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Abstract

This paper analyzes conjoint measurement models allowing for intransitive and/or incomplete preferences. This analysis is based

on the study of marginal traces induced on coordinates by the preference relation and uses conditions guaranteeing that these

marginal traces are complete.

Within the framework of these models, we propose a simple axiomatic characterization of preference relations compatible with

the notion of dominance. We show that all such relations have a nontrivial numerical representation.

Our results allow us to establish useful connections between two lines of thought in the area of decision analysis with multiple

attributes that have largely remained unrelated: the one based on conjoint measurement and the one emphasizing the idea of

dominance.

r 2004 Elsevier Inc. All rights reserved.
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1. Motivation and outline

Two distinct traditions underlie most of the work
done in the area of decision analysis with multiple
attributes. The conjoint measurement tradition has deep
roots both in Mathematical Psychology and Decision
Theory (see Debreu, 1960; Krantz, Luce, Suppes, &
Tversky, 1971; Luce & Tukey, 1964; Roberts, 1979;
Scott, 1964; Scott & Suppes, 1958; Wakker, 1989).
Starting with a binary relation h defined on a product
set X ¼ X1 � X2 �?� Xn; its aim is to find conditions
under which it is possible to build a convenient
numerical representation of h: The model that has
been most studied in this framework is the additive

utility model:

xhy 3
Xn

i¼1
uiðxiÞX

Xn

i¼1
uiðyiÞ; ð1Þ

where ui is a real-valued function on Xi and it is understood
that x ¼ ðx1; x2;y; xnÞ and y ¼ ðy1; y2;y; ynÞ:
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Besides their theoretical interest and the fact that they
exhibit conditions likely to be subjected to empirical
tests, many conjoint measurement results are construc-
tive in nature and, therefore, give hints on how to devise
assessment procedures of utility functions and, thus,
preferences. Indeed, the framework of conjoint mea-
surement has been adopted in many important works in
decision analysis (see French, 1993; Keeney & Raiffa,
1976; Winterfeldt & Edwards, 1986) giving rise to many
specialized assessment techniques (see Belton & Stewart,
2001; Bouyssou et al., 2000; Keeney & Raiffa, 1976) that
have often been applied in real-world settings. Note that
most developments in conjoint measurement require
that h is very well behaved being, in particular,
complete and transitive.
A more pragmatic tradition starts with alternatives

evaluated along several attributes. Along each attribute,
alternatives are supposed to be compared using a well
behaved preference relation. The central problem is then
to build a preference relation between alternatives
taking all attributes into account, i.e. a global preference
relation, based on the preference relations on each
attribute and ‘‘inter-attribute’’ information such as
weights or trade-offs (Pomerol & Barba-Romero,
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2000; Roy, 1996; Roy & Bouyssou, 1993; Steuer, 1986;
Vincke, 1992). The notion of dominance plays a crucial
role here. An alternative x is said to dominate an
alternative y if x is judged ‘‘at least as good as’’ as y on
all attributes. Suppose that z dominates x and that y

dominates w: If we have reasons to believe that ‘‘x is at
least as good as y’’ and if we want the global preference
relation to be compatible with dominance then we
should judge z at least as good as w: When a global
preference relation is compatible with dominance, it
makes sense to limit the search for ‘‘good’’ alternatives
in the set of efficient alternatives, i.e. alternatives that
are undominated. Most techniques related to the
pragmatic tradition heavily rely on the notion of
dominance (see Pomerol & Barba-Romero, 2000;
Vincke, 1992). When the set of alternatives is ‘‘large’’,
e.g. in the case of multiobjective optimization, many
methods have been devoted to the identification of
efficient alternatives (see Steuer, 1986).
These two lines of thought seem to coexist since the

beginning of decision analysis with multiple attributes, in
the late 1960s (see Raiffa, 1968; Roy, 1971). Both have
generated important theoretical and practical achieve-
ments. Their setting differ significantly. The conjoint
measurement tradition starts with a well behaved
preference relation taking all attributes into account.
The pragmatic one starts with a well behaved preference
relation defined on each attribute and derives a global
preference relation using the notion of dominance and
inter-attribute information. The principles used in order
to build the global preference relation do not always
guarantee that this relation will be transitive or complete,
e.g. if a qualified weighted majority of attributes is used
(see Roy, 1991; Vincke, 1992). The sad consequence is
that these two traditions have largely remained unrelated.
Indeed, the idea of dominance receives little attention in
most books related to the conjoint measurement tradition
(see French, 1993; Keeney & Raiffa, 1976). Conversely, in
many books related to the pragmatic tradition, conjoint
measurement approaches, are either omitted or treated
apart from anything else (see Goicoechea, Hansen, &
Duckstein, 1982; Steuer, 1986; Zeleny, 1982).
This paper is an attempt to establish connections

between these two traditions. In order to do so, we
adopt a classical conjoint measurement setting, while
not requiring transitivity or completeness. We provide a
simple axiomatic characterization of preference relations
compatible with dominance and show that all such
relations admit a nontrivial numerical representation.
This extends the traditional scope of conjoint measure-
ment to include binary relations that are not well
behaved. Furthermore, this shows that many techniques
developed in the pragmatic tradition can usefully be
analyzed in a conjoint measurement framework.
Technically, we pursue a line of investigation started

in a series of earlier papers (Bouyssou, Pirlot, & Vincke,
1997; Bouyssou & Pirlot, 1999, 2002), and anticipated in
Goldstein (1991), analyzing conjoint measurement
models that involve neither transitivity nor additivity.
The key tool for the analysis of such preference relations
is the consideration of various kinds of traces on
coordinates induced by the original relation.
This paper is organized as follows. Section 2 presents

some background material: we introduce our vocabu-
lary concerning binary relations and recall some
well-known facts on traces. Section 3 studies binary
relations defined on product sets and introduces the
notion of marginal trace. Using conditions implying
that marginal traces are complete, Section 4 offers a
simple characterization of preference relations compa-
tible with the notion of dominance. Section 5 shows
that all such preference relations admit several kinds
of nontrivial numerical representations whether or
not they are transitive or complete. Section 6 discusses
our results and presents directions for future re-
search. Examples and technical details are relegated
in appendix.
2. Background: binary relations and traces

2.1. Binary relations

A binary relation h on a set A is a subset of A � A:
We write ahb instead of ða; bÞAh: A binary relation
h on A is said to be:

* reflexive if ½aha�;
* complete if ½ahb or bha�;
* symmetric if ½ahb� ) ½bha�;
* asymmetric if ½ahb� ) ½Not½bha��;
* transitive if ½ahb and bhc� ) ½ahc�;
* Ferrers if

ahb

and

chd

9>=
>; )

ahd

or

chb;

8><
>:

* semi-transitive if

ahb

and

bhc

9>=
>; )

ahd

or

dhc;

8><
>:

for all a; b; c; dAA:
The asymmetric (resp. symmetric) part of h is the

binary relation g (resp. B) on A defined letting, for all
a; bAA; agb3½ahb and Not½bha�� (resp.
aBb3½ahb and bha�). A similar convention will
hold when h is subscripted and/or superscripted.
A weak order (resp. an equivalence relation) is a

complete and transitive (resp. reflexive, symmetric



ARTICLE IN PRESS
D. Bouyssou, M. Pirlot / Journal of Mathematical Psychology 48 (2004) 167–185 169
and transitive) binary relation (a weak order is also
sometimes called a complete preorder). A complete order

is a weak order with a symmetric part limited to loops.
An interval order is a complete and Ferrers binary
relation; a semi-order is a semi-transitive interval order.
If h is an equivalence on A; A=h will denote the set of
equivalence classes of h on A:

2.2. Traces of binary relations

The idea that any binary relation generates various
reflexive and transitive binary relations called traces

dates back at least to Luce (1956) (in order to
distinguish them from traces on coordinates when
studying product sets, we will later designate these
traces as global traces). The use of traces have proved
especially useful in the study of preference structures
tolerating imperfect discrimination such as semi-orders,
interval orders or valued preference relations (Doignon,
Monjardet, Roubens, & Vincke, 1988; Fishburn, 1985;
Pirlot & Vincke, 1997) and in Social Choice Theory
under the name of ‘‘covering relations’’ (Laslier, 1997).
These relations will also prove to be important in what
follows.

Definition 1 (Global traces). Let h be a binary relation

on a set A: We associate to h three binary relations,
called traces, letting, for all a; bAA:

Left trace ahþb3 ½bhc ) ahc�;
Right trace ah	b3 ½cha ) chb�;
Trace ah7b3 ½ahþb and ah	b�:

Following our conventions, Bþ and g
þ will denote

the symmetric and asymmetric parts of hþ; the same
being true for for h

	 and h
7: Useful connections

between h and its traces are summarized below for the
ease of future reference. All of them are straightforward
consequences of the preceding definition.

Proposition 1 (Properties of global traces). 1. Bþ; B	

and B7 are equivalence relations (reflexive, symmetric

and transitive).
2.hþ; h	 and h

7 are reflexive and transitive binary

relations.

3. For all a; b; c; dAA:

½ahb; bh	c� ) ahc; ð2Þ

½ahb; chþa� ) chb; ð3Þ

½dh7a; bh7c� )
ahb ) dhc

and

agb ) dgc;

8><
>: ð4Þ
½aB7c; bB7d� )
ahb3chd

and

agb3cgd:

8><
>: ð5Þ

4. h7 ¼ h3 h is reflexive and transitive.

5. ½h7 ¼ h and h
7 is complete�3h is a weak

order.

The following proposition summarizes a number of
well-known facts about traces (see Fishburn, 1985;
Monjardet, 1978; Pirlot & Vincke, 1997; Roubens &
Vincke, 1985).

Proposition 2 (Completeness of global traces). 1. hþ is

complete 3 h
	 is complete 3 h is Ferrers.

2. h
7 is complete 3 h is Ferrers and semi-

transitive.

