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Abstract—Finding the trade-off between exploitation
and exploration in a Surrogate-Assisted Evolutionary
Algorithm is challenging as the focus on the landscape
being optimized moves during the search. The bal-
ancing is mainly guided by Evolution Controls, that
decide to simulate, predict or discard newly generated
candidate solutions. Combining Evolution Controls in
ensembles allows to regulate the degree of exploitation
and exploration during the search. In this study, we
propose ensemble strategies between multiple Evolution
Controls in order to adapt the trade-off for each region
scrutinized during the search. Experiments led on
benchmark problems and on a real-world application of
SARS-CoV-2 Transmission Control reveal that favoring
exploration at the beginning of the search and favoring
exploitation at the end of the search is beneficial in
many cases.

Index Terms—Surrogate-assisted Optimization, Evolu-
tion Control, Evolutionary Algorithm, Bayesian Optimiza-
tion, Simulation, Massively Parallel Computing

I. INTRODUCTION

Optimizing a function that depends on compu-
tationally expensive simulations is a tedious task.
The primary difficulty is to gather information about
the landscape to optimize. Evolutionary Algorithms
(EAs) have shown to be effective when no hypothesis
can be drawn about the function to be optimized [1].
EAs are nature-inspired meta-heuristics that main-
tain and evolve a population of candidate solutions
according to the laws of living species evolution.
Nevertheless, EAs require an elevated number of
function evaluations, which is not convenient when a
limited computational budget is imposed. To circum-
vent this limitation, surrogate models can be adopted.
Surrogate models are built on historical data and aim
to predict the expensive simulator outcome in timely
fashion [2]. The surrogate model is used to replace
the original function during the search.

In Surrogate-Assisted Evolutionary Algorithms
(SAEAs), the balancing between Exploitation and
Exploration (E&E) is realized at two levels. First,
the calibration of Selection, Reproduction and Re-
placement operators of the EA [3], [4], [5] influ-
ences the trade-off. The second impact is due to a
mechanism called Evolution Control (EC) [6] [7].
The EC chooses among the set of new solutions,
which candidates to simulate, predict or discard. The
most promising candidates are simulated, the less
promising candidates are discarded while moderately
promising candidates are only predicted.

On the one hand, the promise of a new candidate
solution can be defined by the degree of uncertainty
around the candidate predicted cost, as more un-
certain candidates are more promising. In this case,
exploration is enhanced as the unknown areas of
the search space are visited. On the other hand,
the promise can also be defined by the candidate
predicted cost itself. Assuming a minimization prob-
lem, candidates that have a lower predicted cost are
more promising. Exploitation is thus enhanced as the
most favorable known area of the search space is
scrutinized. The problem of balancing E&E can be
seen as a bi-objective problem that can be treated
using scalarization and Pareto-based methods.

The surrogate model is updated after each batch of
simulations, hence exploration favors global predic-
tion accuracy and exploitation favors local prediction
accuracy.

The challenge addressed in this paper consists in
balancing exploitation and exploration in a SAEA
by designing ensembles of ECs that determine the
convenient trade-off at each step of the search.

To take up this challenge, we propose three ensem-
ble strategies between multiple existing ECs. In order
to quantify the uncertainty of a candidate solution,



Fig. 1. Framework of Surrogate-Assisted Evolutionary Algorithm.

two measures are considered. The first measure is
the distance from the candidate to the set of already
known solutions lying in the search space. The second
measure is the variance around the predicted cost
provided by the surrogate. Since not all surrogates are
able to provide such a quantity, Bayesian surrogate
models are considered.

The next section gives a description of the frame-
work of the SAEA used as well as the ECs and the
surrogate models appearing recurrently in the litera-
ture. In Section III, the proposed ensemble strategies
are presented. Section IV presents the experimental
protocol and the associated results on benchmark
problems producing different nuances of roughness
in the search landscape. A problem of SARS-CoV-
2 transmission control is explained and treated in
Section V. Finally, conclusions and suggestions for
future works are drawn in Section VI.

II. BACKGROUND

A. Framework

The SAEA framework we propose in this study is
presented in Figure 1.

