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The talk in two slides (1/2)

Verification and synthesis:

� a reactive system to control,
� an interacting environment,
� a specification to enforce.

Focus on quantitative properties.

Several ways to look at the interactions, and in particular, the
nature of the environment.
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The talk in two slides (2/2)

Games
→ antagonistic adversary
→ guarantees on worst-case

MDPs
→ stochastic adversary
→ optimize expected value

BWC synthesis
→ ensure both

∧

Studied
value functions

Mean-Payoff Shortest Path
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Quantitative games on graphs

2 2

5

−1 7
−4

Then, (2, 5, 2)ω

Graph G = (S ,E ,w) with w : E → Z
Two-player game G = (G, S1,S2)

� P1 states =
� P2 states =

Plays have values

� f : Plays(G)→ R ∪ {−∞, ∞}

Players follow strategies

� λi : Prefsi (G )→ D(S)
� Finite memory ⇒ stochastic Moore machine
M(λi ) = (Mem,m0, αu, αn)
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Markov decision processes

1
2

1
2

2 2

5

−1 7
−4

MDP P = (G, S1,S∆,∆) with ∆: S∆ → D(S)

� P1 states =
� stochastic states =

MDP = game + strategy of P2

� P = G [λ2]
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Markov chains

1
2

1
2

1
4

3
4

2 2

5

−1 7
−4

MC M = (G, δ) with δ : S → D(S)

MC = MDP + strategy of P1

= game + both strategies

� M = P[λ1] = G [λ1, λ2]

Event A ⊆ Plays(G)

� probability PM
sinit

(A)

Measurable f : Plays(G)→ R ∪ {−∞, ∞}
� expected value EM

sinit
(f )
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Classical interpretations

System trying to ensure a specification = P1

� whatever the actions of its environment

The environment can be seen as
� antagonistic

two-player game, worst-case threshold problem for µ ∈ Q
∃?λ1 ∈ Λ1, ∀λ2 ∈ Λ2, ∀π ∈ OutsG (sinit, λ1, λ2), f (π) ≥ µ

� fully stochastic

MDP, expected value threshold problem for ν ∈ Q
∃?λ1 ∈ Λ1, EP[λ1]

sinit (f ) ≥ ν
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What if you want both?

In practice, we want both

1 nice expected performance in the everyday situation,

2 strict (but relaxed) performance guarantees even in the event
of very bad circumstances.
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Example: going to work

home

station traffic

waiting
room

work

1
10

9
10

2
10

7
10

1
10

train
2

car
1

back home
1

bicycle
45

delay
1

wait
4

light
20

medium
30

heavy
70

departs
35

� Weights = minutes

� Goal: minimize our expected
time to reach “work”

� But, important meeting in
one hour! Requires strict
guarantees on the worst-case
reaching time.
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departs
35

� Optimal expectation strategy:
take the car.

E = 33, WC = 71 > 60.

� Optimal worst-case strategy:
bicycle.

E = WC = 45 < 60.

� Sample BWC strategy: try
train up to 3 delays then
switch to bicycle.

E ≈ 37.56, WC = 59 < 60.
Optimal E under WC
constraint
Uses finite memory
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Beyond worst-case synthesis

Formal definition

Given a game G = (G,S1, S2), with G = (S ,E ,w) its underlying graph, an
initial state sinit ∈ S , a finite-memory stochastic model λstoch

2 ∈ ΛF
2 of the

adversary, represented by a stochastic Moore machine, a measurable value
function f : Plays(G)→ R ∪ {−∞, ∞}, and two rational thresholds µ, ν ∈ Q,
the beyond worst-case (BWC) problem asks to decide if P1 has a finite-memory
strategy λ1 ∈ ΛF

1 such that{
∀λ2 ∈ Λ2, ∀π ∈ OutsG (sinit, λ1, λ2), f (π) > µ (1)

EG [λ1,λ
stoch
2 ]

sinit (f ) > ν (2)

and the BWC synthesis problem asks to synthesize such a strategy if one exists.

