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Abstract—The evolution dynamics of a software ecosystem
depend on the activity of the developer community contributing
to projects within it. Both social and technical changes affect
an ecosystem’s evolution and the research community has been
investigating the impact of these modifications over the last few
years. Existing studies mainly focus on temporary modifications,
often ignoring the effect of permanent changes on the software
ecosystem. We present an empirical study of the magnitude and
effect of permanent modifications in both the social and technical
parts of a software ecosystem. More precisely, we measure perma-
nent changes with regard to the ecosystem’s projects, contributors
and source code files and present our findings concerning the
effect of these modifications. We study the Ruby ecosystem in
GitHub over a nine-year period by carrying out a socio-technical
analysis of the co-evolution of a large number of base projects and
their forks. This analysis involves both the source code developed
for these projects as well as the developers having contributed
to them. We discuss our findings with respect to the ecosystem
evolution according to three different viewpoints: (1) the base
projects, (2) the forks and (3) the entire ecosystem containing
both the base projects and forks. Our findings show an increased
growth in both the technical and social aspects of the Ruby
ecosystem until early 2014, followed by an increased contributor
and project abandonment rate. We show the effect of permanent
modifications in the ecosystem evolution and provide preliminary
evidence of contributors migrating to other ecosystems when
leaving the Ruby ecosystem.

Index Terms—Ruby; Software Ecosystem; GitHub; Software
Evolution; Socio-Technical Analysis

I. INTRODUCTION

Most open source projects today are no longer developed

in isolation [1], but co-evolve in software ecosystems, thus

shifting the attention of the research community to software

ecosystems [2]. Such ecosystems are defined by Lungu [3] as

collections of software projects that are developed and evolve

together in the same environment. Examples of software

ecosystems include package distributions for programming

languages (e.g., CRAN, CPAN, RubyGems, npm, PyPI) or

operating systems (e.g., Ubuntu, Debian), and mobile app

stores. Software ecosystems differ from individual project

development in the sense that projects in ecosystems can share

source code (e.g., shared libraries) and contributors [4].

A significant part of many popular ecosystems is developed

through GitHub, a portal for distributed versioning allowing

developers to create and fork projects, link these projects via

dependencies, and collaborate through a pull-based develop-

ment process [5], [6], [7]. Developing software in such a way

is an inherently social activity, involving the interaction, com-

munication and collaboration of multiple contributors to the

same project and across interdependent projects. It is also an

inherently technical activity, involving the creation, generation

and modification of a multitude of software artefacts such as

source code, documentation, tests, metadata, and many more.

The socio-technical evolution dynamics of software ecosys-

tems is an emerging research subject [8], [9], [10], but current

studies mainly focus on temporary changes of the ecosystem.

For example, an analysis of temporary changes will consider

a contributor who becomes temporarily inactive but continues

to contribute later on. In contrast, this paper focuses on

permanent changes in the ecosystem and measures their effect

on the ecosystem’s evolution. For example, a contributor may

decide to leave the ecosystem, abandoning the projects he is

contributing to, and perhaps leading to abandoned files. The

degree of renewal and abandonment may be indicative of

quality problems in projects or in the ecosystem as a whole.

Building further on a preliminary empirical evaluation of the

evolution dynamics of the Ruby on Rails project in GitHub

[11], this paper empirically analyses the socio-technical evolu-

tion of the entire Ruby ecosystem in GitHub containing tens of

thousands of projects. The goal is to gain an understanding of

the evolution dynamics of base projects and their forks in this

ecosystem, as well as the long-term effect of modifications in

the social interaction to the ecosystem’s source code artefacts.

Ruby is a popular programming language ecosystem [12], [13]

and most gems use GitHub as a collaborative source code

repository [13]. Thus, we focus on Ruby projects that follow

a pull-based development process [6] with pull requests being

merged to the base projects.

We present our results at two levels of granularity: individ-

ual projects composed of a base project and its forks; and the

global ecosystem composed of these individual (often interde-

pendent) projects. For each level, we analyse the permanent

changes of project, developer and source code files activity to

demonstrate the effect of changes in the the ecosystem.



Our contributions can be summarized as follows:

C1 We study the permanent modifications of the socio-

technical network of the Ruby ecosystem in GitHub.

C2 We measure the impact on the ecosystem when contribu-

tors permanently abandon projects.

C3 We provide preliminary evidence about contributors mi-

grating to different ecosystems.

C4 We illustrate how data in GitHub can be used for socio-

technical analyses of software ecosystems.

The remainder of this paper is structured as follows. Section

II presents our research methodology. Sections III-VI present

experimental results and discuss our findings. Section VII

cross-validates our results using external data sources and

Section VIII discusses the actionable results this work could

lead to. Section IX reports the threats to validity of our re-

search. Section X presents related work and finally, Section XI

concludes this paper and provides future research directions.

II. METHOD

Research Questions

Our empirical study investigates the evolution of the Ruby

ecosystem in GitHub. We consider two levels of granular-

ity, namely the global ecosystem and the evolution around

individual Ruby projects. Blincoe et al. [1] observed that

ecosystems in GitHub tend to revolve around central projects

having many dependent projects, forming star-like patterns. By

analogy, we consider multiple base projects in Ruby, and study

the co-evolution with their forks. We focus on four research

questions:

RQ1 How does the ecosystem grow over time?

RQ2 How do the technical artefacts of the ecosystem evolve?

RQ3 How does the ecosystem’s contributor team evolve?

RQ4 How do changes in the contributor team impact the

technical artefacts?

The evolution of the Ruby ecosystem is studied according

to the observed activity in GitHub. The earliest date of commit

activity is registered on October 2007 and from this date until

September 2016, the dataset is divided into 35 quarters (i.e.,

three-month intervals). Since the first and last quarter do not

have any past or future data, respectively, the evolution of the

Ruby ecosystem is studied for 33 quarter transitions. For each

quarter we register the socio-technical network activity of each

ecosystem “actor” as follows:

• Projects: We record the active base projects and their

active fork projects which have activity in terms of

committed source code, along with the commits of each

project.

• Contributors: For each active base or fork project, we

identify the individual contributors who authored the

commits.

• Source code files: For each commit, we record the source

code files that were committed and the lines of code

(LOC) of each commit. We register only the number

of added or modified lines of code, thus ignoring the

deleted code lines. We follow this approach to measure

the actual development effort of each commit, assuming

that deleting code lines requires little effort compared to

adding or modifying code.