New candidate solutions are generated by the Ac-
quisition Process (2), made of a tournament selection
of size 2, a SBX crossover and a polynomial mutation
(reproduction operators) [1]. The crossover operator
combines two parent solutions from the population
(1) with the aim of creating a better offspring solu-
tion. The mutation operator is applied to the offspring
in order to hinder its similarity with its parents.
Crossover impacts exploitation while mutation im-
pacts exploration. Subsequently, the set of newly
generated solutions (3) is split into three batches (5)
according to the EC-defined promising degree of each
candidate. As stated in Section I, the EC (4) balances

E&E by defining the promise. Finally, simulated and
predicted candidates (6) apply for replacement (7)
into the new population. It is ensured that both the
best simulated and the best predicted candidates are
inserted into the new population. The cycle of Se-
lection (2), Reproduction (2), Evaluation (simulation
and prediction) (6), and Replacement (7) is repeated
until the computational budget is consumed.

The particularity of this framework is the possibil-
ity for the population to be composed of predicted
solutions. In this configuration, a particular attention
has to be paid to the surrogate prediction accuracy so
that the search is not misled by poor predictions [8].

According to the classification proposed in [7], this
framework is categorized as hybrid Direct/Indirect
Fitness Replacement. Indeed, it can be classified as
Direct Fitness Replacement because the surrogate
plays the same role as the simulator. It could also
be qualified as Indirect Fitness Replacement as the
surrogate also helps the EC to discard least promising
candidates.

B. Surrogate models
Three Bayesian surrogate models are integrated

into the framework presented in the previous sub-
section in order to demonstrate the robustness of the
ensemble-based ECs.

Kriging model: The Kriging surrogate model [9]
[10] is a Gaussian Process widespread in surrogate-
assisted optimization [11] [12] [13]. It is generally
used in Efficient Global Optimization [14] [15] for
its ability to estimate the variance around predictions.

Training the Kriging model consists in inverting a
covariance matrix that represents the spatial correla-
tion between all the already-simulated solutions. The
inversion is cubic to the number of training samples
and consequently makes the training expensive. Be-
sides, incremental training is impossible.

MCDropout Bayesian Neural Network (MCD-
BNN): A Bayesian Neural Network is an Neural
Network for which a probability distribution is learnt
for each weight of the network. Learning distributions
allows to produce a variance around the prediction but
training is a very time-consuming task [16]. To make
the training easier, it has been proposed to sample
multiple sub-networks from a network trained with
Dropout [17], so as to compute the mean prediction
and the variance around it. This technique is called
MCDropout [18] [19].

Updating a MCD-BNN is faster than updating a
Kriging model thanks to the incremental training
capability. Moreover, the training is linear in the
number of training samples. MCD-BNN has been
used as surrogate model in SAEA in [8] [11].



Bayesian Linear Regressor Neural Network (BLR-
NN): In [20], it is proposed to add a Bayesian Linear
Regressor to the output layer of a Neural Network in
order to decrease the computational cost of training
a Gaussian Process and preserve the variance around
the prediction. After the traditional training, each
output neuron serves as a basis function to train the
Bayesian Linear Regressor.

Training a BLR-NN is linear in the number of
training samples and cubic to the number of basis
functions. Incremental learning is possible for the
underlying Neural Network but not for the Bayesian
Linear Regressor that requires the inversion of a
matrix made of the evaluations of the basis functions
at the training points.

C. Evolution Controls

In this subsection, we present ECs already em-
ployed in SAEAs. These ECs are to be combined
according to the ensemble strategies presented in
the next section in order to meet the challenge of
balancing E&E in SAEA.

Elementary ECs:

• rand randomly splits the set of newly generated
candidates.

• bp considers as promising the best predicted
candidates.

• dist considers as promising the candidates with
highest distance from the set of already simu-
lated solutions.

• var considers as promising the candidates with
highest variance around the surrogate prediction.

The aforementioned elementary ECs have been com-
pared in a MCD-BNN-assisted EA in [8]. As men-
tioned in Section I, bp-EC favors exploitation while
dist-EC and var-EC favor exploration. To obtain a
basic trade-off between E&E, the surrogate prediction
and variance are often combined into scalarized or
Pareto-based ECs.