Notice the highlighted parts!
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Related work

Common philosophy: avoiding outlier outcomes

1 Our strategies are strongly risk averse

� avoid risk at all costs and optimize among safe strategies

2 Other notions of risk ensure low probability of risked behavior
[WL99, FKR95]

� without worst-case guarantee
� without good expectation

3 Trade-off between expectation and variance [BCFK13, MT11]

� statistical measure of the stability of the performance
� no strict guarantee on individual outcomes
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Mean-payoff value function

MP(π) = lim inf
n→∞

[
1

n
·
i=n−1∑
i=0

w
(
(si , si+1)

)]

Sample play π = 2, −1, −4, 5, (2, 2, 5)ω

� MP(π) = 3
� long-run average weight ; prefix-independent

Games: worst-case threshold problem
[LL69, EM79, ZP96, Jur98, GS09]

Memoryless optimal strategies exist for both players and the
problem is in NP ∩ coNP.

MDPs: expected value threshold problem [Put94, FV97]

Memoryless optimal strategies exist and the problem is in P.
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BWC MP problem: overview

Theorem (algorithm & complexity)

The BWC problem for the mean-payoff is in NP ∩ coNP and at
least as hard as deciding the winner in mean-payoff games.

� Additional modeling power for free!

Theorem (memory bounds)

Memory of pseudo-polynomial size may be necessary and is
always sufficient to satisfy the BWC problem for the mean-payoff:
polynomial in the size of the game and the stochastic model, and
polynomial in the weight and threshold values.
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Philosophy of the algorithm

� Classical worst-case and expected value results and algorithms
as nuts and bolts

� Screw them together in an adequate way

Three key ideas

1 To characterize the expected value, look at end-components
(ECs)

2 Winning ECs vs. losing ECs: the latter must be avoided to
preserve the worst-case requirement!

3 Inside a WEC, we have an interesting way to play. . .

=⇒ Let’s go bottom-up, starting from an ideal case
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An ideal situation

s5s6s7

1
2

1
2

1

1

1

0

0

−1

9
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An ideal situation

s5s6s7

1
2

1
2

1

1

1

0

0

−1

9

Game interpretation

� Worst-case threshold is µ = 0

� All states are winning: memoryless optimal worst-case
strategy λwc1 ∈ ΛPM

1 (G ), ensuring µ∗ = 1 > 0
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An ideal situation

s5s6s7

1
2

1
2

1

1

1

0

0

−1

9

MDP interpretation

� All states are reachable with probability one (even surely)

� The highest achievable expected value is the same in all
states: ν∗ = 2

� Memoryless optimal expected value strategy λe1 ∈ ΛPM
1 (P)
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A cornerstone of our approach

s5s6s7

1
2

1
2

1

1

1

0

0

−1

9

BWC problem: what kind of threholds (0, ν) can we achieve?
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A cornerstone of our approach

s5s6s7

1
2

1
2

1

1

1

0

0

−1

9

BWC problem: what kind of threholds (0, ν) can we achieve?

Key result

For all ε > 0, there exists a finite-memory strategy of P1 that
satisfies the BWC problem for the thresholds pair (0, ν∗ − ε).

� We can be arbitrarily close to the optimal expectation
while ensuring the worst-case!
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Combined strategy

s5s6s7

1
2

1
2

1

1

1

0

0

−1

9

We define λcmb
1 ∈ ΛPF

1 as follows, for some well-chosen K , L ∈ N.

(a) Play λe1 for K steps and memorize Sum ∈ Z, the sum of
weights encountered during these K steps.

(b) If Sum > 0, then go to (a).
Else, play λwc1 during L steps then go to (a).
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Combined strategy

s5s6s7

1
2

1
2

1

1

1

0

0

−1

9

Intuitions

� Phase (a): try to increase the expectation and approach the
optimal one

� Phase (b): compensate, if needed, losses that occured in (a)
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Combined strategy

s5s6s7

1
2

1
2

1

1

1

0

0

−1

9

Intuitions

� Phase (a): try to increase the expectation and approach the
optimal one

� Phase (b): compensate, if needed, losses that occured in (a)

Proving the strategy is up to the job requires some technical work,
but let’s review the key ideas

� ∃K , L ∈ N for any thresholds pair (0, ν∗ − ε)

� plays = sequences of periods starting with phase (a)
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Combined strategy: worst-case requirement

Does any consistent outcome have a strictly positive MP?

