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Abstract: Metabolic flux analysis is often (not to say almost always) faced with system underde-
terminacy. Indeed, the linear algebraic system formed by the steady-state mass balance equations
around the intracellular metabolites and the equality constraints related to the measurements of
extracellular fluxes do not define a unique solution for the distribution of intracellular fluxes, but
instead a set of solutions belonging to a convex polytope. Various methods have been proposed to
tackle this underdeterminacy, including flux pathway analysis, flux balance analysis, flux variability
analysis and sampling. These approaches are reviewed in this article and a toy example supports the
discussion with illustrative numerical results.

Keywords: flux variability analysis; flux balance analysis; sampling; metabolic network; elementary
flux modes

1. Introduction

Computational approaches for studying the flux distribution inside metabolic net-
works of microbial strains or mammalian cell lines have gained a tremendous importance
in biotechnology. Indeed, the production of high-added value biochemicals is based on
large-scale cultures of genetically engineered strains, and the determination of the flux
distribution provides insight into the biosynthesis pathways, the impact of metabolic
engineering and the influence of the culture conditions. Different approaches have been
developed to compute this flux distribution, which are based on a common assumption
that the intracellular metabolites do not accumulate, or in other words, that the cell is in
a metabolic pseudo-steady state [1]. This assumption leads to a system of mass-balance
equations of the form:

Nv = 0 vi ≥ 0 ∀i (1)

where N ∈ Rns×nv is the stoichiometric matrix (and the incidence matrix of the graph
representing the metabolic network), v ∈ Rnv is the vector of intracellular fluxes (in
mmol/gDW/h), which are assumed positive (i.e., to have a net direction), and ns is
the number of intracellular metabolites. N is assumed full-row rank, thus defining ns
independent mass balance equations. This system of equations expresses the zero balance
in each internal node of the metabolic network, and imposes a set of linear equality
constraints, which are not sufficient to determine a unique solution for the flux vector
v. This system of equations is often supplemented by additional mass balance equations
expressing the link between the intracellular fluxes and the measurements of external
fluxes (uptake or production of extracellular metabolites):

Nmv = vm (2)

where vm ∈ Rnm . Even though this additional information allows restricting the solution
space, it is usually not sufficient to define a unique solution. More precisely, a subset of
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the fluxes might be exactly calculable [2] while only intervals of values for the remaining
fluxes can be computed. In general, the system of equations under consideration can be
formulated as:

Aev = be (3)

Aiv ≤ bi (4)

where the equality constraints (1) and (2) are put together in (3), and Equation (4) contains
the positivity constraints as well as other bound constraints, e.g., upper bounds on some
of the fluxes, corresponding to prior knowledge or biological assumptions. The matrices
Ae ∈ Rne×nv and Ai ∈ Rni×nv , correspond to ne equality constraints and ni inequality
constraints, respectively. To tackle the underdeterminacy, several approaches have been
proposed in recent years, which can be grouped into two distinct strategies:

1. Dealing with the underdeterminacy—this strategy is adopted in several methods
where minimal and maximal bounds on the admissible fluxes are determined. This
category of methods includes Flux Pathway Analysis (FPA), where convex analysis
is used to decompose the admissible flux distributions into Elementary Flux Modes
(EFMs) or Extreme Pathways [3,4], Flux Variability Analysis (FVA), which is a Linear-
Programming (LP)-based method determining the range of admissible fluxes [5], Flux
Spectrum Approach (FSA), which is another LP-based method taking insufficient
and uncertain measurements into account [6]. Random sampling of the admissible
solution set allows determining the marginal probability density functions of the
fluxes [7–10], and statistical methods based on the maximum entropy principle can
be used to infer intracellular flux distributions [11,12].

