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Abstract: Providing affinity sites on alginate (ALG) matrix

enables specific binding of growth factors to the polymer back-

bone and allows their release in a controlled fashion. In this

study, we used a blend of alginate sulfate (ALG-S) and polyvi-

nyl alcohol (PVA) to fabricate electrospun scaffolds capable of

delivering a heparin-like growth factor, transforming growth

factor-beta1 (TGF-β1). The alginate was sulfated with different

degrees of sulfation (DS, from 0.8, 3.4 to 12.4%) by a simple

process. The success of sulfation was determined by Fourier-

transform infrared spectroscopy (FTIR), nuclear magnetic reso-

nance spectroscopy (NMR), elemental analysis, ultraviolet

(UV) spectroscopy and staining with dimethylmethylene blue.

The physical-mechanical properties of nanofibrous mats were

characterized by scanning electron microscopy (SEM), FTIR,

energy-dispersive X-ray spectroscopy (EDX), tensile strength

and mass loss analysis. Additionally, the release kinetics of

transforming growth factor-β1 (TGF-β1) from PVA/ALG-S and

PVA/ALG scaffolds were compared. The results showed that

the binding and entrapment of TGF-β1 to the nanofibrous scaf-

folds are improved by the addition of sulfate group to alginate.

In conclusion, our results support that nanofibrous scaffold

based on PVA/ALG-S can deliver growth factors in tissue engi-

neering application. © 2018 Wiley Periodicals, Inc. J Biomed

Mater Res Part A: 00A: 000–000, 2018.
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INTRODUCTION

Alginate (ALG) is an anionic polysaccharide derived from
algae, which has found many applications in tissue engineer-
ing and drug delivery due to its biocompatibility, low toxic-
ity, and mild gelation in the presence of calcium ions.1–3

Alginate is an excellent scaffolding material as it can contain
large amounts of water and can provide a three-dimensional
(3D) environment similar to the extracellular matrix (ECM)
for cells to grow and function in.4–6 Hence, hydrogels of ALG

have been extensively used for applications in skin, cartilage,
bone, and cardiac tissue engineering.2,7–11 Moreover, ALG is
an attractive material for use in sustained delivery of bioac-
tive molecules including drugs, proteins, and cells to wounds
or damaged tissues.2 Despite these excellent properties, pure
ALG has several disadvantages including uncontrollable deg-
radation, limited range of mechanical properties and lack of
receptors for cellular binding.6,12–14 The use of ALG for drug
delivery applications has been limited by non-specific ionic
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binding between the negatively charged ALG molecules and
positively charged growth factors which lead to their uncon-
trolled release.15–17 Therefore, providing affinity sites on the
ALG matrix is crucial for specific binding of growth factors
to the polymer backbone, which enables their release in a
controlled fashion.

Sulfation state of the extracellular matrix (ECM) plays an
important role in the regulation of growth factor signaling in
native tissues. Sulfated matrixes made from synthetic or
naturally-derived polymers have been recently used as a
promising approach for stabilization and delivery of growth
factors.18 Recently, it has been shown that the sulfation of
ALG can facilitate its reversible electrostatic interaction with
heparin-binding proteins in a manner similar to heparin and
heparan sulfate.18–23 In an interesting study, Cohen et al.
showed that the sulfation of ALG improved its binding with
ten known heparin-binding proteins.24 They achieved the
sustained release of basic fibroblast growth factors (bFGF)
by mixing ALG and ALG-S, and showed that the release pro-
file was a function of the percentage of bFGF bound to the
hydrogel. In another study, the same group used ALG-S for
sustained release of transforming growth factor beta 1 (TGF-
β1) to direct the differentiation of human mesenchymal stem
cells (hMSCs) toward chondrocytes.25 Ruvinov et al. used
ALG-S to fabricate scaffolds for sequential delivery of three
angiogenic factors of vascular endothelial growth factor
(VEGF), platelet-derived growth factor-BB (PDGF-BB), and
TGF-β1.26 They showed that these growth factors bound to
ALG-S with an affinity similar to heparin. In addition, deliver-
ing three factors enhanced the vascularization of tissues
compared to scaffolds loaded with only bFGF. Re’em et al.
developed a bilayer scaffold from ALG-S for simultaneous
delivery of TGF-β1 and osteoinductive bone morphogenetic
protein-4 (BMP-4) for cartilage and bone regeneration.25

This method enabled them to control the migration of stem
cells into subchondral defects and direct their differentiation
into the appropriate cell lineage. Other growth factors
including hepatocyte growth factor (HGF) and insulin-like
growth factor-1 (IGF-1) were also delivered by ALG-S car-
riers for treatment of myocardial infarction.27,28 Overall,
ALG-S is a promising material for delivering growth factors
for tissue engineering applications.

