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We explore memory effects associated with both Abelian and non-Abelian radiation getting to null
infinity, in arbitrary even spacetime dimensions. Together with classical memories, linear and nonlinear,
amounting to permanent kicks in the velocity of the probes, we also discuss the higher-dimensional
counterparts of quantum memory effects, manifesting themselves in modifications of the relative phases
describing a configuration of several probes. In addition, we analyze the structure of the asymptotic
symmetries of Maxwell’s theory in any dimension, both even and odd, in the Lorenz gauge.
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I. INTRODUCTION AND OUTLOOK

Memory effects are permanent changes in physical
quantities pertaining to probes facing the passage of a
burst of radiation close to or at null infinity. In this paper we
illustrate various types of memories concerning matter
probes in interaction with electromagnetic or Yang-Mills
radiation, in arbitrary even-dimensional spacetimes.
Following earlier works concerning gravitational memo-

ries [1,2], Bieri and Garfinkle [3] first pointed out the
existence of analogous observables for electrically charged
matter in D ¼ 4. For charged test particles close to null
infinity, they identified the relevant observable in the form
of a “velocity kick” that the probes would experience as a
consequence of the passage of a radiative perturbation.
They also observed, in the same context, that the possibility
to source those effects either with matter that does not reach
null infinity or with massless sources allows one to identify
two types of effects, termed “linear” (or “ordinary”) in the
former case and “nonlinear” (or “null”) in the latter.
Memory effects caused by electromagnetic fields were

further discussed in [4] and later connected to asymptotic
symmetries of four-dimensional Maxwell’s theory, and thus
identified as the classical counterparts of soft theorems, in

[5,6]. See also [7,8]. Moreover, the possible existence of
analogous effects in dimension four or higher was inves-
tigated from various perspectives, with different (and
sometimes not fully compatible) outcomes in [9–15].
Those works adopted various approaches, focused either
on the classical solutions to the corresponding wave
equations or on the perturbative expansion of the gauge
potentials with a suitably assigned boundary behavior.
One of the main goals of this work is to describe ordinary

and null memory effects for both Maxwell and Yang-Mills
theories in even-dimensional spacetimes. To this end, we
inspect the perturbative behavior of the corresponding
potentials in the Lorenz gauge and connect it to underlying
residual gauge symmetries.
Following [9,10], we begin in Sec. II by analyzing the

classical fields generated by specific background currents,
so as to construct a number of concrete exampleswith which
to compare our general results of the ensuing sections. In
particular, we compute the null memory induced by a
charged particle moving at the speed of light on a test
particle initially at rest in even dimensions. In Sec. III we
discuss various types of memories for Maxwell’s theory in
even-dimensional spacetimes. Upon employing a recursive
gauge-fixing procedure, analogous to the one adopted in
[16] in the gravitational setup,we clarify the interpretation of
both ordinary and null memory in any even D in terms of
residual gauge transformations acting at order r4−D. We
generalize this procedure to the non-Abelian case in Sec. IV,
where we obtain similar results and interpretation for linear
and nonlinear memory effects concerning matter in inter-
action with Yang-Mills radiation.
Both ordinary and null memory effects concern the

permanent modifications affecting kinematical properties
of the probes (the velocity in the case of spin-one radiation,

*andrea.campoleoni@umons.ac.be
Research Associate of the Fund for Scientific Research – FNRS,
Belgium.

†dario.francia@roma3.infn.it
‡carlo.heissenberg@sns.it

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 100, 085015 (2019)

2470-0010=2019=100(8)=085015(22) 085015-1 Published by the American Physical Society

https://orcid.org/0000-0003-2762-182X
https://orcid.org/0000-0001-7179-1477
https://orcid.org/0000-0001-5775-9526
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.085015&domain=pdf&date_stamp=2019-10-23
https://doi.org/10.1103/PhysRevD.100.085015
https://doi.org/10.1103/PhysRevD.100.085015
https://doi.org/10.1103/PhysRevD.100.085015
https://doi.org/10.1103/PhysRevD.100.085015
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


the relative displacement in the gravitational case) due to
the interaction of the latter with a transient radiation field
close to null infinity. On the other hand, the interaction
itself takes place if the matter probes possess the required
quantum numbers, electric charge, or color charge, whose
overall configuration, whenever several particles are
involved, can only be defined by providing the value of
the corresponding connection field on the celestial sphere.
In this sense, one should expect that the configuration itself
be sensitive to the passage of radiation whenever the latter
entails a vacuum transition between connections that differ
by a (large) gauge transformation, even in the idealized case
of unperturbed kinematical variables (i.e., charges kept
fixed at specified angles on the sphere). We refer to these
types of memory effects as “phase memory” for the
electromagnetic case and “color memory” in the non-
Abelian setting, to distinguish them from the memory
effects affecting kinematical properties of the probes, that
we collectively term simply as “electromagnetic” and
“Yang-Mills” memories, respectively. To our knowledge,
in D ¼ 4 phase memory was first discussed in [17] while
color memory was analyzed in [18,19]. Here we explore
these phenomena in the higher, even-dimensional case, in
Secs. III D and IV D, respectively. Let us observe that,
differently from the ordinary and null memories that are
purely classical effects, phase memory and color memory
naturally arise at the quantum level. It would be interesting
to explore possible gravitational counterparts of the color
memory effect.
Memory effects in D > 4 appear at a subleading order

with respect to radiation. Correspondingly, their counter-
parts at the level of gauge transformations do not comprise
properly defined infinite-dimensional asymptotic sym-
metries. The very existence of the latter, on the other hand,
was sometimes doubted in the literature because of the need
for too-slow falloffs on the gauge potentials that could in
principle lead to divergences in physically sensible quan-
tities. The asymptotic structure of spin-one gauge theories,
in particular in connection to soft theorems, was widely
investigated in the literature [20–33]. More recently, the
issue concerning the higher-dimensional extensions of
those results was further explored in a number of works
[34–37]. On our side, in Sec. V we provide an analysis of
the asymptotic symmetries of Maxwell’s theory in any D,
even and odd, stressing analogies and differences between
the two cases, always working in the Lorenz gauge. In
addition, we describe an explicit procedure for defining the
surface charges on I .
In the appendixes we collect a summary of our con-

ventions (Appendix A) together with a number of ancillary
results. In Appendix B we provide a detailed discussion of
the classical solutions to wave equations and memories for
scalar fields in any D, comprising among other things the
calculation of null memory induced by a charged particle
moving at the speed of light on a test particle initially at rest

in odd dimensions. In Appendix C we provide a closed-
form solution of □ϵ ¼ 0 in any even dimension with
boundary condition ϵðu; r;nÞ → λðnÞ for r → ∞. In
Appendix D we complete our exploration of the infrared
triangle for electromagnetism [38] by describing the link
between Weinberg’s soft theorem and the asymptotic
symmetry in the Lorenz gauge, in even dimensions.

II. CLASSICAL EM SOLUTIONS AND
MEMORY EFFECTS

In this section we calculate the fields generated by
specific background charged particles, both massive and
massless. In particular, we evaluate in any even D the
memory effects induced on a test particle at a large distance
r from the origin, much in the spirit of [9,10,12], while also
including the effects induced by massless charged particles,
thus extending the four-dimensional analysis of [3].
Throughout the paper we shall work in the Lorenz gauge,
which in Cartesian coordinates reads ∂μAμ ¼ 0, so that the
equations of motion reduce to a set of scalar wave equations

□Aμ ¼ jμ: ð2:1Þ

Thus, much of the calculations are essentially the same as
those of the scalar case that we detail in Appendix B.
First, we consider the unphysical but instructive case of a

static pointlike source with charge q created at the origin,1

□Aμ ¼ uμqθðtÞδðxÞ; ð2:2Þ

where uμ ¼ ð1; 0;…; 0Þ. The retarded solution is

Aμ ¼ −uμφ; ð2:3Þ

where φ denotes the corresponding solution (B7) for the
scalar field that we report here for completeness,

φðu; rÞ ¼ q
XD=2−2

k¼0

cD;k
θðD=2−2−kÞðuÞ
rD=2−1þk : ð2:4Þ

Here θðuÞ denotes the Heaviside distribution, while the
coefficients cD;k are specified in (B5). The coordinates u
and r are part of the retarded Bondi coordinates, in which
the Minkowski metric takes the form

ds2 ¼ −du2 − 2dudrþ r2γijdxidxj: ð2:5Þ

The solution describing a source created at the origin with
velocity v is obtained by boosting the previous one

1Strictly speaking, Eq. (2.2) is not well posed, since the right-
hand side has a nonzero divergence. We shall take this aspect in
due account when calculating the solution (2.7), where in
particular the right-hand side of (2.2) occurs just as part of a
full source that respects the continuity equation.
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according to (B12) and yieldsAμ¼ðA0;AÞ¼−γðvÞð1;vÞφ.
Moving to retarded coordinates gives

Au ¼ γðvÞφ; Ar¼ γðvÞð1−n ·vÞφ; Ai¼−rγðvÞviφ;
ð2:6Þ

where n ¼ nðxiÞ is the unit vector identifying points on the
(D − 2)-sphere and vi ¼ v · ∂in.
Focusing for simplicity on the case of D ¼ 6, let us now

consider the radiation field generated by a massive particle
with charge q sitting at rest in the origin for t < 0 that starts
moving with velocity v at t ¼ 0. Such a field is obtained by
matching the solution for a charge destroyed at the origin to
that of a charge there created with velocity v. Proceeding as
described in Appendix B, one obtains, for large values of r,

8π2Au ¼
qδðuÞ
r2

�
1

1 − n · v
− 1

�
þOðr−3Þ;

8π2Ar ¼ Oðr−3Þ;

8π2Ai ¼ −
qviδðuÞ

ð1 − n · vÞr −
qviθðuÞ

γðvÞ2ð1 − n · vÞ3r2 þOðr−3Þ;

ð2:7Þ

where we kept the orders relevant to the calculation of the
memory effect. The change in the angular components of
the momentum Pμ of a test charge Q, initially at rest, gives
rise to a linear (or ordinary) memory effect that, to leading
order, reads

Piju>0 − Piju<0 ¼ Q
Z þ∞

−∞
F iudu0

¼ qQvið2 − v2 − n · vÞ
8π2ð1 − n · vÞ3r2 þOðr−3Þ; ð2:8Þ

where F μν is the Maxwell field strength.
With hindsight, having in mind in particular the results of

[10], in order to interpret this leading memory effect in
terms of a symmetry, it is useful to perform a further gauge
fixing in order to get rid of the residual symmetries
affecting the radiation order. Choosing a gauge parameter

8π2ϵ ¼ −
qθðuÞ
r2

�
1

1 − n · v
− 1

�
þOðr−3Þ ð2:9Þ

allows us to cancel the leading term of Au compatibly with
the condition □ϵ ¼ 0. The resulting field after performing
this gauge transformation satisfies2

Au¼Oðr−3Þ;

8π2Ai¼−
qviδðuÞ

ð1−n ·vÞr−
qviθðuÞð2−v2−n ·vÞ

ð1−n ·vÞ3r2 þOðr−3Þ;

ð2:10Þ

so that, in particular,Ai is fully responsible for the memory
formula (2.8). The effect is proportional to the variation of
the latter field component between u > 0 and u < 0 and
takes the form of a total derivative on the sphere, close to
null infinity:

Aiju>0 −Aiju<0 ¼ −
qvið2 − v2 − n · vÞ
8π2ð1 − n · vÞ3r2 þOðr−3Þ

¼ −
q

8π2r2
∂i

�
1 − v2

2ð1 − n · vÞ2 þ
1

1 − n · v

�
þOðr−3Þ: ð2:11Þ

This result provides an explicit connection between the
memory effect and a residual symmetry acting, for large
values of r, at Coulombic order.3

Let us turn our attention to the case of null memory. The
four-dimensional case was illustrated in [3]. Let us con-
sider, in any even dimensionD ≥ 6, the field generated by a
charge moving in the x̂ direction at the speed of light: in
Cartesian coordinates,

□Aμ ¼ qvμδðx − x̂tÞ; ð2:12Þ

with vμ ¼ ð1; x̂Þ and jx̂j ¼ 1. Taking into account the
corresponding retarded solution (B24) for the scalar field
φ, we then have Aμ ¼ −vμφ and, moving to retarded
coordinates,

Au ¼φ; Ar¼ð1−n · x̂Þφ; Ai ¼−rx̂iφ: ð2:13Þ

Consequently

Au ∼ −
qδðuÞ
rD−4 ðΔ −Dþ 4Þ−1ðn; x̂Þ;

Ar ∼ −
qδðuÞ
rD−4 ð1 − n · x0ÞðΔ −Dþ 4Þ−1ðn; x̂Þ;

Ai ∼
qx̂iδðuÞ
rD−5 ðΔ −Dþ 4Þ−1ðn; x̂Þ; ð2:14Þ

where ðΔ −Dþ 4Þ−1 denotes the Green function for the
operator Δ −Dþ 4 and we have omitted terms of the form

δðD−4−kÞðuÞ
rk

FðnÞ ð2:15Þ

2More explicitly, one has Au ¼ q
8π2r3 þOðr−4Þ.