∀K , ∃ L(K ), linear in K , s.t. (a) + (b) has
MP ≥ 1/(K + L) > 0
because µ∗ = 1 > µ = 0

Periods (a) induce MP ≥ 1/K (not followed by (b))

Weights are integers and period length bounded
; inequality remains strict for play
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Combined strategy: expected value requirement

Can we ensure an ε-optimal expected value?

When K →∞, E(a) → ν∗

As K →∞, we have L(K )→∞ (potentially bigger losses to
compensate), which may prevent E(a)+(b) → ν∗

But as K →∞, we also have P(b) → 0: losses after period (a)
are less probable

� Intuition through a Bernouilli process
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Bernouilli process

Assume our phase (a) is a simple fair coin tossing sequence
with heads granting 1 and tails granting 0

� The expected MP is 1/2 whatever the # of tosses

� Let ε = 1/6, what is the probability to witness an
MP > 1/2− 1/6 = 1/3 after K tosses?

K = 1⇒ P(MP > 1/3) = 1/2

K = 2⇒ P(MP > 1/3) = 3/4
...

for any ε > 0, when K →∞, it
tends to one
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Bounding the gap

One can lower bound the measure of paths such that
MP > ν∗ − ε for a sufficiently large K

Using Chernoff bounds and Hoeffding’s inequality for Markov
chains [Tra09, GO02], we can bound the probability of being far
from the optimal after K steps of (a) in our combined strategy

� P(b) decreases exponentially while L(K ) only needs to increase
polynomially

� The overall contribution of (b) tends to zero when K →∞
� Hence E(a)+(b) → ν∗ as claimed
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The ideal case: wrap-up

The combined strategy works in any subgame such that

1 it constitutes an EC in the MDP,

2 all states are worst-case winning in the subgame.

Such winning ECs (WECs) are the crux of BWC strategies in
arbitrary games.

But to explain that, let’s first zoom out and consider the big
picture.
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Zooming out
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Arbitrary game, with ideal case as a subgame. We assume all states
are worst-case winning.

� BWC strategies must avoid WC losing states at all times: an
antagonistic adversary can force WC losing outcomes from
there (due to prefix-independence)

� Some preprocessing can be done and in the remaining game,
P1 has a memoryless WC winning strategy from all states
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End-components: what they are
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An EC of the MDP P = G [λstoch
2 ] is a subgraph in which P1 can

ensure to stay despite stochastic states [dA97], i.e., a set U ⊆ S s.t.

(i) (U,E ∩ (U × U)) is strongly connected,

(ii) ∀ s ∈ U ∩ S∆, Supp(∆(s)) ⊆ U, i.e., in stochastic states, all
outgoing edges stay in U.
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An EC of the MDP P = G [λstoch
2 ] is a subgraph in which P1 can

ensure to stay despite stochastic states [dA97], i.e., a set U ⊆ S s.t.

(i) (U,E ∩ (U × U)) is strongly connected,

(ii) ∀ s ∈ U ∩ S∆, Supp(∆(s)) ⊆ U, i.e., in stochastic states, all
outgoing edges stay in U.

� ECs: E = {U1
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An EC of the MDP P = G [λstoch
2 ] is a subgraph in which P1 can

ensure to stay despite stochastic states [dA97], i.e., a set U ⊆ S s.t.

(i) (U,E ∩ (U × U)) is strongly connected,

(ii) ∀ s ∈ U ∩ S∆, Supp(∆(s)) ⊆ U, i.e., in stochastic states, all
outgoing edges stay in U.

� ECs: E = {U1,U2

Beyond Worst-Case Synthesis Bruyère, Filiot, Randour, Raskin 25 / 46



Context BWC Synthesis Mean-Payoff Shortest Path Conclusion

End-components: what they are

s2

s2

U1

U1

U2

U2

U3

U3

s5s6s7

1
2

1
2

s1

s3 s4
1
2

1
2

s5s6s7

1
2

1
2

s1

s3 s4
1
2

1
2

000

0 −1

0

0 −1

0

0

0

1

1

1

1

0

−1

9

0

0

1

1

0

−1

9

An EC of the MDP P = G [λstoch
2 ] is a subgraph in which P1 can

ensure to stay despite stochastic states [dA97], i.e., a set U ⊆ S s.t.