Nanofibrous scaffolds for drug delivery applications offer
several advantages including the ability to fine-tune their
mechanical and structural properties, their high surface to
volume ratio, and having a microstructure that is similar to
the ECM.29–31 Nanofibrous scaffolds have highly porous
structures with interconnected pores which can support
infiltration, adhesion, proliferation, and migration of the cells
within the scaffold as well as nutrients and waste
exchange.31 Pore size and distribution, which can be con-
trolled in the electrospinning process, can affect cell infiltra-
tion and proliferation within the scaffold.32–35 Also,
interconnectivity of pores in the scaffold is more attainable
in a nanofibrous matrix where the continuous form of elec-
trospun nanofibers can generate inter-continuous pathways
for delivering oxygen and nutrients to the cells.32,36 Cur-
rently, electrospinning has proven to be an effective

technique for fabrication of nanofibrous scaffolds from
polymer solutions.31,37,38 However, fabrication of electro-
spun scaffolds from naturally-derived hydrogels such as
ALG/ALG-S remains a challenge. This is because ALG/ALG-S
lacks chain entanglements owing to its rigid and extended
chain conformation in aqueous solution. Also, gelation of
the ALG/ALG-S solution begins at very low polymer
concentrations.39–42

In this study, we report on the fabrication and charac-
terization of nanofibrous ALG-S scaffolds using electrospin-
ning for the first time. Electrospinnibility of ALG-S was
improved by adding polyvinyl alcohol (PVA) to the alginate
matrix. PVA is a water-soluble and biocompatible synthetic
polymer which is chemically and thermally stable and has
excellent wettability and biocompatibility.43 Furthermore,
fibrous structures made out of PVA have exhibited high
mechanical strength and abrasion resistance. The aforemen-
tioned properties have made PVA an excellent polymer that
can be blended with hydrogels for improving their mechan-
ical properties and tuning their degradation kinetics.43

Additionally, the hydroxyl groups of PVA molecules can
increase the interfacial bonding in composites and thereby
can promote the electrospinnibility of PVA electrospun
fibers.44,45 We optimized the electrospinning parameters for
PVA/ALG and PVA/ALG-S and introduced a physical method
for crosslinking the fabricated scaffolds. Morphology, degra-
dation profile, tensile strength, cell attachment and viability
on the fabricated scaffolds were evaluated in vitro. More-
over, the feasibility of loading TGF-β1, as a model of
heparin-like growth factors, into the nanofibrous scaffolds
was assessed and the effect of incorporating sulfate groups
within the alginate matrix on the TGF-β1 release was evalu-
ated. Our results suggest that the electrospun constructs
made from PVA/ALG-S are promising scaffolds for local
delivery of heparin-like proteins for tissue engineering
applications.

RESULTS

To determine the effect of the degree of sulfation (DS) on
the sulfate concentration within the gel, we added different
concentration chlorosulfonic acid (ClSO3H) to alginate hydro-
gels (Fig. 1A). Three batches of ALG-S were produced with
“high” (12.4%), “medium” (3.4%), and “low” (0.8%) degrees
of sulfation. Increasing the DS of the samples resulted in a
change in their color from light yellow (ALG-S/Low) to dark
brown (ALG-S/High) (Fig. 1B). Elemental analysis was used
to quantify the extent of sulfation. The degree of sulfation
was further quantified using the dimethyl methylene blue
(DMMB) assay (Fig. S1). The color of the solutions changed
with the degree of sulfation of the ALG-S samples. The mea-
sured concentrations of sulfate in low, medium, and high DS
samples were 7.7, 14.1, and 55.1 μg/mL, respectively
(Fig. 1C). Ultraviolet (UV) absorption spectra of the powders
prepared from ALG-S with different degrees of sulfation (Fig.
S2) showed higher absorption of UV in the range of
260–280 nm for samples with high DS. We used high DS in
the rest of the experiments. Nuclear magnetic resonance
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(13C NMR) data demonstrated the chemical shifts of C1 and
C6 of the guluronic acid at ~100 and 177 ppm, respectively;
this revealed that the sulfation reaction of ALG did not
include C1 or C6 substitution (Fig. 1D). Furthermore, the
chemical shifts of C2, C3, C4, and C5 were found to be
between 60–80 ppm, which is in good agreement with previ-
ous studies.21,32 After sulfation, the chemical shifts of ALG
became more complicated and the carbons C2 and C3 moved

to lower field positions while C4 and C5 shifted to a higher
field position.