2. Reducing or eliminating the underdeterminacy—this strategy consists in adding con-
straints in various ways, e.g., including more measurements of the extracellular fluxes
or, possibly, measurements of the intracellular fluxes using specific techniques such as
13C tracing [13,14] and parallel labeling [15], leading to the sophisticated procedures
of 13C MFA. Alternatively, additional constraints can be introduced by formulat-
ing biological assumptions either based on prior knowledge and/or experimental
observations [16,17] or systematic procedures to determine active constraints [18].
The use of thermodynamic constraints can be important in relation with reaction
reversibility and the limitation of the solution space [19]. Moreover, thermodynamical
constraints can prevent infeasible loops in a metabolic network as demonstrated
in [20]. Underdeterminacy can also be reduced (or even eliminated) through the for-
mulation of an optimization problem originating from the assumption of an optimal
metabolic behavior of the cells. This approach corresponds to Flux Balance Analysis
(FBA) [21,22], which uses an objective function expressed as a linear combination
of selected fluxes. Recently, the increasing availability of metabolite profiling data
obtained through gas and liquid chromatography combined with mass spectroscopy
has also allowed the integration of time-course absolute quantitative metabolomics
in unsteady-state (or dynamic) FBA [23,24]. In the usual situation where FBA still
leads to an underdetermined system with an infinite number of flux distributions that
optimize the cost function, variants of FBA have been proposed in order to define
a unique solution, e.g., the geometric approach developed in [25] that searches for
the minimal flux distribution satisfying the given objective. Assuming that fluxes
correlate with enzyme levels, this specific flux distribution would correspond to the
minimization of the amount of enzymes required to satisfy the objective defined
in FBA. Ultimately, the concept of Most Accurate Fluxes [26] allows computing a
unique flux distribution, hence eliminating the system underdeterminacy, with a
very low computational load and without any assumption regarding an optimal
biological behavior.
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In the following, we review some of these methods and their implementation with a
toy example, which provides a numerical illustration of the main concepts. The Matlab
code of this example is provided in the Supplementary Materials associated to this article.

2. A Toy Example

Despite its small size, the metabolic network (see Figure 1) that is considered to illus-
trate the several methods introduced in the previous section presents many representative
features, e.g., several intracellular metabolites, extracellular substrates, and intra- and
extra-cellular products. This network is described by the following reactions:

S1
v1→M1

S2
v2→M2

S2
v3→M3

M1
v4→M4 + M5

M4
v5→M5

M2
v6→M5

M5
v7→ P1

M1 + M3
v8→ P2

Figure 1. Simple metabolic network. Mi, i = 1, . . . , 5 are the internal metabolites, Si, i = 1, 2 are the
extracellular substrates, and Pi, i = 1, 2 are the extracellular and intracellular product, respectively.

The quasi-steady state assumption for the internal metabolites Mi, i = 1, . . . , 5, yields
a system of algebraic mass-balance equations in the form of Equation (1)


1 0 0 −1 0 0 0 −1
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 0 −1
0 0 0 1 −1 0 0 0
0 0 0 1 1 1 −1 0





v1
v2
v3
v4
v5
v6
v7
v8


= Nv = 0 vi ≥ 0 ∀i (5)
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The stoichiometric matrix N is full row rank (i.e., 5) and the system of equations
has 3 degrees of freedom (5 independent equations for 8 unknown fluxes). In an ideal
measurement configuration, we consider that the 3 extracellular fluxes can be measured,
for instance: 1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0
0 0 0 0 0 0 1 0

v = Nmv =

 vm1
vm2
vm3

 =

 3.5
2.7
1.8

 = vm (6)

so that a unique solution, i.e., flux distribution, can be found:

v =



3.5000
0.0667
2.6333
0.8667
0.8667
0.0667
1.8000
2.6333


(7)

In the sequel, we will consider various situations with less measurements, and alter-
native methods to deal with, reduce or eliminate the underdeterminacy.