Scalarized ECs:

• ei considers as promising the candidates with
high Expected Improvement [14]:

EI(x) = (ymin − ŷ(x))Φ

(
ymin − ŷ(x)

ŝ(x)

)
+ ŝ(x)φ

(
ymin − ŷ(x)

ŝ(x)

)
• pi considers as promising the candidates with

high Probability of Improvement [21]:

PI(x) = Φ

(
ymin − ŷ(x)

ŝ(x)

)

• lcb considers as promising the candidates with
Low Confidence Bound:

LCB(x) = ŷ(x)− λŝ(x)

It is worth noting that EI and PI have been con-
ceived for surrogates providing Gaussian predictions.
While it is the case for the Kriging model, it is not
the case for MCD-BNN and BLR-NN.

Pareto-based ECs:
• bo-max considers as promising the candidates

with low non-dominated rank regarding the min-
imization of the predicted cost and the maxi-
mization of uncertainty [8].

• bo-min considers as promising the candidates
with low non-dominated rank regarding the min-
imization of the predicted cost and the minimiza-
tion of uncertainty.

In Pareto-based ECs, uncertainty could either be the
distance to the set of already simulated solutions or
the variance around the surrogate prediction.

Scalarized and Pareto-based ECs have been com-
pared mainly in the Efficient Global Optimization
framework [22] [23]. They also have proven to per-
form well on numerous real-world applications such
as infectious disease transmission control [8] [11] and
optimization of fused magnesium furnaces [24].

D. Related works

Few studies have been dedicated to balance E&E
by designing ensembles of ECs. In [25], multiple
rules are used to select multiple new candidate so-
lutions to be simulated. Although multiple ECs are
considered, the trade-off between exploitation and
exploration is constant during the search. In [26], a
scalarized EC adapts the balancing during the search
according to the budget consumption. Contrary to our
point of view, the strategy proposed in [26] does
not consider the event of poor prediction accuracy.
Indeed, the search begins by relying only on the
surrogate predicted cost.

III. PROPOSED APPROACHES

A. Dynamic ECs

Let
• E1, . . . , En be n ECs from the categories defined

in the previous section (n ∈ N∗ \ {1}).
• 0 < p1 < · · · < pn−1 < 1 be user-defined

parameters.
The dynamic ensemble strategy, denoted dyn, con-

sists in switching from Ei to Ei+1 at the end of the
first cycle for which 100pi% of the budget has been
consumed. ECs numbering is relevant as it defines
the order in which the ECs will handle the search.



B. Adaptive ECs

The adaptive ensemble strategy, denoted ada, is a
reward-based mechanism proposed to automatically
switch from one EC to another during the search.
It advantageously removes the need for the user to
define the parameters p1, . . . , pn−1.

Let
• x be a candidate solution.
• y(x) be the simulated cost.
• ŷ(x) be the predicted cost.
• e(x) = (y(x)− ŷ(x))2 be the surrogate predic-

tion error.
• ti = 1

nsim

∑nsim

j=1 e(x(i)(j)) be the average error
committed during cycle i.

• nsim ∈ N∗ be the number of simulated solutions
per cycle.

• r(e) be a reward function.
• E∗ be the current active EC.
When E∗ decides to simulate x and e(x) < ti

holds then ECs that would have simulated x are
rewarded by r(e(x)) and ECs that would have pre-
dicted or discarded x are penalized by the same
amount. Reversely, when E∗ decides to simulate x
and e(x) > ti holds then ECs that would have
simulated x are penalized by r(e(x)) and ECs that
would have predicted or discarded x are rewarded by
the same amount. At the end of the cycle, the most-
rewarded EC becomes active. Three reward functions
are considered in the experiments reported in the next
section:

rsig(e) =

{
sign(ti − e) if e 6= 0

1 otherwise

rlin(e) = ti − e
rtanh(e) = tanh(ti − e)

C. Committee of ECs

Inspired by active learning [27], the committee
ensemble strategy, denoted com, assumes that each
of the available ECs E1, . . . , En votes for each new
candidate. Promising candidates are the ones collect-
ing the greater number of votes.

