
Automated synthesis of reliable and efficient
systems through game theory: a case study

Mickael Randour1,?

Institut d’Informatique, Université de Mons (UMONS), Belgium

Abstract. Reactive computer systems bear inherent complexity due to
continuous interactions with their environment. While this environment
often proves to be uncontrollable, we still want to ensure that critical
computer systems will not fail, no matter what they face. Examples are
legion: railway traffic, power plants, plane navigation systems, etc. For-
mal verification of a system may ensure that it satisfies a given specifi-
cation, but only applies to an already existing model of a system. In this
work, we address the problem of synthesis: starting from a specification
of the desired behavior, we show how to build a suitable system con-
troller that will enforce this specification. In particular, we discuss recent
developments of that approach for systems that must ensure Boolean be-
haviors (e.g., reachability, liveness) along with quantitative requirements
over their execution (e.g., never drop out of fuel, ensure a suitable mean
response time). We notably illustrate a powerful, practically useable al-
gorithm for the automated synthesis of provably safe reactive systems.

1 Context

Nowadays, more and more aspects of our society depend on critical reactive
systems, i.e., systems that continuously interact with their uncontrollable envi-
ronment. Think about control programs of power plants, ABS for cars or airplane
and railway traffic managing. Therefore, we are in dire need of systems capable
of sustaining a safe behavior despite the nefarious effects of their environment.

Good developers know that testing do not capture the whole picture: never
will it proves that no bug or flaw is present in the considered system. So for
critical systems, it is useful to apply formal verification. That means using
mathematical tools to prove that the system follows a given specification which
models desired behaviors. While verification applies a posteriori, checking that
the formal model of a system satisfies the needed specification, it is most of the
time desirable to start from the specification and automatically build a system
from it, in such a way that desired properties are proved to be maintained in
the process. This a priori process is known as synthesis.

The mathematical framework we use is game theory. It is a wide field with
extensive formal bases and applications in numerous disciplines as diverse as
economics, biology, operations research and, of course, computer science. Games

? Author supported by F.R.S.-FNRS. fellowship.



model interactions between cooperating and/or competiting players who play to
the best of their abilities in order to satisfy individual or common objectives.
While interesting works of Borel [4] and even Cournot [12] precede them, von
Neumann and Morgenstern are generally considered as the “Founding Fathers of
(Modern) Game Theory” through their 1944 book titled Theory of Games and
Economic Behavior [20].

Roughly speaking, we consider a reactive system as a player (player 1), and
his uncontrollable environment as its adversary (player 2). We model their in-
teractions in a game on a graph, where vertices model states of the system and
its environment, and edges model their possible actions. Constructing a correct
system controller then means devising a strategy (i.e., a succession of choices
of actions) for player 1 such that, whatever the strategy of player 2, the out-
come of the play satisfies the specification. Such game-theoretic formulations
have proved useful for synthesis [11,17,18], verification [1], refinement [15], and
compatibility checking [13] of reactive systems, as well as in analysis of emptiness
of automata [19].

system
description

environment
description

informal
specification

model as
a game

model as
winning

objectives

synthesis

is there a
winning

strategy ?

empower system
capabilities
or weaken

specification
requirements

strategy =
controller

no yes

Fig. 1. Controller synthesis through game theory: process.

In this paper, we do not address the full theoretical deepness of such an
approach but rather try to motivate and illustrate its usefulness towards an
audience who may not be familiar with it. To that end, we discuss a motivating



toy example. First, we present the informal description of a reactive system
and the behavior it should enforce. Second, we show how to use the game-
theoretic framework to model its relationship with its environment and formalize
the desired specification. Third, we use the sound theory of synthesis and exhibit
a suitable controller that ensures satisfaction of the specification. Our discussion
is mostly high level and intuitive.

A wide variety of games (and thus system models) have been studied re-
cently, with diverse enforceable behaviors [2,5,6,7,8,9,14,16]. In this work, we will
focus on systems that must satisfy qualitative behaviors (e.g., always eventually
granting requests, never reaching a deadlock) along with multiple quantitative
requirements (e.g., maintaining a bound on the mean response time, never run-
ning out of energy). In particular, we illustrate recent results of Chatterjee et al.
[10] that are the first to provide a synthesis algorithm for such games, as well as
a deep study of the complexity of the synthesized controllers.

2 Problem

Consider the following running example. We want to synthesize a controller for
a robotized lawnmower. This lawnmower is automatically operated, without any
human intervention. We present its informal specification, as well as the effects
the environment can have on its operation.

– In this partial, simplified specification, the gardener do not ask for the lawn-
mower to satisfy any bound on the frequency of grass-cuttings. However, as
he wants that the grass does not grow boundlessly, the lawnmower should
cut the grass infinitely often in the future (as if it stops someday, the grass
will not stop growing from then on).