Fourier transform infrared (FTIR) spectra of ALG and
ALG-S is shown in Figure 2A. For the sulfated alginate, peaks
characteristic to S=O stretching were confirmed with FTIR
spectra at 1250 cm−1. A minor peak was also detected at
873 cm−1, which represented a symmetrical C–O–S vibration
associated to a C–O–SO3 group. Figure 2B shows the FTIR

FIGURE 1. Fabrication and characterization of electrospun PVA/ALG-S scaffolds. (A) Schematic of the process of synthesizing ALG-S and electro-

spinning of the scaffold. ALG-S was prepared at different sulfation degrees of low (0.8%), medium (3.4%), and high (12.4%). The inset shows a scan-

ning electron microscopy (SEM) of a typical electrospun scaffold. (B) Optical images of ALG with different sulfation degrees. Increasing the

sulfation degree resulted in darker solutions. (C) Concentration of sulfate in ALG-S at different sulfation degrees of low, medium, and high. (D) NMR

spectra of ALG and ALG-S. The chemical shifts of C1 and C6 of the guluronic acid can be observed at ~100 and 177 ppm, respectively, which reveals

that the sulfation reaction of ALG do not include C1or C6 substitution.

FIGURE 2. FTIR spectra of (A) alginate (ALG), alginate sulfate (ALG-S) and (B) non-crosslinked PVA nanofibers (PVA.F.N.C), crosslinked PVA nanofi-

bers (PVA.F.C), non-crosslinked PVA/ALG-S nanofibers (PVA/ALG-S.F.N.C), crosslinked PVA/ALG-S nanofibers (PVA/ALG-S.F.C). All ALG-S samples

are high DS.
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spectra of non-crosslinked and crosslinked polymers. The
characteristic peak in PVA spectra is at 3337 cm−1, which
represents the bending vibration of hydroxyl groups. Also,
the 2941 cm−1 peak represents CH2, the 1709 cm−1 shows
the C=O bending vibration, the 1092 cm−1 stands for the C–
O group and 850 cm−1 is attributed to the C–C group
stretching vibration.46 . The peaks at 3446 cm−1, 624 cm−1

and 1420 cm−1 correspond to hydrogen-bonded OH groups,
asymmetric COO- and symmetric COO- stretching vibrations
in ALG, respectively.47,48 The spectra showed two absorption
peaks, one at ~1050 cm−1 relating to S=O stretching vibra-
tion and another one at ~720 cm−1 corresponding to S-O-C
vibration. We also noticed two other absorption peaks, one
at ~1050 cm−1 relating to the S=O stretching vibration and
the other at ~720 cm−1 corresponding to the S-O-C vibra-
tion. The peak at 1141 cm−1 is caused by the ether group (C-
O-C) in all crosslinked nanofibrous scaffolds.48.

Figure 3 shows the Energy-dispersive X-ray spectroscopy
(EDX) results of scaffolds made from PVA, PVA/ALG, and
PVA/ALG-S. Point scanning on the surfaces of the scaffolds
revealed the presence of O and C elements in the PVA

scaffolds, and O, C and Na elements in PVA/ALG scaffolds.
An additional S element was detected in PVA/ALG-S due to
the sulfation of ALG (Fig. 3A). Weight percent of each ele-
ment was given in Table I A map scanning showed the
homogeneous distribution of each element on the scaffold
surfaces (Fig. 3B).

We characterized the mechanical properties of the fabri-
cated electrospun sheets as these are crucial parameters for
design and optimization of engineered tissue substitutes.
Tensile stress–strain curves revealed the effect of the cross-
linking process on the tensile strength of the scaffolds
(Fig. 4A). The effect of sulfation on the ultimate tensile
strength of crosslinked and non-crosslinked scaffolds is
shown in Figure S3B. Our results indicated that the cross-
linking process significantly increased the elongation and
ultimate strength of the scaffolds. However, sulfation of ALG
had insignificant influence on the mechanical properties of
the scaffolds.