IV. EXPERIMENTATION ON BENCHMARK
PROBLEMS

A. Protocol and algorithms configuration

We propose to compare 31 ensemble-based and
non-ensemble-based ECs on three benchmark func-
tions [8] defined on [0, 1]6:

• 6-D multi-modal Schwefel
• 6-D noisy Rastrigin
• 6-D valley-shaped Rosenbrock

TABLE I
Experimental parameters for benchmark problems

Budget 512+32 real evaluations
Population size 32
Crossover probability 0.9
Mutation probability 0.001
Number of children per cycle 64
Number of simulation per cycle nsim = 8
Number of prediction per cycle 24
Number of discarding per cycle 32

The experimental parameters are listed in Table I.
The parameters of the EA have been determined by
a grid search considering 36 configurations. For each
configuration, the EA is run 10 independent times.
The parameters related to the number of evaluations
per cycle have been fixed arbitrarily.

Architecture and hyper-parameters of MCD-BNN
have been determined thanks to a specific EA similar
to the EA presented in [28]. In addition to the modi-
fiers presented in [28] we added operators to modify
the dropout probability, the weight decay coefficient
and the weights initializer. A polynomial mutation
operator is also considered to modify the learning
rate. The specific EA is run for 30 minutes on 1
node made of 16 AMD EPYC 7301 CPU cores where
each core generates and trains a new MCD-BNN.
The population size is set to 32 and the generated
MCD-BNNs are trained during 100 epochs on a
training set made of 288 evaluations and validated
on a validation set made of 2048 evaluations. The
best retained MCD-BNNs are presented in Figure 2.

No specific efforts are engaged into Kriging and
BLR-NN calibration. The default parameters of the
pyKriging library [29] and the pybnn library [20] are
considered for Kriging and BLR-NN respectively.

B. Results on benchmark functions

The 31 ECs considered in the experiments are
listed in Table II. For dynamic ECs, p1 = 0.5 when
2 ECs are involved except for dyn-sy-75 and dyn-
dy-75 where p1 = 0.75. When 3 ECs are involved
p1 = 0.25 and p2 = 0.75.

The results obtained thanks to the MCD-BNN,
BLR-NN and Kriging surrogate models are reported
in Table III. According to these tables, it can be
concluded that dynamic ensemble-based ECs perform
better in the top 10 ECs lists. In particular, dyn-dy-
75 is the best EC in 5 of the 9 cases treated and
dyn-dby is the best EC when optimizing the Schwefel
function with an MCD-BNN surrogate model. Pareto-
based ECs also perform consistently as they appear
in all the top 10. Besides, bio-yd-max is the best
EC in 2 cases. Adaptive and committee ECs are
less successful than dynamic or Pareto-based ECs



learning rate=0.1 learning rate=0.099
Fig. 2. MCD-BNN architecture and hyper-parameters for Schwefel
and Rastrigin (left) and Rosenbrock (right) benchmark problems.
Each box represents a layer. First line gives the layer identifier, the
activation function and the number of neurons. Second line gives
the dropout probability and the weight decay coefficient. Third
line gives the weights initializer.

TABLE II
31 Evolution Controls considered in the benchmark experiments.
For Pareto-based and ensemble-based ECs, y refers to bp, s refers
to var, d refers to dist and b refers to bio-max. For Dynamic and

Adaptive ECs, the first letter indicates the starting EC.

Elementary ECs
rand, bp, dist, var
Scalarized ECs
pi, lcb, ei
Pareto-based ECs
bio-ys-max, bio-ys-min, bio-yd-max, bio-yd-min
Dynamic ECs
dyn-sy, dyn-ys, dyn-sy-75, dyn-sby, dyn-ybs,
dyn-dy, dyn-yd, dyn-dy-75, dyn-dby, dyn-ybd
Adaptive ECs
ada-ys-tanh, ada-ys-lin, ada-ys-sig, ada-syb-lin,
ada-yd-tanh, ada-yd-lin, ada-yd-sig, ada-dyb-lin
Committee ECs
com-ysb, com-ydb

but outperform the scalarized ECs in the majority of
cases.

Good results provided by dyn-dy-75 and dyn-dby
in Schwefel and Rastrigin indicate that exploration
should be favored at the beginning of the search
and exploitation should be favored at the end of the
search, at least for rough landscapes. Nevertheless,
when the surrogate provides very good prediction, the
bp EC should be used as indicated by the results dis-
played in the last row of Table III on the Rosenbrock
function.