3The Coulombic order is identified by the condition that the
modulus of the vector Aμ in the given metric scales as Oðr3−DÞ.
In particular, at this order, Ai ∼Oðr4−DÞ.
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[see (B24)], which would be leading with respect to those
displayed in (2.14), for suitable values of k, but which do
not contribute to the memory effect because they integrate
to zero. The null memory formula then reads

Piju>0 − Piju<0 ¼ Q
Z þ∞

−∞
F iudu0

¼ −
qQ
rD−4 ∂iðΔ −Dþ 4Þ−1ðn; x̂Þ; ð2:16Þ

where this result is exact for the solution considered, while
for more general solutions of the wave equation in the
form (B23) it would provide the leading-order contribution.
For any even dimension D > 4, the Green functions above
can be written explicitly as follows: denoting for brevity
k ¼ D−4

2
,

ðΔ−2kÞ−1ðn; x̂Þ

¼−
Γðkþ1Þ

8kπkþ1ð1− ðn · x̂Þ2Þk
�
1þ

R
n·x̂
0 ð1− t2Þk−1dtR
1
0 ð1− t2Þk−1dt

�
:

ð2:17Þ
Using this formula, it is interesting to remark that, for
D ¼ 6 (i.e., k ¼ 1), the massless limit v → x̂ of the
ordinary memory effect (2.8) coincides with the null
memory effect (2.16) and correspondingly the gauge field
undergoes the leading-order shift

Aiju>0 −Aiju<0 ¼ −
q

8π2r2
∂i

�
1

1 − n · x̂

�
: ð2:18Þ

III. ELECTROMAGNETIC MEMORY

In the previous section we saw how to establish a
connection between local symmetries acting at large r
and memory effects for specific matter configurations.
Now we would like to investigate this connection beyond
those examples by studying the general structure of the
solution space in the Lorenz gauge. To this end, we will
analyze the asymptotic behavior of the fields in a power-
series expansion in the radial coordinate inD > 6, which is
sufficient to the description of the memory effects. More
general possibilities, also encompassing the four-dimen-
sional case, will be discussed in Sec. V, where we will
explore the full structure of the asymptotic symmetries in the
Lorenz gauge.

A. Electromagnetism in the Lorenz gauge

The Lorenz gauge condition reads

∇μAμ ¼−∂uArþ
1

r
ðr∂rþD−2ÞðAr−AuÞþ

1

r2
DiAi ¼ 0;

ð3:1Þ

where Di is the covariant derivative on the Euclidean unit
(D − 2)-sphere with metric γij. The residual symmetry
parameters then satisfy □ϵ ¼ 0, namely�
2∂r þ

D − 2

r

�
∂uϵ ¼

�
∂2
r þ

D − 2

r
∂r þ

1

r2
Δ
�
ϵ: ð3:2Þ

The equations of motion reduce to □Aμ ¼ 0, which,
component by component, read�
∂2
r − 2∂u∂r −

D − 2

r
ð∂u − ∂rÞ þ

1

r2
Δ
�
Au ¼ 0; ð3:3aÞ

�
∂2
r − 2∂u∂r −

D − 2

r
ð∂u − ∂rÞ þ

1

r2
Δ
�
Ar

þD − 2

r2
ðAu −ArÞ −

2

r3
D ·A ¼ 0; ð3:3bÞ

��
∂2
r − 2∂u∂r þ

1

r2
Δ
�
−
D − 4

r
ð∂u − ∂rÞ −

D − 3

r2

�
Ai

−
2

r
DiðAu −ArÞ ¼ 0: ð3:3cÞ

B. Asymptotic expansion

We assume an asymptotic expansion of the gauge field
and of the gauge parameters in powers of 1=r

Aμ ¼
X
k

AðkÞ
μ r−k; ϵ ¼

X
k

ϵðkÞr−k; ð3:4Þ

where the summation ranges are, for the moment, unspeci-
fied. Equations (3.1) and (3.2) then give

∂uA
ðkþ1Þ
r ¼ ðk −Dþ 2ÞðAðkÞ

u − AðkÞ
r Þ þD · Aðk−1Þ; ð3:5Þ

ðD−2k−2Þ∂uϵ
ðkÞ ¼ ½Δþðk−1Þðk−Dþ2Þ�ϵðk−1Þ; ð3:6Þ

while from (3.3) one obtains

ðD−2k−2Þ∂uA
ðkÞ
u ¼½Δþðk−1Þðk−Dþ2Þ�Aðk−1Þ

u ; ð3:7Þ

ðD−2k−2Þ∂uA
ðkÞ
r ¼ ½Δþkðk−Dþ1Þ�Aðk−1Þ

r

þðD−2ÞAðk−1Þ
u −2D ·Aðk−2Þ; ð3:8Þ

ðD − 2k − 4Þ∂uA
ðkÞ
i ¼ ½Δþ kðk −Dþ 3Þ − 1�Aðk−1Þ

i

− 2DiðAðkÞ
u − AðkÞ

r Þ: ð3:9Þ

Equations (3.5)–(3.9) appear in particular to order r−ðkþ1Þ
in the asymptotic expansions of the original equations.
As we shall see, for the purpose of analyzing the

electromagnetic memory effects the leading falloffs can be
chosen so as to match the corresponding radiation falloffs:
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Au ¼ Oðr−ðD−2Þ=2Þ; Ar ¼ Oðr−ðD−2Þ=2Þ;
Ai ¼ Oðr−ðD−4Þ=2Þ: ð3:10Þ

More general options are possible and influence the
structure of the asymptotic symmetry group. We will be
concerned with these more general aspects of the discussion
in Sec. V.
The significance of the choice (3.10) lies in the fact

that the derivatives with respect to u of the field
components are unconstrained to leading order: these
conditions for the asymptotic expansion are well suited
for identifying the boundary data for a radiation solu-
tion with an arbitrary wave form. Such components
also provide the energy flux at a given retarded time,
according to

PðuÞ ¼
Z
Su

γij∂uA
ðD−4

2
Þ

i ∂uA
ðD−4

2
Þ

j dΩ; ð3:11Þ

where Su is the section of Iþ at fixed u and dΩ is the
measure element on the unit (D − 2)-sphere.
The asymptotic behavior of radiation differs in higher

dimensions with respect to the characteristic Coulombic
falloff r3−D that, in its turn, can be identified as the leading
falloff for stationary solutions. (See also the discussion in
Sec. III C on this point.) As we shall see, Coulomb fields
give nonvanishing contributions to the surface integral
associated with the electric charge as well as to the memory
effects.

1. Recursive gauge fixing

The gauge variations

δAðkÞ
u ¼ ∂uϵ

ðkÞ; δAðkÞ
r ¼ −ðk − 1Þϵðk−1Þ;

δAðkÞ
i ¼ ∂iϵ

ðkÞ ð3:12Þ

imply a number of restrictions on the allowed gauge
parameters, in order to keep the corresponding falloffs.
From δAr ¼ Oðr−D−2

2 Þ we read off ϵðkÞ¼0 for k<ðD−4Þ=2
and k ≠ 0, while δAðkÞ

u ¼ Oðr−D−2
2 Þ additionally requires

that ϵðD−4
2
Þ be independent of u, whereas δAðkÞ

i does not give
rise to further constraints at this stage. This leads to a gauge
parameter of the following form:

ϵðu; r; xiÞ ¼ 1þ r−
D−4
2 ϵðD−4

2
ÞðxiÞ þOðr−D−2

2 Þ; ð3:13Þ

where we conventionally set the global part of ϵ to 1.
However, by (3.6),

�
Δ −

ðD − 2ÞðD − 4Þ
4

�
ϵðD−4

2
Þ ¼ 0; ð3:14Þ

which implies ϵðD−4
2
Þ ¼ 0 since the Laplacian on the sphere

is negative semidefinite.4 Thus, we need to search further
down in the asymptotic expansion of ϵ, employing a
recursive on-shell gauge-fixing procedure. The residual
symmetry is parametrized as follows:

ϵðu; r; xiÞ ¼ 1þ r−
D−2
2 ϵðD−2

2
Þðu; xiÞ þ � � � : ð3:15Þ

Equation (3.6) leaves the u dependence of ϵðD−2
2
Þ uncon-

strained, and therefore we may use it to set

A
ðD−2

2
Þ

u ¼ 0; ð3:16Þ

leaving a residual parameter ϵðD−2
2
ÞðxiÞ arbitrary. Setting

k ¼ D=2, Eqs. (3.7) and (3.6) reduce to

∂uA
ðD
2
Þ

u ¼ 0; ∂uϵ
ðD
2
Þ þ

�
Δ−

ðD−2ÞðD−4Þ
4

�
ϵðD−2

2
Þ ¼ 0;

ð3:17Þ

respectively. Thus, A
ðD
2
Þ

u is a function of the angles xi only,

while δA
ðD
2
Þ

u ¼ ∂uϵ
ðD
2
Þ can be expressed in terms of ϵðD−2

2
Þ,

which can be used to set A
ðD
2
Þ

u ¼ 0, while still leaving
ϵðD2ÞðxiÞ arbitrary. We proceed recursively, assuming

A
ðD−2

2
Þ

u ¼A
ðD
2
Þ

u ¼ ��� ¼Aðq−1Þ
u ¼ 0; ϵðq−1ÞðxiÞ arbitrary;

ð3:18Þ

for some q > D=2. Then, for k ¼ q − 1, Eqs. (3.7) and
(3.6) give

ðD − 2q − 2Þ∂uA
ðqÞ
u ¼ 0;

ðD − 2q − 2Þ∂uϵ
ðqÞ ¼ ½Δ − ðq − 1ÞðD − q − 2Þ�ϵðq−1Þ:

ð3:19Þ

Therefore, we may employ ϵðq−1ÞðxiÞ to set AðqÞ
u to zero

provided that the differential operator on the right-hand side
is invertible, which is true for any q < D − 2.
We shall now consider two options. We may first choose

to truncate the recursive gauge fixing right after the step
labeled by q ¼ D − 4, which leaves us with the asymptotic
expansions

4Interestingly, however, let us observe that the corresponding
putative charge

Q̃ϵ ¼ lim
r→∞

Z
Su

ϵF urrD−2dΩ ¼
Z

D · AðD−4
2
ÞϵðD−4

2
ÞdΩ

is finite and nonvanishing as r → ∞.
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Au¼
X∞

k¼D−3
AðkÞ
u r−k; Ar¼

X∞
k¼D

2

AðkÞ
r r−k; Ai¼

X∞
k¼D−4

2

AðkÞ
i r−k;

ð3:20Þ

where A
ðD−2

2
Þ

r ¼ 0 on shell. The residual symmetry is then
given by

ϵðu; r; xiÞ ¼ 1þ ϵðD−4ÞðxiÞr4−D þ � � � ; ð3:21Þ

whose corresponding charge, evaluated in the absence of
radiation close to the past boundary Iþ

− of Iþ, reads5

Qϵ ¼
1

rD−4

Z
Iþ
−

ð∂uA
ðD−2Þ
r þ ðD − 3ÞAðD−3Þ

u ÞϵðD−4ÞdΩD−2:

ð3:22Þ

Alternatively, we may also perform the recursive gauge
fixing until the very last allowed step, q ¼ D − 3, thus
obtaining

Au ¼
X∞

k¼D−2
AðkÞ
u r−k; Ar ¼

X∞
k¼D

2

AðkÞ
r r−k;

Ai ¼
X∞
k¼D−4

2

AðkÞ
i r−k; ð3:23Þ

and

ϵðu; r; xiÞ ¼ 1þ ϵðD−3ÞðxiÞr3−D þ � � � : ð3:24Þ

The latter choice highlights the possibility of making the
components

A
ðD−4

2
Þ

i ;…; AðD−5Þ
i ; AðD−4Þ

i ð3:25Þ

gauge invariant, and hence in principle responsible for any
observable effect due to radiation impinging on a test
charge placed at a large distance r from a source. Indeed,
consistently with the examples of Sec. II, in the next section
we shall see that electromagnetic memory effects appear at

the Coulombic order AðD−4Þ
i .