3. Dealing with the Underdeterminacy

The solution space of Equation (5) can be described using the concept of EFMs [3,27]
which represent minimal, non-decomposable pathways connecting substrates to products.
Every flux in the metabolic network can be described as a convex combination of EFMs:

v =
nEFM

∑
i=1

µiei = Eµ, µi ≥ 0 (8)

where nEFM is the number of EFMs ei.
The EFMs can be computed using readily available software such as Metatool [28],

EFMtool [29] or FluxModeCalculator [30]. The main issue associated to this computation
is the combinatorial explosion of the number of EFMs with the network size (a network
of less than 100 reactions can have tens of thousands of EFMs), and the fact that the
computation involves some form of enumeration, which requires large computer memory
space and computation time. Alternative procedures have therefore been proposed to
compute minimal sets of EFMs without enumerating all of them [31]. For the small network
under consideration in this review, this computation is trivial and leads to

E =
[

e1 e2 e3
]
=



0 1 0.5
1 0 0
0 1 0
0 0 0.5
0 0 0.5
1 0 0
1 0 1
0 1 0


(9)

The three EFMs define a polyhedral cone in the positive orthant, which contains
all possible flux distributions. They correspond to a minimal bioreaction system, which
provides an input–output representation of the cell metabolism (this kind of representation
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can be very useful to derive reduced-order macroscopic representations of the culture
system [32–34], but this subject will be addressed later on in this paper; see Section 5.4).

S2 → P1

S1 + S2 → P2

0.5S1 → P1

(10)

We already know that if three measurements are available, such as the ones defined
in Equation (2), the solution is unique and the coefficient vector

[
µ1 µ2 µ3

]T
=[

0.0667 2.6333 1.7333
]T . If less measurements are available, for instance only vm1 and

vm2, then the EFM basis of the linear system[
N 0

Nm −vm

][
v

1

]
= 0 (11)

leads to the so-called extreme rays f
i

[35]

[
f

1
f

2

]
=



3.5 3.5
0 2.7

2.7 0
0.8 3.5
0.8 3.5
0 2.7

1.6 9.7
2.7 0


(12)

which defines a pointed polyhedral cone that is a subspace of the previous solution cone. More-
over, the flux spectrum F0 =

{
v : vmin

i ≤ vi ≤ vmax
i
}

with vmin
i = min{ fki, k = 1, · · · , p} and

vmax
i = max{ fki, k = 1, · · · , p} is easily deduced, giving

v1 = 3.5
0 ≤ v2 ≤ 2.7
0 ≤ v3 ≤ 2.7

0.8 ≤ v4 ≤ 3.5
0.8 ≤ v5 ≤ 3.5
0 ≤ v6 ≤ 2.7

1.6 ≤ v7 ≤ 9.7
0 ≤ v8 ≤ 2.7


(13)

which indeed encloses the unique solution found with an additional measurement.
An alternative and straightforward way to compute the flux spectrum is provided by

Flux Variability Analysis (FVA) [5], which consists in formulating a double optimization
problem (minimization/maximization) of the flux distribution under the constraints pro-
vided by the metabolic network stoichiometry, the measurements, and any other additional
biological constraints.

vmin
i = min

v
vi

vmax
i = max

v
vi

∀i ∈ [1, nv]

s.t.
{

Aev = be
Aiv ≤ bi

(14)

The unique solution to this problem, if bounded and feasible, can be computed using
linear programming, as available in many software libraries (e.g., linprog in Matlab or other
LP solvers such as CPLEX interfaced in the language of your choice such as Python or Julia)
or dedicated environments (e.g., COBRA [36] and CellNetAnalyzer [37]). In our application
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example, we use linprog to compute the flux spectrum in the situation where only the first
measurement is available (vm1) and a constraint is imposed in the form v2 + v3 ≤ 5.