In almost all cases, the distance measure seems
to provide better uncertainty information about the
surrogate prediction than the variance. This can be

explained by either the calibration of the surrogate
or the composition of the training set. Indeed for
MCD-BNN, the parameter controlling the number of
sub-networks used to compute the prediction variance
has not been considered during calibration. For BLR-
NN, no calibration is considered on the neural net-
work architecture. For Kriging, the training set size
is restricted and does not include all the available
simulations.

V. APPLICATION TO SARS-COV-2
TRANSMISSION CONTROL

A. Problem description

Awaiting for a vaccine against SARS-CoV-2, gov-
ernments are resorting to social mixing reduction
measures in order to limit the impact of COVID-
19. The SARS-CoV-2 transmission control exercise
proposed in this study consists in minimizing the
number of deaths by determining the vector of 16
mitigation factors to apply to the 16 age-categories
of the Spanish population. The mitigation vector
is constrained by herd immunity realization after a
social mixing mitigation period of 12 months.

The optimization problem can be re-formalized
as a single real objective minimization problem by
applying a penalty of 8, 000, 000, 000 to the num-
ber of deaths when herd immunity is not reached.
Consequently, the problem treated consists in finding
x ∈ [0, 1]16 such that

x = argminf̃(x)

where

f̃(x) =

{
f1(x) if f2(x) = 1

f1(x) + 8, 000, 000, 000 if f2(x) = 0

f1 and f2 are the number of deaths and the boolean
variable indicating whether herd immunity has been
reached respectively. Both quantities are provided
by a simulator modelling epidemic transmission and
built using data from the World Health Organization.
The simulator implements a deterministic compart-
mental model and solves the differential equations
governing the pathogenic agent transmission [30].
The code used to implement this model is publicly
available on Github [31]. The simulator has been
used in numerous studies related to Tuberculosis
transmission control [11] [8] [32] [33]. The social
mixing data are integrated into the model through the
age-specific contact matrices previously published in
[34].



TABLE III
Top 10 ECs according to the mean best cost (50 independent replications) considering

MCD-BNN (top), BLR-NN (middle) and Kriging (bottom) surrogate models.
The best EC is displayed at the top of the column for each surrogate and each benchmark function.

Pareto-based ECs appear in green, Dynamic ECs in orange, Adaptive ECs in blue and Committee ECs in purple.

Schwefel-6D Rastrigin-6D Rosenbrock-6D
EC mean[stdev] EC mean[stdev] EC mean[stdev]

dyn-dby 94.6[92.7] dist 7.7[2.6] bio-yd-max 549.1[590.7]
bio-yd-max 116.0[116.4] dyn-dy-75 8.3[2.5] dyn-dby 640.8[999.2]

dyn-dy-75 117.3[98.7] var 9.6[5.1] ada-dyb 686.8[844.8]
dyn-dy 128.3[84.5] rand 10.2[6.3] dist 759.3[1406.5]

MCD-BNN dist 134.9[113.5] com-ydb 10.5[4.3] com-ydb 793.2[1131.1]
ada-dyb 186.4[138.4] dyn-sy-75 10.8[7.3] ada-yd-tanh 855.5[1025.0]
com-ydb 189.4[176.2] dyn-sy 11.3[5.5] ada-yd-sig 883.1[1498.2]

ada-yd-lin 203.5[177.5] bio-yd-max 11.4[3.4] dyn-yd 1000.3[1642.5]
ada-yd-tanh 234.4[172.2] dyn-dby 11.6[4.3] dyn-ybd 1036.5[1623.8]

ada-yd-sig 240.1[156.4] dyn-dy 12.3[5.2] dyn-dy-75 1036.6[1760.8]
dyn-dy-75 168.2[137.9] dyn-dy-75 7.16[4.2] bio-yd-max 627.2[399.1]

dyn-dy 168.6[126.3] dyn-sy-75 7.70[4.3] dist 696.7[670.2]
dyn-dby 177.1[141.8] dyn-dby 7.72[3.8] ada-yd-tanh 782.0[600.8]

dist 203.8[148.8] dyn-dy 7.83[4.7] dyn-dy-75 827.4[869.2]
BLR-NN dyn-sby 336.4[219.9] dyn-sy 8.84[4.1] ada-yd-lin 971.4[893.9]