We map each source code activity to its respective contrib-

utor. More precisely, each commit or LOC activity is mapped

to both the contributor who performed the changes and to

the project. We use Algorithm 1 to map source code files

to distinct file identities since files can be added, deleted,

renamed or moved throughout a project’s evolution. The case

of file deletion is omitted from Algorithm 1 since it does not

have any effect on the file mapping. According to Algorithm

1, if a file is renamed or moved, then the previous name of

the file is retrieved, and the new file is registered with the

same identity. Otherwise, if a file in a commit is added or

the file was not previously encountered in commits, a new

identity is assigned to the file. The status of each file in each

commit, i.e., whether the file is added, removed, modified,

renamed or moved, is retrieved using the GitHub API1. Thus,

file identities are used instead of their names to ensure that

activity in the same file is correctly registered even if the file

has been renamed or moved.

Algorithm 1 Mapping project source code files to unique ids

1: procedure FILEMAPPING

2: commits ← Project commits sorted chronologically

3: map <String,Integer> ← Mapping of files to ids

4: id = 1
5: for each commit c ∈ commits do

6: files ← source code files of c

7: for each file f ∈ files do

8: if status(f )== renamed or moved then

9: previous ← Previous name of f

10: mergeId ← map(previous)

11: map← (f,mergeId)
12: else if status(f )== added or f 6∈ map then

13: map ← (f , id)

14: id = id+ 1
15: end if

16: end for

17: end for

18: end procedure

Metrics Definitions

For each transition from quarter t−1 to quarter t during the

ecosystem evolution, we record the change in activity of each

ecosystem actor (i.e., projects, contributors and source code

files). Projects are considered as having become obsolete if

they are inactive in a given quarter (i.e., no commit activity is

recorded) and they remain inactive in all subsequent quarters

until the end of the observation period. Source code files

become obsolete if, starting from a given quarter they are

never touched again in any commit of our dataset until the

end of the observation period. Contributors are considered to

1https://developer.github.com/v3/repos/commits/



TABLE I
DEFINITIONS OF CONTRIBUTOR (c), PROJECT (p) AND FILE (f ) METRICS FOR EACH QUARTER t.

ObsoleteProjects(t) {p | isActive(p, t− 1) ∧ ∀ i ≥ t,¬isActive(p, i) }
NewProjects(t) {p | isActive(p, t) ∧ ∀ i < t,¬isActive(p, i) }
ActiveProjects(t) {p | isActive(p, t) ∧ isActive(p, t− 1)}
ProjectRenewal(t) | NewProjects(t) | / | {p | isActive(p, t)} |

ProjectAbandonment(t) | ObsoleteProjects(t) | / | {p | isActive(p, t− 1)} |

Leavers(t) {c | isContr(c, t− 1) ∧ ∀ i ≥ t,¬isContr(c, i) }
Joiners(t) {c | isContr(c, t) ∧ ∀ i < t,¬isContr(c, i) }
Stayers(t) {c | isContr(c, t) ∧ isContr(c, t− 1) }

TeamRenewal(t) | Joiners(t) | / | {c | isContr(c, t)} |
TeamAbandonment(t) | Leavers(t) | / | {c | isContr(c, t − 1)} |

ObsoleteF iles(t) {f | isTouched(f, t − 1) ∧ ∀ i ≥ t,¬isTouched(f, i) }
NewFiles(t) {f | isTouched(f, t) ∧ ∀ i < t,¬isTouched(f, i) }
ActiveF iles(t) {f | isTouched(f, t) ∧ isTouched(f, t− 1)}
F ileRenewal(t) | NewFiles(t) | / | {f | isTouched(f, t)} |

F ileAbandonment(t) | ObsoleteF iles(t) | / | {f | isTouched(f, t − 1)} |

be leavers in a given quarter if they have not contributed in

that quarter or any subsequent quarters until the end of the

observation period. Contributors are considered to be joiners

in a given quarter if they have contributed in that quarter but

not in any preceding quarter.

Table I presents the metrics we used for measuring per-

manent changes concerning the activity of ecosystem actors.

The metrics definitions consider a project p, a contributor c,

a source code file f , and two successive quarters t− 1 and t.

The predicate isActive(p, t) is true if and only if there is a

source code commit for project p in quarter t; isContr(c, t)
is true if and only if contributor c made a source code commit

in quarter t; isT ouched(f, t) is true if and only if file f was

touched through commits in t.

We formally define ObsoleteProjects(t) as the set of

projects that do not have any commit activity from quar-

ter t onward. NewProjects(t) are the projects that have

commit activity for the first time during quarter t, and

ActiveProjects(t) are those projects that have commit activ-

ity in both quarters t− 1 and t. With respect to the ecosystem

contributors, we formally define Leavers(t), Joiners(t) and

Stayers(t) as the contributors who did not have any contri-

butions from quarter t onward, had never contributed before t,

and contributed in both quarters t and t−1 respectively. Source

code file modifications ObsoleteF iles(t), NewFiles(t) and

ActiveF iles(t) are defined as the files that were never touched

again, that were never touched before, and that were touched

in both quarters t and t− 1, respectively.

For projects, we define ProjectRenewal(t) as the ra-

tio of new against active projects in quarter t, and

ProjectAbandonment(t) as the ratio of obsolete projects in

quarter t against active projects in quarter t− 1. Renewal and

abandonment is defined similarly for teams and files.

Dataset & Preprocessing

To facilitate reproducibility of our study, all extracted data

we have used is made available in a public dataset on

https://bitbucket.org/econst/rubyecosystemgithub-saner17.

We used the 2016-09-05 SQL dump of the GHTorrent

dataset [5] to obtain data for GitHub projects that are part

of the Ruby ecosystem. GitHub has been a valuable data

source for ecosystem researchers to mine information stored

in GitHub for empirical studies. However, the benefits of

using data obtained from GitHub can be undermined when

researchers do not ensure the validity of the repositories they

use in their studies. To this end, it is important to include a

pre-processing step to filter out projects that can potentially

introduce noise and degrade the accuracy of research results.

We present the filtering steps we carried out to select the

projects of the Ruby ecosystem, in order to limit the perils of

using GitHub projects that are discussed by Kalliamvakou et

al. [14]. We explain the rationale behind, and benefits of, each

filtering step. In Table II we match each peril of using GitHub

data to the appropriate filter that we have applied to avoid or

reduce the peril.