– The lawnmower has an electric battery that can be recharged under sunshine
thanks to solar panels, and a fuel tank that can only be filled when the
lawnmower is back on its base. Both are considered unbounded to keep
things simple.

– The weather can be cloudy or sunny.
– The lawnmower can refuel (2 fuel units) at its base under both weather

conditions, but can only recharge its battery (2 battery units) when it is
sunny. Resting at the base takes 20 time units.

– When cloudy, it can operate either under battery (1 battery unit) or using
fuel (2 fuel units), both according to the same speed (5 time units). When
sunny, the lawnmower may either cut the grass slowly, which always succeeds
and consumes no energy (as the sun recharges the battery along the way),
but takes 10 time units. Or it may cut the grass fast, which consumes both
1 unit of fuel and 1 unit of battery, but only takes 2 time units.

– When operating fast, the lawnmower makes considerably much noise, which
may wake up the cat that resides in the garden and prompt it to attack the
lawnmower. In that case, the grass-cutting is interrupted and the lawnmower
goes back to its base, losing 40 time units as repair is needed. The cat does
not go out if the weather is bad.



– As the gardener cannot benefit from his garden while the lawnmower is
operating, he wants that the mean time required by actions of the lawnmower
is less than 10 time units.

While simple, this toy example already involves qualitative requirements (i.e.,
the grass should be mown infinitely often), along with quantitative ones. There
are indeed three quantities that have to be taken into account: battery and fuel
are energy quantities, which should never be exhausted, and time per action is
a quantity which mean over an infinite operating of the lawnmower should be
less than a given bound.

Given this informal description of the capabilities of the system and its envi-
ronment, as well as the specification the system should enforce, we need to build
a system controller that guarantees satisfaction of the specification.

3 Modeling as a game

Game. We model the states and the interactions of the couple sys-
tem/environment as a graph game where the system (here, the lawnmower) is
player 1 and the environment is its adversary player 2. Formally, a game struc-
ture is a tuple G = (S1, S2, sinit, E, k, w, p) where (i) S1 and S2 resp. denote the
finite sets of states belonging to player 1 and player 2, with S1 ∩ S2 = ∅; (ii)
sinit ∈ S = S1 ∪ S2 is the initial state; (iii) E ⊆ S × S is the set of edges s.t. for
all s ∈ S, there exists s′ ∈ S s.t. (s, s′) ∈ E; (iv) k ∈ N is the dimension of the
weight vectors; (v) w : E → Zk is the multi-weight labeling function; and (vi)
p : S → N is the priority function.

The game starts at an initial state, and if the current state is a player 1
(resp. player 2) state, then player 1 (resp. player 2) chooses an outgoing edge.
This choice is made according to a strategy of the player: given the sequence
of visited states, a strategy chooses an outgoing edge. For this case study, we
only consider strategies that operate this choice deterministically. This process
of choosing edges is repeated forever, and gives rise to an outcome of the game,
called a play, that consists of the infinite sequence of states that are visited.
Formally, a play in G is an infinite sequence of states π = s0s1s2 . . . s.t. s0 = sinit
and for all i ≥ 0, we have (si, si+1) ∈ E. The prefix up to the n-th state of play
π = s0s1 . . . sn . . . is the finite sequence π(n) = s0s1 . . . sn. Such a prefix π(n)
belongs to player i, i ∈ {1, 2}, if sn ∈ Si. The set of plays of G is denoted by
Plays(G). The set of prefixes that belong to player i is denoted by Prefsi(G).

Applying this formalism, we represent the lawnmower problem as the game
depicted on Fig. 2. Edges correspond to choices of the system or its environment
and taking an edge implies a change on the three considered quantities, as de-
noted by the edge label. The grass-cutting state is special as the specification
requires that it should be visited infinitely often by a suitable controller.

Strategies. Formally, a strategy for Pi, i ∈ {1, 2}, in G is a function λi :
Prefsi(G) → S s.t. for all ρ = s0s1 . . . sn ∈ Prefsi(G), we have (sn, λi(ρ)) ∈
E. The history of a play (i.e., the previously visited states and their order of



appearance) may thus in general be used by a strategy to prescribe its choice.
A strategy λi for Pi has finite memory if the history it needs to remember can
be bounded. In that case, the strategy can be encoded by a deterministic Moore
machine. As discussed earlier, a strategy of player 1 (the lawnmower) provides
a complete description of a controller for the system, prescribing the actions to
take in response to any situation. Therefore, our task is to build a strategy that
satisfies the specification.

cloudy base sunny cat
attack

grass
cutting

use
fuel

cloudy

(0, 0, 0)

sunny

(0, 0, 0)

fast mow

(−1,−1, 2)

go back
(0, 0, 0)

mow battery
(−1, 0, 5)switch to fuel

(0, 0, 0)

mow fuel

(0,−2, 5)

slow mow
(0, 0, 10)

no cat
(0, 0, 0)

rest
(0, 2, 20)

rest
(2, 2, 20)

cat
(0, 0, 40)

Fig. 2. Lawnmower game. Edges are fitted with tuples denoting changes in battery,
fuel and time respectively.