For a detailed analysis of the role of traces in various
domains of preference modelling we refer to Aleskerov
and Monjardet (2002), Doignon et al. (1988), Laslier
(1997), Monjardet (1978), Pirlot and Vincke (1997), and
Roubens and Vincke (1985).
3. Binary relations on product sets

We consider now a set X ¼
Qn

i¼1 Xi with nX2:
Elements x; y; z;y of X will be interpreted as alter-
natives evaluated on a set N ¼ f1; 2;y; ng of attributes.
A typical binary relation on X is still denoted ash: It is
useful to interpret h as an ‘‘at least as good as’’
preference relation between multi-attributed alternatives
with B interpreted as indifference and g as strict
preference.
For any nonempty subset J of the set of attributes N;

we denote by XJ (resp. X	J ) the set
Q

iAJ Xi (resp.Q
ieJ Xi). With customary abuse of notation, ðxJ ; y	JÞ

will denote the element wAX such that wi ¼ xi if iAJ

and wi ¼ yi otherwise. When J ¼ fig we shall simply
write X	i and ðxi; y	iÞ:
We say that h is marginally complete for iAN if

ðxi; a	iÞhðyi; a	iÞ or ðyi; a	iÞhðxi; a	iÞ; for all xi; yiAXi

and all a	iAX	i; i.e. if no incomparability occurs when
comparing alternatives differing only on attribute iAN:

3.1. Independence and marginal preferences

In conjoint measurement, one starts with a preference
relation h on X : It is then of vital importance to
investigate how this information makes it possible to
define preference relations on attributes or subsets of
attributes.
Let JDN be a nonempty set of attributes. We define

the marginal relation hJ induced on XJ by h letting,
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for all xJ ; yJAXJ :

xJhJyJ 3 ðxJ ; z	JÞhðyJ ; z	JÞ; for all z	JAX	J ;

with asymmetric (resp. symmetric) part gJ (resp. BJ).
Note that if h is reflexive (resp. transitive), the same
will be true for hJ : This is clearly not true for
completeness however.
We define two other binary relations R

h

J and Rg

J

induced by h on XJ ; letting for all xJ ; yJAXJ ;

xJR
h

J yJ 3 ðxJ ; z	JÞhðyJ ; z	JÞ; for some z	JAX	J ;

and

xJRg

J yJ 3 ðxJ ; z	JÞgðyJ ; z	JÞ; for some z	JAX	J :

Definition 2 (Independence and separability). Consider
a binary relation h on a set X ¼

Qn
i¼1 Xi and let JDN

be a nonempty subset of attributes. We say that h is

1. independent for J if R
h

J DhJ ;
2. separable for J if Rg

J is asymmetric.

Ifh is independent (resp. separable) for all nonempty
subsets of N; we say that h is independent (resp.
separable). If h is independent (resp. separable) for all
subsets containing a single attribute, we say that h is
weakly independent (resp. weakly separable).

Independence is a classical notion in conjoint
measurement. It states that common evaluations on
some attributes do not influence preference. Whereas
independence implies weak independence, it is well
know that the converse is not true (see Wakker, 1989).
Independence implies separability but not vice versa.

Separability is a weakening of independence that can be
motivated considering aggregation models based on
‘‘max’’ or ‘‘min’’. It forbids strict reversals of preference
when varying common evaluations on some attribute. In
special contexts, it has already been considered in
Blackorby, Primont, and Russell (1978), Färe and
Primont (1981), Mak (1984), and Segal and Sobel
(2002). It is easy to see that weak separability does not
entail separability. It should be noted that our use of
(weak) separability differs from the one in Wakker
(1989).
Let us observe that when h is complete and

independent for iAN then hi is clearly complete. It is
not difficult to see thathi is complete if and only ifh is
marginally complete and weakly separable for iAN:

3.2. Marginal traces

The definitions and results from Section 2.2 clearly
apply here. Hence the binary relation h on X ¼Qn

i¼1 Xi has a left trace (resp. right trace and trace)
h

þ (resp. h	 and h
7) that is reflexive and transitive.
Consider an attribute iAN: Sticking to the notation
introduced above, hþ

i (resp. h	
i and h

7
i ) will denote

the marginal preference relation induced on Xi by h
þ

(resp. h	 and h
7), i.e.

xih
þ
i yi 3 ½ðxi; z	iÞhþðyi; z	iÞ; for all z	iAX	i�;

xih
	
i yi 3 ½ðxi; z	iÞh	ðyi; z	iÞ; for all z	iAX	i�;

xih
7
i yi 3 ½ðxi; z	iÞh7ðyi; z	iÞ; for all z	iAX	i�:

Since, by construction, hþ; h	 and h
7 are reflexive

and transitive, the same is true for hþ
i ; h

	
i and h

7
i :

From Proposition 2, we know thath ¼ h
7 if and only

if h is reflexive and transitive. When this is the case, we
clearly have hi ¼ h

7
i ; for all iAX : As shown in the

following lemma, h
þ
i (resp. h

	
i and h

7
i ), the

marginal relation induced on iAN by the global trace
h

þ (resp.h	
i andh

7
i ) can also be usefully interpreted

as a marginal trace on attribute iAN:

Lemma 1 (Marginal relations induced by global tra-
ces). For all iAN; all xi; yiAXi; all a	iAX	i and all zAX :

1. xih
þ
i yi3 ½ðyi; a	iÞhz ) ðxi; a	iÞhz�;

2. xih
	
i yi3 ½zhðxi; a	iÞ ) zhðyi; a	iÞ�;

3. xih
7
i yi3

ðyi; a	iÞhz ) ðxi; a	iÞhz;
and

zhðxi; a	iÞ ) zhðyi; a	iÞ:

8<
:

Proof. We give the proof of part 1, the proof of the
other parts being similar. By definition we have
xih

þ
i yi3 ½ðxi; a	iÞhþðyi; a	iÞ; for all a	iAX	i�3

½ðyi; a	iÞhz ) ðxi; a	iÞhz; for all a	iAX	i and all
zAX �: &

As before, the symmetric and asymmetric parts ofhþ
i

are, respectively, denoted Bþ
i and g

þ
i ; the same

convention applying to h
	
i and h

7
i : Although it is

clearly possible to define marginal traces on subsets of
attributes more general than singletons, we do not
envisage this possibility here.
As in Proposition 1, there are many interesting

connections between marginal traces and h: We list
some of them in the following lemma, for the ease of
future reference, omitting its obvious proof.

Lemma 2 (Properties of marginal traces). For all iAN

and x; y; z;wAX :

½xhy; zih
þ
i xi� ) ðzi; x	iÞhy; ð6Þ

½xhy; yih
	
i wi� ) xhðwi; y	iÞ; ð7Þ

½zih
7
i xi; yih

7
i wi� )

xhy ) ðzi; x	iÞhðwi; y	iÞ
and

xgy ) ðzi; x	iÞgðwi; y	iÞ;

8><
>:

ð8Þ
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½xiB7
i zi; yiB7

i wi for all iAN� )
xhy3zhw

and

xgy3zgw:

8><
>:

ð9Þ

It is clear that the marginal traces hþ
i ; h

	
i and h

7
i

need not be complete. Interesting consequences will arise
when this is the case. This is explored in what follows.

3.3. Complete marginal traces

As was the case with the Ferrers and semi-transitivity
conditions when studying global traces, we envisage here
conditions that will guarantee that marginal traces are
complete and, hence, weak orders. As with interval
orders and semi-orders, these conditions will prove
useful to analyze the underlying structures and to build
numerical representations.

Definition 3 (Conditions AC1–AC3). We say that h

satisfies:
AC1i if

xhy

and

zhw

9>=
>; )

ðzi; x	iÞhy

or

ðxi; z	iÞhw;

8><
>:

AC2i if

xhy

and

zhw

9>=
>; )

xhðwi; y	iÞ
or

zhðyi;w	iÞ;

8><
>:

AC3i if

zhðxi; a	iÞ
and

ðxi; b	iÞhy

9>=
>; )

zhðwi; a	iÞ
or

ðwi; b	iÞhy;

8><
>:

for all x; y; z;wAX ; all a	i; b	iAX	i and all xi;wiAXi:
We say that h satisfies AC1 (resp. AC2, AC3) if it

satisfies AC1i (resp. AC2i; AC3i) for all iAN:

These three conditions are transparent variations on
the theme of the Ferrers (AC1 and AC2) and semi-
transitivity (AC3) conditions that are made possible by
the product structure of X : The rationale for the name
‘‘AC’’ is that these conditions are ‘‘intrA-attribute
Cancellation’’ conditions.
Condition AC1i suggests that the elements of Xi

(instead of the elements of X had the original Ferrers
condition been invoked) can be linearly ordered
considering ‘‘upward dominance’’: if xi ‘‘upward dom-
inates’’ zi then ðzi; c	iÞhw entails ðxi; c	iÞhw: Condi-
tion AC2i has a similar interpretation considering now
‘‘downward dominance’’. Condition AC3i ensures that
the linear arrangements of the elements of Xi obtained
considering upward and downward dominance are not
incompatible.
Conditions AC1–AC3 were introduced in Bouyssou

et al. (1997) and Bouyssou and Pirlot (1999) and later
used in Greco, Matarazzo, and Slowinski (2002). The
strong links between AC1–AC3 and marginal traces are
noted in the following:

Lemma 3 (Completeness of marginal traces). We have:

1. hþ
i is complete iff AC1i holds.

2. h	
i is complete iff AC2i holds.

3. ½Not½xih
þ
i yi� ) yih

	
i xi� iff ½Not½xih

	
i yi� ) yih

þ
i xi�

iff AC3i holds.
4. h7

i is complete iff AC1i;AC2i and AC3i hold.
5. In the class of complete binary relations on X ;

AC1i;AC2i and AC3i are independent conditions.

Proof. Part 1 is proved observing that the negation of
AC1i is equivalent to the negation of the completeness
of hþ

i : The proof of part 2 is similar. Part 3 is proved
observing that the negation of AC3i is equivalent to
Not½yih

þ
i xi� and Not½xih

	
i yi� for some xi; yiAXi: Part 4

immediately results from parts 1–3.
Part 5: See Examples A.1–A.3 in Appendix A. &

Comparing Lemma 3 with Proposition 2 shows an
important difference between global traces and marginal
traces: in the latter case, the right trace may be complete
without implying the completeness of the left trace. This
explains our use of three conditions (AC1–AC3) when
studying marginal traces instead of the two classical
conditions (Ferrers and semi-transitivity) used when
studying global traces.
The combination of our three conditions (AC1–AC3)

implies that the marginal traces induced by h are weak
orders. Unsurprisingly, this implies that marginal
relations hi do have special properties even when they
differ from marginal traces (which is the general case).
We summarize them in the following:

Proposition 3 (Properties of marginal preferences). 1. If

h is reflexive and either AC1i or AC2i holds then h is

marginally complete and weakly separable for iAN:
2. If h is reflexive and either AC1i or AC2i holds then

hi is an interval order.

3. If, in addition, h satisfies AC3i then hi is a semi-

order.

Proof. Part 1: We give the proof using AC1i; the proof
using AC2i being similar. Using the reflexivity of h;
we know that ðxi; a	iÞhðxi; a	iÞ and ðyi; a	iÞhðyi; a	iÞ:
Since AC1i holds, h

þ
i is complete so that xih

þ
i yi

or yih
þ
i xi: If xih

þ
i yi then, using (6), we have

ðxi; a	iÞhðyi; a	iÞ: Similarly if yih
þ
i xi then ðyi; a	iÞh

ðxi; a	iÞ: Hence, h is marginally complete for iAN:
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Suppose now thath is not weakly separable for iAN:
Then we have ðxi; a	iÞgðyi; a	iÞ and ðyi; b	iÞgðxi; b	iÞ;
for some xi; yiAXi and some a	i; b	iAX	i: Since h is
reflexive, we have ðyi; a	iÞhðyi; a	iÞ and ðxi; b	iÞh
ðxi; b	iÞ: This would imply Not½xih

þ
i yi� and

Not½yih
þ
i xi�; violating AC1i: Hence, h is weakly

separable for iAN:
Part 2: We know from part 1 that h is marginally

complete and weakly separable for iAN: Hence, hi is
complete. It remains to prove that hi is Ferrers.
Suppose that xihiyi and zihiwi: Since AC1i holds,
we know that either xih

þ
i zi or zih

þ
i xi: If xih

þ
i zi;

zihiwi implies, using the definition of hi and (6),
xihiwi: Similarly if zih

þ
i xi; xihiyi implies zihiyi:

Hence, hi is Ferrers. The proof using AC2i is similar.
Part 3: In view of part 2 above, all we have to show is

that hi is semi-transitive. Suppose that xihiyi and
yihizi: Using AC1i; we know that either wih

þ
i yi or

yig
þ
i wi: If wih

þ
i yi; yihizi implies, using the definition

ofhi and (6), wihizi: Suppose now that yig
þ
i wi:Using

AC3i and part 3 of Lemma 3, we know that yih
	
i wi:

Using the definition of hi and (7), xihiyi and yih
	
i wi

imply xihiwi: Hence, hi is semi-transitive. The proof
using AC2i is similar. &

3.4. Strict responsiveness to marginal traces

Keeping in mind the classical constant threshold
numerical representation for finite semi-orders (see
Pirlot & Vincke, 1997; Scott & Suppes, 1958), it is clear
that, in general, in a semi-order we may have xhy;
yg7z and xBz: Hence, h may not be strictly
responsive to g

7 even when h and h
7 are complete.

