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Abstract—Development bots are used on Github to automate
repetitive activities. Such bots communicate with human actors
via issue comments and pull request comments. Identifying such
bot comments allows to prevent bias in socio-technical studies
related to software development. To automate their identification,
we propose a classification model based on natural language
processing. Starting from a balanced ground-truth dataset of
19,282 PR and issue comments, we encode the comments as
vectors using a combination of the bag of words and TF-IDF
techniques. We train a range of binary classifiers to predict
the type of comment (human or bot) based on this vector
representation. A multinomial Naive Bayes classifier provides the
best results. Its performance on a test set containing 50% of the
data achieves an average precision, recall, and F1 score of 0.88.
Although the model shows a promising result on the pull request
and issue comments, further work is required to generalize the
model on other types of activities, like commit messages and code
reviews.

Index Terms—GitHub, automated comments, distributed soft-
ware development, classification model, empirical analysis

I. INTRODUCTION

Collaborative software development is an inherently social
activity carried out on dedicated platforms like GitHub [1].
To automate repetitive tasks carried out by developers, bots
are increasingly being adopted by projects to reduce human
effort [2]. Examples of tasks that are automated by bots
are refactoring [3], dependency updating [4], generating bug
patches [5], licence checking and welcoming newcomers.

Bot identification is an essential preprocessing step when
analyzing software repositories, especially when human ac-
tivity is relevant [6]. Recently, researchers have proposed
methods to automatically classify accounts as bot or human
like, based on the underlying assumption that bots tend to use
more repetitive patterns in their messages than humans. Dey
et al. [6] proposed the BIMAN method to identify bots that
commit code. BIMAN combines three different models that
rely (1) on the name of the author, (2) on the content of the
commit message, and (3) on files and projects being involved
in the commit. Golzadeh et al. [7] proposed a classification
model to identify bots in GitHub pull request activity. Their
method measures the similarity of comments and groups them
into patterns of similar comments. Bots are then detected
based on their lower number of comment patterns. In a

This research is supported by the Fonds de la Recherche Scientifique –
FNRS under Grant number O.0157.18F-RG43.

follow-up work, Golzadeh et al. [8] included more features,
considering issue comments as well, and validating the model
on a ground-truth dataset composed of several thousands of
GitHub accounts and their associated repositories.

Although these approaches are useful to identify bots at
the account level, an account-level classification does not
always suffice. Such a classification can fail in the presence
of mixed accounts, i.e., accounts involved in both human and
bot activity. In previous work [8] we identified 78 accounts
out of 5,082 GitHub accounts combining both activities. This
happens when users grant bots access to post comments on
their behalf (e.g., semantic-release bot). Account-level classi-
fications are too coarse-grained to distinguish human and bot
activity at the level of individual comments. Even in cases
where an account is predominantly producing bot (or human)
comments, mixed activity may still be observed. For example,
human developers may manually produce comments on behalf
of a bot when testing this bot in its early stages of adoption.
The above observations call for the need for a more fine-
grained classification that is able to identify bot or human
activity at the level of individual comments as opposed to the
account level.

This paper therefore proposes a classification model to
identify bot activity at the level of individual comments.
To achieve this, we first transform raw text into machine-
understandable features using natural language preprocessing
and encoding. Next, we select among a list of machine learning
binary classifiers the best performing one in order to classify
each comment as bot or human. The main value of this
approach is the ability to classify comment as originating
from a bot or a human without requiring to analyse the entire
account’s commenting activity. This means that comments can
be classified fast, and large datasets can be analysed efficiently.

All the scripts and data used to carry out this study are
available in a replication package on:
https://doi.org/10.5281/zenodo.4580998

II. DATASET

In order to train and evaluate a model aiming at distinguish-
ing GitHub comments created by bots from comments created
by humans, we need a large dataset of such pre-labelled
comments. In previous work [8], we created a ground-truth
dataset of 5,000 accounts that were manually identified by at
least two raters as bot or human based on their PR and issue
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comments. This dataset1 contains 28,287 comments made by
527 bots and 268,504 comments made by 4,473 humans, from
which mixed accounts were excluded.

For this study, we extracted from our original dataset [8] a
random, balanced subset of 19,282 comments, composed of
9,641 comments created by 519 bots, and 9,641 comments
created by 4,090 humans.