C. Electromagnetic memory

A test particle with charge Q, initially at rest at a large
distance r from the origin, will experience a leading-order
momentum kick due to the presence of an electric field
according to

Piju1 − Piju0 ¼ Q
Z

u1

u0

F iudu: ð3:26Þ

We are neglecting the contribution from the magnetic field,
assuming the interaction time between the test particle and
the radiation is sufficiently small. In particular, Eq. (3.26)
holds to leading order for an ideally sharp wave front, as we
checked in Sec. II.
Now we shall consider solutions that are stationary

before u ¼ u0 and after u ¼ u1. For such solutions, the
Maxwell tensor does not vanish outside this interval, in
general, because static forces are present. However, it does
not contain radiation, and thus all the components of the
gauge potential associated with radiation are to vanish, or,
more generally, are to be pure gauge. In particular, the
radiation field components before u0 and after u1 are to be
identical or are to differ by a gauge transformation.
Let us combine the information of the previous recursive

gauge fixing with the requirement that the solution be
stationary before u0 and after u1. The coefficients FðkÞ

iu of
the asymptotic expansion of the electric field F iu ¼∂uAi − ∂iAu satisfy

FðkÞ
iu ¼ −∂uA

ðkÞ
i ðu; xkÞ; ð3:27Þ

for k ¼ D−4
2

;…; D − 4 since the corresponding AðkÞ
u are

zero, thanks to the gauge fixing. Thus,

Piju1 − Piju0 ¼ −Q
XD−4

k¼D−4
2

1

rk
ðAðkÞ

i ju1 − AðkÞ
i ju0Þ þOðr3−DÞ:

ð3:28Þ

With respect to our previous observation, let us notice that
the components of Ai that enter the subleading terms
Oðr3−DÞ are those connected with nonvanishing stationary
properties of the field (we assume no long-range magnetic
forces), while all the leading components explicitly written
enter the radiation behavior and thus their difference after
u1 and before u0 can be at most the angular gradient of
given functions. In addition, we shall immediately see that,
combining this information with the equations of motion
will allow us to appreciate that they all vanish with the
exception of the last one at order r4−D.
Indeed, let us note that for a stationary solution, in our

gauge, Eqs. (3.5), (3.7), (3.8), and (3.9) read, for
k < D − 2,

ðD − k − 1ÞðAðk−1Þ
r − Aðk−1Þ

u Þ þD · Aðk−2Þ ¼ 0; ð3:29Þ

and

½Δþ ðk − 1Þðk −Dþ 2Þ�Aðk−1Þ
u ¼ 0; ð3:30Þ

5Similar considerations will apply to the evaluation of soft
charges in Sec. V.

CAMPOLEONI, FRANCIA, and HEISSENBERG PHYS. REV. D 100, 085015 (2019)

085015-6



½Δþkðk−Dþ1Þ�Aðk−1Þ
r þðD−2ÞAðk−1Þ

u −2D ·Aðk−2Þ ¼ 0;

ð3:31Þ

½Δþðk−1Þðk−Dþ2Þ−1�Aðk−2Þ
i −2DiðAðk−1Þ

u −Aðk−1Þ
r Þ¼0:

ð3:32Þ

For 1 < k < D − 2, Eq. (3.30) implies Aðk−1Þ
u ¼ 0 consis-

tently with the recursive gauge fixing. Equations (3.29) and
(3.31) then give, for 1 < k < D − 2,

½Δþ ðk − 2Þðk −Dþ 1Þ�Aðk−1Þ
r ¼ 0 ð3:33Þ

so that Aðk−1Þ
r ¼ 0 for 2 < k < D − 2. Considering finally

Eq. (3.32), for 2 < k < D − 2, we have

½Δþ ðk − 1Þðk −Dþ 2Þ − 1�Aðk−2Þ
i ¼ 0; ð3:34Þ

and hence Aðk−2Þ
i ¼ 0 provided that k also satisfies

k−ðDÞ < k < kþðDÞ with

k�ðDÞ ¼ 1

2

h
D − 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD − 3Þ2 þ 4

q i
; ð3:35Þ

actually, k−ðDÞ < 1 and kþðDÞ > D − 2 for any D > 3, so

we conclude that stationary solutions obey Aðk−2Þ
i ¼ 0

for 2 < k < D − 2.
To summarize, AðkÞ

u ¼ 0 for 0 < k < D − 3, while

AðkÞ
r ¼ 0 for 1 < k < D − 3 and

AðkÞ
i ¼ 0 for 0 < k < D − 4: ð3:36Þ

By Eq. (3.28), the condition onAi implies that the leading-
order memory effect appears at Oðr4−DÞ,

Piju1 − Piju0 ¼ −
Q

rD−4 ðA
ðD−4Þ
i ju1 − AðD−4Þ

i ju0Þ þOðr3−DÞ:
ð3:37Þ

In view of the discussion below (3.28), we conclude that the
momentum shift must take the form

Piju1 − Piju0 ¼
Q

rD−4 ∂igðxkÞ þOðr3−DÞ; ð3:38Þ

where gðxiÞ is a u-independent function, which depends on
the shape of the radiation train and in particular on u0 and
u1 [see the example (2.11)].
Let us note that, as it must be, this difference is not

affected by the action of the residual gauge transformation
(3.21), because the latter is u independent and thus cannot

alter the difference AðD−4Þ
i ju1 − AðD−4Þ

i ju0 . In this sense,
whether one performs the last step of the recursive gauge
fixing is irrelevant to the extent of calculating the electro-
magnetic memory.

To conclude, we have established a formula that, for any
even D, exhibits a momentum kick characterizing the
transitionbetween the initial and final vacuumconfigurations,
parametrized by the gauge transformation gðxiÞ, induced by
the exposure to electromagnetic radiation reaching null
infinity. In particular, the norm of this effect scales as r3−D.
Up to this point we have only been dealing with an

ordinary memory effect; in order to encompass null
memory, we must modify the equations of motion (3.3)
by adding a suitable source term to the right-hand side,
namely a current density Jμ allowing for the outflow to
future null infinity of charged massless particles. The falloff
conditions on such a current can be taken as follows:

Ju ¼Oðr2−DÞ; Jr¼Oðr2−DÞ; Ji¼Oðr3−DÞ: ð3:39Þ
This is clearly displayed by the current for a single massless
charge qmoving in the x̂ direction, whose components read
in Minkowski coordinates

J0 ¼ qδðx − x̂tÞ; J ¼ qx̂δðx − x̂tÞ; ð3:40Þ
and in retarded coordinates (for t ¼ uþ r > 0)

Ju ¼ −
q

rD−2 δðuÞδðn; x̂Þ;

Jr ¼ −
qð1 − n · x̂Þ

rD−2 δðuÞδðn; x̂Þ;

Ji ¼
qx̂i
rD−3 δðuÞδðn; x̂Þ: ð3:41Þ

To the purposes of the recursive gauge fixing, the only
modification is thus the introduction of a source term JðD−2Þ

u
in the right-hand side of (3.7) when k ¼ D − 3, which now
actually forces us to stop the gauge fixing after the use of
the said equation for k ¼ D − 4 (the step labeled by q ¼
D − 4 in the previous section) and leaves us with the falloff
(3.20). On the contrary, reaching (3.23) is not allowed, and
thus (3.20) comprises a complete gauge fixing. However,
also in view of the above considerations, the discussion of
the memory effect and its relation to the symmetry acting at
Coulombic order remain unaltered.

D. Phase memory

Let us consider a pair of electric charges q and −q that
are pinned in the positions ðr;n1Þ and ðr;n2Þ for large r.
We will now derive the expression for an imprint that the
passage of a radiation train leaves on the properties of these
particles that is encoded in the phase of their states. What
follows is inspired by the four-dimensional discussion of
[17]. For a quantum treatment of electromagnetic kick
memory see instead [14].
To this purpose, let us assume that, as in the previous

section, radiation impinges on the charges only during the
interval between two given retarded times u0 and u1. As we
have seen, this means that

Aiju1 −Aiju0 ¼
1

rD−4 ∂igþOðr3−DÞ ð3:42Þ
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for a suitable angular function gðnÞ. We will assume for
simplicity that the gauge field before the onset of radiation
is the trivial one.
Let jψ1i ¼ jqi and jψ2i ¼ j − qi be the initial states in

which the charged particles are prepared, which are
uniquely labeled by their charges since translational
degrees of freedom have been suppressed. Before u0, the
state jψ2;n1i obtained by the parallel transport of the
second state jψ2i to the position n1 of the first the charge is

jψ2;n1i ¼ jψ2i; ð3:43Þ

because Aμ ¼ 0, so that the corresponding tensor state
evaluated in n1 is given by

jψ1;n1i ⊗ jψ2;n1i ¼ jψ1i ⊗ jψ2i: ð3:44Þ

At any fixed u ≥ u1, instead, the same operation of
parallel transport must be performed by calculating

jψ2;n1i¼ exp

�
iq
Z

n1

n2

Aidxi
�
jψ2i

¼ exp

�
iq
gðn1Þ−gðn2Þ

rD−4

�
jψ2iþOðr3−DÞ; ð3:45Þ

where we have employed (3.42). Therefore, after the
passage of radiation,

jψ1;n1i⊗ jψ2;n1i

¼ exp

�
iq
gðn1Þ−gðn2Þ

rD−4

�
jψ1i⊗ jψ2iþOðr3−DÞ; ð3:46Þ

which displays how the transition between two different
radiative vacua, already experimentally detectable by the
occurrence of a nontrivial velocity kick for a test charge, is
also signaled by the variation of the relative phases in the
states obtained by parallel transport of charged particles.
Such a phase can be nontrivial provided that the function g
is nonconstant, namely when there is a nontrivial memory
kick (3.38).

A point that should be stressed is that, in this setup, the
states jψ1i and jψ2i do not evolve, since each particle is kept
fixed in its position (its translational quantum numbers are
frozen) while electromagnetic radiation cannot change its
charge. The relative phase difference occurs entirely as an
effect of the evolution of Aμ, which undergoes a transition
between two underlying radiative vacua. As we shall see in
the following, this aspect is qualitatively different in a non-
Abelian theory such asYang-Mills, where radiation can alter
the color charge.

IV. YANG-MILLS MEMORY

In this section we extend the previous analysis to the
non-Abelian case.