var 344.1[168.3] dyn-sby 9.47[5.2] dyn-dy 1012.3[1086.3]
dyn-sy 360.7[221.0] var 10.23[4.5] ada-dyb 1017.0[909.3]

dyn-sy-75 362.5[187.8] dist 10.28[4.5] com-ydb 1033.9[1350.3]
bio-yd-max 366.9[206.7] bio-ys-max 11.01[5.7] dyn-dby 1056.8[1262.2]
ada-yd-lin 413.9[201.6] com-ysb 11.53[5.7] dyn-sby 1060.3[1000.3]
dyn-dy-75 137.0[148.9] dyn-dy-75 5.31[2.8] bp 90.3[111.8]

dyn-dy 150.4[144.8] dyn-dy 5.67[3.5] dyn-yd 105.5[150.4]
dist 166.7[160.9] dyn-sy-75 6.86[3.4] dyn-ybd 114.4[176.8]

dyn-dby 180.2[150.2] dist 7.92[3.1] ada-yd-tanh 140.5[220.6]
Kriging var 180.7[138.5] dyn-dby 8.07[4.5] ada-ys-sig 148.7[143.0]

dyn-sy 201.5[185.8] var 8.13[3.7] dyn-ys 158.5[224.8]
dyn-sy-75 215.3[160.8] dyn-sy 8.82[4.6] ada-yd-sig 162.9[186.4]

dyn-sby 219.8[178.2] dyn-sby 8.85[4.3] bio-yd-min 163.2[213.6]
com-ydb 385.6[245.2] bio-yd-max 10.58[5.2] lcb 170.1[213.1]

bio-yd-max 387.4[267.4] com-ydb 12.05[5.8] dyn-ybs 193.6[201.5]

B. Protocol and algorithms configuration

The experimental parameters are listed in Table IV.
The use of parallelism allows to increase the number
of simulations in a limited period of time. The EA
is calibrated with parameters similar to those used in
[11] and [8]. The parameters related to the number
of evaluations per cycle have been determined by
multiple trials. For the moment, only MCD-BNN is
considered as surrogate model for this experiment.
Kriging and BLR-NN will be considered in future
experiments.

C. Results

For this experiment, 9 ECs are considered as well
as the EA without surrogate, denoted no surrogate in
the following. For each EC, the EA is run 25 times
and the mean over the best numbers of deaths found
at the end of the searches is computed and reported
in Table V.

By the results reported in Table V, only the
dynamic EC dyn-dby successfully outperforms the
results provided by the EA without surrogate. In
this particular problem, favoring exploration at the

TABLE IV
Experimental parameters for SARS-CoV-2 transmission control

Budget 30 minutes
Number of node 1
Cores per node 18 Intel Xeon Gold 5220
Simulation duration 12 seconds on 1 core
Population size 126
Number of children per cycle 252
Number of simulation per cycle nsim = 96
Number of prediction per cycle 30
Number of discarding per cycle 126
Number of layers 2
Activation function tanh
Number of neurons per layer 256
Dropout probability 0.05
Training incremental
Training set 252 last simulations

beginning, exploration at the end and a trade-off
between both at the middle of the search is beneficial.

The distance measure seems to produce better un-
certainty information than prediction variance. Sim-
ilarly to the benchmark experiments, no surrogate
calibration is dedicated to obtain a reliable prediction
variance.



TABLE V
ECs classification according to the mean best number of deaths
(25 independent replications) on the SARS-CoV-2 transmission

control problem.

EC mean number of deaths
dyn-dby 13936

no surrogate 15025
bio-yd-max 16073

dyn-dy-25 16474
dyn-sby 16586

dist 17229
dyn-sy-25 17579

var 19262
bio-ys-max 20373

bp 23265

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we tackle the challenge of bal-
ancing exploitation and exploration in a Surrogate-
Assisted Evolutionary Algorithm by designing en-
semble strategies of Evolution Controls. Evolution
Controls are mechanisms dedicated to determine
whether to simulate, predict or discard new candidate
solutions. Each of them consequently carries its own
degree of exploitation and exploration.