The degradation profile of the fibrous structures made
from PVA, PVA/ALG, and PVA/ALG-S is shown in Figure S3A.
All samples were thermally crosslinked. Scaffolds that were
made from PVA presented a faster degradation rate com-
pared to those that were made from PVA/ALG blends. The
faster degradation rate was attributed to the formation of
hydrogen bonding between the carboxylate group of ALG
and the hydroxyl group of PVA.49,50 No significant change in
the degradation rate of sulfated and non-sulfated was
observed. We assessed the growth factor binding and
entrapment of the nanofibrous scaffolds that were made
from PVA/ALG and PVA/ALG-S (Fig. S3A). Before the release

FIGURE 3. EDX of the electrospun scaffolds. (A) The point scanning of the scaffolds surfaces made from PVA, PVA/ALG, and PVA/ALG-S. (B) The

map scanning of the scaffolds surfaces made from PVA, PVA/ALG, and PVA/ALG-S showing carbon (red), oxygen (green), sodium (blue), and sul-

fate (cyan). All ALG-S samples are high DS.

TABLE I. Stoichiometric Ratio of PVA/ALG composites

Sample

Element

Carbon Oxygen Sodium Sulfur

PVA 78.35 21.65 0 0

PVA/ALG 52.50 44.84 2.66 0

PVA/ALG-S 49.49 45.51 2.09 2.91
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studies, TGF-β1 was physically adsorbed in the scaffolds for
24 h and washed with phosphate buffer solution (PBS,
pH 7.4 at 25 �C) to remove the protein residues on the sur-
face of the scaffolds. The cumulative percentage release of
TGF-β1 from scaffolds was then measured in after 1, 24, and
168 h using enzyme linked immunosorbent assay (ELISA).
The release of TGF-β1 from PVA/ALG scaffolds was faster
than PVA/ALG-S scaffolds due to the electrostatic interaction
of TGF-β1 with ALG-S (Fig. 4B).

The effect of blending PVA with ALG on the morphology
of the nanofibers was assessed using SEM (Fig. 5A). Hetero-
geneous fibers containing many beads were observed in the
PVA sample. In contrast, the addition of ALG and ALG-S to
PVA led to the formation of uniform nanofibers without any
beads. SEM images of the crosslinked scaffolds demonstrated
that the morphology of the nanofibers was similar to that of
non-crosslinked scaffolds. Cell attachment to the scaffolds
was evaluated by seeding human derived mesenchymal stem
cells (hMSCs) on the electrospun scaffolds. Scanning electron
microscopy images of the cells were taken after 24 h of seed-
ing (Fig. 5B). Due to the faster degradation rate of the PVA
scaffolds, larger pore sizes were observed in these scaffolds
compared to those that were blended with ALG. Moreover,
cells attached better to the PVA/ALG scaffolds as they main-
tained their integrity due to the slower degradation rate.
This was further confirmed by staining the F-actin filaments
of the cells after four days in culture (Fig. S4A). Figure S4B
displays the results of the cell viability of HMSCs was used
to evaluate the cytotoxicity of the nanofibrous mats in com-
parison with the control. All the samples (PVA, PVA/ALG,
and PVA/ALG-S nanofibrous scaffold) showed cell viability
greater than 90% in accordance to the control extraction
media.

We measured the diameter of the fibers in the fabricated
nanofibrous scaffolds by analyzing the SEM images of each
scaffold. The diameters of randomly-selected fibers
(n = 100) were measured when the scaffolds were not cross-
linked, crosslinked, and exposed to the cells. Figure S5A
shows the size distribution for non-crosslinked PVA scaf-
folds. Fiber diameters were in the range of 97 nm to 2.8 m
with the average diameter of 391 � 400 nm. Interestingly,

blending PVA with alginate significantly affected the unifor-
mity of the fiber diameters in the nanofibrous scaffolds. For
example, the size distribution of the fibers made from
PVA/ALG was in the range of 137 to 385 nm with the aver-
age diameter of 232 � 52 nm (Fig. S5B). However, sulfation
of alginate did not have a significant effect on the size distri-
bution and average diameter of the nanofibers (Fig. S5C).
The range of fiber diameter for scaffolds made from
PVA/ALG-S was from 164 to 470 nm, and the average fiber
diameter was 273 � 58 nm. We also investigated the effect
of crosslinking on the size distribution of nanofibers. Overall,
the size of the nanofibers slightly increased after the cross-
linking process (Fig. S5D-E). The average fiber diameters
were 637 � 532 nm, 275 � 50 nm, and 239 � 47 nm for
PVA, PVA/ALG, and PVA/ALG-S, respectively. When cells
were seeded on the scaffolds, the diameter of the fibers
increased considerably due to swelling (Fig. S5D-E). The
increase in the fiber diameter was more pronounced in
structures that were made from PVA alone. The average
fiber diameters for PVA, PVA/ALG, and PVA/ALG-S were
2.89 � 2.0 nm, 319 � 81 nm, and 365 � 91 nm,
respectively.

