinatized
by the 2N variables (qi , pi )i=0,...,N−1 is given by

{ f, g} =
N−1∑

i=0

(
∂ f

∂qi
∂g

∂pi
− ∂ f

∂pi

∂g

∂qi

)

. (18)

The symplectic structure � amounts to writing {qi , p j } =
δij , {qi , q j } = 0 = {pi , p j } , ∀ i, j ∈ {0, . . . , N − 1} ,

and the field equations are given as usual by q̇i = {qi , H} ≡
∂H
∂pi

, ṗi = {pi , H} ≡ − ∂H
∂qi

. The original equation of
motion is reproduced from ṗ0 = {p0, H} , while all the
other equations above reproduce the relations (2) between
the momenta- and the position-like variables.

Starting from Lagrangian (6) and applying Ostrogradski’s
procedure one gets

pi =
N−i−1∑

j=0

(−) j ai+ j+1x
(i+2 j+1), i = 0, . . . , N − 1 (19)

and the Hamiltonian reads

H =
N−2∑

j=0

p jq
j+1 + p2

N−1

2aN
− 1

2

N−1∑

j=0

a j (q
j )2. (20)

The equations of motion are explicitly given by

q̇i = qi+1, i = 0, . . . , N − 2

q̇ N−1 = pN−1

aN
(21)

ṗ0 = a0q0

ṗ j = −p j−1 + a jq j , j = 1, . . . , N − 1 .

3.2 Link with Pais–Uhlenbeck variables

The equivalence of Ostrogradski and P–U formalisms at
Hamiltonian level is not obvious in the sense that the canon-
ical transformation between the Ostrogradski and the P–U
variables has not been explicitly given in the general case,
as far as we could see. It was shown for N = 2 in [31].
Here we show it for the N = 3 case and leave the explicit
form of the canonical transformation relating the Ostrograd-
ski to the P–U variables for future works. Below we simply

give the general expression for the generating function of the
canonical transformation for arbitrary N , without solving
the partial differential equations that explicitly relate the two
sets of phase space variables.

3.2.1 The case N = 3

A convenient parametrisation in this case is

L = −1

2
x2 + A1

2Ω6 ẋ
2 − A2

2Ω6 ẍ
2 + 1

2Ω6

...
x 2 , (22)

with

A1 :=
∑

i< j

(ωiω j )
2, A2 :=

2∑

i=0

ω2
i ,

Ω6 := (ω0ω1ω2)
2 and ω2 > ω1 > ω0 . (23)

Note that Lagrangian (22) can be recast under the form (12)
provided that

2∑

i=0

ω2
i ηi = 1 ,

2∑

i=0

ω4
i ηi = 0 =

2∑

i=0

ω6
i ηi . (24)

The above constraints are fulfilled with (13). The momenta
associated with (22) read

p0 = 1

Ω6

(
A1 ẋ + A2

...
x + x (5)

)
,

p1 = − 1

Ω6

(
A2 ẍ + x (4)

)
, p2 =

...
x

Ω6 (25)

and the Hamiltonian is given by

H = p0q
1 + p1q

2 + Ω6

2
p2

2 + 1

2
(q0)2

− A1

2Ω6 (q1)2 + A2

2Ω6 (q2)2 . (26)

One can readily derive a generating function for the canonical
transformation relating the Ostrogradski variables (q0, q1,

q2, p0, p1, p2) to the P–U phase space variables (Q0, Q1,

Q2, P0, P1, P2) . It is given by

F(q0, p1, q
2, P0, P1, P2) =

2∑

i=0

Qi (q
0, p1, q

2)Pi

≡
2∑

i=0

Q̃i (q
0, p1, q

2)P̃i . (27)

It leads to the following system of partial differential equa-
tions:

∂F

∂P0
= Q0(q0, p1, q

2) ,
∂F

∂P1
= Q1(q0, p1, q

2) ,

∂F

∂P1
= Q1(q0, p1, q

2) , (28)
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∂F

∂q0 = p0(q
0, p1, q

2) ,
∂F

∂p1
= −q1(q0, p1, q

2) ,

∂F

∂q2 = p2(q
0, p1, q

2) . (29)

The first three equations are trivial, whereas the last three
can be obtained from the relations