Indeed, it is easy to see that a semi-order for which

½xhy and yg7z� ) xgz; ð10Þ

must be a weak order.
Considering marginal traces, it is now possible to

envisage binary relations that are strictly responsive to
each of their marginal traces without implying that they
are (semi-)transitive or Ferrers.

Definition 4 (Conditions AC4, TAC1, TAC2). We say
that h satisfies:
AC4i if it satisfies AC3i and when one of the two

conclusions of AC3i is false then the other one holds
with g instead of h;
TAC1i if

ðxi; a	iÞhy

and

yhðzi; a	iÞ
and

ðzi; b	iÞhw

9>>>>>>=
>>>>>>;

) ðxi; b	iÞhw;
TAC2i if

ðxi; a	iÞhy

and

yhðzi; a	iÞ
and

whðxi; b	iÞ

9>>>>>>=
>>>>>>;

) whðzi; b	iÞ;

for all xi; ziAXi; all a	i; b	iAX	i and all y;wAX :
We say thath satisfies AC4 (resp. TAC1, TAC2) if it

satisfies AC4i (resp. TAC1i; TAC2i) for all iAN:

Condition AC4i is a clear strengthening of AC3i: As
soon as h is reflexive, AC4i will imply both AC1i and
AC2i: Conditions TAC1i and TAC2i (the rationale for
the names being that TAC1 and TAC2 are intrA-
attribute Cancellation conditions involving three pre-
mises) will prove equivalent to AC4i when h is
complete. The first two premises of TAC1i and TAC2i

suggest that the level xi is not worse than the level zi:
TAC1i (resp. TAC2i) then imply than xi should upward
dominate (resp. downward dominate) zi:

Lemma 4 (Strict responsiveness to marginal traces). 1.
AC4i is equivalent to AC3i and the conjunction of the

following two conditions:

xhy and Not½xih
þ
i zi� ) Not½yhðzi; x	iÞ�; ð11Þ

xhy and Not½wih
	
i yi� ) Not½ðwi; y	iÞhx�: ð12Þ

2. If h is reflexive, AC4i is equivalent to the

completeness of h7
i and the conjunction of the following

two conditions:

½xhy and zig
7
i xi� ) ðzi; x	iÞgy; ð13Þ

½xhy and yig
7
i wi� ) xgðwi; y	iÞ: ð14Þ

3. If h is reflexive and satisfies AC4i then

* h is independent for fig;
* hi is a weak-order and
* hi ¼ h

7
i :

4. If h is complete, TAC1i is equivalent to the

completeness of hþ
i and the following condition:

½xhy and zig
þ
i xi� ) ðzi; x	iÞgy: ð15Þ

5. If h is complete, TAC2i is equivalent to the

completeness of h	
i and the following condition:

½xhy and yig
	
i wi� ) xgðwi; y	iÞ: ð16Þ

6. If h is complete, ½TAC1i and TAC2i�3AC4i:
7. In the class of complete relations, TAC1 and TAC2

are independent conditions.
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8. There are weakly independent semi-orders verifying

TAC1 and TAC2 that are not weak orders.

Proof. Part 1: ð)Þ By definition, AC4i implies AC3i:
We prove that [AC4i ) (11)], the proof for (12) being
similar. Suppose that (11) is violated so that xhy;
ðzi; a	iÞhw; Not½ðxi; a	iÞhw� and yhðzi; x	iÞ: Apply-
ing AC3i to ðzi; a	iÞhw and yhðzi; x	iÞ yields
ðxi; a	iÞhw or yhðxi; x	iÞ: Since, by hypothesis,
Not½ðxi; a	iÞhw�; AC4i implies ygx; a contradiction.

ð(Þ Suppose that ðxi; a	iÞhy and zhðxi; b	iÞ: Using
AC3i; we have either ðwi; a	iÞhy or zhðwi; d	iÞ:
Suppose, in addition, that Not½ðwi; a	iÞhy� and
zBðwi; d	iÞ: From ðxi; a	iÞhy and Not½ðwi; a	iÞhy�;
we know that Not½wih

þ
i xi�: Using (11), ðwi; d	iÞhz and

Not½wih
þ
i xi� imply Not½zhðxi; d	iÞ�; a contradiction.

The proof is similar, using (12), if we suppose that:
ðwi; a	iÞBy and Not½zhðwi; d	iÞ�:

Part 2: ð)Þ Let us first show that ½AC4i )
AC1i and AC2i� when h is reflexive. Suppose AC1i is
violated so that, for some xi; ziAXi; Not½xih

þ
i zi� and

Not½zih
þ
i xi�: Since AC3i holds, this implies xiB	

i zi:
Now, xhx and Not½xih

þ
i zi� imply, using (11),

Not½xhðzi; x	iÞ�: But xhx and Not½xhðzi; x	iÞ� imply
Not½xih

	
i zi�; a contradiction. The proof for AC2i using

(12) is similar. Hence, AC1i and AC2i hold. Since AC3i

holds by construction, h7
i is complete.

Let us now show that (13) holds. Suppose that xhy

and zig
7
i xi: From the definition of h7

i we know that
ðzi; x	iÞhy: Suppose now that, in contradiction with the
thesis, yhðzi; x	iÞ: Since h

7
i is complete, zig

7
i xi

implies either Not½xih
þ
i zi� or Not½xih

	
i zi�: If

Not½xih
þ
i zi�; then, using (11), xhy would imply

Not½yhðzi; x	iÞ�; a contradiction. Similarly if
Not½xih

	
i zi�; yhðzi; x	iÞ would imply, using (12),

Not½xhy�; a contradiction. The proof for (14) is similar.
ð(Þ Sinceh7

i is complete, we know that AC3i holds.
We show that the part of AC4i not covered by AC3i

holds. Suppose that ðxi; a	iÞhy; zhðxi; b	iÞ;
Not½ðwi; a	iÞhy� and zBðwi; b	iÞ: From ðxi; a	iÞhy

and Not½ðwi; a	iÞhy�; we know that Not½wih
þ
i xi�; so

that xig
7
i wi: Using (13), ðwi; b	iÞhz would imply

ðxi; b	iÞgz; a contradiction. The proof is similar, using
(14), if ðwi; a	iÞBy and Not½zhðwi; b	iÞ�:

Part 3: Suppose that ðxi; a	iÞhðyi; a	iÞ and
Not½ðxi; b	iÞhðyi; b	iÞ�: Since h is reflexive, we know
that ðyi; b	iÞhðyi; b	iÞ: Thus, since we know from part 2
that h

7
i is complete, we have yig

7
i xi: Using (13),

yig
7
i xi and ðxi; a	iÞhðyi; a	iÞ would imply

ðyi; a	iÞgðyi; a	iÞ; a contradiction. Hence, h is inde-
pendent for fig:
Sinceh is reflexive, we know, from part 2 thath7

i is
complete. Using reflexivity and (8), we have: xih

7
i yi )

xihiyi: Let us show that xig
7
i yi ) xi giyi; which will

complete the proof. Suppose that xig
7
i yi: Since h is

reflexive, we have ðyi; a	iÞhðyi; a	iÞ; for all a	iAX	i:
Using (13), we obtain ðxi; a	iÞgðyi; a	iÞ; for all
a	iAX	i: We thus have xi giyi:

Part 4: ð)Þ Let us first show that when h is
complete, TAC1i ) AC1i: Suppose that AC1i is vio-
lated so that ðxi; a	iÞhy; ðzi; b	iÞhw Not½ðzi; a	iÞhy�
and Not½ðxi; b	iÞhw�: Since h is complete, we know
that yhðzi; a	iÞ: Using TAC1i; ðxi; a	iÞhy; yhðzi; a	iÞ
and ðzi; b	iÞhw imply ðxi; b	iÞhw; a contradiction.
Hence AC1i holds and h

þ
i is complete.

Suppose now, in contradiction with (15) that xhy;
zig

þ
i xi and yhðzi; x	iÞ: We know that Not½xih

þ
i zi�; so

that ðzi; a	iÞhw and wgðxi; a	iÞ; for some wAX and
some a	iAX	i: Using TAC1i; xhy; yhðzi; x	iÞ and
ðzi; a	iÞhw imply ðxi; a	iÞhw; a contradiction.

ð(Þ Suppose that TAC1i is violated so that
ðxi; a	iÞhy; yhðzi; a	iÞ ðzi; b	iÞhw and wgðxi; b	iÞ:
This implies Not½xih

þ
i zi�: Since h

þ
i is complete, we

have zig
7
i xi: Using (15), ðxi; a	iÞhy and zig

7
i xi

would imply ðzi; a	iÞgy; a contradiction.
The proof of part 5 is similar.
Part 6: ð)Þ In view of parts 2, 4 and 5, all we have to

show is that h7
i is complete, i.e. that AC3i holds.

Suppose that AC3i is violated so that ðxi; a	iÞhy;
whðxi; b	iÞ; Not½ðzi; a	iÞhy� and Not½whðzi; b	iÞ�; for
some xi; ziAXi; a	i; b	iAX	i and y;wAX : Since h is
complete, we have ðzi; b	iÞhw: Using TAC1i;
ðzi; b	iÞhw; whðxi; b	iÞ and ðxi; a	iÞhy imply
ðzi; a	iÞhy; a contradiction.

