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Abstract. The approach described in this paper can be applied to support mul-
ticriteria choice and ranking of actions when the input preferential information 
acquired from the decision maker is a graded pairwise comparison (or ranking) 
of reference actions. It is based on decision-rule preference model induced from 
a rough approximation of the graded comprehensive preference relation among 
the reference actions. The set of decision rules applied to a new set of actions 
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net flow score, to build a final ranking.  
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1   Introduction 

Construction of a logical model of behavior from observation of agent’s acts is a 
paradigm of artificial intelligence and, in particular, of inductive learning. The set of 
rules representing a decision policy of an agent constitutes its preference model. It is a 
necessary component of decision support systems for multicriteria choice and ranking 
problems. Classically, it has been a utility function or a binary relation – its construc-
tion requires some preference information from the agent called decision maker 
(DM), like substitution ratios among criteria, importance weights, or thresholds of 
indifference, preference and veto. In comparison, the preference model in terms of 
decision rules induced from decision examples provided by the DM has two advan-
tages over the classical models: (i) it is intelligible and speaks the language of the 
DM, (ii) the preference information comes from observation of DM’s decisions.  

Inconsistency often present in the set of decision examples cannot be considered as 
simple error or noise – they follow from hesitation of the DM, unstable character of 
his/her preferences and incomplete determination of the family of criteria. They can 
convey important information that should be taken into account in the construction of 
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the DM’s preference model. Rather than correct or ignore these inconsistencies, we 
propose to take them into account in the preference model construction using the 
rough set concept [14, 15]. For this purpose, the original version of rough set theory 
has been extended in two ways : (i) substituting the classical indiscernibility relation 
with respect to attributes by a dominance relation with respect to criteria, and (ii), 
substituting the data table of actions described by attributes, by a pairwise comparison 
table, where each row corresponds to a pair of actions described by binary relations 
on particular criteria, which permits approximation of a comprehensive preference 
relation in multicriteria choice and ranking problems. The extended rough set ap-
proach is called dominance-based rough set approach [3,5,6,8,9,11,16]. 

Given a finite set A={x,y,z,…} of actions evaluated by a family of criteria 
G={g1,…,gn}, we consider the preferential information in the form of a pairwise com-
parison table (PCT) including pairs of some reference actions from a subset A’⊆A. In 
addition to evaluation on particular criteria, each pair (x,y)∈A’×A’ is characterized by 
a comprehensive preference relation which is graded (true or false to some grade). 
Using the rough set approach to the analysis of the PCT, we obtain a rough approxi-
mation of the graded preference relation by a dominance relation. More precisely, the 
rough approximation concerns unions of graded preference relations, called upward 
and downward cumulated preference relations. The rough approximation is defined 
for a given level of consistency, changing from 1 (perfect separation of certain and 
doubtful pairs) to 0 (no separation of certain and doubtful pairs). The rough approxi-
mations are used to induce “if ..., then ...” decision rules. The resulting decision rules 
constitute a preference model of the DM. Application of the decision rules on a new 
set M⊆A×A of pairs of actions defines a preference structure in M in terms of fuzzy 
four-valued preference relations. In order to obtain a recommendation, we propose to 
use a Fuzzy Net Flow Score (FNFS) exploitation procedure adapted to the four-
valued preference relations.  

The paper is organized as follows. In section 2, we define the pairwise comparison 
table from the decision examples given by the DM. In section 3, we briefly sketch the 
variable-consistency dominance-based rough set approach to the analysis of PCT, for 
both cardinal and ordinal scales of criteria. Section 4 is devoted to induction of deci-
sion rules and section 5 characterizes the recommended procedure for exploitation of 
decision rules on a new set of actions. An axiomatic characterization of the FNFS 
procedure is presented in section 6. Section 7 includes an illustrative example and the 
last section groups conclusions. 

2   Pairwise Comparison Table (PCT) Built of Decision Examples 

For a representative subset of reference actions A’⊆A, the DM is asked to express 
his/her comprehensive preferences by pairwise comparisons. In practice, he/she may 
accept to compare the pairs of a subset B⊆A’×A’. For each pair (x,y)∈B, the compre-
hensive preference relation f assumes different grades h of intensity, hence denoted 
by fh. Let H be the finite set of all admitted values of h, and H+ (resp. H–) the subset 
of strictly positive (resp., strictly negative) values of h. It is assumed that h∈H+  iff  –
h∈H– and h∈(0,1]. Finally H = H– ∪{0}∪ H+ and H⊂[–1,1].  
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For each pair (x,y)∈A’×A’, the DM is asked to select one of the four possibilities: 

1. action x is comprehensively preferred to y in grade h,  i.e.  x f hy, where h∈H+, 
2. action x is comprehensively not preferred to y in grade h,  i.e.  x f hy, where 

h∈H–, 
3. action x is comprehensively indifferent to y,  i.e.  xf0y, 
4. DM refuses to compare x to y. 