Ae =

[
N

1 0 0 0 0 0 0 0

]
be =

[
0 0 0 0 0 3.5

]T

Ai =

[
−I8

0 1 1 0 0 0 0 0

]
bi =

[
0 0 0 0 0 0 0 0 5

]T
(15)

Thus, the spectrum F0 is given by

v1 = 3.5
0 ≤ v2 ≤ 5

0 ≤ v3 ≤ 3.5
0 ≤ v4 ≤ 3.5
0 ≤ v5 ≤ 3.5
0 ≤ v6 ≤ 5
0 ≤ v7 ≤ 12
0 ≤ v8 ≤ 3.5


(16)

The application of FVA can be delicate when the measurements are corrupted by noise,
as the constraints imposed by the metabolic network and/or the bounds on the fluxes
could become incompatible with the measurement information. Several approaches take
account of the measurement uncertainty, such as Flux Spectrum Analysis [6] or Adaptive
Flux Variability Analysis [38], which relax the constraints to allow for a feasible solution.
Here, we consider a variation of our simple example where only the first measurement
vm1 = 10.5 would be available and 3 constraints would be imposed, i.e., v2 ≤ 5, v5 ≤ 5 ,
v8 ≤ 5. In this case, the matrices become

Ae =

[
N

1 0 0 0 0 0 0 0

]
be =

[
0 0 0 0 0 10.5

]T

Ai =


−I8

0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1

 bi =
[

0 0 0 0 0 0 0 0 5 5 5
]T

(17)

but unfortunately the LP solver returns the message that no feasible solution can be found.
What is happening? In fact, the solution of the FVA problem without the knowledge of the
first measurement vm1 returns the following spectrum:

0 ≤ v1 ≤ 10
0 ≤ v2 ≤ 5
0 ≤ v3 ≤ 5
0 ≤ v4 ≤ 5
0 ≤ v5 ≤ 5
0 ≤ v6 ≤ 5
0 ≤ v7 ≤ 15
0 ≤ v8 ≤ 5


(18)

which shows that the maximum admissible value of v1 is 10. Hence, the noisy measurement
vm1 = 10.5 is incompatible with this upper bound, and it is not possible to include it as such
in the equality constraints. A way round this issue is to introduce inequality constraints in
the form

(1− e)vm1 ≤ v1 ≤ (1 + e)vm1 (19)

where e represents a relative uncertainty. In our example, we could choose e = 5%, which
is the smallest uncertainty leading to the matrices modification
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Ae =
[

N
]

be =
[

0 0 0 0 0
]T

Ai =



−I8
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
−1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0

 bi =
[

0 0 0 0 0 0 0 0 5 5 5 −9.975 11.025
]T (20)

and a feasible solution 

9.975 ≤ v1 ≤ 10
0 ≤ v2 ≤ 5

4.975 ≤ v3 ≤ 5
4.975 ≤ v4 ≤ 5
4.975 ≤ v5 ≤ 5

0 ≤ v6 ≤ 5
9.95 ≤ v7 ≤ 15
4.975 ≤ v8 ≤ 5


(21)

On another matter, it can be convenient to eliminate the equality constraints and
to formulate the problem in terms of inequality constraints only in a space of reduced
dimension [39]. To this end, we can use the kernel (or null space) of the matrix Ae.
If A0 ∈ Rnv×(nv−ne) is a matrix whose columns form a basis of this kernel (nq = nv − ne
is the nullity of the kernel for a full row rank matrix Ae), then any solution of Aev = be
(Equation (3)) can be expressed as

v = v0 + A0q (22)

where v0 is a particular solution to Equation (3) and the vector q ∈ Rnq allows the reformu-
lation of the inequality constraints as

A0
i q ≤ b0

i (23)

with A0
i = Ai A0 and b0

i = bi − Aiv0.
A particular solution v0 can for instance be obtained by solving the following problem

(in this case v0 is the flux vector with minimum Euclidean norm in the set of solutions)

v0 = min
v

vTv

s.t.
{

Aev = be
Aiv ≤ bi

(24)

To illustrate this, we return to our original example and consider the situation where
only the first measurement vm1 = 3.5 is available and a constraint is imposed in the form
v2 + v3 ≤ 5. v0 can be computed using quadratic programming, e.g., quadprog in Matlab

v0 =
[

3.500 0 2.625 0.875 0.875 0 1.750 2.625
]T (25)