A. Yang-Mills theory in the Lorenz gauge

We consider pure Yang-Mills theory of an anti-
Hermitian gauge field AμðxÞ ¼ AA

μ ðxÞTA, where TA are
the generators of an suðNÞ algebra. The field strength reads
F μν¼∂μAν−∂νAμþ½Aμ;Aν�, while the infinitesimal form
of the gauge transformation is expressed by δϵAμ ¼ ∂μϵþ
½Aμ; ϵ� in terms of the gauge parameter ϵðxÞ ¼ ϵAðxÞTA.
We impose the Lorenz gauge condition ∇μAμ ¼ 0,

which leaves as residual gauge parameters those that satisfy
□ϵþ ½Aμ; ∂μϵ� ¼ 0. Furthermore, the equations of motion
reduce to □Aν þ ½Aμ;∇μAν þ F μν� ¼ 0.
Adopting retarded Bondi coordinates, the Lorenz gauge

condition is tantamount to

∂uAr ¼
�
∂r þ

D − 2

r

�
ðAr −AuÞ þ

1

r2
D ·A; ð4:1Þ

while the constraint on residual transformations is�
∂2
u − 2∂u∂r þ

1

r2
Δ
�
ϵþD − 2

r
ð∂r − ∂uÞϵ

¼ ½∂rϵ;Ar −Au� − ½∂uϵ;Ar� þ
1

r2
γij½Diϵ;Aj�: ð4:2Þ

The equations of motion are instead

�
∂2
r − 2∂u∂r −

D − 2

r
ð∂u − ∂rÞ þ

1

r2
Δ
�
Au ¼ ½Au −Ar; ∂rAu þ F ru� þ ½Ar; ∂uAu� −

γij

r2
½Ai;DjAu þ F ju�;�

∂2
r − 2∂u∂r −

D − 2

r
ð∂u − ∂rÞ þ

1

r2
Δ
�
Ar þ

D − 2

r2
ðAu −ArÞ −

2

r3
D ·A

¼ ½Au −Ar; ∂rAr� þ ½Ar; ∂uAr þ F ur� −
γij

r2
½Ai;DjAr þ F jr�;��

∂2
r − 2∂u∂r þ

1

r2
Δ
�
−
D − 4

r
ð∂u − ∂rÞ −

D − 3

r2

�
Ai −

2

r
DiðAu −ArÞ

¼
�
Au −Ar;

�
∂r −

2

r

�
Ai þ F ri

�
þ ½Ar; ∂uAi þ F ui� −

γjk

r2
½Aj;DkAi þ F ki�: ð4:3Þ
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B. Asymptotic expansion and color flux

Performing the usual asymptotic expansion in inverse
powers of the radial coordinate r, one obtains the following
set of equations. Equations (4.1) and (4.2) give

∂uA
ðkþ1Þ
r ¼ ðD − k − 2ÞðAðkÞ

r − AðkÞ
u Þ þD · Aðk−1Þ ð4:4Þ

and

ðD − 2k − 2Þ∂uϵ
ðkÞ − ½Δ − ðk − 1ÞðD − k − 2Þ�ϵðk−1Þ

¼
X

lþm¼k

ð−l½ϵðlÞ; AðmÞ
u − AðmÞ

r � þ ½∂uϵ
ðlþ1Þ; AðmÞ

r �

− γij½Diϵ
ðl−1Þ; AðmÞ

j �Þ; ð4:5Þ

respectively, while from (4.3) one obtains

ðD− 2k− 2Þ∂uA
ðkÞ
u − ½Δ− ðD− k− 2Þðk− 1Þ�Aðk−1Þ

u

¼
X

lþm¼k

ð½AðmÞ
r −AðmÞ

u ;−lAðlÞ
u þFðlþ1Þ

ru �− ½AðmÞ
r ;∂uA

ðlþ1Þ
u �

þ γij½AðmÞ
i ;DjA

ðl−1Þ
u þFðl−1Þ

ju �Þ; ð4:6Þ

ðD− 2k− 2Þ∂uA
ðkÞ
r − ½Δ− kðD− k− 1Þ�Aðk−1Þ

r

− ðD− 2ÞAðk−1Þ
u þ 2D ·Aðk−2Þ

¼
X

lþm¼k

ð½AðmÞ
r −AðmÞ

u ;−lAðlÞ
r �− ½AðmÞ

r ;∂uA
ðlþ1Þ
r þFðlþ1Þ

ur �

þ γij½AðmÞ
i ;DjA

ðl−1Þ
r þFðl−1Þ

jr �Þ; ð4:7Þ

ðD−2k−4Þ∂uA
ðkÞ
i − ½Δ−kðD−k−3Þ−1�Aðk−1Þ

i

þ2DiðAðkÞ
u −AðkÞ

r Þ
¼

X
lþm¼k

ð½AðmÞ
r −AðmÞ

u ;−ðlþ2ÞAðlÞ
i þFðlþ1Þ

ri �

− ½AðmÞ
r ;∂uA

ðlþ1Þ
i þFðlþ1Þ

ui �þγjk½AðmÞ
j ;DkA

ðl−1Þ
i þFðl−1Þ

ki �Þ;
ð4:8Þ

for the corresponding components of the equations of
motion. Equations (4.4)–(4.8) appear to order r−ðkþ1Þ in
the asymptotic expansions.
We choose to adopt the same “radiation” falloff con-

ditions (3.10) that we imposed in the linearized theory: the
asymptotic expansions ofAu andAr start at order r−ðD−2Þ=2

and that of Ai starts at order r−ðD−4Þ=2.
For completeness, and as a cross-check of the choice of

falloffs, let us now discuss the definition of the total color
charge QðuÞ ¼ QAðuÞTA and its dependence on the
retarded time u. In the Lorenz gauge, this quantity is given
by the surface integral

QAðuÞ ¼
Z
Su

FA
urrD−2dΩ

¼
X
k

rD−2−k
Z
Su

ð∂uA
ðkÞ
r þ ðk − 1ÞAðk−1Þ

u

þ
X

lþm¼k

½AðmÞ
u ; AðlÞ

r �ÞAdΩ; ð4:9Þ

in the limit r → ∞. Combining the Lorenz condition (4.4)
and the r component of the equations of motion (4.7), one
obtains

ðD− 2− kÞð∂uA
ðkÞ
r þ ðk− 1ÞAðkÞ

u Þ
−DiðDiA

ðk−1Þ
r þ ðk− 2ÞAðk−2Þ

i Þ
¼

X
lþm¼k

ð½AðmÞ
r −AðmÞ

u ;−lAðlÞ
r �− ½AðmÞ

r ;∂uA
ðlþ1Þ
r þFðlþ1Þ

ur �

þ γij½AðmÞ
i ;DjA

ðl−1Þ
r þFðl−1Þ

jr �Þ: ð4:10Þ

We see that (4.4) implies ∂uA
ðD−2

2
Þ

r ¼ 0 and that (4.10)
reduces to

ðD − 2 − kÞð∂uA
ðkÞ
r þ ðk − 1ÞAðk−1Þ

u Þ
¼ DiðDiA

ðk−1Þ
r þ ðk − 2ÞAðk−2Þ

i Þ ð4:11Þ

for k < D − 2. The final expression for the color charge
may be cast in the form

QAðuÞ¼
Z
Su

ðAðD−3Þ
r þðD−4ÞAðD−3Þ

u þ½AðD−2
2
Þ

u ;A
ðD−2

2
Þ

r �ÞAdΩ;

ð4:12Þ

by means of the Lorenz condition (4.4).
Concerning the dependence of QA on retarded time,

recalling that ∂uA
ðD−2

2
Þ

r ¼ 0 by the Lorenz condition, and
employing (4.6) and (4.10) for k ¼ D − 3, we get

d
du

QAðuÞ ¼
Z
Su

γij½AðD−4
2
Þ

i ; ∂uA
ðD−4

2
Þ

j �dΩ: ð4:13Þ

This formula provides the flux of the total color charge due
to nonlinearities of the theory. Note in particular that the
right-hand side involves the radiation components, repre-
senting the flux of classical gluons across null infinity.

C. Yang-Mills memory

Starting from the radiation falloffs (3.10), we may
employ the residual gauge symmetry of the theory to
perform a further, recursive gauge fixing. Actually, since
the nonlinear corrections to Eq. (3.19) appear to order
q ¼ D − 3 or higher, the discussion of this gauge fixing
proceeds as in Sec. III B 1 up to the next to last step. Indeed,
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in accordance with the fact that Yang-Mills theory
must encompass both ordinary/linear and null/nonlinear
memory, the gauge fixing stops at q ¼ D − 4 and cannot be
performed up until q ¼ D − 3, as already observed in the
case of null electromagnetic memory.
The resulting falloffs after this procedure are thus

Au ¼
X∞

k¼D−3
AðkÞ
u r−k; Ar ¼

X∞
k¼D−2

2

AðkÞ
r r−k;

Ai ¼
X∞
k¼D−4

2

AðkÞ
i r−k; ð4:14Þ

with residual symmetry parameter

ϵðu; r; xiÞ ¼ cATA þ ϵðD−4ÞðxiÞr4−D þ � � � ; ð4:15Þ

where cA are constant coefficients.
A colored test particle with charge Q ¼ QATA interacts

with the background Yang-Mills field by the Wong
equations [39]

_Pμ ¼ trðQF μνÞ_xν; _Q ¼ −_xμ½Aμ; Q�: ð4:16Þ

Focusing on the region near null infinity, a test “quark,”
initially at rest, invested by radiation between the retarded
times u0 and u1, will therefore experience the following
leading-order momentum kick:

P0
i − Pi ¼

Z
u1

u0

trðQF iuÞdu ¼ −
1

rD−4 trðQAi
ðD−4ÞÞju1

¼ −
1

rD−4 tr½Qe−ϵ
ðD−4Þ∂ieϵ

ðD−4Þ �; ð4:17Þ

where we have chosen the vacuum configuration at u ¼ u0
to beAμ ¼ 0. On the other hand, the color of the test quark
will change to leading order, according to

Q0 −Q ¼ −
Z

u1

u0

½Au; Q�du ¼ −
1

rD−3

Z
u1

u0

½AðD−3Þ
u ; Q�du;

ð4:18Þ

where the u dependence of Au is governed, according to
Eq. (4.7) with k ¼ D − 3, by

∂uA
ðD−3Þ
u ¼ 1

D − 4
γij½AðD−4

2
Þ

i ; ∂uA
ðD−4

2
Þ

j �: ð4:19Þ

Equation (4.19) characterizes the evolution of the charge of
the quark in terms of the leading outgoing radiation terms.
In order to better understand the dependence of this

momentum kick and of color evolution on the incoming
radiation near null infinity, let us further analyze the
equations of motion. Combining Eqs. (4.4) and (4.7) we
see that

∂uA
ðkþ1Þ
r ¼ DkA

ðkÞ
r ð4:20Þ

for k < D − 3, where

Dk ¼ ½Δþ ðk − 1Þðk −Dþ 2Þ�=ðD − 2k − 2Þ ð4:21Þ

and

∂uA
ðD−2Þ
r ¼ DD−3A

ðD−3Þ
r − AðD−3Þ

u −
1

D − 4
J ; ð4:22Þ

for k ¼ D − 3 in dimensions D > 4, where we have
defined

J ¼ 2γij½AðD−4
2
Þ

i ;DjA
ðD−2

2
Þ

r � − 2½AðD−2
2
Þ

r ; ∂uA
ðD
2
Þ

r �: ð4:23Þ

Equations (4.4) and (4.7), evaluated for k ¼ D − 3 and
k ¼ D − 2, respectively, actually imply the following con-
straint on J :

J ¼ −Di½DiA
ðD−3Þ
r þ ðD − 4ÞAðD−4Þ

i �; ð4:24Þ

and, taking the derivative of the previous equation with
respect to u,

ðD−4Þ∂uD ·AðD−4Þ

¼−Δ∂uA
ðD−3Þ
r þ2½AðD−2

2
Þ

r ;∂2
uA

ðD
2
Þ

r �−2γij½∂uA
ðD−4

2
Þ

i ;DjA
ðD−2

2
Þ

r �:
ð4:25Þ

Starting from Eq. (4.22) and employing (4.20) recursively,
we find that

∂ðD
2
Þ

u AðD−2Þ
r ¼

YD−3

l¼D−2
2

Dl∂uA
ðD−2

2
Þ

r − ∂D−2
2

u AðD−3Þ
u −

1

D − 4
∂D−2

2
u J ;

ð4:26Þ

and, by Eq. (4.24),

∂D−2
2

u D · AðD−4Þ ¼ ∂D−2
2

u ð∂uA
ðD−2Þ
r þ AðD−3Þ

u Þ

−
1

D − 4
∂D−2

2
u ΔAðD−3Þ

r −
YD−3

l¼D−2
2

Dl∂uA
ðD−2

2
Þ

r :

ð4:27Þ

Equations (4.25) and (4.27) encode the dependence of
D · AðD−4Þ, and hence of the memory kick, on the radiation

data encoded in this case by A
ðD−2

2
Þ

r .
In dimension D ¼ 4, considering again the radiation

falloffs (3.10) and an asymptotic series expansion in
powers of 1=r, the above equations take instead the form
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Di∂u½Að0Þ
i ; Að1Þ

r � þ γij½Að0Þ
i ; ∂u½Að0Þ

j ; Að1Þ
r �� ¼ 0; ð4:28Þ

∂uD · Að0Þ ¼ ∂uð∂uA
ð2Þ
r þ Að1Þ

u Þ: ð4:29Þ

These coupled equations encode the dependence of Að0Þ
i on

the leading electric field and on nonlinear source terms,
compatibly with the analysis given in [18].6