Although the intensity grades are numerically valued, they may be interpreted in 
terms of linguistic qualifiers, for example: "very weak preference", "weak prefer-
ence", "strict preference", "strong preference" for  h=0.2, 0.3, 0.7, 1.0, respectively. A 
similar interpretation holds for negative values of h. Let us also note that xfhy does 
not necessarily imply yf–hx and xf0y does not necessarily imply yf0x.  

An m×(n+1) Pairwise Comparison Table SPCT is then created on the base of this in-
formation. Its first n columns correspond to criteria from set G. The last, (n+1)-th 
column of SPCT, represents the comprehensive binary relation fh with h∈H. The m 
rows are pairs from B. If the DM refused to compare two actions, such a pair does not 
appear in SPCT.  

In the following we will distinguish two kinds of criteria – cardinal and ordinal 
ones. In consequence of this distinction, for each pair of actions in an SPCT we have 
either a difference of evaluations on cardinal criteria or pairs of original evaluations 
on ordinal criteria. The difference of evaluations on a cardinal criterion needs to be 
translated into a graded marginal intensity of preference.  For any cardinal criterion 

gi∈G, we consider a finite set Hi ≡ ( +− ∪∪ ii H}0{H ) of marginal intensity grades such 

that for every pair of actions (x,y)∈A×A exactly one grade h∈ Hi is assigned.  

1. x h
if y, h∈ +

iH ,  means that action x is preferred to action y in grade h on crite-
rion gi, 

2. x h
if y, h∈ −

iH ,  means that action x is not preferred to action y in grade h on 
criterion gi, 

3. x 0
if y,   means that action x is similar (asymmetrically indifferent) to action y 

on criterion gi. 

Within the preference context, the similarity relation 0
if , even if not symmetric, 

resembles indifference relation. Thus, in this case, we call this similarity relation 
"asymmetric indifference". Of course, for each cardinal criterion gi∈G and for every 

pair of actions (x,y)∈A×A, [∃h∈ +
iH : x h

if y] ⇒ [ ∃/ k∈ +
iH : y k

if x]  as well as  

[∃h∈ −
iH : x h

if y] ⇒ [ ∃/ k∈ −
iH : y k

if x]. Observe that the binary relation f0 is reflex-

ive, but neither necessarily symmetric nor transitive, and fh for h∈H\{0} are neither 

reflexive nor symmetric and not necessarily transitive. U f
Hh

h
∈

 is not necessarily 

complete.  
Consequently, PCT can be seen as decision table SPCT = 〈B, G∪{d}〉, where 

B⊆A×A is a non-empty set of pairwise comparisons of reference actions and d is a 
decision corresponding to the comprehensive pairwise comparison (comprehensive 
graded preference relation).  
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3   Rough Approximation of Comprehensive Graded  
Preference Relations Specified in PCT  

Let GN be the set of cardinal criteria, and GO – the set of ordinal criteria, such that 
GN∪GO=G and GN∩GO=∅. Moreover, for each P⊆G, we denote by PN,PO the same 
partitioning of P, i.e. PO=P∩GO and PN=P∩GN. In order to define the rough approxi-
mations of comprehensive graded preference relations we need the concept of domi-
nance relation between two pairs of actions with respect to (w.r.t.) a subset of criteria. 
This concept is defined below, separately for subsets of cardinal criteria and for sub-
sets of ordinal criteria. In the case of cardinal criteria, the dominance is built on 
graded preference relations, and in the case of ordinal criteria, the dominance is built 
directly on pairs of evaluations. 