DISCUSSION

Alginate is a biocompatible hydrogel with many applications
in wound healing, drug delivery, and tissue engineering. Algi-
nate gels have been widely used for delivering low molecular
weight drugs, in particular when a primary or secondary
bond between the drug and the ALG is formed to modulate
the release kinetics of the drug. Due to the hydrophilicity
and relatively large pore sizes of ALG gels (5 nm).51, proteins
such as VEGF, bFGF, and TGF-β1 can be rapidly released
from the ALG microcarriers. However, the kinetics of release
cannot be controlled accurately because of the uncontrolled
degradation rate of ALG in vivo. In this study, we sulfated
ALG to provide affinity sites on the hydrogel matrix for spe-
cific binding of growth factors to the polymer backbone.
Alginate was sulfated using two protocols. The first protocol
was followed as described by Fan et al.52 However, elemen-
tal analysis indicated that DS of 0.9% was obtained using
this protocol. In order to enhance growth factor adsorption,

FIGURE 4. Physical and release properties of the PVA, PVA/ALG and PVA/ALG-S nanofibrous scaffolds. (A) Representative uniaxial stress–strain

curve of crosslinked and non-crosslinked ALG fibrous scaffolds. (B) Released TGF-β1from nanofibrous scaffolds made from alginate sulfate and

bare alginate after 7 days. Error bars represent SD of triplicates (* < 0.05).
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higher DS is required. Thus, the protocol described by Ron-
ghua et al. was followed to obtain a higher DS of ALG.53 This
method presents some advantages over protocols described
in literature.24,52 including defined DS, high efficiency, sim-
plicity, low cost, etc.54 Elemental analysis demonstrated that
DS of 12.4% was obtained via this process while other
applied sulfation protocols resulted in lower DS. Ronghua
et al. also reported similar results.53

The process of ALG sulfation was characterized by 13C
NMR and FTIR. Lack of chemical shift of C1 and C6 in 13C
NMR spectra means that sulfate groups were not added to
those carbons and were mainly added to the OH groups
(either one of the C2 or C3 or both) of uronic acid. The shift
of the carbons C2 and C3 to lower field position was due to
the direct attachment of electronegative sulfate ester groups,
while the shift of C4 and C5 to higher field positions was a
result of indirect attachment to sulfate ester groups, as
shown previously by others.24,52,53 The sulfation of uronic
acid in ALG was also indicated by the absorption peaks in
FTIR spectra of S=O and S-O-C vibration, in good agreement
with previous studies.24,52,53 Furthermore, crosslinking of
the mixed scaffolds was identified by a peak of ether group
(C-O-C) which was obtained from the crosslinking of PVA.48

Evidence showed the poor electrospinnability of PVA
with the molecular weight of 144,000 g.mol−1. Many beads

were formed during the process, mainly due to the instabil-
ity of the solution. However, when PVA was blended with
ALG or ALG-S, more uniform nanofibers were formed. This
behaviour is related to the higher viscosity of the PVA/ALG
blend compared to the pure PVA.49 According to the SEM
images, it can be concluded that electrospinnability of both
PVA and ALG (or ALG-S) have been promoted by blending.
Also, blending PVA/ALG and PVA/ALG-S nanofibrous scaf-
folds resulted in better crosslinking and cell attachment
compared to the PVA nanofiber counterpart.

Researchers have used many chemical and physical
methods to crosslink PVA based nanofibrous scaffolds in
order to reduce their water solubility.55–57 Since the chemi-
cal methods yield toxic products.58,59, in this study, PVA/ALG
and PVA/ALG-S nanofibrous scaffolds were crosslinked by a
physical method (heating at 150 �C).

Polyvinyl alcohol with molecular weight of 144,000 g.
mol−1 was used to obtain higher tensile strength.60,61 A
decrease in the tensile strength of PVA with addition of ALG
and ALG-S as a result of the indisposition of homogeneity of
the polymeric substrate has been reported previously.62

Crosslinking increases elongation at the break of the scaffold.
In addition, physically crosslinking enhances the tensile
strength of all scaffolds.63,64 Moreover, a higher degree of
crosslinking of the scaffolds containing ALG and ALG-S

FIGURE 5. (A) SEM images of the scaffolds made from crosslinked (C) and non-crosslinked (N.C) PVA, PVA/ALG, and PVA, ALG-S scaffolds.