D. Color memory

Let us now consider a pair of color charges that are
pinned in the positions ðr;n1Þ and ðr;n2Þ for large r.
Analyzing the effect of the passage of Yang-Mills radiation
will provide the non-Abelian analogue of the phase
memory effect highlighted in Sec. III D, namely a relative
rotation between their states in color space. The content of
this section is basically inspired by [18], where color
memory was first discussed and whose four-dimensional
results we extend to arbitrary even-dimensional spaces.
We consider colored particles in the fundamental

representation of the gauge group that, for definiteness,
we first take to be SUð2Þ. Assuming that radiation is
nontrivial only between two given retarded times u0 and u1,
as we have seen, the angular components of the gauge
field satisfy

Aiju1 −Aiju0 ¼
1

rD−4 e
−α∂ieα þOðr3−DÞ ð4:30Þ

for a suitable αðnÞ ¼ αAðnÞTA, where TA are the suð2Þ
generators. We have assumed for simplicity that the pure
gauge configuration before u0 is the trivial one.
Let jψ1i and jψ2i be the initial states in which the

colored particles are prepared. Before u0, the state jψ2;n1i
that results from the parallel transport of the second state
jψ2i to the position n1 of the first charge is

jψ2;n1i ¼ jψ2i; ð4:31Þ

because Aμ ¼ 0. In particular, one can take it to be one of
the eigenstates of T3, i.e., jþi or j−i. In order to build a
color singlet state in n1, it then suffices to prepare the
superposition

jþ;n1i ⊗ j−;n1i − j−;n1i ⊗ jþ;n1iffiffiffi
2

p

¼ jþi ⊗ j−i − j−i ⊗ jþiffiffiffi
2

p : ð4:32Þ

We remark that, in order for the singlet to be well-defined
when SUð2Þ transformations can depend on the position, it
is crucial to build a singlet out of states that have been
parallel transported to the same point.
A given state jψi evolves according to the covariant

conservation equation [40]7

∂ujψi ¼ −Aujψi; ð4:33Þ

where we recall that Au ¼ Oðr3−DÞ for large r. Thus, the
state after the passage of radiation differs with respect to its
initial value by

jψiju1 − jψiju0 ¼ Oðr3−DÞ: ð4:34Þ

Now, at u1 one must also take into account the effect of
parallel transport from n2 to n1 on the sphere, given by

jψ2;n1i ¼ P exp

�
−
Z

n1

n2

Aidxi
�
jψ2i

¼ jψ2i −
1

rD−4

Z
n1

n2

e−α∂ieαdxijψ2i þOðr3−DÞ;

ð4:35Þ

where P denotes path ordering and we have employed
(4.30) to establish the second equality. We conclude that the
actual state after radiation has passed is no longer the
singlet (4.32), but rather

jþ;n1i ⊗ j−;n1i − j−;n1i ⊗ jþ;n1iffiffiffi
2

p

¼ jþi ⊗ j−i − j−i ⊗ jþiffiffiffi
2

p

−
1

rD−4
ffiffiffi
2

p
�
jþi ⊗

Z
n1

n2

e−α∂ieαdxij−i

− j−i ⊗
Z

n1

n2

e−α∂ieαdxijþi
�
þOðr3−DÞ: ð4:36Þ

A comparison between (4.32) and (4.36) shows that the
interaction of the color charges with the external Yang-
Mills radiation induces a rotation of the initial state that
manifests itself to order Oðr4−DÞ in the final state. In other
words, a pair of particles initially prepared in a singlet will
no longer be in a singlet after the passage of radiation. This
color memory can be nontrivial provided that the function α
is nonconstant, namely whenever there is also potentially a
nontrivial memory kick (3.38).

6Let us notice that, in order to unravel the symmetry origin of
the above effect in D ¼ 4, one cannot straightforwardly rely on
the structure of asymptotic symmetries described in (4.15). It is
conceivable that weaker falloff conditions are needed, including
log terms, in the spirit of Sec. V.

7The covariant conservation equation for the color states,
which in general reads ð ddτ þ _xμAμÞjψi ¼ 0, implies the Wong
equation (4.16) for the color charge d

dτQþ ½_xμAμ; Q� ¼ 0, where
Q ¼ QATA and QA ¼ hψ jTAjψi.
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From a technical point of view, it should be noted how
the effect of radiation on each color state is to induce a time
evolution to order Oðr3−DÞ, according to (4.34), which
allows one to disentangle it from the leading effect due to
the vacuum transition (4.30) undergone byAi, which enters
(4.36) to order Oðr4−DÞ.
A very similar derivation allows one to extend the result

to more general states and gauge groups. Adopting an
orthonormal basis jni for the fundamental representation of
SUðNÞ, we can consider the superpositionX

n;m

cn;mjni ⊗ jmi ð4:37Þ

with
P

n;m jcn;mj2 ¼ 1, prepared before u0. Time evolution
will induce modifications of jni that appear to order
Oðr3−DÞ by Au ¼ Oðr3−DÞ. On the other hand, the effect
of parallel transport from n2 to n1 performed after u1 gives
rise to the leading-order correction

−
1

rD−4

X
n;m

cn;mjni ⊗
Z

n1

n2

e−α∂ieαdxijmi ð4:38Þ

to (4.37), due to the nontrivial configuration (4.30) attained
by Ai.

V. MORE ON ASYMPTOTIC SYMMETRIES
FOR THE MAXWELL THEORY

So far, we focused on the symmetries directly related to
memory effects. As we saw, these symmetries act at
Coulombic order so that the corresponding charge (3.22)
displays a falloff Oðr4−DÞ. Thus, they do not comprise
asymptotic symmetries, stricto sensu, since the associated
charges vanish at Iþ.8 In this section we aim to comple-
ment our discussion by performing a more general analysis
of the asymptotic symmetry algebra for the Maxwell theory
in higher dimensions.9

In the radial gauge, in D ¼ 4, the standard powerlike
asymptotic expansion easily allows one to identify the
existence of infinite-dimensional asymptotic symmetries.
The same result, in the same gauge, can be obtained in
higher dimensions upon choosing a powerlike ansatz with
leading-order terms as weak as 1=r [24]. (Showing the
consistency of this choice in the gravitational case allowed
us to identify the Bondi-Metzner-van der Burg-Sachs (BMS)
group as the relevant group of asymptotic symmetries for

asymptotically flat spacetimes of arbitrary even dimensions
[41].) In this section we perform a similar analysis in the
Lorenz gauge, highlighting the existence of full-fledged,
infinite-dimensional asymptotic symmetries in any D, while
also proposing a procedure for computing finite and non-
vanishing associated charges on I . While in agreement with
dedicated literature concerning the gravitational case [16,41],
the actual interplay between these symmetries with finite
charges and those responsible for memory effects, whose
charges, differently, vanish on I , probably deserves further
conceptual clarification.
On a more technical side, one first observes that,

differently from the radial gauge, in the Lorenz gauge a
mere powerlike ansatz with leading-order falloffs as weak
as 1=r does not allow one to recover a nontrivial structure
for the asymptotic symmetry group. In order to display the
latter, one finds the need for generalizing the asymptotic
expansion by allowing for logarithmic terms. In this section
we will provide an explicit realization to this effect, while
also discussing the nonobvious issue of the finiteness of the
corresponding soft surface charges.
The observed difference between radial and Lorenz

gauges is one concrete facet of a general issue concerning
the possible gauge dependence of the asymptotic analysis
[36,42–44]. While in some instances, such as the present
one, this problem has been clarified, the general system-
atics may still deserve further attention.

A. Polyhomogeneous expansion for D ≥ 4

In the Lorenz gauge, in order to investigate the possible
existence of large gauge symmetries acting at Iþ we look
for solutions to Eq. (3.2) with the boundary condition

lim
r→∞

ϵðu; r;nÞ ¼ ϵð0Þðu;nÞ ð5:1Þ

for some nonconstant function ϵð0Þðu;nÞ. As it turns out, a
power-law ansatz

ϵ ¼
X∞
k¼0

ϵðkÞðu;nÞ
rk

ð5:2Þ

effectively selects only the global symmetry in any
even dimension D ≥ 4. Indeed, considering (3.6) with
k ¼ 0; 1;…; D−2

2
, we have

ðD − 2Þ∂uϵ
ð0Þ ¼ 0;

ðD − 4Þ∂uϵ
ð1Þ ¼ Δϵð0Þ;

..

.

2∂uϵ
ðD−4

2
Þ ¼

�
Δ −

DðD − 6Þ
4

�
ϵðD−6

4
Þ;

0 ¼
�
Δ −

ðD − 4ÞðD − 2Þ
4

�
ϵðD−4

2
Þ: ð5:3Þ

8In addition, one should check whether the symmetry is
actually canonically generated by those charges. This type of
analysis, however, lies beyond the scope of our work.

9Let us mention, however, that contrary to the calculation of
memory effects, which appear to be tightly related to the
properties of the wave equation in even-dimensional spacetimes,
these further investigations of asymptotic symmetries admit an
extension to spacetimes of not only even but also odd dimensions.
While focusing on the former case in the main discussion, we will
comment along the way on the differences arising in the latter.
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The last equation sets ϵðD−4
2
Þ to zero for any D ≥ 6, and to a

constant forD ¼ 4. Then, the above system recursively sets
to zero the other components ϵðkÞ all the way up to ϵð0Þ since
the corresponding operators are all invertible. Eventually,
ϵð0Þ must be a constant by ∂uϵ

ð0Þ ¼ 0 and Δϵð0Þ ¼ 0.
One concludes that the power-law ansatz does not allow

for an enhanced asymptotic symmetry sitting at the order
Oð1Þ. In order to retrieve it, one needs a more general
ansatz. We find that it is sufficient, to this purpose, to
consider the following type of asymptotic expansion10

involving also a logarithmic dependence on r [30,34–36]:

ϵðu; r;nÞ ¼
X∞
k¼0

ϵðkÞðu;nÞ
rk

þ
X∞
k¼D−2

2

λðkÞðu;nÞ log r
rk

: ð5:4Þ

In this fashion, the last equation in (5.3) becomes modified
by the presence of the logarithmic branch and yields

2∂uλ
ðD−2

2
Þ ¼

�
Δ −

ðD − 4ÞðD − 2Þ
4

�
ϵðD−4

2
Þ; ð5:5Þ

an equation that determines the u dependence of λðD−2
2
Þ, thus

still allowing for an arbitrary ϵð0ÞðnÞ.
Indeed, the recursion relations expressing the equation

□ϵ ¼ 0 read

ðD−2−2kÞ∂uϵ
ðkÞ þ2∂uλ

ðkÞ

¼ ½Δþðk−1Þðk−Dþ2Þ�ϵðk−1Þ þðD−1−2kÞλðk−1Þ;
ðD−2−2kÞ∂uλ

ðkÞ ¼ ½Δþðk−1Þðk−Dþ2Þ�λðk−1Þ; ð5:6Þ

and hence can be solved by direct integration with respect
to u. Explicitly, for k < D−2

2
, they reduce to the familiar

system

ðD − 2 − 2kÞ∂uϵ
ðkÞ ¼ ½Δþ ðk − 1Þðk −Dþ 2Þ�ϵðk−1Þ;

ð5:7Þ

so that the solution is given by a polynomial in u with
angle-dependent coefficients Cj;kðnÞ, with 0 ≤ j ≤ k, and
is uniquely determined by specifying the integration
functions ϵ̂ðkÞðnÞ:

ϵðkÞðu;nÞ ¼
Xk
j¼0

Cj;kðnÞuj; ð5:8Þ

with

Cj;kðnÞ ¼
(
ϵ̂ðkÞðnÞ if j ¼ 0;
1
j!