A. Cardinal Criteria Let P=PN⊆G (P≠∅). Given (x,y),(w,z)∈A×A, the pair of ac-
tions (x,y) is said to dominate (w,z) w.r.t. subset of cardinal criteria P (denoted by 
(x,y)DP(w,z)) if x is preferred to y at least as strongly as w is preferred to z w.r.t. each 
gi∈P. Precisely, "at least as strongly as" means "in at least the same grade", i.e. for 

each gi∈P and k∈Hi such that w k
if z, there exist h∈Hi such that h≥k and x h

if y. Let 

D{i} be the dominance relation confined to the single criterion gi∈P. The binary rela-
tion D{i}  is a complete preorder on A×A. Since the intersection of complete preorders 
is a partial preorder and DP=I Pg {i}i

D
∈

, then the dominance relation DP is a partial 

preorder on A×A. Let R⊆P⊆G and (x,y),(u,v)∈A×A; then the following implication 
holds: (x,y)DP(u,v) ⇒ (x,y)DR(u,v).  

Given P⊆G and (x,y)∈A×A, we define: 

− a set of pairs of actions dominating (x,y), called P-dominating set, +
PD (x,y) = 

{(w,z)∈A×A: (w,z)DP(x,y)}, 

− a set of pairs of actions dominated by (x,y), called P-dominated set, −
PD (x,y) = 

{(w,z)∈A×A: (x,y)DP(w,z)}.  
To approximate the comprehensive graded preference relation, we need to intro-

duce the concept of upward cumulated preference (denoted by f≥h) and downward 
cumulated preference (denoted by f≤h), having the following interpretation: 

− xf≥hy means "x is comprehensively preferred to y by at least grade h", i.e. 
xf≥hy  if xfky,  where h<k∈H, 

− xf≤hy means "x is comprehensively preferred to y by at most grade h", i.e. 
xf≤hy  if xfky,  where h>k∈H.             

The P-dominating sets and the P-dominated sets defined on B for all pairs of refer-
ence actions from B are “granules of knowledge” that can be used to express P-lower 
and P-upper approximations of cumulated preference relations f≥h and f≤h, respec-
tively: 

− for h∈H, P (f≥h) = {(x,y)∈B: +
PD (x,y) ⊆ f≥h}, P (f≥h) = U

f hy)(x,
P y)(x,D

≥∈

+ .  

− for h∈H, P  (f≤h) = {(x,y)∈B: −
PD (x,y) ⊆ f≤h }, P  (f≤h) = U

f hy)(x,
P y)(x,D

≤∈

− . 
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It has been proved in [3] that for h∈H, P  (f≥h) ⊆ f≥h ⊆ P  (f≥h)  and P  (f≤h) ⊆ f≤h 

⊆ P  (f≤h). Furthermore, one has also that, for h∈H, P  (f≥h) = B – P  (f≤h) and P  

(f≤h) = B – P  (f≥h). From the definition of the P-boundaries (P-doubtful regions) of  

f≥h and of  f≤h for any h∈H, BnP(f≥h) = P  (f≥h) – P  (f≥h) and BnP(f≤h) = P  (f≤h) – 

P  (f≤h), it follows that BnP(f≥h)=BnP(f≤h). 
The concepts of the quality of approximation, reducts and core can be extended 

also to the approximation of cumulated preference relations. In particular, the quality 
of approximation of  f≥h and f≤h for all h∈H, by P⊆G  is characterized by the coeffi-

cient BBBBγP /)(Bn/)(Bn
Hh

h
P

Hh

h
P 







−=






−=
∈

≤

∈

≥ UU ff , where | | denotes 

cardinality of a set.  It expresses the ratio of all pairs of actions (x,y)∈B correctly 
assigned to f≥h and to f≤h by the set P of criteria to all the pairs of actions contained 
in B. Each minimal subset P⊆G, such that γP = γG , is a reduct of G (denoted by 

PCTSRED ). Let us remark that SPCT can have more than one reduct. The intersection of 

all B-reducts is the core (denoted by 
PCTSCORE ). 

In fact, for induction of decision rules, we consider the Variable Consistency 
Model on SPCT [12,16] relaxing the definition of P-lower approximation of the cumu-
lated preference relations f≥h and f≤h, for any h∈H, such that (1-l)×100 percent of the 
pairs in P-dominating or P-dominated sets may not belong to the approximated cumu-

lated preference relation: { }ll ≥∩∈= +≥+≥ y)(x,D/y)(x,D:By)(x,)(P P
h

P
h ff  and 

{ }ll ≥∩∈= −≤−≤ y)(x,D/y)(x,D:By)(x,)(P P
h

P
h ff  where l∈(0,1] is the required 

level of consistency. 