According to the experimental outcomes, the dy-
namic ensemble strategy that favors exploration at
the beginning of the search and exploitation at the
end of the search appears to be the best among
the set of Evolution Controls considered. In particu-
lar, dynamic ensemble strategies outperform famous
scalarized Evolution Controls from the literature such
as the so-called Expected Improvement. Moreover,
this strategy successfully improves the results of a
traditional Evolutionary Algorithm on a problem of
SARS-CoV-2 Transmission Control.

During the search, the Evolutionary Algorithm
dynamically identifies a favorable region that tends
to become narrower and narrower. From the surro-
gate prediction accuracy’s point of view, it seems
convenient to promote exploration at the beginning
of the search and, on the contrary, to promote ex-
ploitation at the end of the search. By the results, the
dynamic ensemble strategy we proposed successfully
switches from exploration-promotion to exploitation-
promotion during the search.

The main drawback of the dynamic ensemble strat-
egy is the need for the user to define the switching
frequency between the Evolution Controls involved in
the ensemble. To alleviate this drawback, an adaptive
ensemble strategy based on rewards and a committee
ensemble strategy were proposed. Development of
such parameter-free strategies remains challenging
as their versions proposed in this study do not
improve the experimental results generated by the

dynamic ensemble strategy. Our future efforts will
be dedicated to improve the adaptive ensemble by
incorporating the uncertainty information into the
surrogate prediction error. The committee ensemble
strategy will be reviewed by integrating weights to
mitigate or amplify the importance of each Evolution
Control. An automatic mechanism will be designed
to update the weights during the search.
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[5] M. Črepinšek, S.H. Liu, and M. Mernik. Exploration and
exploitation in evolutionary algorithms: A survey. ACM
Comput. Surv., 45(3), July 2013.

[6] A. Diaz-Manriquez, G. Toscano Pulido, J. Barron-Zambrano,
and E. Tello-Leal. A review of surrogate assisted multiob-
jective evolutionary algorithms. Computational Intelligence
and Neuroscience, 2016:1–14, 06 2016.

[7] L. Shi and K. Rasheed. A Survey of Fitness Approximation
Methods Applied in Evolutionary Algorithms, pages 3–28.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[8] G. Briffoteaux, R. Ragonnet, M. Mezmaz, N. Melab, and
D. Tuyttens. Evolution control for parallel ann-assisted
simulation-based optimization application to tuberculosis
transmission control. Future Generation Computer Systems,
113:454 – 467, 2020.

[9] M. Georges. Principles of geostatistics. econ geol (lancaster).
Economic Geology, 1963.

[10] D.G. Krige. A Statistical Approach to Some Basic Mine
Valuation Problems on the Witwatersrand. Journal of the
Chemical, Metallurgical and Mining Society of South Africa,
52(6):119–139, 1951.

[11] G. Briffoteaux, M. Gobert, R. Ragonnet, J. Gmys, M. Mez-
maz, N. Melab, and D. Tuyttens. Parallel surrogate-assisted
optimization: Batched bayesian neural network-assisted ga
versus q-ego. Swarm and Evolutionary Computation,
57:100717, 2020.

[12] D. Ginsbourger, R. Le Riche, and L. Carraro. A Multi-
points Criterion for Deterministic Parallel Global Optimiza-
tion based on Gaussian Processes. Technical report, March
2008.

[13] D. Ginsbourger, R. Le Riche, and L. Carraro. Kriging is well-
suited to parallelize optimization. In Yoel Tenne and Chi-
Keong Goh, editors, Computational Intelligence in Expen-
sive Optimization Problems, Springer series in Evolutionary
Learning and Optimization, pages 131–162. springer, 2010.

[14] D.R. Jones, M. Schonlau, and W.J. Welch. Efficient global
optimization of expensive black-box functions. Journal of
Global Optimization, 13(4):455–492, Dec 1998.



[15] J. Knowles. Parego: a hybrid algorithm with on-line land-
scape approximation for expensive multiobjective optimiza-
tion problems. IEEE Transactions on Evolutionary Compu-
tation, 10(1):50–66, 2006.

[16] A. Graves. Practical variational inference for neural net-
works. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett,
F. Pereira, and K. Q. Weinberger, editors, Advances in Neu-
ral Information Processing Systems 24, pages 2348–2356.
Curran Associates, Inc., 2011.