Filter 1: Eliminate non-Ruby projects. Projects that do not

have Ruby as their main programming language are excluded

from further analysis since we rely on the Ruby ecosystem

in GitHub. The main programming language of each project

is identified by the language column of the projects table

of GHTorrent. Although the dataset provides a list of all

the languages used in a repository (project_languages table

of GHTorrent), we are interested in the main programming

language of each project.

Filter 2: Eliminate projects with scarce commit activity. We

excluded projects that are either marked as deleted, or have

scarce commit activity. To identify such projects, we gathered

each project’s commit activity and eliminated projects with

less than five commits from our dataset.

Filter 3: Eliminate isolated projects. We excluded all base

projects that did not receive any merge from its forks during

the considered observation period. We applied this filter since

our empirical study focuses on the socio-technical interaction

and co-evolution between base and fork projects.

Filter 4: Eliminate forks without merges to the base project.

For each base project, we excluded all forks without any merge



TABLE II
PERILS OF MINING GITHUB [14] AND FILTERING STRATEGY

Peril Filter

A repository is not necessarily a project Filter 2

Low project activity Filter 2

Inactive projects Filter 2, 4

Non software development projects Filter 6

Personal projects Filter 3

Few projects use pull requests Filter 4

GitHub’s API does not expose all data Don’t use commits as the
measurement unit, rather
LOC of commit files

GitHub is continuously evolving Use a recent GitHub dataset

to the base project. Such forks do not involve any interaction

with the base project and are therefore not relevant to the

current empirical study.

Filter 5: Eliminate short-lived contributors. Occasional or one-

time contributors tend to introduce quite some noise in the

dataset. To eliminate their effect, we excluded all contributors

(and their activity) for whom the timespan between the first

and last observed commit activity was less than three months.

This filter ensures that TeamRenewal and TeamAbandonment

are not overestimated since such contributors join and abandon

the ecosystem in consecutive quarters and their contribution

does not reflect the actual workload.

Filter 6: Only consider source code files in commits. Since

our focus is on studying the effort involved in software

development activity, we only considered Ruby source code

files with the .rb extension.

We found the GHTorrent dataset to be incomplete with

regard to additional information that is necessary for our

analyses, i.e., the modifications in the source code artefacts

of the studied projects. More precisely, although GHTorrent

provides information about commits (author, committer, date,

comments, etc), it does not provide a list of the modified files

nor the patch of each commit. Therefore, we queried GitHub to

obtain the commit information for all projects and all commits

during the considered observation period. For each commit,

we queried the GitHub API2 and recorded the files touched

in each commit according to the response to each query (in

JSON format). For each file, we registered the filename, file

status (modified, renamed, removed, added), number of added

and deleted lines, and the patch. As mentioned earlier, we

relied on the number of added and modified LOC to measure

developer productivity. It should be noted that modified lines

are represented by one added and one deleted line in the

information provided by GitHub, meaning that the added field

consists of all the new lines and the modified ones. Although

it is possible to extract the exact number of modified lines of

code from patches [15], this requires comparing two versions

of the source code. Since our dataset only contains the git

patches, this would require a time-consuming analysis of the

2https://developer.github.com/v3/repos/commits/

TABLE III
ECOSYSTEM DESCRIPTIVE STATISTICS

Base Forks Ecosystem

Projects 25,611 69,008 94,619
Contributors 59,830 45,496 76,320
Touched Files 780,702 235,575 815,623
Commits 3,871,281 1,141,589 5,012,870
LOC 427,918,256 114,782,090 542,700,346
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Fig. 1. Evolution of team changes

patch to compute how many lines were modified or added. For

our purposes, we assume that the effort to add or modify a

line of code is similar. It suffices to rely on the added field

queried from GitHub to obtain this information, avoiding the

processing of git patches.

III. RQ1 HOW DOES THE ECOSYSTEM GROW OVER TIME?

Table III presents descriptive statistics of the studied Ruby

ecosystem. Our observation period starts on 29 October 2007

and ends on 3 September 2016, resulting in 35 quarters.

Throughout the paper, all figures and discussions will present

the evolution in terms of years to facilitate the interpretation

of our results.

Our dataset includes the evolution history of 25,611 base

projects and 69,008 forks developed around them, resulting in

94,619 projects. In total, 76,320 distinct contributors commit-

ted source code for these projects, of which 78% contributed

to the base projects and 60% to the forks. 780,702 files were

touched in base projects, while 235,575 files were touched in

forks, with the total number of files touched in the ecosystem

corresponding to 815,623. Finally, over 3.8 million commits

were registered for these projects, the majority of which (77%)

being recorded for the base projects. Over 542 million lines

of code were added or modified in these commits for the

ecosystem, 79% of which belonged to the base projects.

Figure 1 presents the evolution of the Ruby ecosystem in

terms of commits and lines of code. The main development

activity takes place in the base projects. After August 2011,

there is a significant increase in the development effort, and

this increased effort continues until the end of the observation

period. After February 2015, a drop in the number of commits

is observed in Figure 1(a). This is misleading, since the

measurement of LOC in Figure 1(b) shows an increase for this

period of time instead. The observed difference is probably due

to the recommended practice of squashing commits before a
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merge. The contribution guidelines of Ruby on Rails3, one

of the largest and most active Ruby projects in GitHub,

instruct contributors to squash multiple commits into a single

one. Hence, in the remainder of this article we will measure

development effort in terms of LOC rather than commits as it

provides more reliable values.

Figure 2 shows the evolution of the number of obsolete,

new and active base projects and forks in the Ruby ecosystem.

After May 2010, both the number of base projects and forks

present a significant increase, while after February 2014 a

decrease is observed. In the time period between May 2010

and February 2014, there is an increased rate of new base

projects and low rate of base projects becoming obsolete. In

contrast, forks have similar rate of new and obsolete projects,

which can be explained by the fact that their lifecycle is limited

compared to the base projects. After February 2014, new base

projects are observed less often and more base projects become

obsolete compared to the previous ecosystem’s history. A drop

in the number of new and active projects is also observed in

the fork projects.

Figure 3 presents the ProjectRenewal and ProjectAbandon-

ment for the base projects and forks of Ruby. 30-40% of

the base projects in each quarter are new, while abandoned

projects remain below 10% until February 2014. As expected,

the new project rate in forks is over 60% until February 2014,

while the increased abandonment rate of approximately 40%

on average shows the short longevity of forks.