Objectives. To devise such a strategy, it is needed to formalize the specification
as objectives of the game. The conjunction of objectives yields a set of winning
plays that endorse the specification. A strategy of player 1 is thus said to be
winning if, against every possible strategy of the adversary, the play induced by
following this strategy belongs to the winning set of plays.

The informal specification developed in Section 2 is encoded as the following
objectives. We ommit technical details for the sake of this case study.

– Battery and fuel. Both constitute energy types which quantities are never
allowed to drop below zero. A play is thus winning for the energy objective if
the running sum of the weights encountered along it (i.e., changes induced by
the taken edges) never drops below zero on any of the first two dimensions.

– Mean action time. The specification asks that the lawnmower spends no
more than 10 time units per action on average in the long run. That is, it is
allowed to take more than 10 time units on some actions, but the long-run



mean should be below this threshold. Therefore, the mean-payoff objective
requires that the limit of the mean of the third-dimension weights over the
prefix of a play is lower than 10.

– Infinitely frequent grass-cutting. To satisfy this part of the specification, a
strategy of player 1 must ensure that the grass-cutting state is visited in-
finitely often along the induced play. This is encoded as a Büchi objective
(or as a parity objective via the priority function in the most general case).

4 Synthesis

Process. Since our desire is to build practical real-world controllers, we are only
interested in strategies that require finite memory. From a theoretical standpoint,
there exist classes of games where infinite memory may help to achieve better
results (see for example [8]), but infinite-memory strategies are of no practical
use, as implementing a controller with infinite memory capabilities is obviously
ruled out.

The core of the synthesis process depicted on Fig. 1 is thus to construct, if
possible, a finite-memory strategy that ensures satisfaction of the previously de-
fined objectives, as well as a corresponding initial value of the energy parameters,
commonly referred to as initial credit. That is because for the energy objectives,
it is allowed to start the game with some finite quantity in stock, before taking
any action. Think about starting a race with some fuel in your tank.

While of importance for the analysis of systems with both qualitative and
quantitative requirements, the synthesis problem for the class of games that
is used to model the lawnmower problem, i.e., games with parity and multi
energy or mean-payoff objectives, has only been considered recently [10]. In this
paper, the complexity of synthesized controllers is studied and it is shown that
for some systems, exponentially complex controllers are needed to enforce the
specification. Moreover, exponential size controllers are always sufficient, i.e., if
no exponential controller is able to enforce the specification, then implementing
more complex controllers is no help.

Result 1 (Induced by [10, Theorem 1]). Enforcing a specification combining
both qualitative and quantitative aspects may require exponential size controllers
in terms of memory requirements in the worst case.

Interestingly, answering the question “does there exist a finite-memory con-
troller that satisfies a given specification ?” was shown to be coNP-complete in
[8]. However, no deterministic algorithm was known to synthesize such a con-
troller. Only quite recently, a practically implementable algorithm of optimal
complexity for the synthesis of specification-wise suitable controllers was pre-
sented in [10]. This algorithm is both symbolic and incremental, and uses com-
pact representations of data sets, thus being an ideal choice for implementation
into synthesis tools.

Result 2 (Induced by [10, Theorem 2]). The synthesis of controllers for
systems with qualitative and quantitative requirements, such as the lawnmower,
is in EXPTIME.



This algorithm automatically builds suitable controllers with regard to the
desired specification, if one is constructible. Therefore, it is the key tool in the
synthesis process depicted on Fig. 1, and gives rise to an innovative and sound
approach to the conception of provably safe reactive systems.

Lawnmower controller. To conclude our case study, we exhibit a synthesized
controller that enforces the desired specification. Notice that there may exist
other acceptable controllers. The one we present here is quite simple but already
asks for some memory (in the form of bookkeeping of battery and fuel levels).
The controller implements the following strategy:

– Start the game with empty battery and fuel levels.
– If the weather is sunny, mow slowly.
– If the weather is cloudy,
• if there is at least one unit of battery, mow on battery,
• otherwise, if there is at least two units of fuel, mow on fuel,
• otherwise, rest at the base.