ð(Þ We show that AC4i ) TAC1i; the proof for
TAC2i being similar. Suppose that TAC1i is violated so
that ðxi; a	iÞhy; yhðzi; a	iÞ; ðzi; b	iÞhw and
wgðxi; b	iÞ: This implies, since h

7
i is complete,

zig
7
i xi: Using (13), ðxi; a	iÞhy and zig

7
i xi would

imply ðzi; a	iÞgy; a contradiction.
Parts 7 and 8: See Examples A.4 and A.5 in

Appendix A. &

As soon as h is reflexive, condition AC4i is therefore
exactly what is needed to ensure the strict responsiveness
of h with respect to g

7
i : This also implies that h is

independent for fig and that hi ¼ h
7
i : Note that,

while AC4i implies that h is strictly responsive to h
7
i ;

it does not imply that it is (semi-)transitive or Ferrers.
When h is complete, condition AC4i can be factorized
as the conjunction of TAC1i and TAC2i: Using (13) and
(14) (resp. (15) and (16)) can facilitate the test of AC4i

(resp. TAC1i and TAC2i).
4. Relations compatible with dominance

A binary relationh on a set X ¼
Qn

i¼1 Xi is said to be
compatible with a dominance relation if it possible to
define a weak order Si on each Xi in such a way that
these weak orders ‘‘combine nicely’’ with h: The
intuitive idea underlying the following definition the
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following. Suppose that xhy: If z is ‘‘at least as good’’
as x on all attributes (i.e. zi Si xi for all iAN) and y is at
least as good as w on all attributes (i.e. yi Si wi for all
iAN) then it should follow that zhw: Note that we only
define below dominance-compatibility for reflexive
binary relations, interpreting h as an ‘‘at least good
as’’ preference relation between alternatives. Although it
is not difficult to study the case of asymmetric binary
relations, we do not investigate this point here.

Definition 5 (Dominance-compatible relations). A re-

flexive binary relation h on a set X ¼
Qn

i¼1 Xi is
compatible with a dominance relation if, for all iAN;
there is a weak order Si on Xi such that, for all x; yAX

and all zi;wiAXi;

½xhy; zi Si xi and yi Si wi; for all iAN�
) zhw: ð17Þ

This compatibility is said to be strict when the
conclusion of condition (17) is modified to zgw as
soon as zj Pj xj or yj Pj wj for some jAN; where Pj

denotes the asymmetric part of Sj:

Intuition might suggest the following alternative
definition of dominance-compatibility:

½xi Si yi for all iAN� ) xhy: ð18Þ

It is however easy to convince oneself that such a
definition is too weak to capture the whole idea of
compatibility with dominance when h is not supposed
to be complete or transitive. Indeed, when h has cycles
in its asymmetric part, it might obey (18) while there
may exist x; y; zAX such that x D y; ygz and zgx

(where D denotes the dominance relation, i.e.
x D y3xi Si yi for all iAN). In such a case, the search
for efficient alternatives would be of little help so that it
seems difficult to say that h is compatible with
dominance.
The definition of dominance-compatibility used here

is similar to the one used in Roy (1996), Roy and
Bouyssou (1993), Vincke (1992), when defining the
notion of a ‘‘consistent family of criteria’’. It clearly
implies (18) since h is reflexive. It should be noted that
condition (17), which requires that Si combines nicely
with h; also implies that Si combines nicely with g: It
is easy to see that condition (17) implies that

½xgy; zi Si xi and yi Si wi; for all iAN�
) zgw: ð19Þ

From the preceding section, it is expected that if a
binary relation h is dominance-compatible, the weak
orders Si on each attribute should be closely linked to
the marginal traces induced by h on each Xi: Similarly
it is also expected that strict compatibility with domi-
nance should be related with the strict responsiveness of
h to its marginal traces. As shown below this is indeed
the case.

Theorem 1 (Dominance-compatibility). A reflexive bin-

ary relation h on a set X ¼
Qn

i¼1 Xi is

1. compatible with a dominance relation if and only if it

satisfies AC1–AC3,
2. strictly compatible with a dominance relation if and

only if it satisfies AC4.

Proof. Part 1: The necessity of AC1–AC3 is easily
shown. We take the example of AC1, the other cases
being similar. Suppose that ðxi; a	iÞhy and ðzi; b	iÞhw:
The relation Si being complete, we have either xi Si zi or
zi Si xi: If zi Si xi then, using the definition of dominance
compatibility, ðxi; a	iÞhy implies ðzi; a	iÞhy: If xi Si zi;
then ðzi; b	iÞhw implies ðxi; b	iÞhw: Hence AC1 holds.
The sufficiency of AC1–AC3 is obvious, in view of

part 4 of Lemma 3 and (8), letting Si ¼ h
7
i for all iAN:

Part 2: When h is reflexive, we know from part 2 of
Lemma 4 that AC4i implies all of AC1i; AC2i and AC3i:
In view of part 1 above, we only have to show the
necessity of the part of AC4i not covered by AC3i:
Suppose that zhðxi; a	iÞ and ðxi; b	iÞhy: The relation
Si being complete, we have either xi Ii wi; xi Pi wi or
wi Pi xi; where Ii and Pi; respectively, denote the
symmetric and asymmetric part of Si: If xi Ii wi then,
using the definition of dominance-compatibility,
zhðwi; a	iÞ and ðwi; b	iÞhy; so that there is nothing
to prove. If xi Pi wi then, using the definition of strict
dominance-compatibility, we obtain zgðwi; a	iÞ: Simi-
larly, if wi Pi xi; we obtain ðwi; b	iÞgy: Thus AC4i

holds.
The sufficiency of AC4 results from part 1 above and

part 2 of Lemma 4, letting Si ¼ h
7
i for all iAN: &

Within a conjoint measurement framework, Theorem
1 gives necessary and sufficient conditions for a binary
relation to be (strictly) dominance-compatible. It should
be noticed that these conditions do not imply that h is
complete or has ‘‘nice’’ transitivity properties. In fact,
using examples inspired from Condorcet’s paradox (see
e.g. Sen, 1986), it is easy to build a strictly dominance-
compatible binary relation h having circuits in its
asymmetric part (e.g. buildingh via the simple majority
method applied to the relations Si).
Let us note that if a binary relation h is strictly

compatible with a dominance relation, the weak orders
Si are necessarily unique (indeed suppose that there are
two distinct such families of weak orders Si and S0

i ; then
xi Pi yi and yi S0

ixi would imply, using the reflexivity of
h; both ðxi; x	iÞgðyi; x	iÞ and ðyi; x	iÞhðxi; x	iÞ).
This is not so when only dominance-compatibility is
required since elements in the same equivalence class of
B7

i may be ranked in whatever order by Si: It is
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nevertheless easy to see that we always have:

xig
7
i yi ) xi Pi yi;

so that Si are unique on Xi=B7
i :

When h is complete, it is clearly possible to combine
part 6 of Lemma 4 with Theorem 1 to modify the
characterization of strict compatibility with dominance
using TAC1 and TAC2 instead of AC4.
It is worth noting at that point that the characteriza-

tion of (strict) compatibility with a dominance relation
can be greatly simplified when h is a weak order. This
case is indeed highly specific since it implies that the
global trace h

7 is equal to h and the marginal trace
h

7
i is equal to the marginal preference relation hi:

Lemma 5 (Dominance and weak orders). Let h be a

weak order on a set X ¼
Qn

i¼1 Xi: Then:

1. ½h is weakly separable�3 ½h satisfies AC1�3 ½h
satisfies AC2�3 ½h satisfies AC3�;

2. ½h is weakly independent�3 ½h satisfies AC4�:

Proof. Part 1: We show that, when h is a weak order,
weak separability holds if and only if AC1 holds. The
proof of the other equivalences is similar.

½AC1 ) Weak separability]. Suppose that h is not
weakly separable. Therefore there is an iAN and
xi; yiAXi such that ðxi; z	iÞgðyi; z	iÞ and ðyi;w	iÞg
ðxi;w	iÞ; for some z	i;w	iAX	i: Since h is reflexive, we
have ðxi; z	iÞhðxi; z	iÞ and ðyi;w	iÞhðyi;w	iÞ: Using
AC1, we have either xih

þ
i yi or yih

þ
i xi so that either

ðyi; z	iÞhðxi; z	iÞ or ðxi;w	iÞhðyi;w	iÞ; a contradiction.
[Weak separability ) AC1]. Suppose that AC1 is

violated so that, since h is complete, ðxi; a	iÞhy;
ðzi; c	iÞhw; ygðzi; a	iÞ and wgðxi; c	iÞ; for some
xi; ziAXi; some a	i; c	iAX	i and some y;wAX : Since
h is a weak order, we obtain ðxi; a	iÞgðzi; a	iÞ and
ðzi; c	iÞgðxi; c	iÞ; which violates weak separability.

Part 2: [AC4 ) Weak independence]. Suppose that
h is not weakly independent, i.e. there is an iAN and
xi; yiAXi such that ðxi; z	iÞhðyi; z	iÞ and ðyi;w	iÞg
ðxi;w	iÞ for some z	i;w	iAX	i: Since h is reflexive
we have ðxi; z	iÞhðxi; z	iÞ and ðxi;w	iÞhðxi;w	iÞ:
Using AC3 we must have either ðyi; z	iÞhðxi; z	iÞ or
ðxi;w	iÞhðyi;w	iÞ: The second condition being
false by hypothesis, AC4 implies ðyi; z	iÞgðxi; z	iÞ; a
contradiction.
[Weak independence ) AC4]. In view of part 1

above, we only have to show the necessity of the part of
AC4 not covered by AC3. Suppose, using the complete-
ness of h; that ðxi; a	iÞhy; whðxi; b	iÞ and either
½ygðzi; a	iÞ and wBðzi; b	iÞ� or ½ðzi; a	iÞBy and
ðzi; b	iÞgw�: We deal with the first case, the other one
being similar. We have ygðzi; a	iÞ and ðxi; a	iÞhy;
which imply, since h is a weak order, ðxi; a	iÞg
ðzi; a	iÞ: Similarly, whðxi; b	iÞ and wBðzi; b	iÞ
imply ðzi; b	iÞhðxi; b	iÞ; which violates weak indepen-
dence. &

As shown by Examples A.1–A.3 in Appendix A, it is
not possible to simplify the characterization of dom-
inance-compatibility in a similar way for semi-orders.
Indeed, there are weakly independent semi-orders which
may violate AC1, AC2 or AC3. Again, this shows that
the case of weak orders is highly specific.
5. Traces and numerical representations

5.1. Background

Following the strategy of Bouyssou and Pirlot (2002)
we shall use very general numerical representations as a
guideline for our study. We recall here some well known
facts about trivial numerical representations of binary
relations on sets without special structure. Although the
results in this section may be part of the folklore of
binary relations (see Ebert, 1985), we outline their proof,
the logic of which being useful in the sequel.
In order to concentrate on the core arguments, we

suppose in this section that binary relations are defined
on countable (i.e. finite or countably infinite) sets. The
general case is studied in Appendix B.
Let h be a binary relation of a set A: It is clearly

always possible to build a, trivial, numerical representa-
tion of h such that:

ahb 3 Gða; bÞX0; ð20Þ

where G is a real-valued function on A2 defined letting,
for all a; bAA:

Gða; bÞ ¼
þ1 if ahb;

	1 otherwise:




It is possible to further specify the trivial numerical
representation given by (20). Remember that we
defined an equivalence relation B7 on the basis of h:
Since we suppose here that A is countable (in fact, as
soon as the cardinality of A=B7 is not ‘‘too large’’),
there is a real-valued function u on A such that, for all
a; bAA:

aB7b 3 uðaÞ ¼ uðbÞ: ð21Þ

As shown below, such a function can be integrated in a
numerical representation of type (20).