In an effort to explain the observed phenomena after Febru-

ary 2014, we gathered anecdotal evidence from developer

blogs and Ruby’s mailing lists. In November 2013, a thread

in the Ruby mailing list discusses the survival of Ruby as a

3http://edgeguides.rubyonrails.org/contributing_to_ruby_on_rails.html
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programming language4: “Will ruby die in the future? We have

some new technologies like Node.js and angular but how ruby

can challenge them?" and the consensus from the replies of

the Ruby community is that Ruby will continue to exist in the

future but it needs to transform: “From being in technology

for a long time I have realized technologies never really

die they just transform". Furthermore, we gathered anecdotal

evidence about technology migration from Ruby at that period.

Firstly, there is evidence of projects moving to Node.js due to

performance issues5 6 and companies like Twitter moving to

other technologies to handle increased traffic 7.

To support this anecdotal evidence, we investigated the

activity in the Ruby and JavaScript ecosystems for the same

timespan by measuring the number of active base projects in

each quarter that are derived by their commit activity. We

used the GHTorrent dataset to obtain the commit activity

of projects in each programming language for each quarter

without applying any filters to the project selection. The results

are presented in Figure 4. Until 2012 both ecosystems have

comparable growth, whereas from 2012 onward, the JavaScript

ecosystem in GitHub presents a larger growth compared to the

Ruby ecosystem. A possible explanation is that developers

migrate to ecosystems of other technologies like JavaScript,

since there is evidence that contributors involved in Ruby

projects are likely to contribute to JavaScript projects and

vice versa [16]. We provide empirical evidence of developer

migration in the social investigation of the ecosystem in the

presentation of the results of Section V. Nonetheless, further

research is required to verify if the evolution dynamics of both

ecosystems affect one another.

IV. RQ2 HOW DO THE TECHNICAL ARTEFACTS OF THE

ECOSYSTEM EVOLVE?

Figure 5 presents the evolution of the Ruby ecosystem with

respect to the development and maintenance of source code

files. Considering the growth of the ecosystem until February

2014, the increase in the number of actively developed source

code files is an expected outcome. According to the results of

Figure 5, the bulk of the development activity takes place in

4http://blade.nagaokaut.ac.jp/cgi-bin/vframe.rb/ruby/ruby-
talk/411961?411838-412226

5http://ilikekillnerds.com/2015/02/is-ruby-on-rails-dying/
6http://blog.parse.com/learn/how-we-moved-our-api-from-ruby-to-go-and-

saved-our-sanity/
7http://www.theregister.co.uk/2012/11/08/twitter_epic_traffic_saved_by_java/
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the base projects, while the technical evolution shows similar

attributes for both views of the ecosystem. For both views,

the number of new files is comparable to the number of

obsolete files, indicating the implementation of new function-

ality. However, after February 2014, there is a drop in the

number of new files for the base projects, indicating either the

contributors’ focus on maintaining existing files or a reduction

in development effort.

Figures 6 shows the FileRenewal and FileAbandonment for

the base projects and forks respectively. For the base projects,

the average renewal and abandonment correspond to 48%

and 36% respectively, confirming the ecosystem growth until

February 2014, where file abandonment starts to exceed file

renewal. For forks, the average FileRenewal and FileAban-

donment corresponds to 61% and 42% respectively. This is

an expected outcome considering the pull-based development

process. Since it is a common practice to add new functionality

via forks prior to merging it back to the base project so as not

to disturb the code in the original branch [17], we expect to see

large values of FileRenewal. With respect to FileAbandonment,

larger values are expected since forks are characterized by

a short maintenance time and afterwards become inactive

[18]. We observe increased abandonment from February 2014

onwards for forks as well.

V. RQ3 HOW DOES THE ECOSYSTEM’S CONTRIBUTOR

TEAM EVOLVE?

The results of the social evolution of the Ruby ecosystem

are presented in Figure 7. According to Figure 7(a), an increase

in the number of Joiners and Leavers for base projects is

observed after August 2010. Contributor activity is increas-

ing until February 2014 and a drop is observed after May

2015. According to Figure 7(b), the number of contributors

to fork projects shows a large increase between May 2010

and November 2013, and from February 2014 the number of

contributors participating in forks suddenly drops. Considering

that the total number of ecosystem contributors throughout its

evolution is not greatly affected by the fork participation, this

seems to imply that the majority of these contributors that

left the forks continue their participation in base projects. We

also observe in Figure 7(c) that the number of Leavers in the

ecosystem is rapidly increasing after November 2012 and at

the same time, the number of Joiners is decreasing.

Figures 7(d)-(f) show the ecosystem evolution in terms of

TeamRenewal and TeamAbandonment for the base projects,

forks and the global ecosystem. For all three views, TeamRe-

newal decreases over time, indicating that less people join the

ecosystem each quarter with respect to Ruby’s community size

in GitHub. More precisely, on average 38% of the ecosystem

development team consists of Joiners each quarter, whereas

21% of the team abandons the ecosystem each quarter. Our

results are in agreement with Foucault et al. [19] who observed

that newcomers do not tend to become stayers.

Finally, the abandonment rate exceeds the joining rate of the

ecosystem after February 2014 and the number of active devel-

opers is reduced. Combined with our observations concerning

the ecosystem projects in Section III, this reveals evidence

of a possible correlation between developer abandonment and

project abandonment.

To further investigate the behavior of contributors abandon-

ing the Ruby ecosystem, we measured their activity on GitHub

projects with another main programming language during their

active period in Ruby and after abandoning Ruby. Table IV

summarizes the results concerning the top 10 programming

languages for activity of contributors for the period when they

were active in Ruby (first and second column of Table IV)

and when they abandoned Ruby (third and fourth columns of

Table IV).

Our findings suggest that Ruby contributors worked in

parallel on JavaScript, Python and HTML projects on GitHub,

and these results are confirmed by the observations in [16].

Also, the majority of Ruby contributors that used to contribute

to JavaScript in parallel to Ruby, continue their activity on

JavaScript projects after abandoning the Ruby ecosystem.

We consider these observations as initial evidence of a

correlation between the evolution of the Ruby and JavaScript

ecosystems. In future work, we aim to investigate the extent of

developer migration and the characteristics of their activity in

both ecosystems. In the context of this work, we conclude that

there is an increasing number of contributors abandoning the

ecosystem, either by becoming inactive in GitHub or leaving

the Ruby ecosystem and contributing to other ecosystems.