(B) Attachment of cells to the scaffolds.
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lowered the mass loss in comparison with physically cross-
linked PVA scaffolds.65 The ALG-S nanofibrous scaffolds
showed a favorable entrapment of the loaded TGF-β1 due to
the higher affinity of the ALG-S over ALG for binding to
TGF-β1.

Figure 4B displays the results for growth factor delivery
and shows the slow release of TGF-β1 from ALG-S fibers in
comparison with ALG. In the body, growth factors are
attached to heparin and the presence of sulfate groups on
alginate structure is similar to heparin structure.16,17,54,66 It
has been shown previously that most heparin-binding pro-
teins do not bind to bare alginate, however, they strongly
bind to sulfated alginate via electrostatic interactions.24 Algi-
nate has a nanoporous matrix with the pore size in the order
of a few nanometers, leading to rapid diffusion of proteins
through the gel.67 However, heparin-binding growth factors
such as vascular endothelial growth factor (VEGF), TGF-β1,
and basic fibroblast growth factor (bFGF) exhibit reversible
binding to sulfated alginate, enabling sustained release due
to the hydrolysis of the gel.15,24–27,66 The release kinetics can
be manipulated by changing the degradation rate of the gels
by the use of partially oxidized alginate.67 Our results dem-
onstrated that the sulfation of alginate matrix promoted pro-
tein attachment to the alginate matrix, thereby significantly
slower release rates were achieved compared to bare
alginate.

The morphology and fiber diameter plays an important
role on the interaction of the scaffolds and the cells and the
release kinetic of the drugs. We examined the effect of blend-
ing alginate and PVA on the microstructure of the electro-
spun scaffolds and size distribution of the nanofibers.
Becuase of the poor electrospinnibility of PVA, the pore size
and size distribution of the fibers were not uniform in the
scaffolds that were made from PVA alone. However, blending
alginate with PVA improved the ability to electrosping these
materials as demonstrated by the uniform size distribution
of nanofibers shown in Figure S5D-F. Overall, the crosslink-
ing process did not influence the size distribution of the scaf-
folds. However, due to the expansion of the polymers during
the thermal treatment, the average diameter of the nanofi-
bers was slightly higher than the non-crosslinked scaffolds.
Moreover, when cells were seeded on the scaffolds, the scaf-
folds that were made from PVA/ALG and PVA/ALG-S showed
better integrity.

CONCLUSIONS

This study reports the first electrospun scaffold made from
sulfated ALG. The sulfation of ALG at different degrees was
successfully performed and characterized. To enhance the
manufacturability of the sulfated ALG, it was blended with
PVA and thermally crosslinked to form mechanically stable
scaffolds. The mechanical properties of the crosslinked blend
were significantly improved compared to the non-
crosslinked mixture. We also observed a slightly slower deg-
radation rate for the PVA/ALG blend compared to pure PVA.
The release profile of TGF-β1 from scaffolds made from sul-
fated ALG was more sustained compared to the non-sulfated

scaffolds; this shows the potential of such constructs for
growth factor delivery in tissue engineering. Moreover, bio-
compatibility assessments revealed a favorable and support-
ive cellular environment for hMSCs in vitro. All of the
findings showed that blending ALG-S with PVA could over-
come the disadvantages of both polymers and result in a
suitable scaffold with tremendous potential for application
in tissue engineering.

EXPERIMENTAL SECTION

Materials
Alginate (ALG,100–300 cP, 2%(25 �C)), chlorosulfonic acid
(ClSO3H, 99%), chondroitin sulfate (CS), formamide
(1.128–1.132 g.mL−1), tritonX-100, paraformaldehyde,
Hoechst reactives, DMMB and phalloidin were purchased
from Sigma Aldrich (USA). Polyvinyl alcohol (PVA,
Mn = 144,000 g.mol−1 and 98% hydrolysis), acetone, glutar-
aldehyde (GTA) (50%)), were purchased from Merck com-
pany (Germany). Dulbecco modified Eagle medium (DMEM)
and penicillin–streptomycin were purchased from Gibco-
BRL, (Life Technologies, Rockville, MD, USA). Fetal bovine
serum (FBS) was purchased from NanoBioArray, Iran.