Proposition 4 (Trivial numerical representations). Let

h be a binary relation on a countable set A:

1. There is a real-valued function u on A and a real-valued

function F on uðAÞ2 such that, for all a; bAA:

ahb 3 FðuðaÞ; uðbÞÞX0: ð22Þ
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2. The function F in (22) can be chosen so that

Fða; aÞX0; for all aAuðAÞ; if and only if h is

reflexive.
3. The function F in (22) can be chosen so as to be

skew symmetric (i.e. Fða; bÞ ¼ 	Fðb; aÞ; for all

a; bAuðAÞ) if and only if h is complete.

Proof. Part 1: Take any function u satisfying (21) and
define F letting, for all a; bAA:

FðuðaÞ; uðbÞÞ ¼
þ1 if ahb;

	1 otherwise:



ð23Þ

We have to show that F is well defined, i.e. that ½uðaÞ ¼
uðcÞ and uðbÞ ¼ uðdÞ� implies ½ahb3chd�: This is (5).
The proof of part 2 is obvious.

Part 3: Take any function u satisfying (21) and define
F letting, for all a; bAA:

FðuðaÞ; uðbÞÞ ¼
þ1 if agb;

0 if aBb;

	1 otherwise:

8><
>: ð24Þ

Using the completeness of h and (5), it is easy to see
that F is well defined and skew symmetric. The
converse is immediate. &

Requiring some monotonicity properties linking F
and u in representation (22) unsurprisingly leads to
much more constrained structures. We have:

Proposition 5 (Semi-orders and weak orders). Let h be

a binary relation on a countable set A: Then:

1. h has a representation of type (22) with F increasing

in its first argument and decreasing in its second

argument if and only if h is Ferrers and semi-

transitive.

2. h has a representation of type (22) with F skew

symmetric, nondecreasing in its first argument and

nonincreasing in its second argument if and only if h is

a semi-order,
3. h has a representation of type (22) with F skew

symmetric, increasing in its first argument and

decreasing in its second argument if and only if h is

a weak order. In that case, it is always possible to take

Fða; bÞ ¼ a	 b:

Proof. Part 1: The necessity of Ferrers and semi-
transitivity is easily established using the properties of
F: Let us for instance show that h is semi-transitive.
Suppose that ahb and bhc: Hence FðuðaÞ; uðbÞÞX0
and FðuðbÞ; uðcÞÞX0: If uðbÞXuðdÞ then FðuðaÞ; uðdÞÞ
XFðuðaÞ; uðbÞÞX0 so that ahd: Otherwise we
have uðdÞ4uðbÞ; which implies FðuðdÞ; uðcÞÞ4FðuðbÞ;
uðcÞÞX0 so that dhc:
In order to show sufficiency, remember from part
2 of proposition 2 that, when h is Ferrers and semi-
transitive, h7 is a weak order. Since A is countable,
there is a real-valued function u such that, for all
a; bAA:

ah7b 3 uðaÞXuðbÞ: ð25Þ

Using any function u satisfying (25), define F letting,
for all a; bAA;

FðuðaÞ; uðbÞÞ ¼
þexpðuðaÞ 	 uðbÞÞ if ahb;

	expðuðbÞ 	 uðaÞÞ otherwise:



ð26Þ

That F is well defined follows from (5). Its mono-
tonicity properties follow from (4) and its definition.

Part 2: The necessity of completeness, Ferrers and
semi-transitivity is easily established.
Sufficiency. Since h is Ferrers and semi-transitive

and A is countable, there is a function u satisfying (25).
Using any such function u; define F as in (24). That F
is well defined follows from part 4 of Proposition 4 since
B7 is the symmetric part of h7: The skew symmetry
of F follows from the completeness of h: The
monotonicity properties of F follow from (4).

Part 3: The necessity of completeness is obvious.
Suppose that ahb and bhc: Hence FðuðaÞ; uðbÞÞX0
and FðuðbÞ; uðcÞÞX0: Since F is skew symmetric we
know that FðuðcÞ; uðbÞÞp0: Using the increasingness of
F; FðuðaÞ; uðbÞÞX0 and FðuðcÞ; uðbÞÞp0 imply
uðaÞXuðcÞ: Since FðuðaÞ; uðaÞÞ ¼ 0; because F is skew
symmetric, we have FðuðaÞ; uðcÞÞX0 so that ahc:
Hence, h is transitive.
Sufficiency. Since h is a weak order and A is

countable, there is a function u such that, for all a; bAA:

ahb 3 uðaÞXuðbÞ:

Using any such function u; define F letting, for all
a; bAA; FðuðaÞ; uðbÞÞ ¼ uðaÞ 	 uðbÞ: &

When A is a product set, it is possible to use the
marginal traces of h much in the same way we
have just used the global trace h

7 in order to obtain
numerical representations. This is explored in what
follows.

5.2. Trivial numerical representations on product sets

Arbitrary binary relations on product sets have trivial
numerical representations of many different kinds (see
Bouyssou & Pirlot, 2002, 2003). We present one
below that will be easily compared with the general
representations introduced above. Again, we suppose
in this section that X ¼

Qn
i¼1 Xi is countable, the

general case being studied in Appendix B. We abuse
notation in the sequel, writing Fð½uiðxiÞ�; ½uiðyiÞ�Þ instead
of Fðu1ðx1Þ; u2ðx2Þ;y; unðxnÞ; u1ðy1Þ; u2ðy2Þ;y; unðynÞÞ
when there is no risk of confusion.
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Proposition 6 (Trivial numerical representations on
product sets). Let h be a binary relation on a countable

set X ¼
Qn

i¼1 Xi: There are real-valued functions ui on Xi

and a real-valued function F on ½
Qn

i¼1 uiðXiÞ�2 such that,
for all x; yAX :

xhy 3 Fð½uiðxiÞ�; ½uiðyiÞ�ÞX0: ð27Þ
Furthermore, the function F in (27) can be taken so that,
for all x; yAX ;

1. Fð½uiðxiÞ�; ½uiðxiÞ�ÞX0
iff h is reflexive,

2. Fð½uiðxiÞ�; ½uiðyiÞ�Þ ¼ 	Fð½uiðyiÞ�; ½uiðxiÞ�Þ
iff h is complete.

Proof. Let iAN: By construction, B7
i is an equivalence

being a reflexive, symmetric and transitive binary
relation. Since Xi is countable, we know that there is a
real-valued function ui on Xi such that, for all xi; yiAXi:

xiB7
i yi 3 uiðxiÞ ¼ uiðyiÞ: ð28Þ

For each iAN; consider any real-valued function ui on
Xi satisfying (28). Define F on ½

Qn
i¼1 uiðXiÞ�2 letting, for

all x; yAX ;

Fð½uiðxiÞ�; ½uiðyiÞ�Þ ¼
þ1 if xhy;

	1 otherwise:




The well-definedness of F follows from (9). The impact
of reflexivity on the above representation is obvious.
In order to deal with the ‘‘skew symmetric’’ case

(Fð½uiðxiÞ�; ½uiðyiÞ�Þ ¼ 	Fð½uiðyiÞ�; ½uiðxiÞ�Þ), consider, for
each iAN; a real-valued function ui on Xi satisfying (28)
and define F on ½

Qn
i¼1 uiðXiÞ�2 letting, for all x; yAX ;

Fð½uiðxiÞ�; ½uiðyiÞ�Þ ¼
þ1 if xgy;

0 if xBy;

	1 otherwise:

8><
>:

The well-definedness of F follows from (9). &

The above proposition is the counterpart of Proposi-
tion 4 taking the underlying product structure of the set
of objects into account.

5.3. Marginal traces and numerical representations

In Proposition 6, the role of ui is merely to attach
a number to each equivalence class of Xi=B7

i while
F passively recodes as þ1’s and 	1’s (possibly using
0 in the skew symmetric case) the presence or absence of
h for every possible combination of elements of
Xi=B7

i : Clearly, as was the case in Section 5.1, the
situation radically changes as soon as F is supposed to
have some monotonicity properties w.r.t. the ui’s. The,
important, difference here is that these additional
properties do not imply that h is complete, Ferrers or
(semi-)transitive.
Theorem 2 (Numerical representations on product
sets). Let h be a binary relation on a countable set X ¼Qn

i¼1 Xi: There is a numerical representation of type (27)
in which F is increasing in its first n arguments

and decreasing in its last n arguments iff h satisfies

AC1–AC3. In addition, F can be taken so that

Fð½uiðxiÞ�; ½uiðxiÞ�ÞX0 iff h is reflexive.

Proof. The necessity of AC1–AC3 is easily shown
using the properties of F : We take the case of AC3.
Suppose that ðxi; a	iÞhy and whðxi; b	iÞ so that,
abusing notation, Fð½uiðxiÞ; ujðajÞjai�; ½ujðyjÞ�ÞX0 and
Fð½ujðwjÞ�; ½uiðxiÞ; ujðbjÞjai�ÞX0: If uiðziÞ4uiðxiÞ then
Fð½uiðziÞ; ujðajÞjai�; ½ujðyjÞ�Þ40 so that ðzi; a	iÞhy:
Otherwise uiðxiÞXuiðziÞ leads to Fð½ujðwjÞ�; ½uiðziÞ;
ujðbjÞjai�ÞX0 so that whðzi; b	iÞ:
Sufficiency. Since AC1–AC3 hold, we know from part

4 of Lemma 3 that h
7
i is a weak order. Since Xi is

countable, there is a real-valued function ui on Xi such
that, for all xi; yiAXi:

xih
7
i yi 3 uiðxiÞXuiðyiÞ: ð29Þ

Consider, for each iAN; any real-valued function ui on
Xi satisfying (28) and define F on ½

Qn
i¼1 uiðXiÞ�2 letting,

for all x; yAX ;

Fð½uiðxiÞ�; ½uiðyiÞ�Þ

¼
þexpð

Pn
i¼1ðuiðxiÞ 	 uiðyiÞÞÞ if xhy;

	expð
Pn

i¼1ðuiðyiÞ 	 uiðxiÞÞÞ otherwise:




The well-definedness of F follows from (9). The
monotonicity properties of F follow from (8) and its
definition.
The impact of the reflexivity ofh on F is obvious. &

It should be noted that a somewhat weaker form
(using nondecreasingness and nonincreasingness) of
Theorem 2 was noted in Greco et al. (2002, Theorem
2.1) using our conditions AC1–AC3.
The situation is slightly more complex with complete

relations h if we insist on using a ‘‘skew symmetric’’
function F (i.e., such that Fð½uiðxiÞ�; ½uiðyiÞ�Þ ¼
	Fð½uiðyiÞ�; ½uiðxiÞ�Þ). When F is skew symmetric, the
value ‘‘0’’ plays a special role. This leads to distinguish
the increasing case from the nondecreasing one, as in
Proposition 5 with semi-orders and weak orders.