(i) (U,E ∩ (U × U)) is strongly connected,

(ii) ∀ s ∈ U ∩ S∆, Supp(∆(s)) ⊆ U, i.e., in stochastic states, all
outgoing edges stay in U.

� ECs: E = {U1,U2,U3
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End-components: what they are
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An EC of the MDP P = G [λstoch
2 ] is a subgraph in which P1 can

ensure to stay despite stochastic states [dA97], i.e., a set U ⊆ S s.t.

(i) (U,E ∩ (U × U)) is strongly connected,

(ii) ∀ s ∈ U ∩ S∆, Supp(∆(s)) ⊆ U, i.e., in stochastic states, all
outgoing edges stay in U.

� ECs: E = {U1,U2,U3, {s5, s6}, {s6, s7}, {s1, s3, s4, s5}}
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An EC of the MDP P = G [λstoch
2 ] is a subgraph in which P1 can

ensure to stay despite stochastic states [dA97], i.e., a set U ⊆ S s.t.

(i) (U,E ∩ (U × U)) is strongly connected,
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outgoing edges stay in U.
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End-components: why we care
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Lemma (Long-run appearance of ECs [CY95, dA97])

Let λ1 ∈ Λ1(P) be an arbitrary strategy of P1. Then, we have
that

PP[λ1]
sinit

(
{π ∈ OutsP[λ1](sinit) | Inf(π) ∈ E}

)
= 1.

� By prefix-independence, only long-run behavior matters

� The expectation on P[λ1] depends uniquely on ECs
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How to satisfy the BWC problem?

Expected value requirement: reach ECs with the highest
achievable expectations and stay in them

� The optimal expected value is the same everywhere inside the
EC [FV97], cf. ideal case

Worst-case requirement: some ECs may need to be eventually
avoided because risky!

� The “ideal cases” are ECs but not all ECs are ideal cases. . .
� Need to classify the ECs
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Classification of ECs
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� U ∈ W , the winning ECs, if P1 can win in G � U, from all
states:

∃λ1 ∈ Λ1(G � U), ∀λ2 ∈ Λ2(G � U), ∀ s ∈ U, ∀π ∈ Outs(G�U)(s, λ1, λ2), MP(π) > 0
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� U ∈ W , the winning ECs, if P1 can win in G � U, from all
states:

∃λ1 ∈ Λ1(G � U), ∀λ2 ∈ Λ2(G � U), ∀ s ∈ U, ∀π ∈ Outs(G�U)(s, λ1, λ2), MP(π) > 0

� W = {U1,U3, {s5, s6}, {s6, s7}}

� U2 losing: from state s1, P2 can force the outcome
π = (s1s3s4)ω of MP(π) = −1/3 < 0
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Winning ECs: usefulness

Lemma (Long-run appearance of winning ECs)

Let λf1 ∈ ΛF
1 be a finite-memory strategy of P1 that satisfies the

BWC problem for thresholds (0, ν) ∈ Q2. Then, we have that

PP[λf1]
sinit

({
π ∈ OutsP[λf1](sinit) | Inf(π) ∈ W

})
= 1.

� A good finite-memory strategy for the BWC problem should
maximize the expected value achievable through winning ECs
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Winning ECs: computation

� Deciding if an EC is winning or not is in NP ∩ coNP
(worst-case threshold problem)

� |E| ≤ 2|S | ; exponential # of ECs

� Considering the maximal ECs does not suffice! See U3 ⊂ U2
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Winning ECs: computation

� Deciding if an EC is winning or not is in NP ∩ coNP
(worst-case threshold problem)

� |E| ≤ 2|S | ; exponential # of ECs

� Considering the maximal ECs does not suffice! See U3 ⊂ U2

But,

� possible to define a recursive algorithm computing the
maximal winning ECs, such that |Uw| ≤ |S |, in NP ∩ coNP.

� Uses polynomial number of of calls to

max. EC decomp. of sub-MDPs (each in O(|S |2) [CH12]),
worst-case threshold problem (NP ∩ coNP).

� Critical complexity gain for the algorithm solving the BWC
problem!
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A natural way towards WECs

So we know we should only use WECs and we know how to play
ε-optimally inside a WEC. What remains to settle?

� Determine which WECs to reach and how!