B. Ordinal Criteria. In the case of ordinal criteria, the dominance relation is defined 
directly on pairs of evaluations gi(x) and gi(y), for all pairs of actions (x,y)∈A×A.  Let 
P=PO and PN=∅, then, given (x,y),(w,z)∈A×A, the pair (x,y) is said to dominate the 
pair (w,z) w.r.t. subset of ordinal criteria P (denoted by (x,y)DP(w,z)) if, for each 
gi∈P, gi(x)≥gi(w) and gi(z)≥gi(y). Let D{i} be the dominance relation confined to the 
single criterion gi∈PO. The binary relation D{i} is reflexive, transitive, but non-
necessarily complete (it is possible that not (x,y)D{i}(w,z) and not (w,z)D{i}(x,y) for 
some (x,y),(w,z)∈A×A). Thus, D{i}  is a partial preorder. Since the intersection of par-
tial preorders is a partial preorder and DP=I Pg {i}

i
D∈ , P=PO, then the dominance 

relation DP is a partial preorder.  

C. Cardinal and Ordinal Criteria. If subset of criteria P⊆G is composed of both 
cardinal and ordinal criteria, i.e. if PN≠∅ and PO≠∅, then, given (x,y),(w,z)∈A×A, 
the pair (x,y) is said to dominate the pair (w,z) w.r.t. subset of criteria P, (denoted by 
(x,y)DP(w,z)) if (x,y) dominates (w,z) w.r.t. both PN and PO. Since the dominance 
relation w.r.t. PN is a partial preorder on A×A and the dominance w.r.t. PO is also a 
partial preorder on A×A, then also the dominance DP, being the intersection of these 
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two dominance relations, is a partial preorder. In consequence, all the concepts related 
to rough approximations introduced in 3.1 can be restored using this specific defini-
tion of dominance relation.   

4   Induction of Decision Rules from Rough Approximations 

Using the rough approximations of relations f≥h and f≤h, defined in Section 3, it is 
then possible to induce a generalized description of the preferential information con-
tained in a given SPCT in terms of decision rules. The syntax of these rules is based on 

the concept of upward cumulated preferences w.r.t. criterion gi (denoted by h
i
≥f ) 

and downward cumulated preferences w.r.t. criterion gi (denoted by h
i
≤f ), having 

similar interpretation and definition as for the comprehensive preference. Let also 
Gi={gi(x), x∈A}, gi∈GO, be a set of different evaluations on ordinal criterion gi. The 
decision rules induced from SPCT have then the following syntax: 

1) D≥-decision rules, which are induced with the hypothesis that all pairs from 
lP (f≥h) are positive and all the others are negative learning examples: 

 if x )1i(h
1i

≥f y and ... x )ie(h
ie
≥f y and gie+1(x)≥rie+1 and gie+1(y)≤sie+1 and ... gip(x)≥rip 

and gip(y)≤sip, then xf≥hy, 

2) D≤-decision rules, which are induced with the hypothesis that all pairs from 
lP (f≤h) are positive and all the others are negative learning examples:   

 if x )1i(h
1i

≤f y and ... x )ie(h
ie
≤f y and gie+1(x)≤rie+1 and gie+1(y)≥sie+1 and ... gip(x)≤rip 

and gip(y)≥sip, then xf≤hy, 

 where P = {gi1,...,gip} ⊆ G, PN = {gi1,...,gie}, PO = {gie+1,...,gip}, (h(i1),..., h(ie)) ∈ Hi 

1× ... × Hie and (rie+1,...,rip), (sie+1,...,sip)∈Gie+1×...×Gip;  

Since we are working with variable consistency approximations, it is enough to 
consider the lower approximations of the upward and downward cumulated prefer-

ence relations, namely lP (f≥h) and lP (f≤h). To characterize the quality of the rules, 

we say that a pair of actions supports a decision rule ρ if it matches both the condition 
and decision parts of ρ. On the other hand, a pair is covered by a decision rule ρ as 
soon as it matches the condition part of ρ. Let Cover(ρ) denote the set of all pairs of 

actions covered by the rule ρ. Finally, we define the credibility ( )h≥
ρα f  of D≥-

decision rule ρ as ( )
)(

)( h
h

ρ

∩ρ
=α

≥
≥

ρ Cover

Cover f
f . For D≤-decision rules, the credibility 

is defined analogously.  
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Let us remark that the decision rules are induced from P-lower approximations 
whose composition is controlled by user-specified consistency level l. It seems rea-
sonable to require that the smallest accepted credibility of the rule should not be lower 
than the currently used consistency level l. Indeed, in the worst case, some pairs of 
actions from the P-lower approximation may create a rule using all criteria from P 