III. MODEL CONSTRUCTION

In this section, we propose a machine learning model for
classifying GitHub PR and issue comments. The preprocessing
part of the model combines two widely used techniques in
natural language processing for encoding the comment text
into machine-understandable features. The classification part
of the model takes as input the preprocessed text to perform
the classification task. In the following paragraphs, we will
explain how we constructed the model, which classifier we
selected, and how we tuned the parameters to get the best
performance and accuracy.

Since human-written texts have no direct meaning for
machine learning algorithms, natural language processing is
needed to convert such texts into a numerical representation
that can be analysed by machines. A range of different meth-
ods can be used to convert raw texts into numerical vectors,
such as bag-of-words [9], TF-IDF2 [10], Word2Vec [11], and
Bert [12].

We tested all these preprocessing techniques and their
variants and we achieved the highest accuracy with bag-of-
words and TF-IDF. The bag of words technique creates a
vector that has as many dimensions as the text corpus has
unique words. If a text contains a specific word from the
corpus, it will be marked as 1 in the corresponding position
of the vector, and 0 otherwise. TF-IDF is similar except that it
assigns a higher weight to both high and low-frequency terms
in the document, and the frequency of each term is considered
as the indicator of its importance. Given a comment, we pull
out only the unigram words to create an unordered list of
words using the bag-of-words method. Then, TF-IDF is used
to form a feature vector, where each feature is a term (i.e.,
word) and the value of the feature is the weight of the term.

For the classification part of our model, we restrict ourselves
to binary classifiers since the goal is to classify comments as
being produced either by a bot or a human. We evaluated a
range of binary classifiers: the ZeroR baseline classifier, Sup-
port Vector Machines (SVM) [13], multinomial Naive Bayes
(NB) [14], Random Forest (RF) [15] and k-Nearest Neigh-
bours (kNN) [16]. Since the effectiveness depends on specific
input parameters, we followed a standard hyper-parameter
tuning process using grid-search cross-validation [17].

We split the comment dataset of Section II into a training
and a test set (see Table I). The training set will be used as
a validation set in a grid-search cross-validation process to
determine the best input parameters, the best classifier and to

1The dataset is available on http://doi.org/10.5281/zenodo.4000388.
2Term Frequency - Inverse Document Frequency

train the selected model. The test set will be used to evaluate
the performance of the selected model on new data. We created
both sets so that approximately half of all bot comments
(respectively human comments) belong to the training set and
the other half belong to the test set.

TABLE I: Number of bot comments and human comments
in the training and test set.

# human comments # bot comments total

training set 4,928 4,839 9,767
test set 4,713 4,802 9,515

total 9,641 9,641 19,282

While creating both sets, we ensured that comments be-
longing to the same account were not spread in both sets.
The rationale is that, since comments produced by the same
account are more likely to be similar or related, distributing
such comments over both sets might lead to unrealistic eval-
uation results. More precisely, it could lead the model to be
trained on specific words or combinations of words used by a
commenter, hence artificially improving the evaluation results
if these combinations are also present in the test set.

The performance of the resulting models is measured using
the precision P , recall R and F1 score for the population of
each class (i.e., for bot comments B and human comments H).
We aim to achieve an as high overall F1 score as possible.

We rely on the default parameters for the preprocessing and
encoding steps. We use grid-search cross-validation to find
the best classifier and its parameters. We follow a stratified
group k-fold cross-validation process to ensure that each fold
preserves the proportion of bot and human comments, and that
comments by the same account are not spread across folds.

Table II reports on the performance for each of the classi-
fiers, in descending order of F1. Only the classifier instances
whose parameters resulted in the highest F1 score within each
family of classifiers are shown in the table.

We observe that all classifiers substantially outperform the
ZeroR baseline classifier; this is a sanity check as this classifier
is merely used as a benchmark for other classification methods.
In terms of overall performance, NB and SVM appear to
be the most promising classifiers. The SVM, RF, and KNN
classifier have high recall R(H) for human comments (0.979,
0.935 and 0.997, respectively) but a rather low recall R(B) for
bot comments (0.718, 0.542 and 0.369, respectively). The NB
classifier, which was obtained using α = 1.5 and uniform class
prior probabilities, has the highest recall for bot comments
R(B) = 0.883 and its overall precision, recall and F1 score
is the highest of all considered classifiers.