∑2
i=0 ηi ω

2m
i = δm1 ,m =

1, 2, 3 , as well as
∑2

i=0 ηiω
8
i = ω2

0ω
2
1ω

2
2 and

∑2
i=0 ηi =

A1
Ω6 . In particular, it yields

p0 = P0 + P1 + P2 , p2 = − 1

Ω6

2∑

i=0

ω4
i Pi ,

q1 =
2∑

i=0

ω2
i Pi . (30)

Recalling that the ηi are of alternating sign, the Ostrogradski
Hamiltonian eventually reads

H = 1
2

2∑

i=0

(−)i

(
P2
i

|ηi | + |ηi | ω2
i Q

2
i

)

. (31)

Let us observe that, from the expressions (25) for the Ostro-
gradski momenta and the definition (11) of the P–U oscillator
variables Qi , i = 0, 1, 2 , one has the relation Pi = ηi Q̇i ,
i = 0, 1, 2 . Finally, a last canonical transformation given

by the mere rescaling Q̃i := √|ηi | Qi , P̃i := Pi√|ηi | , gives
the following P–U Hamiltonian:

H = 1
2

2∑

i=0

(−)i
(
P̃2
i + ω2

i Q̃
2
i

)
. (32)

3.2.2 Arbitrary N

The N = 2 and N = 3 cases show that Ostrogradski’s proce-
dure leads to P–U Hamiltonian and variables by successive
canonical transformations. Moreover Lagrangian (6), once
expressed as (12), leads to the separable Hamiltonian

H = 1
2

N−1∑

i=0

(−)i

(
P2
i

|ηi | + |ηi | ω2
i Q

2
i

)

=:
N−1∑

i=0

(−)i Ei (33)

for any N , where Ei , i = 0, 1, 2 are positive definite quan-
tities where

Qi := ∏

j �=i

(

1 + 1
ω2
j

d2

dt2

)

x , (34)

Pi := ηi Q̇i ≡ (−)i |ηi | Q̇i , (35)

and where the P–U coefficients ηi can be found in [37] and
in (13). Note that the frequencies ωk are the roots of the
polynomial equation p(ωk) = 0, see (8).

4 Adiabatic invariants and Nekhoroshev estimates

4.1 Action variables

The P–U Hamiltonian (33) is separable and admits elliptic
trajectories in the planes (Qi , Pi ) , i ∈ {0, 1, . . . , N − 1} ,
these fixed-Ei cycles being denoted as Γi . Hence a set of N
action variables can be defined:

I j = (−) j

2π

∮

Γ j

Pj dQ j = |η j |
2π

∮

Γ j

Q̇2
j dt,

j = 0, . . . , N − 1 . (36)

The (−) j factor is such introduced in such a way that the
action variables {Ii }i=0,...,N−1 are all positive. It can be
checked that the Hamiltonian (33) reads

H =
N−1∑

j=0

(−) j I jω j , with I j = E j

ω j
, (37)

and that the relations

Ii = ∂Ei

∂ωi
, i = 0, . . . , N − 1 (38)

holds as well. The action variable I0 reduces to the average
kinetic energy for N = 1 , as expected.

The action variables can be expressed in terms of the clas-
sical trajectory x(t) through the definition (34). When N = 2
for example,

I0 ∼
∮

Γ0

[

ẋ2 + 2

ω2
1

ẋ
...
x + 1

ω4
1

...
x 2

]

dt ,

I1 ∼
∮

Γ1

[

ẋ2 + 2

ω2
0

ẋ
...
x + 1

ω4
0

...
x 2

]

dt . (39)

The cross-product ẋ
...
x cannot be expressed in terms of ẍ2

with the use of a total derivative since x(t) is not a pri-
ori periodic with frequency ω0 or ω1 unless ω1/ω0 =
n/m ∈ Q . In the latter case, after a time T = m2π/ω0 =
n2π/ω1 , the action variables can be recast under the form∮
Γ0

[
ẋ2 + cẍ2 + d

...
x 2

]
dt with c, d real coefficients. At the

same time, the commensurability condition onω1/ω0 implies
instability of the N = 2 dynamics under small perturbations
so it is not relevant for the present study [31].