Theorem 3 (Skew symmetric representations on product
sets). Let h be a binary relation on a countable set

X ¼
Qn

i¼1 Xi:

1. There is a numerical representation of type (27) in

which F is skew symmetric, nondecreasing in its first n

arguments and nonincreasing in its last n arguments

iff

h is complete and satisfies AC1–AC3.
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2. There is a numerical representation of type (27) in

which F is skew symmetric, increasing in its first n

arguments and decreasing in its last n arguments

iff

h is complete and satisfies TAC1 and TAC2.

Proof. Part 1: The necessity of completeness, AC1–AC3
is easily shown using the properties of F : We establish
sufficiency. Consider, for each iAN; any real-valued
function ui on Xi satisfying (29) and define F on
½
Qn

i¼1 uiðXiÞ�2 letting, for all x; yAX ;

Fð½uiðxiÞ�; ½uiðyiÞ�Þ

¼
þexpð

Pn
i¼1ðuiðxiÞ 	 uiðyiÞÞÞ if xgy;

0 if xBy;

	expð
Pn

i¼1ðuiðyiÞ 	 uiðxiÞÞÞ otherwise:

8><
>: ð30Þ

The well-definedness of F follows from (9). It is skew
symmetric by construction since h is complete. Let us
show that F is nondecreasing in its first n arguments.
Suppose that uiðziÞ4uiðxiÞ so that zig

7
i xi: If xgy; we

know, using (8), that ðzi; x	iÞgy and the conclusion
follows from the definition of F : If xBy; we have, using
(8), ðzi; x	iÞhy and the conclusion follows from the
definition of F : If Not½xhy� we have either ðzi; x	iÞgy;
ðzi; x	iÞBy; or Not½ðzi; x	iÞhy�: In either case, the
conclusion follows from the definition of F : The proof
that F is nonincreasing in its last n argument is similar.

Part 2: Necessity: The necessity of completeness is
clear. Suppose that ðxi; a	iÞhy; yhðzi; a	iÞ;
ðzi; b	iÞhw and Not½ðxi; b	iÞhw�: Using the increas-
ingness of F in its first n arguments, the last two
conditions imply that uiðziÞ4uiðxiÞ: But ðxi; a	iÞhy and
uiðziÞ4uiðxiÞ imply ðzi; a	iÞgy; a contradiction. Hence
the necessity of TAC1. The necessity is TAC2 is proved
similarly.

Sufficiency: Since h is complete, we know that TAC1
and TAC2 imply AC1–AC3. Define ui and F as in the
proof of part 1 above. We have to show that F is
increasing. This results from the definition of F and
parts 2 and 6 of Lemma 4. &

5.4. Weak-orders

In this section, we show how the preceding results
particularize when it is supposed thath is a weak order.
Since marginal traces are then confounded with margin-
al preferences, much simplification is expected.
Our first elementary result shows that the technique of

Proposition 6 applies to the classical numerical repre-
sentation of weak orders.

Proposition 7. Let h be a binary relation on a countable

set X ¼
Qn

i¼1 Xi: There are real-valued functions ui on Xi

and a real-valued function U on
Qn

i¼1 uiðXiÞ such that, for
all x; yAX ;

xhy3Uðu1ðx1Þ;y; unðxnÞÞXUðu1ðy1Þ;y; unðynÞÞ:
ð31Þ

iff h is a weak order.

Proof. Necessity is obvious. Since h is a weak order
and X is countable, there is a real-valued function u on
X such that, for all x; yAX ; xhy3uðxÞXuðyÞ: Con-
sider, for each iAN; a real-valued function ui on Xi

satisfying (28) and define U on
Qn

i¼1 uiðXiÞ letting, for all
xAX ;

Uð½uiðxiÞ�Þ ¼ uðxÞ: ð32Þ

Using the reflexivity and transitivity of B and (9) it is
easily shown that U is well defined. &

Combining the results in Lemmas 3–5 leads to the
following.

Proposition 8. Let h be a weak order on a countable set

X ¼
Qn

i¼1 Xi: The function U in (31) can be chosen to be:

1. nondecreasing in each of its arguments iff

h is weakly separable,
2. increasing in each of its arguments iff

h is weakly independent.

Proof. Part 1: Necessity of weak separability directly
results from the nondecreasingness of U in all its
arguments and the reflexivity of h: In order to prove
sufficiency, we know from part 1 of Lemma 5 that AC1–
AC3 hold so that, using part 4 of Lemma 3, h7

i is a
weak order. Since Xi is countable, there is a real-valued
function ui on Xi satisfying (29). Consider, for each
iAN; a real-valued function ui on Xi satisfying (29) and
define U on

Qn
i¼1 uiðXiÞ as in (32). The well-definedness

of U results from Proposition 7. The nondecreasingness
of U follows from (8) and its definition.

Part 2: Necessity of weak independence directly
results from the increasingness of U in all its arguments
and the reflexivity of h: Using functions ui and U as in
part 1, increasingness follows from (8) together with
part 2 of Lemmas 5 and 4. &

Part 1 of Proposition 8 generalizes a result obtained in
Blackorby et al. (1978) in case XDRn and was
anticipated, in a different framework, in Greco,
Matarazzo, and Slowiński (2001a). Part 2 is a well-
known result (see Krantz et al., 1971, Theorem 7.1).

5.5. Remarks

The results in this section prompt a number of
remarks.



ARTICLE IN PRESS
D. Bouyssou, M. Pirlot / Journal of Mathematical Psychology 48 (2004) 167–185 179
1. Combining the results of Theorems 1 and 2 shows,
as announced, that all binary relations compatible
with dominance, whether or not transitive and
complete, have a nontrivial numerical representa-
tion. We therefore hope that our framework and
results may serve to establish connections between
the two traditions in decision analysis with multiple
attributes mentioned in introduction. Using the idea
of traces makes it possible to extend the traditional
framework of conjoint measurement to analyze
binary relations that may not be well behaved. The
need for studying such extensions was forcefully
advocated in Bouyssou and Pirlot (2002), Fishburn
(1990, 1991a, b), May (1954), and Tversky (1969).
Conversely the very intuitive but sometimes
rather ad hoc aggregation models based on the
notion of dominance can be subjected to a standard
axiomatic analysis in the framework of conjoint
measurement.

2. The price to pay for such an extension of the scope of
conjoint measurement is that our results, although
constructive, are not well adapted to serve as a basis
for assessment procedures. The general idea here is to
use numerical representations as guidelines to under-
stand the consequences of a limited number of
cancellation conditions, without imposing any tran-
sitivity or completeness requirement on the prefer-
ence relation and any structural assumptions on the
set of objects. As already noticed in Bouyssou and
Pirlot (2002), such a poor framework happens to be
surprisingly rich.

3. It should be clear that the numerical representations
envisaged in this paper (see Theorems 2 and 3) do not
possess any remarkable uniqueness properties. Again,
this is in line with our use of numerical representa-
tions as guidelines to investigate the consequences of
some particular conditions on h and not as a direct
basis to derive assessment procedures. We analyze the
uniqueness properties of the representations in
Theorems 2 and 3 in Appendix C.

4. Most of our results are technically simple. Their
extension to the case in which X is no more supposed
to be countable, as shown in Appendix B, do not
raise any serious difficulty beyond the well known
one of guaranteeing that traces have a numerical
representation. Therefore we refrained from spelling
out the various possible extensions of our results
beyond what we felt necessary for our purposes. Let
us simply mention that we did not cover in this paper
the case in which AC1 and AC2 hold but AC3 is not
imposed. The similarity of that case with that of
interval orders (see Fishburn, 1970a, 1973b, 1985)
should be clear at this point. Many of our results on
product sets can easily be modified to cover that case
using two real-valued functions ui and vi instead of
one. We do not develop this point.
5. We restricted our attention in this paper to the
analysis of conditions AC1i; AC2i; AC3i; AC4i;
TAC1i and TAC2i when imposed for all iAN: As
observed in Greco et al. (2002), this might be overly
restrictive. It is not difficult however to study the,
rather awkward, models that are obtained when these
conditions are only imposed on some, but not all
attributes.
Similarly, it is easy to generalize our conditions to

subsets of attributes more general than a singleton.
The study of the resulting models certainly deserves
attention. In fact, when aggregating attributes, it
might well happen that attributes interact in such a
way that weak separability is violated. This would
forbid the use of AC1 or AC2 as done here. Imposing
these conditions on the groups of ‘‘strongly interact-
ing’’ attributes might however lead to useful models.
Such models would be in the spirit of the process of
‘‘building criteria’’ by sub-aggregation as described in
e.g. Bouyssou (1990) and Roy (1996).
6. Discussion

The main aim of this paper was to establish
connections between the two separate traditions in
decision analysis with multiple attributes mentioned in
introduction. We believe that our framework based on
the analysis of marginal traces does so. Although further
research in this direction is obviously needed, our results
give reasonable hope that it could be fruitful.
We conclude with some remarks and the indication of

possible directions for future research.

1. The idea that the study of traces on attributes may
offer insights on the structure of multi-attributed
preferences also underlies the results in Bouyssou and
Pirlot (2002). Instead of studying traces on elements
of Xi; we study traces on ordered pairs of elements of
Xi interpreted as a relation comparing ‘‘preference
differences’’ defined from h: More precisely, it is
clear that the binary relation h

�
i on X 2

i defined
letting, for all xi; yi; zi;wiAXi;

ðxi; yiÞh�
i ðzi;wiÞ iff

½for all a	i; b	iAX	i; ðzi; a	iÞhðwi; b	iÞ
) ðxi; a	iÞhðyi; b	iÞ�:

is always reflexive and transitive. This suggests a
numerical representation of the type:

xhy 3 Fðp1ðx1; y1Þ; p2ðx2; y2Þ;y; pnðxn; ynÞÞX0;

ð33Þ

where pi are real-valued functions on X 2
i and F is a

real-valued function on
Qn

i¼1 piðX 2
i Þ; Imposing addi-

tional conditions on pi (e.g. their skew symmetry)
and/or on F (e.g. its oddness or nondecreasingness in
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all arguments) leads to a large variety of models that
require the completeness of h�

i :
As shown in Bouyssou and Pirlot (2003), this

family of models exploiting traces on ‘‘differences’’ is,
in general, quite independent of the family of models
exploiting traces on ‘‘levels’’ as studied here. This
gives room for the study of models combining these
two aspects, which is undertaken in Bouyssou and
Pirlot (2003). These hybrid models combining traces
on ‘‘levels’’ and traces on ‘‘differences’’ are of the
following type:

xhy3Fðf1ðu1ðx1Þ; u1ðy1ÞÞ;y;

fnðunðxnÞ; unðynÞÞÞX0; ð34Þ
where ui is a real-valued function on Xi and fi is a
real-valued function on uiðXiÞ2; F is a real-valued
function on

Q
iAN fiðuiðXiÞ; uðXiÞÞ and fi and F may

have additional properties (e.g., fi is skew symmetric
and/or nondecreasing in its first argument and
nonincreasing in its second arguments, F is odd
and/or nondecreasing in its arguments).