Q
k
l¼k−jþ1 Dlϵ̂

k−lðnÞ otherwise;
ð5:9Þ

where Dl was defined in (4.21). If k ¼ D−2
2
, Eq. (5.6)

reduces to (5.5), so that

λðD−2
2
Þðu;nÞ ¼ 1

2

Z
u

0

�
Δ −

ðD − 4ÞðD − 2Þ
4

�
ϵðD−4

2
Þðu0;nÞdu0

þ λ̂ð
D−2
2
ÞðnÞ; ð5:10Þ

with a suitable integration function, while ϵðD−2
2
Þðu;nÞ stays

unconstrained. For k > D−2
2
, we can recast (5.6) in the

slightly more suggestive form

ðD−2−2kÞ∂uλ
ðkÞ ¼ ½Δþðk−1Þðk−Dþ2Þ�λðk−1Þ;

ðD−2−2kÞ∂uϵ
ðkÞ ¼ ½Δþðk−1Þðk−Dþ2Þ�ϵðk−1Þ

þ
�

2

2k−Dþ2
ðΔþðk−1Þðk−Dþ2ÞÞ

þðD−1−2kÞ
�
λðk−1Þ: ð5:11Þ

In this way, it becomes clear that these two equations can
always be solved by first finding the integral of the first
equation directly, and then substituting it in the second one
where it acts as a “source” term on the right-hand side.
To summarize, a solution of (5.6) is specified by

assigning a set of integration functions ϵ̂ðkÞðnÞ, for
k ≥ 0, and λ̂ðkÞðnÞ, for k ≥ D−2

2
, together with an arbitrary

function ϵðD−2
2
Þðu;nÞ. In particular, this achieves the boun-

dary condition (5.1) as r → ∞, where ϵð0ÞðnÞ is an arbitrary
function on the celestial sphere.
The situation is simpler in odd dimensions, where the

recursion relation (3.6) can be solved compatibly with the
boundary condition (5.1) without the need of introducing
logarithmic terms. The technical reason is that, when D is
odd, the left-hand side of (3.6) never vanishes for integer k.
By means of the transformations

Aμ ↦ Aμ þ ∂μϵ ð5:12Þ

parametrized by the gauge parameters thus obtained, we
can then act on solutions to Maxwell’s equations in the
Lorenz gauge characterized by the radiation falloffs (3.10)
and generate a wider solution space. In particular, in view
of the expansion (5.4) of ϵ, this type of solutions will
generically exhibit the following asymptotic behavior as
r → ∞:

Au¼Oðr−1Þ; Ar¼Oðr−2Þ; Ai¼Oðr0Þ; ð5:13Þ

in any D ≥ 5, while

10The fully polyhomogeneous ansatz would be of the formP
k;j r

−kðlog rÞjϵðk;jÞðu;nÞ, involving arbitrary powers of log r.
We do not explore this more general possibility in the present
paper.

ELECTROMAGNETIC AND COLOR MEMORY IN EVEN … PHYS. REV. D 100, 085015 (2019)

085015-13



Au¼Oðr−1 logrÞ; Ar¼Oðr−1Þ; Ai¼Oðr0Þ; ð5:14Þ

in dimension D ¼ 4.
It is important to remark that, since such solutions differ

from those characterized by (3.10) by a pure gradient, they
will still retain all the corresponding physical properties,
such as the finiteness of the energy flux at any given
retarded time.
As far as (5.12) alone is concerned, one could in

principle consider parameters ϵ that obey arbitrary asymp-
totics near Iþ. However, the ones of interest to us are those
that define asymptotic symmetries, i.e., parameters that
give rise to finite and nonvanishing asymptotic surface
charges. In the next section we shall see that this is indeed
the case for our class of solutions identified by (5.1).

B. Asymptotic charges

As it is usually the case in the presence of radiation, the
naive surface charge associated with the symmetry (5.4),
namely

QϵðuÞ¼ lim
r→∞

I
Su

F urðu;r;nÞϵðu;r;nÞrD−2dΩðnÞ; ð5:15Þ

is formally ill defined, because the right-hand side contains
terms of the type, e.g.,

r
D−4
2

I
Su

F
ðD
2
Þ

ur ϵð0ÞðnÞdΩ; ð5:16Þ

which do not vanish, even after imposing the equations of
motion, precisely due to the presence of an arbitrary
parameter ϵð0ÞðnÞ.
Such difficulties are absent in the case of the global

charges because the equations of motion always ensure
that these potentially dangerous terms are actually zero.
Indeed, ∇μF μν ¼ 0 away from electric charges, so thatR
Su;r

F μνdxμν cannot depend on r, nor in fact on u, because

it must be independent of the specific (D − 2) surface under
consideration.
It should be noted, however, that, for the general

variation with parameter (5.4), the above difficulties arise
only if one attempts to calculate the surface charge by
integrating over a sphere at a given retarded time u and
radius r and then lets r tend to infinity. On the other hand,
the calculation of the charge on a Cauchy surface still gives
a well-defined result [36]. For instance, under the simplify-
ing assumption that the electromagnetic field due to
radiation vanishes for u < u0 in a neighborhood of future
null infinity, the calculation of the surface charge indeed
yields

QϵðuÞ ¼
I
Su

FðD−2Þ
ur ϵð0ÞdΩ

¼
I
Su

½AðD−3Þ
r þ ðD − 4ÞAðD−3Þ

u �ϵð0ÞdΩ; ð5:17Þ

for fixed u < u0, since all radiation components FðkÞ
ur , for

k < D − 2, vanish for a stationary solution (see the dis-
cussion in Sec. III C) and Su is indeed the boundary of a
Cauchy surface. Then letting u approach −∞, one has

Qϵð−∞Þ ¼
I
Iþ
−

FðD−2Þ
ur ϵð0ÞdΩ

¼
I
Iþ
−

½AðD−3Þ
r þ ðD − 4ÞAðD−3Þ

u �ϵð0ÞdΩ: ð5:18Þ

For u < u0, the quantity QϵðuÞ must match the analogous
surface integral calculated at spatial infinity because in both
cases the Noether two-form is integrated over the boundary
of a Cauchy surface, in view of the requirement that no
radiation be present in a neighborhood of Iþ for u < u0.
In force of the considerations above, we now define the

charge QϵðuÞ for all the values of u as follows. For u < u0
we define it as in (5.17), while for u ≥ u0, even in the
presence of radiation, we define it as the evolution of (5.17)
under the equations of motion. Indeed, the Maxwell
equation ∇ · F r ¼ 0 gives

�
∂r þ

D − 2

r

�
F ur ¼

1

r2
D · F r; ð5:19Þ

while ∇ · F u ¼ 0 reads

∂uF ur ¼
�
∂r þ

D − 2

r

�
F ur þ

1

r2
D · F u

⇒ ∂uF ur ¼
1

r2
D · ðF u þ F rÞ; ð5:20Þ

and hence

d
du

QϵðuÞ ¼
I
Su

D · ðFðD−4Þ
u − FðD−4Þ

r Þϵð0ÞdΩ: ð5:21Þ

Analogous considerations allow one to introduce well-
defined surface charges evaluated at I−.
From the perspective of the analysis performed in Sec. II,

it is possible to explicitly calculate the soft charges
according to the above strategy. Restricting to the case
of a massive charge in dimension D ¼ 6 that starts moving
at t ¼ 0, the integral ofF urϵ

ð0Þ on a sphere at fixed retarded
time u and radius r yields
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Qϵðr;uÞ ¼ r
δðuÞ
8π2

I
n · vð3n · v− 4Þ− v2

ð1−n · vÞ2 ϵð0ÞðnÞdΩ

þ 3

8π2

I �
θð−uÞ þ θðuÞ ð1− v2Þ2

ð1−n · vÞ4
�
ϵð0ÞðnÞdΩ:

ð5:22Þ

Except for the case of the electric charge ϵð0Þ ¼ 1, where
the first integral vanishes identically, the limit of this
surface charge as r → ∞ is ill defined in the presence of
radiation, namely on the forward light cone u ¼ 0, due to
the linear divergence appearing in the first line. However,
the charge is well defined on Iþ before and after the
passage of radiation, u ≠ 0, and reads

QϵðuÞ ¼
3

8π2

I
½θð−uÞ þ θðuÞ ð1 − v2Þ2

ð1 − n · vÞ4�ϵ
ð0ÞðnÞdΩ:

ð5:23Þ

For ϵð0Þ ¼ 0, this quantity reduces to the (constant) electric
charge Q ¼ 1, while for more general parameters ϵð0Þ, the
soft charge exhibits a jump discontinuity at u ¼ 0, which
measures the fact that the particle is no longer static for
u > 0 in a manner akin to the memory effect itself.
Performing instead the limit r → ∞ at fixed time t, it is

also possible to verify the matching between the surface
charge evaluated at null infinity before the onset of
radiation, for u < 0 (or, equivalently, at Iþ

− ), and the
Hamiltonian charge HϵðtÞ, obtained by integrating on a
slice at fixed time t. Indeed, taking (B18) into account and
writing the result in terms of polar coordinates t, r, and n,
we have, for the scalar field,

8π2φ¼ δðt− rÞ
γðvÞð1−n ·vÞr2þ

θðt−rÞ
γðvÞ3ð1−n ·vÞ3r3Δðt− r;rÞ−3=2

−
δðt− rÞ

r2
þθðr− tÞ

r3
: ð5:24Þ

The corresponding electromagnetic potential is given by
Aμ ¼ ðA0;AÞ ¼ −γðvÞð1; vÞφ, for t > r, and Aμ ¼ ðφ; 0Þ,
for t < r. The radial component of the electric field then
yields F tr ¼ 3r−4 as r → ∞ for fixed t and hence

HϵðtÞ ¼
3

8π2

I
ϵð0ÞðnÞdΩ ¼ Qϵðu < 0Þ: ð5:25Þ

Similar arguments showing the finiteness of the
Hamiltonian charge in higher dimensions have been given,
in the case of a linearized spin-two field in retarded Bondi
gauge, in [45], while a renormalization procedure has been
recently proposed, for the Maxwell theory in the radial
gauge, in [46] (for the general definition of surface charges
see [47]). The relation between asymptotic charges and the
soft photon theorem in any D was recently clarified in

[34,35]. In Appendix D we present the details of the
computation for the case of interest in our work.
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APPENDIX A: NOTATION

Retarded Bondi coordinates are a retarded time u¼ t−r,
a radial coordinate r, and angular coordinates xi on
the Euclidean unit (D − 2)-sphere, with metric γij. The
Minkowski metric, in such coordinates, reads

ds2 ¼ −du2 − 2dudrþ r2γijdxidxj; ðA1Þ

while the (nonvanishing) Christoffel symbols are

Γi
rj ¼

1

r
δij; Γu

ij ¼ −Γr
ij ¼ rγij;

Γi
jk ¼

1

2
γilð∂jγlk þ ∂kγjl − ∂lγjkÞ: ðA2Þ

With Di we denote the covariant derivative associated with
γij and Δ ¼ DiDi is the corresponding Laplace-Beltrami
operator. In particular, the d’Alembert operator□ acting on
a scalar φ takes the explicit form

□φ¼−
�
2∂rþ

D−2

r

�
∂uφþ

�
∂2
r þ

D−2

r
∂rþ

1

r2
Δ
�
φ:

ðA3Þ

We find it useful to also employ the notation n ¼ nðxiÞ
for unit vectors identifying points on the sphere, in terms of
which γij ¼ ∂in · ∂jn.

APPENDIX B: CLASSICAL SCALAR SOLUTIONS
AND MEMORY EFFECTS

In this appendix, we derive explicit solutions of the scalar
wave equation with different types of background sources
and calculate the associatedmemory effects. This provides a
useful warming-up for our discussion of electromagnetic
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memory effects in the Lorenz gauge in even dimensions,
while also allowing us to shed some light on the nature of
memory effects in odd dimensions.