IV. MODEL EVALUATION

We selected the best classifier NB with the parameters
explained in the previous section, and trained it on the 9,767
comments of the training set. We evaluated this classification
model on the 9,515 new and unseen comments of the test
set, of which 4,713 are human comments and 4,802 are bot
comments (cf. Table I). Table III reports the evaluation results.
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TABLE II: Precision, recall and F1 score of the best classifiers per family of classifiers (in descending order of F1).

bot comments human comments overall
classifier P (B) R(B) P (H) R(H) P (B ∪H) R(B ∪H) F1(B ∪H)

NB 0.864 0.883 0.881 0.861 0.873 0.872 0.872
SVM 0.971 0.718 0.777 0.979 0.874 0.848 0.845

RF 0.898 0.542 0.672 0.935 0.785 0.739 0.727
KNN 0.993 0.369 0.613 0.997 0.803 0.683 0.648

ZeroR 0.200 0.400 0.299 0.600 0.249 0.499 0.332

TABLE III: Evaluation of the Naive Bayes classification
model on the test set.

comments classified as
bot human P R F1

bot TP: 4,382 FN: 468 0.866 0.904 0.884
human FP: 680 TN: 4,172 0.900 0.860 0.880

average 0.882 0.882 0.882

The results show that around 90% of bot comments (4,382
out of 4,802) and 86% of human comments (4,172 out of
4,713) are classified correctly. The overall F1 score is notably
good (0.882), indicating that the model generalizes well on
unseen data. The higher recall of bot comments (0.904)
and higher precision of human comments (0.900) indicate
that the model performs better in detecting bot comments.
Nevertheless, we observe a decent F1 score for both classes
(F1(B) = 0.884 and F1(H) = 0.880), indicating the overall
good performance of the model.

Manual inspection of a sample of misclassified comments
revealed that these comments are difficult to classify, even
for a human evaluator. For example, the following human
comment was misclassified as a bot comment: “Closing this
as resolved by #72”. Conversely, the following bot comments
were misclassified as human comments: “Here are some
suggestions: At index: 33, offset: 6, reason: “it was” is wordy
or unneeded” and “If the machine has enough cores, then the
work done by the babel loaders can be parallelized to run
much faster.”

The selected multinomial Naive Bayes classifier has proven
to show a good performance in text classification prob-
lems [18]. The decision function in this classifier predicts
based on the probability computed for each case (i.e., each
considered comment). If the probability value is above 0.5,
then the corresponding case belongs to the target class (in our
study, a bot comment) otherwise, it belongs to the complement
class (in our study, a human comment). We gain deeper insight
into the predictions made by the model by looking at the
associated probabilities. To do so, we extracted the associated
probability for test cases. To some degree, these probabilities
correspond to a confidence score: a probability close to 1
indicates that there is a high level of confidence in classifying
the comment as bot comment. Conversely, a probability close
to 0 indicates high confidence in classifying the comment as
a human comment. A probability close to 0.5 indicates low
confidence in the prediction.

Fig. 1 shows the probability of each prediction, distinguish-
ing between bot and human comments, by means of boxen
plots [19]. The misclassified cases correspond to those bot
comments for which the probability is below 0.5 (i.e., upper
left of the figure) and those human comments for which the
probability is above 0.5 (i.e., lower right of the figure).

0.0 0.2 0.4 0.6 0.8 1.0
probability of predictions

bot

human

prediction: human prediction: bot

Fig. 1: Distribution of the prediction probability for bot
comments and human comments

We observe that most comments have an associated proba-
bility close to 0 for human comments and close to 1 for bot
comments, indicating high confidence in the prediction. Distin-
guishing between correctly and incorrectly classified cases, we
found that bot comments that were correctly classified as such
exhibit a median probability of 0.97 (i.e., closer to 1 than 0.5,
high confidence), while bot comments that were misclassified
as human comments have a median probability of 0.37 (i.e.,
closer to 0.5 than 0, low confidence). A similar observation
can be made for human comments: correctly classified human
comments have a median probability of 0.20 (i.e., closer to
0 than 0.5, high confidence), while the misclassified ones
have a median probability of 0.61 (i.e., closer to 0.5 than
1, low confidence). This indicates a higher confidence for
the correctly classified comments than for the misclassified
ones, suggesting that a probabilistic model is more informative
than a simple binary classification model to decide whether a
specific comment is produced by a bot or a human.