2. It has sometimes been claimed that rule-based
preference modelling is more ‘‘flexible’’ than ‘‘func-
tional’’ preference modelling (see e.g. Azibi and
Vanderpooten, 2002, p. 275). As far as ‘‘rules’’ are
designed so as to obey dominance (which is the case
in the above-mentioned paper), our results show that
such claims are not founded. Although it is true that
rule based preference modelling may offer some
advantages (i.e. the possibility to ‘‘explain’’ in a
language close to the natural language the preference
relation linking two alternatives), it is clearly very
closely related to models admitting numerical repre-
sentations as studied here. In fact our function F ; the
precise functional form of which being unspecified, is
a model that can be viewed as a ‘‘set of rules’’
indicating how to combine the various levels (the
uiðxiÞ’s) on each attribute. The close links between
functional and rule-based models of preference have
been already noted in Greco et al. (1999a, b, 2001a, b,
2002).

3. Our framework and results seem to be well adapted
to formalize the notion of ‘‘consistent family of
criteria’’ as introduced in Roy and Bouyssou (1993),
Roy (1996), and Vincke (1992). Although this
definition is somewhat more restrictive (requiring
that combining ‘‘close levels’’, i.e. levels that are not
identical but are related by Bi; should have a limited
overall impact), it implies that any preference relation
built on the basis of a consistent family of criteria is
dominance compatible in the exact sense of Defini-
tion 5. This shows that all preference relations
obtained on the basis of a consistent family of
criteria in the sense of Roy and Bouyssou (1993), Roy
(1996), and Vincke (1992) have a numerical repre-
sentation of the type investigated in Theorem 2.
Therefore, subjecting our conditions to extensive
empirical tests could offer a fresh view on the
adequateness of common hypotheses adopted in
decision analysis with several attributes.

Future research on the topics discussed in this paper
could include:

* the extension of our results to the case of valued
preference relations, an area in which the use of traces
has already proved extremely useful (see Doignon
et al., 1988; Monjardet, 1984; Roubens & Vincke,
1985),

* the specialization of our results to the case of an
homogeneous product set (Xi ¼ Xj ; 8i; jAN), with
applications to the field of decision under uncer-
tainty,

* the use of the analogy between numerical representa-
tions used here and rule-based preference modelling
to derive assessment procedures using the classical
machinery of ‘‘rule induction’’ in Artificial Intelli-
gence. This aspect has already been tackled in Greco
et al. (1999b, 2001a, b).
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Appendix A. Examples

We first give three examples showing that, in the class
of complete binary relations on X ; AC1i;AC2i and
AC3i are independent conditions. This will prove part 5
of Lemma 3. We leave to the reader the tedious, but
easy, task of checking that AC1i;AC2i and AC3i are in
fact completely independent in the class of complete
binary relations.
Examples A.1–A.3 have a common structure. In all of

them X ¼ X1 � X2 � X3 with X1 ¼ fa; b; cg; X2 ¼
fw; x; yg and X3 ¼ fq; r; sg: We abuse notation and
write an element of X as awq instead of ða;w; qÞ:
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Example A.1. Let h ¼ X 2 except that Not½ayqhcwr�;
Not½ayqhcxr�; Not½ayshcwr�; Not½ayshcxr�; Not½bwqh

cwr�; Not½bwqhcxr�; Not½byqhcwr� and Not½byqhcxr�:
It is not difficult to check that h is complete (it is in

fact a weakly independent semi-order). A routine check
shows that ACki hold for all kAf1; 2; 3g and iAf1; 2; 3g
except that AC11 fails. Indeed, we have Not½bhþ

1 a�
(since awqhcxr and Not½bwqhcxr�) and Not½ahþ

1 b�
(since byshcwr and Not½ayshcwr�). It is not difficult to
check that we have (using obvious notation for weak
orders): cg	

1 ½a; b�; xgþ
2 wgþ

2 y; ½x;w�g	
2 y; rgþ

3 sgþ
3 q;

and rg	
3 ½q; s�:

Hence we have an example of a complete binary
relation satisfying AC2, AC3 and AC1i on all attributes
but i ¼ 1:

Example A.2. Let h ¼ X 2 except that Not½cwrhayq�;
Not½cwrhays�; Not½cwrhbwq�; Not½cwrhbyq�; Not½cxrh

ayq�; Not½cxrhays�; Not½cxrhbwq� and Not½cxrhbyq�:
It is not difficult to check that h is complete (it is in

fact a weakly independent semi-order). A routine check
shows that ACki hold for all kAf1; 2; 3g and iAf1; 2; 3g
except that AC21 fails. We have Not½ah	

1 b� (since
cwrhawq and Not½cwrhbwq�) and Not½bh	

1 a� (since
cwrhbys and Not½cwrhays�). It is not difficult to
check that we have (using obvious notation for weak
orders): ½a; b�gþ

1 c; ygþ
2 ½x;w�; yg	

2 wg	
2 x; ½q; s�gþ

3 r

and qg	
3 sg	

3 r:
Hence we have an example of a complete binary

relation satisfying AC1, AC3 and AC2i on all attributes
but i ¼ 1:

Example A.3. Let h ¼ X 2 except that Not½cyqhawq�:
It is not difficult to check that h is complete (it

is in fact a weakly independent semi-order). A routine
check shows that ACki hold for all kAf1; 2; 3g and
iAf1; 2; 3g except that AC33 fails. Indeed, we have:
½a; b�gþ

1 c; ag	
1 ½b; c�; ½w; x�gþ

2 y; wg	
2 ½x; y�; ½r; s�gþ

3 q

and qg	
3 ½r; s�: This violates AC33 since rgþ

3 q and
qg	

3 r:
Hence we have an example of a complete binary

relation satisfying AC1, AC2 and AC3i on all attributes
but i ¼ 3:

We leave to the reader the, easy, task of finding an
example of a weakly independent semi-order satisfying
AC1–AC3 but violating AC4. The next two examples
are related to Lemma 4. We first show that there are
weakly independent semi-orders satisfying AC4 that are
not weak orders.

Example A.4. Let X ¼ X1 � X2 with X1 ¼ fx1; y1; z1g
and X2 ¼ fx2; y2; z2g: Consider the binary relation h

identical to the complete order: ðx1; x2Þgðx1; y2Þg
ðy1; x2Þgðx1; z2Þgðy1; y2Þgðz1; x2Þgðy1; z2Þgðz1; y2Þ
gðz1; z2Þ; except that ðy1; y2ÞBðx1; z2Þ and ðz1; x2ÞB
ðy1; y2Þ:
This relation is clearly complete. It is not transitive since

ðz1; x2Þhðy1; y2Þ; ðy1; y2Þhðx1; z2Þ but ðx1; z2Þgðz1; x2Þ:
It is easily checked that this relation is a semi-order

having the preceding weak order for trace. This semi-
order is independent. Its marginal relations are weak
orders identical to its marginal traces. We have
x1g1y1g1z1 and x2g2y2g2z2:
This relation has only a few pairs of alternatives

linked by B: It is then easy to check that AC4 holds
using conditions (13) and (14). For instance, starting
with ðy1; y2Þhðx1; z2Þ we should have ðx1; y2Þgðx1; z2Þ;
ðy1; x2Þgðx1; z2Þ and ðy1; y2Þgðy1; z2Þ; because
x1g

7
1 y1 and x2g

7
2 y2: This is indeed the case.

Hence we have an example of a nontransitive weakly
independent semi-order satisfying AC4.

The final example shows that for complete relations,
TAC2 may hold without TAC1. An example of a
complete relation verifying TAC1 but not TAC2 is
easily built using a similar principle.

Example A.5. Let X ¼ X1 � X2 with X1 ¼ R� f0; 2g
and X2 ¼ R:
Define h letting:

ðða1; b1Þ; x2Þhððc1; d1Þ; y2Þ
3a1 þ x24c1 þ y2 or

a1 þ x2 ¼ c1 þ y2

and

a1 þ b1Xc1:

It is easy to check that h is complete.
On the second attribute, it is clear that x2h

þ
2 y23

x2h
	
2 y23 x2Xy2:

Suppose that a1Xc1: Then, we clearly have wh

ðða1; b1Þ; y2Þ ) whððc1; d1Þ; y2Þ; for all b1; d1Af0; 2g:
As soon as c14a1; it is clearly possible to have

whðða1; b1Þ; y2Þ and Not½whððc1; d1Þ; y2Þ�: Therefore
ða1; b1Þh	

1 ðc1; d1Þ3a1Xc1:
If a14c1; it is clear that ððc1; d1Þ; y2Þhz ) ðða1; b1Þ;

y2Þhz:
If a1 ¼ c1; we have ððc1; 0Þ; y2Þhz ) ðða1; 0Þ; y2Þhz;

ððc1; 2Þ; y2Þhz ) ðða1; 2Þ; y2Þhz and ððc1; 2Þ; y2Þhz )
ðða1; 0Þ; y2Þhz: However we may have ððc1; 2Þ; y2Þhz

and Not½ðða1; 0Þ; y2Þhz�: Therefore, we have

ða1; b1Þhþ
1 ðc1; d1Þ 3

a14c1 or

a1 ¼ c1 and b1Xd1:




A simple check shows that h is strictly responsive to
h

þ
2 ; h

	
2 and h

	
1 : This not so for h

þ
1 : In fact, we

have, ðð10; 0Þ; 10ÞBðð8; 2Þ; 12Þ and ðð10; 2Þ; 10ÞB
ðð8; 2Þ; 12Þ; while ð10; 2Þgþ

1 ð10; 0Þ (because ðð10; 2Þ; 10Þ
hðð11; 0Þ; 9Þ and Not½ðð10; 0Þ; 10Þhðð11; 0Þ; 9Þ�).
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Hence we have an example of a complete relation
satisfying TAC2 and TAC12 but violating TAC11:

Appendix B. Numerical representations: the general case

Let E be an equivalence on a set A: We say that
A satisfies the low cardinality condition w.r.t. E

(denoted by LCC½A=E�) if there is a one-to-one
correspondence between A=E and some subset of R:
As soon as E is an equivalence relation, condition
LCC½A=E� is clearly necessary and sufficient for the
existence of a real-valued function f on A such that, for
all a; bAA:

aEb 3 f ðaÞ ¼ f ðbÞ: ðB:1Þ

Condition LCC½A=E� is very mild and is clearly satisfied
as soon as A is some subset of Rk:
Let S be a binary relation on a set A and let BDA:

Following e.g. Krantz et al. (1971, Chapter 2), we say
that B is dense in A for S if, for all a; bAA; ½aSb and
Not½b S a�� ) ½a S c and c S b; for some cAB�: The
existence of a finite or countably infinite set B dense in
A for S is a necessary condition for the existence of a
real-valued function f on A such that, for all a; bAA;
aSb3f ðaÞXf ðbÞ: Together with the fact that S is a
weak order on A; it is also sufficient for the existence
of such a representation (see Fishburn, 1970b; Krantz
et al., 1971).
We say that a binary relation h on A satisfies

condition OD (order density) if there is a countable
subset BDA that is dense in A forh:We say thath on
A satisfies condition OD7 if there is a countable
subset BDA that is dense in A for h

7: Clearly, if h
is a weak order on A, OD and OD7 are equivalent
since in this case h ¼ h