VI. RQ4 HOW DO CHANGES IN THE CONTRIBUTOR TEAM

IMPACT THE TECHNICAL ARTEFACTS?

To measure the impact of Leavers (contributors abandoning

the Ruby ecosystem), we measure their diversity index in

the project-contributor graph of the Ruby ecosystem, inspired

by the work of Posnett et al [20]. Diversity measures are
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Fig. 7. Social evolution of Ruby (for base projects, forks and the global ecosystem)

TABLE IV
MIGRATION OF RUBY ABANDONERS TO OTHER PROGRAMMING

LANGUAGE ECOSYSTEMS.

Language Active in Ruby Language Abandoned Ruby

JavaScript 28,322 JavaScript 20,198
Python 14,901 HTML 12,027
HTML 12,228 Python 10,777
Java 11,379 Java 7,233
C 8,877 C 5,181
PHP 8,862 Go 4,923
VimL 7,013 PHP 4,845
C++ 6,635 VimL 4,839
CoffeeScript 5,766 C++ 4,192
Go 4,885 CoffeeScript 3,328

borrowed from ecology and, when applied to bipartite graphs,

they express the specialization of a given species with respect

to the species in the other level [21]. Project and contributor

diversity can be measured according to Shannon’s entropy or

the Simpson index, while the specialization of a species in one

level relative to the species in the other level is measured by

the relative entropy (a.k.a. Kullback-Liebler divergence) [10],

[20]. By measuring the specialization of Leavers, we assess

the relative risk they cause to the ecosystem (according to

their relative contribution) until they abandoned the ecosystem.

As explained in [21], the specialization of a contributor cj
expressed in terms of relative entropy is defined as:

Scj =

n∑

i=1

wij

Cj

(log
wij

Cj

− log
Pi

W
)

where n is the number of projects and m the number of

contributors in the ecosystem, wij the workload of contrib-

utor cj to project pi counted in number of lines of code,

Pi =
∑m

j=1
wij the total workload of all contributors to project

pi, Cj =
∑n

i=1
wij the total workload of contributor cj on all

projects she is contributing to, and W =
∑n

i=1

∑m

j=1
wij the

total ecosystem workload.

We computed the contributor specialization with a time con-

straint on the project and ecosystem workload. More precisely,

we consider the ecosystem and contributor workload for the

quarters where the contributor was active in the ecosystem, that

is from the quarter of her first contribution until the quarter

before abandoning the ecosystem. The boxplots in Figure 8

present the specialization of Leavers of the Ruby ecosystem

in each quarter for Leavers with Scj > 0. Considering that

the bulk of Leavers have low specialization, we only focus

on contributors with increased specialization, i.e., leavers who

have large contributions to important projects of the ecosystem.

The departure of such people from the ecosystem may present

important risks for the ecosystem’s sustainability. According

to the results of Figure 8, the majority of Leavers of the

Ruby ecosystem do not differ in terms of specialization

throughout its evolution. From August 2010 onward, however,

there are more and more outliers. These represent contributors

with large specialization abandoning the ecosystem, indicating

potential risks for Ruby’s sustainability.

VII. CROSS-VALIDATION: GITHUB VS RUBYGEMS

Our empirical results reveal that the evolution of the Ruby

ecosystem in GitHub is faced with a downturn from early 2014.

Considering that we provide a quantitative analysis according

to data gathered from GitHub, we cross-validated our results

using three external data sources. First, we measured the

number of unfiltered active Ruby projects in GitHub to ensure

that our filtering approach did not bias the outcome of this

study. Figure 9(a) displays this data, and reveals a large drop of

Ruby project activity in GitHub from mid-2015. Secondly, we
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Fig. 9. Ruby ecosystem evolution

measured the number of gem downloads from the RubyGems

API in order to assess if the results coincide with our ob-

servations in GitHub. We display the results in Figure 9(b)

for all gems and for the subset of gems that are developed in

GitHub, and observe a clear drop of gem downloads from late-

2014 onward. Finally, we used the RubyGems API to measure

the number of newly introduced gems in RubyGems, so as to

investigate if the growth dynamics of the ecosystem align with

our observations in GitHub. The results are displayed in Figure

9(c), where a decrease of new gems is observed from 2015

onward. These external measures therefore cross-validate and

confirm our empirical observations that were based on Ruby

projects in GitHub only.

VIII. DISCUSSION

We focused on the evolution of Ruby projects in GitHub

due to the popularity of the GitHub platform for software

development and because most Ruby gems use GitHub as a

collaborative source code repository [12], [13], enabling us to

study the social aspect of the ecosystem.

The metrics we defined in Section II enable the measure-

ment of permanent changes during an ecosystem’s evolution.

Changes of these metrics throughout the ecosystem’s evolution

may be used to assess risks related to ecosystem’s sustain-

ability. For example, measuring TeamRenewal and TeamAban-

donment can assist in identifying social disturbances in the

ecosystem early, by detecting successive drops or increases

respectively. Combined with information about Leavers spe-

cialization, the magnitude of these changes could be used

to assess the importance of abandoners of the ecosystem.

We also showed that combining measurements of permanent

social changes with external observations on the ecosystem can

strengthen the confidence of increased risk for loss of sustain-

ability of the ecosystem. More precisely, sustainability loss in

an ecosystem can be detected when large social changes are

accompanied by similar observations of the ProjectRenewal

and ProjectAbandonment measurements in the same periods

of time, showing the effect of social changes on the ecosystem

evolution.

Measuring the amount and effect of socio-technical changes

during ecosystem evolution can assist interested stakeholders

to identify risks and help them to take corrective measures so

as to reduce the negative effect of such disturbances. Core

package maintainers can monitor the evolution within the

developer community and identify problems regarding the at-

traction of new contributors, as well as their attachment to the

developer community. In particular, the Ruby community can

benefit from our work by identifying suitable Ruby projects for

newcomers in the ecosystem, as well as by assessing the risk

of reduced ecosystem sustainability when highly specialized

contributors abandon the ecosystem.

IX. THREATS TO VALIDITY

A threat to the validity of our work is that we assume

each account in GitHub to correspond to a distinct contributor.

Contributors tend to use multiple accounts across different

repositories (e.g., version control system, bug tracker and

mailing list), but using multiple accounts to commit source

code in the same GitHub repository is less common. To

eliminate the effect of this threat, we will include an identity

merging preprocessing step in future work [22].