� Key idea: define a global strategy that will go towards the
highest valued WECs and avoid LECs
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Global strategy via modified MDP
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1 Modify weights:

∀ e = (s1, s2) ∈ E , w ′(e) :=

{
w(e) if ∃ U ∈ Uw s.t. {s1, s2} ⊆ U,

0 otherwise.
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2 Memoryless optimal expectation strategy λe1 on P ′

� the probability to be in a good WEC (here, U2) after N steps
tends to one when N →∞

Beyond Worst-Case Synthesis Bruyère, Filiot, Randour, Raskin 31 / 46



Context BWC Synthesis Mean-Payoff Shortest Path Conclusion

Global strategy via modified MDP

3 λglb1 ∈ ΛPF
1 (G ):

(a) Play λe1 ∈ ΛPM
1 (G ) for N steps.

(b) Let s ∈ S be the reached state.

(b.1) If s ∈ U ∈ Uw, play corresponding λcmb
1 ∈ ΛPF

1 (G) forever.
(b.2) Else play λwc

1 ∈ ΛPM
1 (G) forever.

� λwc1 exists everywhere as WC losing states have been removed

� Parameter N ∈ N can be chosen so that overall expectation is
arbitrarily close to optimal in P ′, or equivalently, optimal for
BWC strategies in P

� Our algorithm computes this optimal value ν∗ and answers
Yes iff ν∗ > ν ; it is correct and complete
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BWC MP problem: bounds

Complexity

� algorithm in NP ∩ coNP (P if MP games proved in P)
� lower bound via reduction from MP games

s2s1s3

1
2

1
2

1

1

0

−X

X + 5

Memory

� pseudo-polynomial upper bound via global strategy
� matching lower bound via family (G (X ))X∈N0 requiring

polynomial memory in W = X + 5 to satisfy the BWC problem
for thresholds (0, ν ∈ ]1, 5/4[)

; need to use (s1, s3) infinitely often for E but need pseudo-poly.
memory to counteract −X for the WC requirement
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Shortest path - truncated sum

Assume strictly positive integer weights, w : E → N0

Let T ⊆ S be a target set that P1 wants to reach with a path
of bounded value (cf. introductory example)

� inequalities are reversed, ν < µ

TST (π = s0s1s2 . . . ) =
∑n−1

i=0 w((si , si+1)), with n the first
index such that sn ∈ T , and TST (π) =∞ if ∀ n, sn 6∈ T

Games: worst-case threshold problem

Memoryless optimal strategies as cycles are to be avoided, and the
problem is in P, solvable using attractors and computation of the
worst cost.

MDPs: expected value threshold problem [BT91, dA99]

Memoryless optimal strategies exist and the problem is in P.
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BWC SP problem: overview

Theorem (algorithm)

The BWC problem for the shortest path can be solved in
pseudo-polynomial time: polynomial in the size of the game
graph, the Moore machine for the stochastic model of the
adversary and the encoding of the expected value threshold, and
polynomial in the value of the worst-case threshold.

Theorem (memory bounds)

Pseudo-polynomial memory may be necessary and is always
sufficient to satisfy the BWC problem for the shortest path.

Theorem (complexity lower bound)

The BWC problem for the shortest path is NP-hard.
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Key difference with MP case

Useful observation

The set of all worst-case winning strategies for the shortest path
can be represented through a finite game.

Sequential approach solving the BWC problem:

1 represent all WC winning strategies,

2 optimize the expected value within those strategies.
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Pseudo-polynomial algorithm: sketch

s1 s2

s3

1
2

1
2

1

15

1

1 Start from G = (G, S1,S2), G = (S ,E ,w), T = {s3},
M(λstoch

2 ), µ = 8, and ν ∈ Q
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2

1

15

1

1 Start from G = (G, S1,S2), G = (S ,E ,w), T = {s3},
M(λstoch

2 ), µ = 8, and ν ∈ Q

2 Build G ′ by unfolding G, tracking the current sum up to the
worst-case threshold µ, and integrating it in the states of G′.
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Pseudo-polynomial algorithm: sketch