The I j are constant of motion provided that H does not
explicitly depend on time. It is nevertheless possible that
some external parameter is time-dependent: we set ωi =
ωi (t) in (33). Under the assumption that the ωi (t) vary slowly
enough with respect to the typical duration of a cycle – and
despite the fact that no rigorous definition of “enough” can
be given [43] –, the quantities I j given by (36) are adiabatic
invariants. It can be deduced from [44] that their small rate
of change is given by:
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İk = − ω̇k

ωk
Ik cos 2φk (40)

φ̇k = (−)kωk + ω̇k

2ωk
sin 2φk,

where φk are the angle variables conjugated to Ik : {φ j , Ik} =
δ jk . The interested reader may find general computations
related to time-varying harmonic oscillators in [45–47].

As an illustration of the above relations, suppose that the
time-dependent parameter is a small perturbation of the fre-
quencies:

ωi (t) = �i (1 + ε gi (t)) , with |ε| � 1 , (41)

the only dependence on time being contained in the real func-
tions gi . At the lowest order in ε, Eqs. (40) become

İk = − ε ġk Ik cos 2ϕk ,

φ̇k = (−)k�k(1 + ε gk) + ε

2
ġk sin 2ϕk ,

ϕk := (−)k�k t + αk (42)

For gi (t) arbitrary and Īk the values of the action variables
for the unperturbed system, the simple shape

Ik = Īk(1 − ε gk) (43)

solves Eq. (42) at the first order in ε when ϕk = n π, n ∈ Z .
It may therefore be used to estimate the trend of the modifi-
cations induced by gi on the action variables. In the special
case gi (t) = ḡ sin (�i t + βi ) , the solution of (42) up to first
order in ε is given by

Ik = Īk

[

1 − ε

2
ḡ

( �k

2ω+
k

sin 2(ω+
k t + α+

k )

+ �k

2ω−
k

sin 2(ω−
k t + α−

k )
)
]

,

φk = αk + (−)k�k t + (−)k+1 ε
�k

�k
ḡ cos (�k t + βk)

+ (−)k+1 ε

4
ḡ

( �k

2ω+
k

cos 2(ω+
k t + α+

k )

+ �k

2ω−
k

cos 2(ω−
k t + α−

k )
)

,

ω±
k := �k ± (−)k

2 �k , α±
k := (−)k(αk ± βk

2
) . (44)

In the case where the perturbations gk(t) are slow, as is
prescribed by the theory of adiabatic invariants, one has that
the frequencies �k are small compared to the characteristic
frequencies �k of the system and one finds that the varia-
tion of the action variables starts at second order, while the
variation of the angle variables starts earlier.

4.2 Nekhoroshev estimates

The P–U Hamiltonian (37) with the time-dependent pertur-
bation (41) can be formally written under the form

H = h(I) + ε f (I,φ), (45)

where

h(I) = � · I, f (I,φ) = I · g(φ), (46)

and where the vectors (I)k = Ik , (φ)k = φk , (g)k = gk and
(� )k = (−)k�k have been introduced.

Nekhoroshev’s theorem [32,33] states that if the nearly
integrable Hamiltonian (45) is analytic and the unperturbed
part h(I) is steep (or convex, or quasiconvex) on some
domain, then there is a threshold ε0 > 0 and positive con-
stants R, T , a and b such that whenever |ε| < ε0 , for all
initial actions variables I(0) in the domain (and far enough
from the boundary), one has

max{|Ik(t) − Ik(0)|} < R εb for times |t | < T exp ε−a .

(47)

This result has been particularized to several explicit exam-
ples, among which the harmonic oscillator in Refs. [29,30].
The fact that some components of � are negative is allowed
by the formalism of the latter references. From the study [29]
in particular, it can be deduced that unstable behaviours in
the P–U oscillator appears at exponentially large time in ε,
i.e. the dynamics is classically stable. Since ε0 ∼ N−2N

[29], the more the dynamics contains HD, the more the
perturbation must be small to preserve stability. Moreover,
there must exist two real positive constants σ , τ such that

|� · n| ≥ σ
[∑N−1

j=0 |n j |
]−τ

for all n ∈ Z
N
0 otherwise ε0

becomes arbitrarily large and the system is unstable. In other
words the frequencies must define a nonresonant harmonic
oscillator. Such an instability can only occur for N > 1 one-
dimensional dynamics; it is trivially avoided when N = 1
because no energy transfer between the different components
Ei are de facto absent in this case.