Another threat stems from the fact that we identified Ruby

projects in GitHub based on the main programming language

set by GitHub. GitHub uses the Linguist Library8 to determine

the programming language of each file within a project. The

wrong language can be set as a project’s primary language

when the primary code is smaller than code files in other

languages9. Indeed, some projects in the GHTorrent dataset

appear to be written mainly in CSS. This may cause some

Ruby projects on GitHub to be excluded from our dataset, or

certain primarily non-Ruby projects to be included.

Additional validity threats stem from the usage of a large

GitHub dataset. Section II lists the multiple filters we applied

8https://github.com/github/linguist
9https://help.github.com/articles/my-repository-is-marked-as-the-wrong-

language/



to eliminate noise resulting from using such datasets. However,

Table II in Section II does not consider some perils that

may bias our results. The first peril concerns activity outside

GitHub, which poses a risk to our approach only in the case of

external development with mirrors in GitHub. Filter 2 limits

the effect of this peril, but cannot guarantee that all develop-

ment activity of the projects is effectively performed through

GitHub. The second peril is that merges only track successful

code, where multiple commits are squashed together before

being merged to the main repository. We eliminate the effect

of this peril by considering lines of code instead of the number

of commits as an indication of the development effort. The

third peril is that many merged pull requests appear as non-

merged by GitHub, i.e., merges were done using git directly

instead of using GitHub’s pull request facilities, and heuristics

must be considered to determine whether or not a pull request

was merged or not. This peril is not mitigated in our approach

since we rely on the GitHub pull request mechanism, while

it is known that many projects use a combination of GitHub

and git merge strategies [14]. The last peril is that not all

activity comes from registered users. The impact of this threat

to the outcome of our study is limited, since Kalliamvakou

et al. [14] found that 84.4% of commits were performed by

registered users.

Another threat to the validity of our work stems from the

fact that we split our dataset into three-month periods to mea-

sure social and technical changes throughout the ecosystem’s

evolution. Although this approach has been previously used in

other evolution studies [9], [10], other time intervals may be

more appropriate. In future work we will determine optimal

intervals using proper statistical analyses.

Finally, the filtering of the initial GitHub dataset can overes-

timate joiners or abandoners since they can be active in Ruby

projects outside of GitHub. However, the threat of measuring

only the contributor activity in the active part of the Ruby

ecosystem is preferred compared to the noise of including

isolated or inactive projects in our analysis.

X. RELATED WORK

Software ecosystems in GitHub have gained the interest of

the research community since different studies focus either

on their identification [1], visualization [23], [24], [25], [26]

and analysis [13], [12], [25], [27], [28], [29]. This section

focuses on related work of three different aspects of software

ecosystem research, i.e., the identification and analysis of

software ecosystems in GitHub, dynamics behind ecosystem

evolution and social aspects of ecosystem evolution.

A. GitHub Ecosystems

Blincoe et al. [1] present the reference coupling method that

detects technical dependencies between software projects to

identify software ecosystems in GitHub-hosted projects. Their

findings show that most ecosystems are centered around one

project and they are interconnected with other ecosystems,

while the predominant type of ecosystems are tools supporting

software development. From a social perspective, they found

that owners’ social behavior aligns with the technical depen-

dencies, but not vice versa. It should be noted that Blincoe

et al. found cross-references between projects in comments

on issues, pull requests and commits that follow specific

patterns (User/Project#Num or User/Project@SHA). The work

of Thung et al. [30] creates a weighted project-project and

developer-developer network of projects and developers in

GitHub. According to their approach, projects have edges

between them if they have at least one common developer

contributing to both projects. However, this method does

not accurately reflect relationships between projects since

technical dependencies are not considered.

B. Dynamics behind Ecosystem Evolution

Rigby et al. [31] quantified the extent of abandoned source

files in one industrial and one open source project. They mea-

sure the historical loss distribution of these projects, measured

as Leavers’ expertise, and find that projects are susceptible to

losses that are more than three times larger than the expected

loss. Next, they use historical simulations based on the loss

distribution and discover that projects are susceptible to losses

that are over five times larger than the expected loss. Overall,

they found that, when tight relationships between the author

and the source code exist, it is more difficult to replace the

authors by newcomers since they are less productive and more

prone to making errors.

Wittern et al. [32] analyzed the evolution of the npm ecosys-

tem of JavaScript-based software packages. They found that

npm is a striving ecosystem with accelerating growth of pack-

ages and increasing dependencies between them. They also

found that at the same time, the developer community remains

quite active with respect to the maintenance of their packages.

German et al. [33] studied the R ecosystem evolution and

found that a healthy community and well-maintained packages

are essential to the successful evolution of the ecosystem.

Decan et al. [34] also studied the R ecosystem, but they

focused on the use of GitHub for the distribution of R packages

and inter-repository package dependency management. The

authors found an increased rate of R package hosting in

GitHub and exclusively distributing them through GitHub,

where a major concern is the lack of support for dependency

constraints since packages are not systematically monitored by

a continuous integration process like in CRAN.

C. Social Aspects

Social aspects of software ecosystem evolution have also

been studied by the research community. Foucault et al.

[19] studied open source projects to characterize patterns of

turnover and determine the effect of turnover on software

quality. They defined the external and internal turnover, where

in the first case members leave or join the team and in the latter

case members change their role in the team. According to their

findings on five open source systems, external turnover has a

negative impact on the quality of the software. However, in

their study they do not distinguish the core members of the



development team, whereas we eliminate possible threats of

occasional contributors by filtering our dataset.

Aué et al. [35] investigated the relationship between project

growth and social diversity. Project growth is measured in

terms of team, commit, pull request and comment growth,

while diversity reflects the gender and geographical diversity.

After rating over 3,000 projects in a 5-star scale capturing

each project’s success, they found a statistically significant but

minor relation between project success and the two diversity

metrics. Vasilescu et al. [9] presented a dataset of social

diversity attributes of GitHub contributors contributing to

23,493 GitHub projects. In [10], the authors studied gender

and tenure diversity and how they relate to team productivity

and turnover. Their findings show that increased gender and

tenure diversity are associated with greater productivity. They

also found that turnover is positively associated with tenure

diversity. Unlike these studies, we focus on permanent renewal

and abandonment of the ecosystem’s entities to investigate

their long-term effects on the ecosystem evolution.