Notice that this strategy guarantees never running out of energy (which sat-
isfies the energy objectives), induces infinitely frequent grass-cuttings (which
satisfies the Büchi objective), and produces a play on which the mean time per
action is less than 10 against any strategy of the adversary (which satisfies the
mean-payoff objective). In this sample controller, the lawnmower never uses the
“fast mow” action as the adversary could very well play “cat” and prevent visit
of the grass-cutting state.

5 Conclusion

Through this case study, we have discussed how the game-theoretic framework
can help in the synthesis of controllers. We have intuitively introduced some of
the key underlying concepts such as games, strategies, qualitative and quantita-
tive objectives. We have also discussed the recent development of a practically
useable algorithm for the automated synthesis of valid controllers [10].

It is worthwhile noticing that automated synthesis suites for fragments of the
presented formalism or similar logics are already in practical use, such as the
LTL synthesis tool Acacia+ for example [3] (which only applies to qualitative
requirements). Thanks to the recent developments on the conjunction of quali-
tative and quantitative objectives [10], such tools could very well be extended to
encompass all the needed complexity for the specification of real-world systems.
Such an approach should be a leading trend for the analysis and synthesis of
provably safe controllers for reactive systems in the near future. This discussion
illustrates its interest, while abstracting the sound theory underneath.

References

1. R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. J.
ACM, 49(5):672–713, 2002.



2. R. Bloem, K. Chatterjee, T.A. Henzinger, and B. Jobstmann. Better quality in
synthesis through quantitative objectives. In Proc. of CAV, LNCS 5643, pages
140–156. Springer, 2009.

3. A. Bohy, V. Bruyère, E. Filiot, N. Jin, and J.-F. Raskin. Acacia+, a tool for LTL
synthesis. In Proc. of CAV, LNCS 7358, pages 652–657. Springer, 2012.

4. E. Borel and J. Ville. Applications aux jeux de hasard. Gauthier-Vilars, 1938.
5. P. Bouyer, N. Markey, J. Olschewski, and M. Ummels. Measuring permissiveness

in parity games: Mean-payoff parity games revisited. In Proc. of ATVA, LNCS
6996, pages 135–149. Springer, 2011.

6. T. Brázdil, P. Jancar, and A. Kucera. Reachability games on extended vector
addition systems with states. In Proc. of ICALP, LNCS 6199, pages 478–489.
Springer, 2010.

7. K. Chatterjee and L. Doyen. Energy parity games. In Proc. of ICALP, LNCS
6199, pages 599–610. Springer, 2010.

8. K. Chatterjee, L. Doyen, T.A. Henzinger, and J.-F. Raskin. Generalized mean-
payoff and energy games. In Proc. of FSTTCS, LIPIcs 8, pages 505–516. Schloss
Dagstuhl - LZI, 2010.

9. K. Chatterjee, T.A. Henzinger, and M. Jurdzinski. Mean-payoff parity games. In
Proc. of LICS, pages 178–187. IEEE Computer Society, 2005.

10. K. Chatterjee, M. Randour, and J.-F. Raskin. Strategy synthesis for multi-
dimensional quantitative objectives. In Proc. of CONCUR, LNCS 7454, pages
115–131. Springer, 2012. Extended version on CoRR: http://arxiv.org/abs/

1201.5073.
11. A. Church. Logic, arithmetic, and automata. In Proceedings of the International

Congress of Mathematicians, pages 23–35. Institut Mittag-Leffler, 1962.
12. A.A. Cournot. Recherches sur les principes mathématiques de la théorie des

richesses/par Augustin Cournot. L. Hachette, 1838.
13. L. de Alfaro and T.A. Henzinger. Interface theories for component-based design.

In Proc. of EMSOFT, LNCS 2211, pages 148–165. Springer, 2001.
14. U. Fahrenberg, L. Juhl, K.G. Larsen, and J. Srba. Energy games in multiweighted

automata. In Proc. of ICTAC, LNCS 6916, pages 95–115. Springer, 2011.
15. T. A. Henzinger, O. Kupferman, and S. Rajamani. Fair simulation. Information

and Computation, 173(1):64–81, 2002.
16. D.A. Martin. The determinacy of Blackwell games. The Journal of Symbolic Logic,

63(4):1565–1581, 1998.
17. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. of POPL,

pages 179–190, 1989.
18. P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete-event

processes. SIAM Journal of Control and Optimization, 25(1):206–230, 1987.
19. W. Thomas. Languages, automata, and logic. In Handbook of Formal Languages,

volume 3, Beyond Words, chapter 7, pages 389–455. Springer, 1997.
20. J. Von Neumann and O. Morgenstern. Theory of games and economic behavior.

Princeton University Press, 1944.

http://arxiv.org/abs/1201.5073
http://arxiv.org/abs/1201.5073

	Automated synthesis of reliable and efficient systems through game theory: a case study