thus giving a credibility ( )h≥
ρα f ≥l. The user may have a possibility of increasing this 

lower bound for credibility of the rule but then decision rules may not cover all pairs 
of actions from the P-lower approximations. Moreover, we require that each decision 
rule is minimal. Since a decision rule is an implication, by a minimal decision rule we 
understand such an implication that there is no other implication with an antecedent of 
at least the same weakness and a consequent of at least the same strength with a not 

worse credibility ( )h≥
ρα f ≥l. The induction of variable-consistency decision rules can 

be done using the rule induction algorithm for VC-DRSA, which can be found 
in [13]. 

5   Use of Decision Rules for Decision Support 

Application of the set of decision rules on a new subset M=M×M⊆A×A of pairs of 
actions induces a specific preference structure in set M. In fact, each pair of actions 
(u,v)∈M can match several decision rules. The matching rules can state different 
grades of preference and have various credibilities. A synthesis of the matching rules 
for a given pair of actions results in a graded (fuzzy) four-valued preference relation 
of level 2 [2]. This means that not only the relation is a graded one but also that its α-
cuts are fuzzy four-valued preference relations, because of information about prefer-
ence and non-preference. The three steps of the exploitation procedure lead to final 
ranking in the set of actions M. 

Step 1. By application of the decision rules on M, we get for each pair (u,v)∈M a set 
of different covering rules (possibly empty) stating different conclusions in the form 
of cumulated preference relations f≥h and f≤h. For all pairs (u,v)∈M, the cumulated 
preference relations are stratified into preference relations fh of grade h∈H and for 
each pair ufhv a confidence degree β(ufhv) is calculated. This means that, for each 
h∈H, fh is a fuzzy relation in M, which may be represented by a fuzzy preference 
graph. 

In general, several decision rules assigning pair (u,v) to different cumulated prefer-

ence relations are taken into account. For each h∈H, a confidence ( )vuβ hf  is com-

mitted to the pair ufhv computed as the difference between the positive and negative 

arguments ( ) ( ) ( )vuβvuβvuβ hhh fff −+ −=  where ( )vuβ hf+  takes into ac-

count rules ρi matching the pair (u,v) (i=1,…,k) that assign (u,v) to the cumulated 
preference relation f≥s (or f≤q) such that h>s (or h<q): 
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( )
h

k1

2h
k

h
1h

)Cover(ρ)Cover(ρ

))(Cover(ρ))(Cover(ρ
vuβ

fUKU

fUKUf
f

∩∩
=+

 ( )vuβ hf+  can be interpreted as a product of the credibility of the rule and its 

relative strength w.r.t. the graded preference relation. The confidence ( )vuβ hf−  is 

defined for matching decision rules ρi (i=k+1,…,m) that assign (u,v) to different 
graded preference relations than fh (rk+1,…,rp>h and rp+1,…,rm<h). 

Step 2. Pairs of relations (fh, f–h) are considered as providing information about both 
preference and non-preference in grade h. These contradictory pieces of information 
induce a four-valued relation for each h∈H+. An advisable procedure to exploit any of 
these four-valued relations is an extension of the Fuzzy Net Flow Score. For each 
action x∈M: the net flow score is computed as 

(x)S(x)S(x)S(x)S(x)S hhhhh
nf −−+−−+++ −+−= , where ∑

∈
++ =

My

hh y)β(x(x)S f , 

∑
∈

−+ =
My

hh x)β(y(x)S f , ∑
∈

−
+− =

My

hh x)β(y(x)S f and ∑
∈

−
−− =

My

hh y)β(x(x)S f . This 

builds up a complete preorder >h for each h∈H+, such that 

(v)S(u)S       vu h
nf

h
nf

h ≥⇔>  

Step 3. The preorders >h, h∈H+, are aggregated by the leximax procedure, i.e. resolv-
ing indifference in a preorder of grade h by a preorder of grade k∈H+, where k is the 
highest grade among the grades smaller than h. 

u  vand  vu  :Hh    vu

unot v  and  vu
u  vand  vu h,ksuch that  Hk:Hhvu

hh

hh

kk

>>

>>

>>
>

+

+
+

∈∀⇔≡





 >∈∀∈∃⇔

 

where > is the asymmetric part of > and ≡ is the symmetric part of >. 
This lexicographic approach considers the set of preorders >h for h∈H+ as provid-

ing consistent hierarchical information on the comprehensive graded preference rela-
tion. Therefore, it gives priority to preorders >h with high values of grade h. Indeed, 
the preorders with lower values of h are only called to break ties from high h-value 
preorders. For this reason, this lexicographic approach is called leximax procedure. 