[17] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: A simple way to prevent neural
networks from overfitting. Journal of Machine Learning
Research, 15:1929–1958, 2014.

[18] Y. Gal and Z. Ghahramani. Dropout as a bayesian approxi-
mation: Representing model uncertainty in deep learning. In
Maria Florina Balcan and Kilian Q. Weinberger, editors, Pro-
ceedings of The 33rd International Conference on Machine
Learning, volume 48 of Proceedings of Machine Learning
Research, pages 1050–1059, New York, New York, USA,
20–22 Jun 2016. PMLR.

[19] Y. Gal. Uncertainty in Deep Learning. PhD thesis, University
of Cambridge, 2016.

[20] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish,
N. Sundaram, M.M.A. Patwary, M. Prabhat, and R. Adams.
Scalable bayesian optimization using deep neural networks.
Statistics, 02 2015.

[21] H.J. Kushner. A New Method of Locating the Maximum
Point of an Arbitrary Multipeak Curve in the Presence of
Noise. Journal of Fluids Engineering, 86(1):97–106, 03
1964.

[22] B. Bischl, S. Wessing, N. Bauer, K. Friedrichs, and C. Weihs.
Moi-mbo: Multiobjective infill for parallel model-based op-
timization. In Panos M. Pardalos, Mauricio G.C. Resende,
Chrysafis Vogiatzis, and Jose L. Walteros, editors, Learning
and Intelligent Optimization, pages 173–186, Cham, 2014.
Springer International Publishing.

[23] J. Liu, Z.H. Han, and W. Song. Comparison of infill sampling
criteria in kriging-based aerodynamic optimization. 28th
Congress of the International Council of the Aeronautical
Sciences 2012, ICAS 2012, 2:1625–1634, 01 2012.

[24] Y. Jin, H. Wang, T. Chugh, D. Guo, and K. Miettinen.
Data-driven evolutionary optimization: An overview and case
studies. IEEE Transactions on Evolutionary Computation,
2018.

[25] T. Akhtar and C. Shoemaker. Multi objective optimization
of computationally expensive multi-modal functions with
rbf surrogates and multi-rule selection. Journal of Global
Optimization, 64, 01 2016.

[26] X. Wang, Y. Jin, S. Schmitt, and M. Olhofer. An adaptive
bayesian approach to surrogate-assisted evolutionary multi-
objective optimization. Information Sciences, 519:317 – 331,
2020.

[27] J. O’Neill, S. Delany, and B. MacNamee. Model-Free and
Model-Based Active Learning for Regression, volume 513,
pages 375–386. 01 2017.

[28] K. Kandasamy, W. Neiswanger, J. Schneider, B. Poczos,
and E.P. Xing. Neural architecture search with bayesian
optimisation and optimal transport. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
editors, Advances in Neural Information Processing Systems
31, pages 2016–2025. Curran Associates, Inc., 2018.

[29] C. Paulson and G. Ragkousis. pykriging: A python kriging
toolkit, July 2015.

[30] J.M.C Trauer, R. Ragonnet, T.N. Doan, and E.S. McBryde.
Modular programming for tuberculosis control, the “autumn”
platform. BMC Infectious Diseases, 17(1):546, Aug 2017.

[31] J.M. Trauer, R. Ragonnet, M. Segal, and E. McBryde
M. Abayawardana. Autumn github repository. https://github.
com/monash-emu/AuTuMN/, 2019.

[32] J.M.C. Trauer, J.T. Denholm, S. Waseem, R. Ragonnet, and
E.S. McBryde. Scenario Analysis for Programmatic Tuber-
culosis Control in Western Province, Papua New Guinea.

American Journal of Epidemiology, 183(12):1138–1148, 05
2016.

[33] R. Ragonnet, F. Underwood, T. Doan, E. Rafai, J.M.C.
Trauer, and E.S. McBryde. Strategic planning for tuberculosis
control in the republic of fiji. Tropical Medicine and
Infectious Disease, 4(2), 2019.

[34] K. Prem, A. Cook, and M. Jit. Projecting social contact matri-
ces in 152 countries using contact surveys and demographic
data. PLOS Computational Biology, 13:e1005697, 09 2017.