7: The formulation of OD7

in terms of h is cumbersome and apparently unin-
formative; for a thorough analysis of various conditions
guaranteeing that traces have a numerical representa-
tion, we refer to Beja and Gilboa (1992), Candeal,
Induráin, and Zudaire (2002), Doignon, Ducamp, and
Falmagne (1984), Fishburn (1985), Nakamura (2002),
Narens (1994), and Oloriz, Candeal, and Induráin
(1998).
Let h and h

0 be two weak orders on A: We say that
h

0 refines h if, for all a; bAA; ah0b ) ahb: It is easy
to see that if h0 refines h and h

0 satisfies OD then h

satisfies OD:
When h is a binary relation on a product set X ¼

X1 � X2 �?� Xn we say that it satisfies condition
OD7

i if there is a countable set B that is dense in
Xi for h

7
i :

Using these conditions, we first tackle the case of
trivial representations on sets without structure. For the
sake of completeness, we spell out the following:
Proposition B.1 (Generalization of Propositions 4 and
5). When removing the restriction that A is finite or

countably infinite,

1. Proposition 4 holds iff h satisfies LCC½A=B7�:
2. Parts 1 and 2 of Proposition 5 hold iff h satisfies

OD7:
3. Part 3 of Proposition 5 holds iff h satisfies OD:

Proof. Part 1 is obvious. The sufficiency of OD7 (resp.
OD) for part 2 (resp. part 3) is clear.
Let us prove the necessity of OD7: Suppose that

ag7b: By definition, there is a cAA such that
either ½ahc and Not½bhc�� or ½chb and Not½cha��:
In the first case, we have: FðuðaÞ; uðcÞÞX0 and
FðuðbÞ; uðcÞÞo0: In the second case, we obtain:
FðuðcÞ; uðbÞÞX0 andFðuðcÞ; uðaÞÞo0: Therefore, when
F is nondecreasing in its first argument and nonincreas-
ing in its second argument, representation (22) implies

ag7b ) uðaÞ4uðbÞ: ðB:2Þ

The necessity of OD7 follows since the weak order
induced on A by u refines h7: The necessity of OD for
part 3 is proved in a similar way. &

The generalization of Proposition 6 is done along the
same lines. When X is no longer supposed to be
countable, it is necessary and sufficient to require that
condition LCC½Xi=B7

i � holds for all iAN: This is not
worth spelling out in detail (note however that it is not
difficult to show that condition LCC½X=B7� implies
that condition LCC½Xi=B7

i � holds for all iAN).
Similarly to what has been done in the proof of

Proposition B.1, it is not difficult to show that when h

has a numerical representation of type (27) with F being
nondecreasing (resp. nonincreasing) in its first (resp.
last) n arguments then, for all iAN and all xi; yiAXi:

xig
7
i yi ) uiðxiÞ4uiðyiÞ: ðB:3Þ

The necessity of condition OD7
i for all iAN therefore

follows. We have:

Proposition B.2 (Generalization of Theorems 2 and
3). When removing the condition that X is finite or

countably infinite, Theorems 2 and 3 hold iff h satisfies

OD7
i for all iAN:

We leave to the interested reader the construction of
examples showing that OD7

i may hold for all iAN\f jg
while OD7

j fails.
In order to generalize Proposition 7, it must clearly be

supposed that h satisfies OD: Since we do not suppose
here substitutability as in Krantz et al. (1971, Theorem
7.1), we also have to suppose LCC½Xi=B7

i � holds for all
iAN: The following example shows that LCC½Xi=B7

i � is
independent from OD:
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Example B.1 (OD and LCC½Xi=B7
i �). Let X ¼ X1 �

X2 with X1 ¼ X2 ¼ 2R; the set of all subsets of R: Define
h on X letting, for all A;B;C;DA2R; ðA;BÞhðC;DÞ
3f ðA;BÞXf ðC;DÞ; where f is a real-valued function
on ½2R�2 such that f ðA;BÞ ¼ 13BDA and f ðA;BÞ ¼ 0
otherwise.
By construction, h is a weak order satisfying OD:

However, as soon as AaB; it is clear that Not½AB7
1 B�

and Not½AB7
2 B�: Hence, LCC½Xi=B7

i � is violated.

The generalization of part 2 of Proposition 8 is
classical Krantz et al., 1971, Theorem 7.1. Since for
weak orders, marginal preferences and marginal traces
coincide, it suffices to impose that the weak orderh has
a numerical representation, i.e., that OD holds. The
generalization of part 1 is somewhat trickier since there
are weakly separable weak orders that have a numerical
representation while their marginal traces do not (see
Fishburn, 1973a, Theorem A(ii)). Hence it must also be
added that condition OD7

i holds for all iAN: We
summarize our observations below.

Proposition B.3 (Generalization of Propositions 7 and 8).
When removing the condition that X is finite or countably

infinite,

1. Proposition 7 holds iff h satisfies OD and

LCC½Xi=B7
i �; for all iAN:

2. Part 1 of Proposition 8 holds iff h satisfies OD and

OD7
i ; for all iAN:

3. Part 2 of Proposition 8 holds iff h satisfies OD:

Appendix C. Uniqueness

Let us first envisage the case of Theorem 2 (without
reflexivity). The numerical representation is such that:

xhy 3 Fð½uiðxiÞ�; ½uiðyiÞ�ÞX0; ðC:1Þ

with F increasing in its first n arguments and decreasing
in its last n arguments. The proof of Theorem 2 shows
that it is always possible to build a numerical
representation such that:

xih
7
i yi 3 uiðxiÞXuiðyiÞ: ðC:2Þ

This not compulsory however. Let us show that any
function ui such that:

xig
7
i yi ) uiðxiÞ4uiðyiÞ; ðC:3Þ

can be used in a representation of type (C.1).
The necessity of (C.3) is clear since xig

7
i yi implies

either xig
þ
i yi or xig

	
i yi: In the first case, we know that

ðxi; a	iÞhz and Not½ðyi; a	iÞhz�; for some zAX and
some a	iAX	i: In the second case, we obtain
whðyi; b	iÞ and Not½whðxi; b	iÞ�; for some wAX and
some b	iAX	i:Using the increasingness of F ; either case
implies uiðxiÞ4uiðyiÞ:
Conversely, it is clear that if ui satisfies (C.3) then

uiðxiÞ ¼ uiðyiÞ ) xiB7
i yi; ðC:4Þ

so that defining F ; as in the proof of Theorem 2,
letting:

Fð½uiðxiÞ�; ½uiðyiÞ�Þ

¼
þexpð

Pn
i¼1ðuiðxiÞ 	 uiðyiÞÞÞ if xhy;

	expð
Pn

i¼1ðuiðyiÞ 	 uiðxiÞÞÞ otherwise:



ðC:5Þ

leads to a well-defined function being increasing in
its first n arguments and decreasing in its last n

arguments.
It should be noted that any nonnegative (resp.

negative) real-valued function f (resp. g) on R2n that is
increasing in its first n arguments and decreasing in its
last n arguments when restricted to ½

Qn
i¼1 uiðXiÞ�2 may be

used to define F letting Fð½uiðxiÞ�; ½uiðyiÞ�Þ ¼
f ð½uiðxiÞ�; ½uiðyiÞ�Þ if xhy and Fð½uiðxiÞ�; ½uiðyiÞ�Þ ¼
gð½uiðxiÞ�; ½uiðyiÞ�Þ otherwise. It is not difficult to see
that only such functions may be used. We have therefore
described the set of all possible numerical representa-
tions of type (C.1).
Let us now consider the case of the skew symmetric

representations of Theorem 3. When it is only required
that F is nondecreasing in its first n arguments and
nonincreasing in its last n arguments, it is not difficult to
see that the above reasoning applies. Any real-valued
function ui on Xi satisfying (C.3) is a legitimate choice
and only such functions may be used. Furthermore, any
positive real-valued function f on R2n that is nonde-
creasing in its first n arguments and nonincreasing in its
last n arguments when restricted to ½

Qn
i¼1 uiðXiÞ�2 may be

used to define F letting Fð½uiðxiÞ�; ½uiðyiÞ�Þ ¼ f ð½uiðxiÞ�;
½uiðyiÞ�Þ if xgy; Fð½uiðxiÞ�; ½uiðyiÞ�Þ ¼ 0 if xBy

and Fð½uiðxiÞ�; ½uiðyiÞ�Þ ¼ 	f ð½uiðyiÞ�; ½uiðxiÞ�Þ otherwise.
Clearly only such functions may be used.
The situation is slightly more complex in the skew

symmetric case with F increasing in its first n arguments
and decreasing in its last n arguments. In that case, any
function satisfying (C.3) will not do any more. To see
why this happens, suppose that xiB7

i zi and
uiðxiÞ4uiðziÞ: This is acceptable as long as it never
happens that ðxi; a	iÞBw because the increasingness of
F would then imply ðzi; a	iÞgw; violating (9). However,
it is clear that the presence of B is the only additional
constraint preventing from choosing different values of
ui for elements linked by B7

i : Therefore, in the
increasing/decreasing skew symmetric model any ui



ARTICLE IN PRESS
D. Bouyssou, M. Pirlot / Journal of Mathematical Psychology 48 (2004) 167–185184
such that:

xig
7
i yi ) uiðxiÞ4uiðyiÞ

and

xiB7
i yi

and

ðxi; a	iÞBw for some

a	iAX	i and some wAX

9>>>=
>>>;

) uiðxiÞ ¼ uiðyiÞ;

is acceptable. It is easy to see that only such functions ui

may be used. Furthermore, any positive real-valued
function f on R2n that is increasing in its first n

arguments and decreasing in its last n arguments when
restricted to ½

Qn
i¼1 uiðXiÞ�2 may be used to define F

letting Fð½uiðxiÞ�; ½uiðyiÞ�Þ ¼ f ð½uiðxiÞ�; ½uiðyiÞ�Þ if xgy;
Fð½uiðxiÞ�; ½uiðyiÞ�Þ ¼ 0 if xBy and Fð½uiðxiÞ�; ½uiðyiÞ�Þ ¼
	f ð½uiðyiÞ�; ½uiðxiÞ�Þ otherwise. Only such functions may
be used.
References

Aleskerov, F., & Monjardet, B. (2002). Utility maximization, choice

and preference. Heidelberg: Springer.

Azibi, R., & Vanderpooten, D. (2002). Construction of rule-based

assignment models. European Journal of Operational Research, 138,

274–293.

Beja, A., & Gilboa, I. (1992). Numerical representations of imperfectly

ordered preferences (a unified geometric exposition). Journal of

Mathematical Psychology, 36, 426–449.

Belton, V., & Stewart, T. (2001). Multiple criteria decision analysis: An

integrated approach. Dordrecht: Kluwer.

Blackorby, C., Primont, D., & Russell, R. (1978). Duality, separability,

and functional structure: Theory and economic applications. New

York: North-Holland.

Bouyssou, D. (1990). Building criteria: A prerequisite for MCDA. In

C. A. Bana e Costa (Ed.), Readings in multiple criteria decision aid

(pp. 58–80). Berlin: Springer.

Bouyssou, D., Marchant, Th., Pirlot, M., Perny, P., Tsoukiàs, A., &
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