5 Concluding comments

Higher-derivative action principles generally lead to unsta-
ble classical dynamics. However, all the classical trajec-
tories allowed by the Pais–Uhlenbeck oscillator (10) with
distinct and nonresonant frequencies are bounded: it is an
explicit realisation of a stable classical theory with higher-
derivatives. Therefore the problem can be formulated in
action-angle variables formalism, allowing a computation
of adiabatic invariants and a proof of the classical stabil-
ity based on Nekhoroshev estimates. Although the Pais–
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Uhlenbeck oscillator has been widely studied as a prototy-
pal higher-derivative physical theory, it is the first time, to
our knowledge, that such results are obtained. Emphasis has
been put on harmonic potentials in the present study. Other
types of potentials or higher-derivative terms may also lead
to stable classical dynamics. For example it is shown in Ref.
[31] that a N = 2 Pais–Uhlenbeck oscillator with cubic and
quartic potential terms is stable too, except for very special
values of the parameters. The stable models of [31] should
give, after generalisation to field theory Lagrangians, further
examples (compared to the one reviewed in [10]) of well-
behaved dynamical systems with infinite number of degrees
of freedom.

One can recover a Lagrangian function from a Hamilto-
nian function provided that the regularity condition

det ∂2H
∂pN−1∂pN−1

�= 0 is satisfied – which is the case for a
free system that is regular when the added interactions in the
perturbed Hamiltonian are algebraic functions in the P–U
variables Q’s, as we assumed implicitly here. This is clear
for N odd since the latter variables do not imply Ostrograd-
ski’s last momentum pN−1 . In the even N cases where the Q
variables involve pN−1 , the added perturbations cannot ruin
the regularity property of the unperturbed P–U Hamiltonian
as long as the perturbation is of polynomiality degree in Q
higher than two, as we assume here. However, it is notori-
ously difficult (see e.g. Section 8 of [10]) to find the analyt-
ical expression of the perturbed Lagrangian corresponding
to a given Hamiltonian perturbation. It it usually nonlocal,
even for simple (e.g. quartic) Hamiltonian perturbation [10],
which suggests considering as a starting point the N → ∞
limit studied by Pais and Uhlenbeck, as it would encompass
all the possible Hamiltonian perturbations.

It is worth making comments about quantization. In a first
approximation a Bohr–Sommerfeld quantization rule can be
applied since action variables exist. The fact that the energy
spectrum is unbounded both from below and above in higher-
derivative theories does not a priori forbids well-behaved
quantum dynamics. In fact, a quantization technique was pro-
posed in [6] that keeps the higher-derivative dynamics stable
at the quantum level. In fact, we propose that the positive-
definite quantities suggested in [6] and that are responsi-
ble for a stable dynamics at the quantum level are nothing
but the action variables. Indeed, even for a perturbatively
perturbed classical motion, as long as the trajectories are
bounded, the action variables are positive-definite quantities
and conserved to the approximation given. More recently, it
was conjectured in [10] that indeed, when all the classical
trajectories of a given higher-derivative model are bounded,
its quantum dynamics only contains so-called benign ghosts,
i.e. negative-energy quantum states with a normalisable wave
function and preserved unitarity of the evolution. The present
work aimed at clarifying the conditions for higher-derivative

models to exhibit bounded classical dynamics; hence it is
a step toward the identification of quantum models with
unitary quantum dynamics, to which the Pais–Uhlenbeck
oscillator belongs. Further issues about quantization of
higher-derivative Lagrangians are discussed for example in
[48–50].

Finally it has to be noticed that the necessary conditions for
adiabatic invariants and Nekhoroshev estimates to be com-
puted are the separability of the higher-derivative Hamilto-
nian and the existence of bounded classical trajectories. Both
conditions are met in the Pais–Uhlenbeck oscillator case after
appropriate choice of canonical variables, but we believe that
other classes of higher-derivative systems may be studied by
resorting to the methods we have presented.
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