Sulfating of ALG
In order to sulfate the ALG, Formamide/ClSO3H solutions
were prepared with three different ratios (80:1, 80:5 and
80:20), and ALG (10 g) was added to each solution. The mix-
ture was then preserved at 60 �C for 4 h to obtain a brown
paste. 200 mL of acetone was added to precipitate the solu-
tion. The precipitate was redissolved in distilled water while
the pH of the obtained solution was adjusted to 11 and dia-
lyzed for 72 h.53

Preparation of nanofibrous scaffolds
A solution containing 5 wt% of PVA and 1 wt% of ALG and
ALG-S12.4 were electrospun. Also, a PVA solution (10 wt%)
was electrospun as control. The polymer solution was pre-
pared by dissolving PVA in deionized water for 2 h and
under continuous stirring at 90 �C. After that, ALG and
ALG-S powders were added to the cooled solution at 25 �C
separately and the stirring was continued for 3 h to obtain
homogeneous polymer blend solutions. To produce electro-
spun scaffolds, syringes fitted with 21-G needles were uti-
lized. The optimized parameters were 30 kV and 12 cm for
distance between the needle tip and the collector and
18 mL.h−1 for flow rate.

Crosslinking of nanofibers
The nanofibrous scaffolds were physically crosslinked by
heating at 150 �C for 24 h, and then cooled to 25 �C.

Elemental analysis
Sulfation degree (DS) of the ALG-S samples was determined
by high-resolution inductively coupled plasma mass spec-
trometry (HR-ICP-MS). Specimens were prepared via dissol-
ving 5 mg of ALG-S in 0.1 M HNO3 (45 mL). The measured
sulfur content in ALG-S powder was used to determine the
DS. The DS is defined as the average number of sulfate
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groups per ALG monomer.53 using Equation 1 where x rep-
resents the DS.54.

Total monomer mass¼C6H5O6 + x + 1ð ÞNa+ + xSO−
3 +H2O ð1Þ

It was expected in Equation 1 that almost 10% water
was accompanying the ALG.

Ultraviolet (UV) spectroscopy: UV absorption of the stock
solutions (16 μg.ml−1) of different ALG-S powders with
determined DS (0%, 0.8%, 3.4% and 12.4%, which was
proven by elemental analyses) was analyzed by ePoch spec-
trophotometer (Biotech instruments, USA). CS was used as
control and data was recorded over the wavelength range of
200–800 nm.

Dimethyl methylene blue (DMMB) staining: DMMB binds
to sulfated glycosaminoglycans and changes from blue to
purple.68,69 We proposed that DS can be easily determined
by DMMB staining protocol. This assay was performed by an
ELISA reader (statfax2100, USA) in a 96 well plate with CS
as control at wavelength of 545 nm. Different ALG-S samples
with various DS (0%, 0.8%, 3.4% and 12.4%) were used.
The stock solutions with different concentrations (0, 0.53,
1.1, 2.15, 5.33, 10.1 and 16 μg.ml−1) and CS in buffer
(0.05 M of sodium acetate, 0.05% of tween 20, at pH 6.8)
were prepared. DMMB (at the concentration of 16 μg.ml−1)
was dissolved in 0.03 M of sodium formate and 0.2% v/v of
formic acid. 75 μL of each stock solution, 25 μL of guanidine
hydrochloride (2.88 M in buffer) and 200 μL of DMMB solu-
tion were added to each well.

Nuclear magnetic resonance (NMR) spectroscopy
Both ALG and ALG-S were dissolved in deionized water. 13C
NMR experiments were recorded at 25 �C on a Bruker
Avance 400 MHz spectrometer (Bruker BioSpin AG, Ger-
many) equipped with a 5 mm cryogenic CP-TCI z-gradient
probe. Tetramethylsilane (TMS) was used as the internal
standard. The 13C NMR data were analyzed with TopSpin 3.0
software (Bruker BioSpin AG, Germany).

Fourier transform infrared (FTIR) spectroscopy: FTIR
spectroscopy (PerkinElmer, USA) was performed to identify
the chemical structure of the samples. The specimens were
mixed with KBr to make sample pellets prior to examination.
The spectra were scanned between 400 and 4000 cm−1.

Scanning electron microscopy (SEM)
A field-emission scanning electron microscopy (FE-SEM; Phi-
lips XL30-Holland) equipped with energy dispersive X-ray
spectroscopy (EDX; Link WDX-3PC-USA) was used to investi-
gate the morphology of the nanofibrous scaffolds. Surfaces of
the nanofibrous scaffolds were sputter-coated with gold
(Au) prior to examination. To evaluate the DS of sulfated
ALG, point scanning and map scanning were performed by
an EDX.