Social aspects of the Ruby ecosystem in particular have

been studied in recent works. Kabbedijk and Jansen [12]

identified different types of contributors in the Ruby ecosys-

tem: networkers, lone wolfs, and one day flies. Their dataset

was based on gems from RubyGems, while we used data of

Ruby project activity in GitHub. Their findings showed that

developers fulfil different roles in the ecosystem and that most

activity is performed only in a small part of the ecosystem.

Also, they concluded that it is a better practice to motivate

existing developers to work on existing gems, rather than

expanding the ecosystem with new ones. Syed and Jansen [36]

combined social network analysis with a survey to identify

clusters of contributors, and revealed that the RubyGems

ecosystem consists mostly of independent developers. Syeed et

al. [13] empirically studied the relationship between developer

coordination activities and the project dependency structure

in the Ruby ecosystem. They used a dataset with packages

of RubyGems, for which they retrieved their issues from the

respective GitHub repository. They found that socio-technical

congruence exists among developers of the same project, but

decreases at ecosystem level. In contrast to these works, we

focus on the development of Ruby projects, including active

gems, in GitHub and measured the effect of permanent social

modifications to the ecosystem evolution.

Multiple researchers have studied the impact of socio-

technical congruence on software development. Such congru-

ence assumes a technical structure of the software system that

mirrors the social structure of the developer community [37],

[38]. Cataldo et al. [39] observed a positive influence of socio-

technical congruence on developer’s productivity. Syeed et

al. [13] however, found counter-evidence of such congruence

for the Ruby ecosystem. In analogy to the notion of tech-

nical debt, Tamburri et al. investigated the notion of social

debt, identifying community smells that may be indicative

of suboptimal organisational structures [40]. Identifying such

community smells in software ecosystems, and relating them

to technical problems, remains an open area of research.

XI. CONCLUSION

This paper presented an empirical study of the socio-

technical evolution of the Ruby ecosystem in GitHub over

a nine-year period. We studied the evolution of nearly 95K

active Ruby projects, consisting of over 25K base projects

and their active forks. These contributions involved more than

76K distinct contributors, totalling over 5 million commits

and representing 542 million lines of added or modified Ruby

source code. We measured permanent changes with regard to

the ecosystem’s projects, contributors and source code files

and presented our findings concerning the effect of these

modifications. We discussed our findings with respect to the

ecosystem evolution according to three different viewpoints:

(1) the base projects, (2) the forks and (3) the entire ecosystem

containing both the base projects and forks.

Our results show increased growth of both the technical

and social aspects of the Ruby ecosystem until early 2014,

where the ecosystem is being abandoned by the development

community. The abandonment of Ruby contributors is clearly

affecting the ecosystem’s evolution considering the downturn

of Ruby projects in GitHub. We provided both anecdotal

evidence and empirical evidence concerning the evolution of

the Ruby ecosystem. In the latter case, we cross-validated our

empirical observations with measurements from both GitHub

and RubyGems. Finally, we provided anecdotal empirical

evidence of contributors migrating to other ecosystems, with

JavaScript, HTML and Python being the most frequent ecosys-

tems to which Ruby developers migrate.

Following the spirit of [41], in future work we will compare

the socio-technical evolution of the Ruby ecosystem to the one

of other programming language ecosystems. We will also study

inter-ecosystem migration of contributors and carry out more

advanced socio-technical analyses [8], such as the presence

of socio-technical debt [40] and the effect this has on the

evolution of the ecosystem.

ACKNOWLEDGMENT

This research was carried out in the context of ARC research

project AUWB-12/17-UMONS-3 entitled “Ecological Studies

of Open Source Software Ecosystems” and FNRS crédit de

recherche J.0023.16 entitled “Analysis of Software Project

Survival”. We express our gratitude to Philippe Grosjean and

the anonymous reviewers for the very useful feedback on an

earlier version of this article.

REFERENCES

[1] K. Blincoe, F. Harrison, and D. Damian, “Ecosystems in GitHub and
a method for ecosystem identification using reference coupling,” in
Working Conference on Mining Software Repositories (MSR), 2015, pp.
202–207.

[2] A. Serebrenik and T. Mens, “Challenges in software ecosystems re-
search,” in European Conference on Software Architecture Workshops,
2015, pp. 40:1–40:6.

[3] M. Lungu, “Towards reverse engineering software ecosystems,” in
International Conference on Software Maintenance (ICSM), 2008, pp.
428–431.



[4] W. Scacchi, “Free/open source software development: Recent research
results and emerging opportunities,” in Joint Meeting on European

Software Engineering Conference and the ACM SIGSOFT Symposium

on the Foundations of Software Engineering: Companion Papers (ESEC-

FSE companion), 2007, pp. 459–468.
[5] G. Gousios, “The GHTorrent dataset and tool suite,” in Working Con-

ference on Mining Software Repositories (MSR), 2013, pp. 233–236.
[6] G. Gousios, M.-A. Storey, and A. Bacchelli, “Work practices and

challenges in pull-based development: The contributor’s perspective,”
in International Conference on Software Engineering (ICSE), 2016, pp.
285–296.

[7] G. Gousios, A. Zaidman, M.-A. Storey, and A. van Deursen, “Work
practices and challenges in pull-based development: The integrator’s per-
spective,” in International Conference on Software Engineering (ICSE),
2015, pp. 358–368.

[8] T. Mens, “An ecosystemic and socio-technical view on software main-
tenance and evolution,” in International Conference on Software Main-

tenance and Evolution (ICSME), 2016.
[9] B. Vasilescu, A. Serebrenik, and V. Filkov, “A data set for social diversity

studies of GitHub teams,” in Working Conference on Mining Software

Repositories (MSR), 2015, pp. 514–517.
[10] B. Vasilescu, D. Posnett, B. Ray, M. G. van den Brand, A. Serebrenik,

P. Devanbu, and V. Filkov, “Gender and tenure diversity in GitHub
teams,” in ACM Conference on Human Factors in Computing Systems

(CHI), 2015, pp. 3789–3798.
[11] E. Constantinou and T. Mens, “Social and technical evolution of software

ecosystems: A case study of Rails,” in European Conference on Software

Architecture Workshops (ECSAW), 2016, pp. 23:1–23:4.
[12] J. Kabbedijk and S. Jansen, Steering Insight: An Exploration of the Ruby

Software Ecosystem. Springer, 2011, pp. 44–55.
[13] M. M. M. Syeed, K. M. Hansen, I. Hammouda, and K. Manikas,

“Socio-technical congruence in the Ruby ecosystem,” in International

Symposium on Open Collaboration (OpenSym), 2014, pp. 2:1–2:9.
[14] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,

and D. Damian, “An in-depth study of the promises and perils of mining
GitHub,” Empirical Software Engineering, vol. 21, no. 5, pp. 2035–2071,
2016.