V. DISCUSSION

One of the main motivations of this work is to identify
comments as having been produced by bots or human. For
accounts with mixed activity, such a classification model will
be able to split the bot activity from the human activity of
the account. To see whether our model is able to split the
bot activity from the human activity of mixed accounts, we



applied it on a small dataset provided by a research group from
the Eindhoven University of Technology who are currently
investigating mixed accounts (see acknowledgements). Each
mixed account comment was labelled as human or bot by at
least two researchers of the group, and the dataset consists
of 177 bot comments and 203 human comments with full
agreement. Our model was able to correctly classify about
80% of the cases. Only 3 out of 177 bot comments were
misclassified as human comments and 76 out of 203 human
comments were misclassified as bot comments. The model
achieved an overall F1 = 0.78 with an overall recall R = 0.79.
The performance of the model on mixed account comments
is promising for our future work, but the identification of
human comments in mixed accounts needs to be improved.
One possibility would be to train the model on a dataset that
includes mixed accounts as well. Indeed, the activity of mixed
accounts can be different from the one in human-only and
bot-only accounts. However, this would require a substantially
larger dataset than the one we have.

In earlier work [8] we also encountered bots whose com-
ments were partly copied from humans and vice versa. For
example, a translator bot followed a pattern like “Translation
from: <translation of some text>” in their comments. We
refer to these comments as mixed comments since they are
composed of both human text and bot text. As a follow-up
study, it would be interesting to explore how we can use or
adapt the classification model to detect these mixed comments
and to extract the human and bot parts of these comments.

The presence of mixed accounts and mixed comments
indicates that it is not easy to characterise exactly what a
bot comment is. Two different individuals could disagree
on the interpretation of comments as being produced by
bots. As a consequence, a more fine-grained classification
of (types of) bots would be needed, building further on the
work by Erlenhov et al. [20] who identified three types of
bot personas based on their autonomy, chat interface, and
smartness. It would be definitely interesting to explore how
the binary classifier we propose can be generalised to detect
these different types of bot personas.

VI. THREATS TO VALIDITY

The main threats to validity of this study relate to how
GitHub pull request and issue comments were labeled in the
ground-truth dataset of [8], from which mixed accounts were
excluded. The original dataset was constructed by manually
labelling accounts (as opposed to individual comments) as bot
or human based on the contents of their comments following
an inter-rater agreement process. During this labelling, the
raters got to see the 20 most recent comments of each
considered account, with an option to see more comments if
needed. The set of comments for this paper was taken from
these 20 most recent comments only, in order to increase our
confidence that individual comments belonging to an account
rated as a bot can actually be regarded as bot comments, and
similarly for human comments.

One of the limitations is that the proposed classification
model is based only on bots that are known today. We cannot
claim anything about its performance on new bots in the future.
Nevertheless, we already observed that the model performed
well on the test set, even though 75% of its vocabulary is new
compared to the training set. This suggests that the model can
generalize.

A threat to construct validity is that our dataset combines
pull request and issue comments of GitHub accounts, assuming
that both types of comments are similar in nature. To assess
whether combining both types of comments affected our re-
sults, we built distinct models based on pull request comments
and issue comments separately, and we achieved a comparable
performance to our model. This suggests that the performance
of the classification model is not linked to features associated
with the type of comment.

As a threat to external validity, we cannot claim that
our model will perform well on other types of comments
such as commit messages and code review comments, or on
comment data obtained from platforms comparable to GitHub,
such as BitBucket or GitLab. Finally, it is unlikely that our
classification model in its present form will perform well on
other types of bots, such as chatbots that rely on ever more
advanced NLP techniques.

VII. CONCLUSION

In order to avoid bias due to confounding bots for humans
in socio-technical empirical studies of collaborative software
development, it is crucial to distinguish human commenting
from bot commenting activities. We proposed a machine
learning model to classify individual issue and pull request
comments in GitHub as bot comments or human comments.
To do so, we relied on a dataset of 9,641 human comments and
9,641 bot comments. The comments were preprocessed using
a text vectorisation technique, and different binary classifiers
were evaluated on a training set containing roughly half of
the data. The best classifier was a multinomial Naive Bayes,
with an F1 score of 0.88 on the test set. When studying the
probabilities of the model predictions we found that most
misclassified cases are predicted with lower confidence than
the correctly classified ones. This suggests that a probabilistic
model is more informative than a simple binary classifier.
Further work is still required to address the challenge of mixed
accounts, and to generalise the model to other collaborative
development platforms such as GitLab and BitBucket and
other types of activities like commit messages and code review
comments.
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