The final recommendation in ranking problems consists of the total preorder >; in 
choice problems, it consists of the maximal action(s) of >.  

6   Axiomatic Characterization  
of the Fuzzy Net Flow Score procedure 

In the context of four-valued relation, a ranking method resulting in the complete 
preorder >h on A can be viewed as a function >(fh, f–h) aggregating the pair of val-
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ued relations fh, f–h on A×A into a single ranking. In the previous section, we pro-
posed to rank alternatives by means of an extended Fuzzy Net Flow Score (FNFS) 

procedure, i.e. (v)S(u)S       v),(u h
nf

h
nf

-hh ≥⇔ff> . It can be shown that the axioms 
proposed in [1] (neutrality, strong monotonicity, circuit-independency) can be natu-
rally extended to characterize the FNFS dealing with pairs of relations. 

7   Illustrative Example 

Let us consider the case of a Belgian citizen wishing to buy a house in Poland for 
spending his holidays there. The selling agent approached by the customer wants to 
rank all the available houses to present them in a relevant order to the customer. 
Thereby, the latter is proposed first to have a look at a short list of 7 houses (the refer-
ence actions), characterized by three criteria that seem important to the customer: 
Distance to the nearest airport, Price and Comfort (Table 1). While the two first crite-
ria are cardinal (expressed in km and in , respectively), the last one is represented on 
a three-level ordinal scale (Basic, Medium, Good). The customer is then asked to give 
– even partially – his preferences on the set of 7 proposed houses, in terms of a com-
prehensive graded preference relation.  

Table 1. Short list of the houses (reference actions). 

Location  
of the house 

Distance to the  
nearest airport 

(A1: [km]) 

Price 
 

(A2: [�]) 

Comfort 
 

(A3: [ ]) 

0: Poznan 3 60 Good 

1: Kapalica 35 30 Good 

2: Krakow 7 85 Medium 

3: Warszawa 10 90 Basic 

4: Wroclaw 5 60 Medium 

5: Malbork 50 50 Medium 

6: Gdansk 5 70 Medium 

 
The customer gives his preferences by means of the graph presented in Fig. 1, 

where a thin arc represents a weak preference, and a bold arc, a strong preference. 
Thereby, this is a comprehensive graded preference relation, with 2 positive grades of 
preference, weak and strong ones. One may observe that the customer preference is 
allowed to be both not complete (there may exist pairs of houses without an arc; e.g., 
5 and 4) and not completely transitive (e.g., 6 is preferred to 4 and 4 is preferred to 3, 
without evident preference between 6 and 3). 

In order to build the PCT, differences of evaluations on cardinal criteria have been 

encoded in marginal graded preference relations ( h
if ), with Hi={–1, –0.5, 0, 0.5, 1}, 

i=1,2. While comparing two alternatives, x and y, a difference in Distance criterion 
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smaller (in absolute value) than 3km is considered as non significant (x 0
1f y and 

y 0
1f x). If the difference is between 4 and 10km in favor of x, then one weakly prefers 

x to y (x 5.0
1f y); finally, the preference is strong as soon as the difference is strictly 

greater than 10km (x 1
1f y). As far as the Price criterion is concerned, an absolute 

difference smaller than 10 leads to indifference (x 0
2f y and y 0

2f x), and the weak 
(resp. strong) preference appears as soon as the difference is strictly greater than 10 
(resp. 30). For the sake of simplicity, we have assumed in this example that the mar-

ginal graded preference relations are symmetric, e.g. x 5.0
if y ⇔ y 5.0

i
−f x. As the 

Comfort criterion is ordinal, we have to take into account the pair of evaluations on 
this criterion instead of their difference. The piecewise comparison table (PCT) result-
ing from the above preference information is sketched in Table 2.  

Table 2. A partial PCT corresponding to customer’s preferences on the set of reference actions. 