[15] G. Canfora, L. Cerulo, and M. D. Penta, “Identifying changed source
code lines from version repositories,” in International Workshop on

Mining Software Repositories (MSR), 2007, pp. 14–.
[16] C. Cronin and N. S. Nikolov, “Visualization of GitHub’s public data,”

University of Limerick, Tech. Rep., 2014.
[17] J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of social and technical

factors for evaluating contribution in GitHub,” in International Confer-

ence on Software Engineering (ICSE), 2014, pp. 356–366.
[18] S. Stanciulescu, S. Schulze, and A. Wasowski, “Forked and integrated

variants in an open-source firmware project,” in IEEE International

Conference on Software Maintenance and Evolution (ICSME), 2015, pp.
151–160.

[19] M. Foucault, M. Palyart, X. Blanc, G. C. Murphy, and J.-R. Falleri,
“Impact of developer turnover on quality in open-source software,” in
Joint Meeting on Foundations of Software Engineering (ESEC/FSE),
2015, pp. 829–841.

[20] D. Posnett, R. D’Souza, P. Devanbu, and V. Filkov, “Dual ecological
measures of focus in software development,” in International Conference

on Software Engineering (ICSE), 2013, pp. 452–461.
[21] T. Mens, “Evolving software ecosystems a historical and ecological

perspective,” Dependable Software Systems Engineering, vol. 40, p. 170,
2015.

[22] M. Goeminne and T. Mens, “A comparison of identity merge algorithms
for software repositories,” Science of Computer Programming, vol. 78,
no. 8, pp. 971–986, 2013.

[23] M. Lungu, M. Lanza, T. Gîrba, and R. Robbes, “The small project

observatory: Visualizing software ecosystems,” Science of Computer

Programming, vol. 75, no. 4, pp. 264 – 275, 2010.
[24] J. Pérez, R. Deshayes, M. Goeminne, and T. Mens, “SECONDA:

Software ecosystem analysis dashboard,” in European Conference on

Software Maintenance and Reengineering (CSMR), March 2012, pp.
527–530.

[25] F. W. Santana and C. M. L. Werner, “Towards the analysis of software
projects dependencies: An exploratory visual study of software ecosys-
tems.” in International Workshop on Software Ecosystems (IWSECO),
ser. CEUR Workshop Proceedings, vol. 987, 2013, pp. 7–18.

[26] M. Claes, T. Mens, and P. Grosjean, “maintaineR: A web-based dash-
board for maintainers of CRAN packages,” in International Conference

on Software Maintenance and Evolution (ICSME), 2014, pp. 597–600.
[27] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella, “How

the Apache community upgrades dependencies: an evolutionary study,”
Empirical Software Engineering, vol. 20, no. 5, pp. 1275–1317, 2015.

[28] J. Businge, A. Serebrenik, and M. van den Brand, “Survival of Eclipse
third-party plug-ins,” in International Conference on Software Mainte-

nance (ICSM), 2012, pp. 368–377.
[29] D. Dhungana, I. Groher, E. Schludermann, and S. Biffl, “Software

ecosystems vs. natural ecosystems: Learning from the ingenious mind of
nature,” in European Conference on Software Architecture: Companion

Volume (ECSA), 2010, pp. 96–102.
[30] F. Thung, T. F. Bissyande, D. Lo, and L. Jiang, “Network structure

of social coding in GitHub,” in European Conference on Software

Maintenance and Reengineering (CSMR), 2013, pp. 323–326.
[31] P. C. Rigby, Y. C. Zhu, S. M. Donadelli, and A. Mockus, “Quantifying

and mitigating turnover-induced knowledge loss: Case studies of Chrome
and a project at Avaya,” in International Conference on Software

Engineering (ICSE), 2016, pp. 1006–1016.
[32] E. Wittern, P. Suter, and S. Rajagopalan, “A look at the dynamics of the

JavaScript package ecosystem,” in International Conference on Mining

Software Repositories (MSR), 2016, pp. 351–361.
[33] D. M. German, B. Adams, and A. E. Hassan, “The evolution of the R

software ecosystem,” in European Conference on Software Maintenance

and Reengineering (CSMR), March 2013, pp. 243–252.
[34] A. Decan, T. Mens, M. Claes, and P. Grosjean, “When GitHub meets

CRAN: An analysis of inter-repository package dependency problems,”
in International Conference on Software Analysis, Evolution, and

Reengineering (SANER), vol. 1, March 2016, pp. 493–504.
[35] J. Aué, M. Haisma, K. F. Tómasdóttir, and A. Bacchelli, “Social

diversity and growth levels of open source software projects on GitHub,”
in International Symposium on Empirical Software Engineering and

Measurement (ESEM), 2016, pp. 41:1–41:6.
[36] S. Syed and S. Jansen, “On clusters in open source ecosystems,” in

International Workshop on Software Ecosystems (IWSECO), 2013.
[37] A. MacCormack, C. Baldwin, and J. Rusnak, “Exploring the duality be-

tween product and organizational architectures: A test of the “mirroring”
hypothesis,” Research Policy, vol. 41, no. 8, pp. 1309 – 1324, 2012.

[38] L. J. Colfer and C. Y. Baldwin, “The mirroring hypothesis: Theory,
evidence and exceptions,” Harvard Business School, Tech. Rep. Finance
Working Paper No. 16-124, May 2016.

[39] M. Cataldo, J. D. Herbsleb, and K. M. Carley, “Socio-technical congru-
ence: A framework for assessing the impact of technical and work de-
pendencies on software development productivity,” in International Sym-

posium on Empirical Software Engineering and Measurement (ESEM),
2008, pp. 2–11.

[40] D. A. Tamburri, P. Kruchten, P. Lago, and H. van Vliet, “Social debt
in software engineering: insights from industry,” Journal on Internet

Services and Applications, vol. 6, no. 1, pp. 1–17, 2015.
[41] A. Decan, T. Mens, and M. Claes, “An empirical comparison of depen-

dency issues in OSS packaging ecosystems,” in International Conference

on Software Analysis, Evolution, and Reengineering (SANER), Feb.
2017.