3 Compute R, the attractor of T with cost < µ = 8

4 Consider Gµ = G ′ � R
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Pseudo-polynomial algorithm: sketch

5 Consider P = Gµ ⊗M(λstoch
2 )

6 Compute memoryless optimal expectation strategy

7 If ν∗ < ν, answer Yes, otherwise answer No
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Memory bounds

� Upper bound provided by synthesized strategy

� Lower bound given by family of games (G (µ))µ∈{13+k·4|k∈N}
requiring memory linear in µ

; play (s1, s2) exactly
⌊
µ
4

⌋
times and then switch to (s1, s3) to

minimize expected value while ensuring the worst-case

s1 s2

s3

1
2

1
2

1

1

⌊µ
2

⌋

1

1
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Complexity lower bound: NP-hardness

Truly-polynomial algorithm very unlikely. . .

Reduction from the K th largest subset problem
� commonly thought to be outside NP as natural certificates are

larger than polynomial [JK78, GJ79]

K th largest subset problem

Given a finite set A, a size function h : A→ N0 assigning strictly
positive integer values to elements of A, and two naturals
K , L ∈ N, decide if there exist K distinct subsets Ci ⊆ A,
1 ≤ i ≤ K , such that h(Ci ) =

∑
a∈Ci

h(a) ≤ L for all K subsets.

Build a game composed of two gadgets
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Random subset selection gadget

a1 a2 a3 an choice

1
2

1
2

1
2

1
2

1
2

1
2

hn(a1) hn(a2) hn(an)

1 1 1

� Stochastically generates paths representing subsets of A: an
element is selected in the subset if the upper edge is taken
when leaving the corresponding state

� All subsets are equiprobable
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Choice gadget

choice

swc

se

target

0

1

1

1

1

0

x3

x2

x1

� se leads to lower expected values but may be dangerous for
the worst-case requirement

� swc is always safe but induces an higher expected cost
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Crux of the reduction

There exist (non-trivial) values for thresholds and weights s.t.

(i) an optimal (i.e., minimizing the expectation while
guaranteeing a given worst-case threshold) strategy for P1

consists in choosing state se only when the randomly
generated subset C ⊆ A satisfies h(C ) ≤ L;

(ii) this strategy satisfies the BWC problem if and only if there
exist K distinct subsets that verify this bound.
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In a nutshell

BWC framework combines worst-case and expected value
requirements

� a natural wish in many practical applications
� few existing theoretical support

Mean-payoff: additional modeling power for no complexity
cost (decision-wise)

Shortest path: harder than the worst-case, pseudo-polynomial
with NP-hardness result

In both cases, pseudo-polynomial memory is both sufficient
and necessary

� but strategies have natural representations based on states of
the game and simple integer counters

Beyond Worst-Case Synthesis Bruyère, Filiot, Randour, Raskin 45 / 46



Context BWC Synthesis Mean-Payoff Shortest Path Conclusion

In a nutshell

BWC framework combines worst-case and expected value
requirements

� a natural wish in many practical applications
� few existing theoretical support

Mean-payoff: additional modeling power for no complexity
cost (decision-wise)

Shortest path: harder than the worst-case, pseudo-polynomial
with NP-hardness result

In both cases, pseudo-polynomial memory is both sufficient
and necessary

� but strategies have natural representations based on states of
the game and simple integer counters

Beyond Worst-Case Synthesis Bruyère, Filiot, Randour, Raskin 45 / 46



Context BWC Synthesis Mean-Payoff Shortest Path Conclusion

In a nutshell

BWC framework combines worst-case and expected value
requirements

� a natural wish in many practical applications
� few existing theoretical support

Mean-payoff: additional modeling power for no complexity
cost (decision-wise)

Shortest path: harder than the worst-case, pseudo-polynomial
with NP-hardness result

In both cases, pseudo-polynomial memory is both sufficient
and necessary

� but strategies have natural representations based on states of
the game and simple integer counters

Beyond Worst-Case Synthesis Bruyère, Filiot, Randour, Raskin 45 / 46



Context BWC Synthesis Mean-Payoff Shortest Path Conclusion

Beyond BWC synthesis?

Possible future works include

study of other quantitative objectives,

extension of our results to more general settings
(multi-dimension [CDHR10, CRR12], decidable classes of
games with imperfect information [DDG+10], etc),

application of the BWC problem to various practical cases.

Thanks!
Do not hesitate to discuss with us!
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