Pairs of reference 
actions (x,y) 

h on A1: 

x
h
1f y 

h on A2: 

x
h
2f y 

Evaluations of (x;y) 
on A3 

h on comprehensive pref-

erence relation: 
hf  

(0,0) 0 0 (Good; Good) 0 
(0,1) 1 -0.5 (Good; Good) 0.5 
(0,2) 0.5 0.5 (Good; Medium) 0.5 
(0,3) 0.5 0.5 (Good; Basic) 1 
(0,5) 1 0 (Good; Medium) 1 
(0,6) 0 0 (Good; Medium) 0.5 
…     

 
25 rules have been induced using the variable-consistency rule inducer [13], with a 

minimal consistency level l=0.85. Two examples of such rules are  

if x 1
1
≥f y and  (x;y)≥3(Good;Medium), then x 1≥f y;  

if x 1
1

−≤f y and x 5.0
2
≤f y, then x 5.0−≤f y 

0

1 2

3

4

5

6 
 

Fig. 1. Graph representation of the comprehensive graded preference relation in the set of
reference actions. 
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Suppose that the selling agent has found four other houses, presented in Table 3, 
and would like to see how these houses will be ranked by the customer. He may use 
to this end the preference model of the customer in form of the above decision rules 
on the set of new houses. According to Step 1 of our exploitation procedure presented 
in section 5, application of the rules on all possible pairs of the new houses results in 
fuzzy relation fh, corresponding to fuzzy preference graphs (h=1 and 0.5). Then, 
according to Step 2, complete preorder >h in the set of new houses is obtained by the 
Fuzzy Net Flow Score procedure. The fuzzy net flow score for h=1 and the corre-
sponding complete preorder >1 are shown in the two last columns of Table 3. In fact, 
according to Step 3, since no pair of actions (x,y) have the same fuzzy net flow score 
at grade h=1, this grade is sufficient to define the final ranking of the new 
houses (>=>1). 

The dominance-based rough set approach gives a clear recommendation: 

− for the choice problem, it suggests to select house 2’ having the highest score, 
− for the ranking problem, it suggests the ranking presented in the last column 

of Table 3:  
(2') → (3') → (0') → (1') 

Table 3. The set of new houses and their ranks in the final ranking. 

Location of 
the house 

Distance to the 
nearest airport  

(A1: [km]) 

Price 
 

(A2: [�]) 

Comfort 
 

(A3: [ ]) 

Fuzzy Net Flow 
Score (h=1) 

Final 
rank 

0’: Kornik 50 40 Medium 0.23 3 

1’: Rogalin 15 50 Basic -5.17 4 

2’: Lublin 8 60 Good 3.42 1 

3’: Torun 100 50 Medium 1.52 2 

8   Summary and Conclusions 

We presented a complete methodology of multicriteria choice and ranking based on 
decision rule preference model. By complete we mean that it starts from acquisition 
of preference information, then it goes through analysis of this information using the 
Dominance-based Rough Set Approach (DRSA), followed by induction of decision 
rules from rough approximations of preference relations, and ends with a recommen-
dation of the best action in a set or of a ranking of given actions.  

The preference information is given by the Decision Maker (DM) in form of pair-
wise comparisons (or ranking) of some reference actions – comparison means specifi-
cation of a grade of comprehensive preference of one reference action on another. 
DRSA aims at separating consistent from inconsistent preference information, so as to 
express certainly (P-lower approximation) or possibly only (P-upper approximation) 
the comprehensive graded preference relations for a pair of actions in terms of evalua-
tions of these actions on particular criteria from set P. The inconsistency concerns the 
basic principle of multicriteria comparisons that says: if for two pairs of actions, (x,y) 
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and (w,z), action x is preferred to action y at least as much as action w is preferred to 
z on all criteria from P, then the comprehensive preference of x over y should not be 
weaker than that of w over z. The rough approximations of comprehensive graded 
preference relations prepare the ground for induction of decision rules with a war-
ranted credibility. Upon acceptance of the DM, the set of decision rules constitutes the 
preference model of the DM, compatible with the pairwise comparisons of reference 
actions. It may then be used on a new set of actions, giving as many fuzzy preference 
relations fh in this set (fuzzy preference graphs) as there are grades of the comprehen-
sive graded preference relation. Exploitation of these relations with the Fuzzy Net 
Flow Score procedure leads to complete preorders >h  for particular grades. Aggrega-
tion of these preorders using the leximax procedure gives the final recommendation, 
that is, the best action or the final ranking >.  
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