Mechanical properties
Tensile strength of nanofibrous scaffolds were analyzed as
described previously.5 using a uniaxial tensile machine
(Instron TM - SM, England) with a load cell of 10 N capacity.

The scaffolds were cut into rectangular strips of 1 × 2 cm2

dimension and fixed vertically on the gripping unit of the
tensile tester. Specimens were drawn at a crosshead speed
of 10 mm.min−1 and data were recorded every 50 ms.

In vitro mass loss
The nanofibrous scaffolds were cut into square shapes and
weighed. The scaffold were soaked in phosphate-buffered
saline (PBS at pH = 7.4) and incubated at 37 �C. At specified
times specimens were taken out from the incubator, washed
with dionized water and vacuum-dried at 40 �C for 48 h.70

Mass loss of the scaffold was calculated over a 2-month time
period using Equation 2.

Mass loss %ð Þ¼ Wo−Wtð Þ=Woð Þ×100 ð2Þ

Where Wo and Wt are the dry mass of the specimens
before and after the degradation, respectively.

Cell culture
Human mesenchymal stem cells (hMSCs) isolated from
abdominal adipose tissue were supplied from National Cell
Bank of Iran, Pasteur Institute of Iran, Tehran, Iran. The
medium consisted of DMEM-ham’s F12 supplemented with
10% fetal bovine serum and 100 μg.ml−1 penicillin–
streptomycin.

Cell attachment
In order to investigate the cell attachment by SEM, 5 × 105

cells obtained from third subculture of HMSCs were seeded
on each specimen and incubated for 4 h. After removal of
the culture medium, the specimens were rinsed in PBS twice
and fixed by glutaraldehyde 4% solution. The samples were
then dehydrated in graded alcohols and sputter coated
by gold.

Cell actin staining
The cell actin staining was performed according to protocol
described in literature.71,72 Briefly, the cells were fixed by
paraformaldehyde (4% in PBS) and permeabilized using
tritonX-100 (0.1% in PBS). Afterwards, the cells were incu-
bated for 45 min by a 0.2 μg.ml−1 solution of phalloidin in
PBS to stain the actin filaments. Finally, cell nuclei were
stained by a solution of Hoechst (1.5 μg.ml−1 in PBS) for
5 min and electrospun nanofibers were observed by a fluo-
rescence microscope (Hund, Wilovert 30, Germany).

In vitro cytotoxicity by MTT assay
To determine the toxicity of the samples, HMSCs used for
MTT assay according to ISO 10993-5. The nanofibrous scaf-
folds were cut into rectangular shapes of 2 cm × 1 cm. Each
sample was immersed in 1 mL of serum-free culture
medium DMEM-ham’s F12 for 7 days at 37 �C. The serum-
free culture medium without nanofibers was also incubated
at 37 �C in the mentioned times and used as control. Briefly,
cells were plated into a 96-well microtiter plate at 1 × 104

cells/well and 100 mL of DMEM-ham’s F12 supplemented
by 10% FBS was added to each well and incubated for 24 h
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at 37 �C. After 24 h incubation, the culture medium of each
well removed and replaced with 100 mL MTT (Sigma, USA)
solution (0.5 mg ml−1 in PBS) was added to each well and
incubated for 4 h at 37 �C. Finally, the MTT solution was
removed and 100 mL isopropanol (Sigma, USA) was added
to per well. The plates were then incubated at 37 �C for
15 min prior to absorbance measurements. The optical den-
sity (OD) was recorded on Absorbance at 570 nm was read
on a multiwell microplate reader (ICN, Switzerland) at
545 nm and normalized to the control OD. The cell toxicity
can be obtained according to the following Equation 3.

Toxicity%¼1−
mean of OD sample
mean of OD control

× 100 ð3Þ

TGF-β1 release study
A TGF-β1 Enzyme-Linked Immuno-sorbent Assay (ELISA,
Biolegend, USA) kit was used to quantify the release rate of
growth factor based on supplier instructions. 250 ng.ml−1

TGF-β1 (Biolegend) was added to each sample (PVA/ALG
and PVA/ALG-S). After 24 h, the remaining growth factor
solutions were discarded and fresh deionized water added.
The amount of released TGF-β1 was detected by ELISA
reader (statfax2100, USA) at specified intervals (1 h, 24 h
and 128 h).

Statistical analysis
Statistical calculations were performed on GraphPad Prism
6, ANOVA test was used to analyze the data. p < 0.05 was
considered statistically significant.
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