1. Scalar fields in even D

Let us first consider a particle with charge q under the
scalar field φ that is created in the origin at t ¼ 0. The field
generated by this process is obtained by solving the wave
equation

−□φðt;xÞ ¼ qθðtÞδðxÞ ðB1Þ
(we adopt the convention −□ ¼ −ημν∂μ∂ν ¼ ∂2

t −∇2).
The solution is given by the convolution of the source
on the right-hand side with the (D-dimensional) retarded
wave propagator Gret

D ðxÞ, i.e., in this case

φðt;xÞ ¼ q
Z

t

−∞
Gret

D ðτ;xÞdτ: ðB2Þ

The field generated by a particle that is destroyed in the
origin can then be obtained by time reversal of the above
solution, while the field for a moving particle can be
calculated by applying a Lorentz boost.
Let us recall that [48], for even D ≥ 2, the retarded

propagator is

Gret
D ðxÞ ¼ 1

2πD=2−1 δ
ðD−4

2
Þðx2Þθðx0Þ; ðB3Þ

where θ is the Heaviside distribution. Restricting to even
D ≥ 4, and using the chain rule for the distribution
δðD−4

2
Þðx2Þ, the propagator (B3) can be recast as

Gret
D ðt;xÞ ¼

XD=2−2

k¼0

cD;k
δðD=2−2−kÞðuÞ
rD=2−1þk ; ðB4Þ

where u ¼ t − r and r ¼ jxj, while cD;k are the coefficients

cD;k ¼
1

2ð2πÞD2−1
ðD
2
− 2þ kÞ!

2kðD
2
− 2 − kÞ!k! : ðB5Þ

In particular, note that

cD;0¼
1

2ð2πÞD2−1 ; cD;D
2
−3¼cD;D

2
−2¼

1

ðD−3ÞΩD−2
; ðB6Þ

where ΩD−2 is the area of the (D − 2)-dimensional
Euclidean unit sphere. The resulting scalar field is thus

φðu; rÞ ¼ q
XD=2−2

k¼0

cD;k
θðD=2−2−kÞðuÞ
rD=2−1þk : ðB7Þ

Notice that only the term associated with k ¼ D=2 − 2
gives rise to a persistent field for fixed r, while the other

terms have support localized at u ¼ 0, namely on the
future-directed light cone with vertex at the particle’s
creation. This is a general consequence of the recursion
relation (3.6), namely

ðD−2k−2Þ∂uφ
ðkÞ ¼ ½Δþðk−1Þðk−Dþ2Þ�φðk−1Þ; ðB8Þ

obeyed by φ ¼ P
k φ

ðkÞr−k near future null infinity, which
requires ½Δþ kðk −Dþ 3Þ�φðkÞ ¼ 0 for 0 < k < D − 3,
and hence φðkÞ ¼ 0, for any stationary solution.
Now, a test particle with charge Q, held in place at a

distance r from the origin, will be subject to a force fμ ¼
Q∂μφðu; rÞ at a given retarded time u due to the presence of
the scalar field. Hence, its D-momentum Pμ will in general
be subject to the leading-order variation

Pμju − Pμju¼−∞ ¼ Q
Z

u

−∞
∂μφðu0; rÞdu0: ðB9Þ

For this very simple example, this quantity can be calcu-
lated explicitly for any even D. The variations of Pu and Pr
in particular yield

Puju>0 − Puju<0 ¼ Q
Z þ∞

−∞
∂uφðu0; rÞdu0

¼ Qq
ðD − 3ÞΩD−2rD−3 for u > 0 ðB10Þ

and

Prju>0 − Prju<0 ¼ Q
Z þ∞

−∞
∂rφðu0; rÞdu0

¼ −
ðD − 4ÞQq

ðD − 3ÞΩD−2rD−3 : ðB11Þ

Equation (B10) simply expresses the fact that the test
particle will start feeling the Coulombic interaction energy
with the newly created particle in the origin as soon as it
crosses the light cone subtended by the origin of spacetime.
On the other hand, (B11) tells us that the test particle will
feel an instantaneous, radial momentum kick, for even
dimensions greater than four. Since this process is spheri-
cally symmetric, the variations of the angular components
Pi vanish identically.
The field emitted by a particle destroyed in the origin at

t ¼ 0 is obtained by sending u ↦ −u in (B7). The case of a
particle moving with velocity v can instead be obtained by
boosting (B7):

t↦ γðvÞðt−v ·xÞ; x↦xþvðγðvÞ−1Þv ·x
v2

− γðvÞvt;
ðB12Þ

which gives, for large r, denoting n ¼ x=r,
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u ↦ uγðvÞ−1ð1 − n · vÞ−1 þOðr−1Þ;
r ↦ rγðvÞð1 − n · vÞ þOð1Þ: ðB13Þ

We can then cast the boosted solution in the following
form:

φðu; r;nÞ ¼ qθðuÞ
ðD − 3ÞΩD−2½γðvÞð1 − n · vÞr�D−3

þ φ̄ðu; r;nÞ þOðr2−DÞ; ðB14Þ
where φ̄ is a sum of terms of the type

fαðr;nÞδðαÞðuÞ; with α ≥ 0; ðB15Þ

namely, whose support is localized on the light cone. Let us
stress that the terms in φ̄ formally dominate the asymptotic
expansion of φ as r → ∞. However, these terms will not
contribute to the leading u component of the momentum
kick due to the presence of δðuÞ and its derivatives. We can
therefore conclude that

Puju>0 − Puju<0 ¼ Q
Z þ∞

−∞
∂uφdu0

¼ qQ
ðD − 3ÞΩD−2½γðvÞð1 − n · vÞr�D−3 ;

ðB16Þ

in any evenD. This is, not surprisingly, just the analogue of
Eq. (B10) for the Coulombic energy in which one needs to
account for the relativistic length contraction.
For a more general scattering process involving a

number of “in” and “out” particles destroyed or created
in the origin, the result is obtained by linearly superposing
solutions and therefore reads (ηa ¼ −1 for an incoming
particle and ηa ¼ þ1 for an outgoing one)

Puju>0−Puju<0
¼

X
a∈in=out

ηaqaQ
ðD−3ÞΩD−2½γðvaÞð1−n ·vaÞr�D−3 : ðB17Þ

Calculating radial and angular components of Pμ

requires more effort, since they arise instead from the
terms proportional to δðuÞwhose number increases with the
spacetime dimension. They have been given for any even
dimension in [10] in terms of derivatives of a generating
function. For our present, illustrative, purposes, it suffices
to consider the first relevant case D ¼ 6, where the exact
solution in the case of the particle created in the origin with
velocity v is given by

8π2φ¼ δðuÞ
γðvÞð1−n ·vÞr2þ

θðuÞ
γðvÞ3ð1−n ·vÞ3r3Δðu;rÞ

−3=2

ðB18Þ

with

Δðu; rÞ ¼ 1þ 2uðv2 − n · vÞ
rð1 − n · vÞ2 þ u2v2

r2ð1 − n · vÞ2 : ðB19Þ

The corresponding radial and angular memory effects in
D ¼ 6 are then, to leading order,

Prju>0 − Prju<0 ¼
−2Qq

8π2γðvÞð1 − n · vÞr3 ;

Piju>0 − Piju<0 ¼
viQq

8π2γðvÞð1 − n · vÞr2 ; ðB20Þ

where vi ¼ ∂in · v is the component of the particle’s
velocity in the ith angular direction.
While the above examples illustrate the phenomenon of

ordinary memory associated with the field emitted to
massive charges that move in the bulk of the spacetime,
we can also consider the wave equation with a source term
characterizing the presence of a massless charged particle,
moving along a given direction x̂:

−□φ ¼ qδðx − x̂tÞ; ðB21Þ

with jx̂j ¼ 1. This equation can conveniently be solved for
any even D ≥ 6 by going to retarded coordinates, where it
reads�
2∂r þ

D − 2

r

�
∂uφ ¼

�
∂2
r þ

D − 2

r
∂r þ

1

r2
Δ
�
φ

þ q
rD−2 δðuÞδðn; x̂Þ ðB22Þ

and performing the usual asymptotic expansion φðu;r;nÞ¼P
φðkÞðu;nÞr−k, which gives

ðD−2k−2Þ∂uφ
ðkÞ

¼ ½Δþðk−1Þðk−Dþ2Þ�φðk−1Þ þδk;D−3δðuÞδðn; x̂Þ:
ðB23Þ

The latter equation is solved by setting φðkÞ ¼ 0 for k ≤
D
2
− 2 and for k ≥ D − 3, while, for D

2
− 1 ≤ k ≤ D − 4,

φðkÞðu;nÞ ¼ δðD−4−kÞðuÞCkðnÞ; ðB24Þ

where the functions CkðnÞ are determined recursively by

ðD − 2k − 2ÞCkðnÞ ¼ ½Δþ ðk − 1Þðk −Dþ 2Þ�Ck−1ðnÞ;
CD−4ðnÞ ¼ −ðΔ −Dþ 4Þ−1ðn; x̂Þ: ðB25Þ

Here, ðΔ −Dþ 4Þ−1 is the Green function for the operator
Δ −Dþ 4, which is unique for D > 4. As a consequence,
the field gives rise to the null memory effect
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Piju>0 − Piju<0 ¼
Z þ∞

−∞
∂iφdu

¼ −
1

rD−4 ∂iðΔ −Dþ 4Þ−1ðn; x̂Þ ðB26Þ

(note that only the term with k ¼ D − 4 contributes),
consisting in a kick along a direction tangent to the celestial
sphere.

2. Comments on the odd-dimensional case

In odd dimensions D ≥ 3 the retarded propagator is
given by [48]

GDðxÞ ¼ cð−x2Þ1−D
2þ θðx0Þ; ðB27Þ

where c−1 ¼ 2π
D
2
−1Γð2 − D

2
Þ, while ðκÞαþ is the distribution

defined as

hðκÞαþ; χðκÞi ¼
Z

∞

0

καχðκÞdκ for α > −1; ðB28Þ

χðκÞ denoting a generic test function, and analytically
continued to any α ≠ −1;−2;−3;…, by

hðκÞαþ;χðκÞi¼
ð−1Þn

ðαþ1Þðαþ2Þ � � � ðαþnÞ
× hðκÞαþn

þ ;χðnÞðκÞi for n>−1−α: ðB29Þ

A relevant feature of the wave propagator in odd dimen-
sional spacetimes is that its support is not localized on the
light cone jtj ¼ r, in contrast with the case of even
dimensions, as it is nonzero also for jtj > r. This is to
be interpreted as the fact that even an ideally sharp
perturbation, δðt;xÞ, will not give rise to an ideally sharp
wave front, but rather the induced radiation will display a
dispersion phenomenon and nontrivial disturbances will
linger on even after the first wave front has passed.
The solution to Eq. (B1) is then furnished by

φðt;xÞ ¼ cq
2

D
κ1−D=2
þ ; θ

�
t −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ þ jxj2

q �. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ þ jxj2

q E
:

ðB30Þ

Integrating by parts, and assuming t > r ¼ jxj (otherwise
the field vanishes by causality), one obtains the following
expansion:

2

cq
φ¼ ðt2 − r2Þ2−D

2

ð2− D
2
Þt þ ðt2 − r2Þ3−D

2

ð2− D
2
Þð3− D

2
Þt3

1

2

þ ðt2 − r2Þ4−D
2

ð2− D
2
Þð3− D

2
Þð4− D

2
Þt5

1

2
·
3

2
þ � � �

þ ðt2 − r2Þ−1
2

ð2− D
2
Þð3− D

2
Þ � � � ð− 3

2
Þð− 1

2
ÞtD−4

1

2
·
3

2
� � �

�
D
2
− 3

�

þ ð−1ÞD−3
2

Z
t2−r2

0

dκffiffiffi
κ

p ðκþ r2ÞD2−1 : ðB31Þ

Moving to retarded coordinates, this result can be recast as

φðu;rÞ¼ φ̄ðu;rÞþcq
2
ð−1ÞD−3

2 θðuÞ
Z

uðuþ2rÞ

0

dκffiffiffi
κ

p ðκþr2ÞD2−1 ;

ðB32Þ

where φ̄ðu; rÞ is given by a sum of terms proportional to

θðuÞ
ðuðuþ 2rÞÞαðuþ rÞβ ; ðB33Þ

with α, β positive and αþ β half odd. In particular, it is then
clear that the limit of this field as r → ∞ for any fixed u
does not display any term with the Coulombic behavior
r3−D and hence that there is no memory effect on Iþ to that
order, since

Z
uðuþ2rÞ

0

dκffiffiffi
κ

p ðκþ r2ÞD2−1 ∼
1

rD−3

Z 2u
r

0

dxffiffiffi
x

p ð1þ xÞD2−1 ∼
2

ffiffiffiffiffiffi
2u

p

rD−5
2

:

ðB34Þ

Considering instead the limit of φ as t → þ∞ for fixed r,
one sees that only the last term in (B31) survives and yields

cq
2
ð−1ÞD−3

2

Z
∞

0

dκffiffiffi
κ

p ðκþr2ÞD2−1

¼cq
2

ð−1ÞD−3
2

rD−3 B

�
1

2
;
D−3

2

�
¼ q
ðD−3ÞΩD−2rD−3 : ðB35Þ

This means that the Coulombic energy due to the newly
created particle is felt by the test charge only at iþ, namely
after one has waited (for an infinite time) at a fixed distance
r that the perturbations due to the dispersion occurring in
odd spacetime dimensions have died out. To some extent,
this is to be regarded as a smeared-out memory effect, as
opposed to memory effects occurring sharply at Iþ near
u ¼ 0 in even dimensions (see also [15]).
The situation does not improve if one considers a particle

that is created with a nonzero velocity v. Indeed, boosting
the exact solution (B31) by means of (B12), one sees that φ
goes to zero for fixed r as t → þ∞. The reason is that,
while one waits for the dispersion to die out, the source,
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moving at a constant velocity, has traveled infinitely far
from the test charge.
Shifting our attention to the case of null memory,

we see that it is possible to provide the following formal
solution to the recursion relations (B23), which hold in any
dimension. We consider φ ¼ P

φðkÞr−k, setting φðkÞ ¼ 0
for k ≥ D − 3, while, for k ≤ D − 4,

φðkÞðu;nÞ ¼ δðD−4−kÞðuÞCkðnÞ; ðB36Þ

with the functions CkðnÞ determined recursively by

ðD − 2k − 2ÞCkðnÞ ¼ ½Δþ ðk − 1Þðk −Dþ 2Þ�Ck−1ðnÞ;
CD−4ðnÞ ¼ −ðΔ −Dþ 4Þ−1ðn; x̂Þ: ðB37Þ

Thus, although the field is highly singular at u ¼ 0, the
resulting null memory effect will be formally identical to
the one occurring in even dimensions.

APPENDIX C: EXACT SOLUTION OF □ϵ= 0

The closed-form solution of the wave equation (3.2) with
the boundary condition

lim
r→∞

ϵðu; r;nÞ ¼ ϵð0Þðu;nÞ ðC1Þ
introduced in (5.1) in any even dimension D is given by

ϵðxÞ ¼ ΓðD − 2Þ
π

D−2
2 ΓðD−2

2
ÞRe

I ð−x2ÞD−2
2

ð−2x · qþ iεÞD−2 ϵ
ð0ÞðqÞdΩðqÞ;

ðC2Þ

where q ¼ ð1;qÞ and the limit ε → 0þ is understood.
The introduction of this small imaginary part is needed
in order to avoid the singularities occurring in the angular
integration for jtj < jxj, namely outside the light cone.
Indeed, it is straightforward to verify that, for any value of
D even or odd,

□
ð−x2ÞD−2

2

ð−2x · qÞD−2 ¼ 0; ðC3Þ

while, aligning n along the (D − 1)th direction, we have

Re
I ð−x2ÞD−2

2

ð−2x ·qþ iεÞD−2 ϵ
ð0ÞðqÞdΩðqÞ

¼Re
Z

π

0

dθðsinθÞD−3
I

dΩ0ðq0Þ

×
22−D½uðuþ2rÞ�D−2

2

½uþ rð1−cosθÞþ iε�D−2 ϵ
ð0Þðq0 sinθ;cosθÞ; ðC4Þ

where dΩ0ðq0Þ denotes the integral measure on the (D − 3)-
sphere. Letting τ ¼ rð1 − cos θÞ=u, for u ≠ 0, the previous
expression becomes

Re
Z

2r=u

0

udτ
r

ð1þ 2r
u Þ

D−2
2 ð2uτr − u2τ2

r2 Þ
D−4
2

2D−2ð1þ τ þ iεÞD−2

×
I

dΩ0ðq0Þϵð0Þ
�
q0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2uτ
r

−
u2τ2

r2

r
; 1 −

uτ
r

�
; ðC5Þ

which, as r → ∞, tends to

1

2
Re

Z
u·∞

0

τ
D−4
2 dτ

ð1þ τ þ iεÞD−2

I
dΩ0ðq0Þϵð0ÞðnÞ

¼ π
D−2
2 ΓðD−2

2
Þ

ΓðD − 2Þ ϵð0ÞðnÞ; ðC6Þ

for even D. The solution (C2) which, to the best of our
knowledge, was not previously exhibited in closed form in
the literature, is thus compatible with the asymptotic
expansion (5.4) and generalizes the expression given
in [30,38].
In addition, being nonperturbative, it allows one to

explicitly verify the antipodal matching condition

lim
r→∞

ϵðu ¼ v − 2r; r;nÞ ¼ ϵð0Þð−nÞ ðC7Þ

for any fixed advanced time v.

APPENDIX D: SOFT PHOTON
THEOREM IN EVEN D

Wewould like to show that the surface charges defined in
Sec. V B enter Weinberg’s soft theorem [49,50]. More
precisely, we will see how the Weinberg theorem implies
the validity of the Ward identities associated with such
charges in D ≥ 4 [34,35].
The surface charge associated with (5.4), evaluated at

Iþ
− , reads

Qϵ ¼
Z
Iþ
−

ð∂uA
ðD−2Þ
r þ ðD − 3ÞAðD−3Þ

u Þϵð0ÞdΩD−2; ðD1Þ

where we have taken into account the absence of radiation
terms for u → −∞. Recasting (D1) as an integral over the
whole of Iþ, and assuming that no contribution arises at
Iþ
þ, which is the case in particular if there are no stable

massive charges, we find

Qϵ ¼ −
1

rD−4

Z
Iþ

∂2
uA

ðD−2Þ
r ϵð0ÞdudΩD−2; ðD2Þ

where we have used the fact that, after recursive gauge

fixing, AðD−3Þ
u is independent of u on shell. We would like

to express (D2) in terms of the leading radiation field,
which, as we shall see below, indeed contains the creation
and annihilation operator of asymptotic photons. To this
end, we first combine (3.8) and (3.5) and obtain
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D · Aðk−1Þ ¼ Δ − ðD − 2 − kÞðD − 3 − kÞ
D − 2 − 2k

AðkÞ
r

þ ðD − 3 − kÞAðkÞ
u ; ðD3Þ

employing (3.7) as well,

∂uA
ðkþ1Þ
r ¼ DkA

ðkÞ
r − AðkÞ

u ; ðD4Þ

where Dk is given in (4.21).
Employing this relation recursively, we find

∂D=2
u AðD−2Þ

r ¼
YD−3

l¼D=2

Dl∂uD · AðD−4
2
Þ; ðD5Þ

where we have used (3.8) to deduce ∂uA
ðD
2
Þ

r ¼ D · AðD−4
2
Þ. In

the above writing, we adopt the convention that for D ¼ 4
the product

Q
lDl (which in this case has a formally ill-

defined range) reduces to the identity. We can then use (D5)
to recast (D2) as

Qϵ ¼ −
1

rD−4

Z þ∞

−∞

�Z
u

−∞
du

�
D=2−2∂uD · AðD−4

2
Þ

×
YD−3

l¼D=2

Dlϵ
ð0ÞdudΩD−2: ðD6Þ

On the other hand, the asymptotic expansion of the free
electromagnetic field operator, expressed in terms of
creation and annihilation operators, yields, to leading order,

Aiðu; r; xkÞ ¼
i1−D=2

8π2rðD−4Þ=2

Z þ∞

0

�
ω

2π

�ðD−4Þ=2

× e−iωuϵσi ðx̂Þaσðωx̂Þdωþ H:c:; ðD7Þ

where x̂μ ¼ xμ=r, while ϵσ are polarization tensors
for the D − 2 propagating helicities. This formula

thus provides an explicit expression for A
ðD−4

2
Þ

i and hence
allows us to make explicit the relation between the
charge Qϵ and the soft photon creation and annihilation
operators as follows (we employ the prescriptionRþ∞
−∞ du

Rþ∞
0 dωeiωufðωÞ ¼ limω→0þ fðωÞ=2):

Qϵ¼
1

8ð2πÞðD−2Þ=2rD−4 lim
ω→0þ

Z
SD−2

Di½ϵσi ðx̂Þωaσðωx̂ÞþH:c:�

×
YD−3

l¼D=2

Dlϵ
ð0Þðx̂ÞdΩD−2ðx̂Þ: ðD8Þ

Assuming that the charge Qϵ, together with its counterpart
at I−, generates the residual symmetry δψðu; r; x̂Þ ¼
iϵð0Þðx̂Þ þOðr−1Þ in a canonical way, and employing
suitable antipodal matching and crossing symmetry con-
ditions, we have the Ward identity

1

2ð2πÞðD−2Þ=2

Z
SD−2

ϵσi ðx̂Þ lim
ω→0þ

Dihoutjωaσðωx̂ÞSjini

×
YD−3

l¼D=2

Dlϵ
ð0Þðx̂ÞdΩD−2ðx̂Þ

¼
X
n

enϵð0Þðx̂nÞhoutjSjini; ðD9Þ

where the sum on the right-hand side extends to all charged
external particles in the amplitude and en is the electric
charge of the nth particle (taking into account with a
suitable sign whether the particle is outgoing or incoming,
respectively). Notably, the left-hand side contains exactly
the combination P½·� ¼ limω→0þ½ω·� that selects the pole in
the amplitude with the soft insertion.
On the other hand, the Weinberg theorem for an

amplitude involving external massless particles with
momenta pn ¼ Enð1; x̂nÞ and a soft photon emitted with
helicity σ pointing along the n̂ direction on the celestial
sphere reads

lim
ω→0þ

houtjωaσðωn̂ÞSjini ¼
X
n

enϵσðn̂Þ� · pn

pn · ð1; n̂Þ
houtjSjini:

ðD10Þ

Multiplying this relation by ϵσi ðn̂Þ and summing over σ, we
see that this is equivalent to

ϵσi ðn̂Þ lim
ω→0þ

houtjωaσðωn̂ÞSjini ¼
X
n

enDiαðx̂n; n̂ÞhoutjSjini;

ðD11Þ

where we have used the completeness relation for polari-
zation vectors and defined a function

αðx̂; n̂Þ ¼ logð1 − x̂ · n̂Þ: ðD12Þ

This function α satisfies the following identity (see [24]):

1

2ð2πÞðD−2Þ=2
YD−3

l¼D=2

DlΔαðx̂; n̂Þ ¼ δðx̂; n̂Þ; ðD13Þ

where x̂ is here treated as a constant vector on the unit
sphere and δðx̂; n̂Þ is the invariant delta function on the
(D − 2)-sphere. Now, acting with the differential operator

1

2ð2πÞðD−2Þ=2
YD−3

l¼D=2

Dl ·Di ðD14Þ

on Eq. (D11), multiplying by an arbitrary ϵðD−4Þðx̂Þ and
integrating over the unit sphere allows one to retrieve
the Ward identity (D9), thanks to the relation (D13).
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This proves that the Weinberg factorization implies the
existence of the asymptotic symmetry Ward identities.
Remarkably, the charge (3.22) associated with the

symmetry (3.21), which is responsible for the memory
effect, formally differs from (D1) only by a factor of 1=rD−4

(other than by the substitution ϵð0Þ ↔ ϵðD−4Þ), which
makes it vanish on Iþ. However, the corresponding
symmetry transformation of the matter fields would be
δψðu;r;x̂Þ¼iϵðD−4Þðx̂Þ=rD−4þOðr3−DÞ, and hence would

give rise to Ward identities completely equivalent to (D9),
with the factors of 1=rD−4 canceling each other on the two
sides. This indicates that the large gauge symmetry (5.6)
and the residual symmetry (3.21), acting at Coulombic
order, can both be seen as consequences of Weinberg’s
soft theorem. This is also reflected in the observation that
the Fourier transform of the soft factor occurring in
Weinberg’s theorem is strictly related to the memory
formulas [10].
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