The null space of the equality constraint matrix Ae ∈ R6×8 can be computed using
null in Matlab and is given by

A0 =

[
0 0.2019 −0.2846 0.2846 0.2846 0.2019 0.7711 −0.2846
0 0.5994 0.2627 −0.2627 −0.2627 0.5994 0.0740 0.2627

]T

(26)

and, in turn
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A0
i =

[
0 −0.2019 0.2846 −0.2846 −0.2846 −0.2019 −0.7711 0.2846 −0.0827
0 −0.5994 −0.2627 0.2627 0.2627 −0.5994 −0.0740 −0.2627 0.8621

]T

(27)

and
b0

i =
[

3.500 0 2.625 0.875 0.875 0 1.750 2.625 2.375
]T (28)

The application of FVA in the q-space (a reduced space of dimension nq = 2), i.e., with
inequality constraints only

qmin
i = min

q
qi

qmax
i = max

q
qi

∀i ∈ [1, nq]

s.t. A0
i q ≤ b0

i

(29)

gives a spectrum Q0 [
−2.3454 ≤ q1 ≤ 12.9102
−2.3698 ≤ q2 ≤ 3.9938

]
(30)

In the reduced q-space, the system of inequality constraints defines half hyperplanes
whose intersection consists of a convex polytope that contains all the admissible flux
distributions q. Uniformly sampling this convex polytope allows subsequently computing
the marginal probability density functions (or marginal distributions) of each flux.

In our toy example, the rejection algorithm [40] can be applied, which boils down to
uniformly sample each coordinate qi (∀i ∈ [1, nq]) on [qmin

i , qmax
i ]. The obtained sample q

is kept if it satisfies the inequality constraints A0
i q ≤ b0

i , otherwise it is rejected. The pro-
cedure is repeated until the desired number of samples is reached. Figure 2 shows 104

samples obtained with the rejection algorithm. Despite its simplicity and the genuine
uniform distribution that it provides, this algorithm cannot be used with high dimensional
spaces and irregular shaped polytopes given that the fraction of rejected samples increases
dramatically with the number of metabolic fluxes considered in the network.

Figure 2. Rejection algorithm in the q-space (mean = X).

Other algorithms have been (and are still) developed to circumvent this problem [41,42].
Among the oldest and simplest methods, hit-and-run algorithms [43] consist of Markov
Chain Monte Carlo methods that sample the convex polytope via some specific random
walk. While they can be used with high dimensional spaces, their main drawback is that the
samples often get stuck in some part of the polytope when this latter exhibits an irregular
shape, which is generally the case. Figure 3 represents the marginal distributions of each
flux in the v-space (transforming the q samples into v samples through Equation (22)),
inferred from 104 samples obtained with the rejection algorithm and with a specific hit-and-
run algorithm (namely, the random direction algorithm). Both results are almost identical.
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Figure 3. Marginal probability distribution in the original v-space, inferred from 104 samples with the rejection algorithm
(red) and a hit-and-run algorithm (blue).

4. Reducing or Eliminating the Underdeterminacy

A straightforward way to reduce or eliminate underdeterminacy is to include addi-
tional measurements, either extracellular as shown in Equation (6) for our simple example,
or intracellular using 13C tracing [13,14] or the integration of time-course absolute quanti-
tative metabolomics [23,24], which would amount to directly measure some of the internal
fluxes vi, i = 1, . . . , 8 in the toy example. However, this implies additional time-consuming,
delicate, and costly experiments and equipment. If sufficient additional measurements
are not available, a candidate flux distribution can be provided by Flux Balance Analy-
sis (FBA) [21,22], which assumes some optimal behavior of the cell, such as maximum
cell growth rate or maximum ATP production rate, and formulates a linear program-
ming problem

v̂ = arg min
v

λTv

s.t.
{

Aev = be
Aiv ≤ bi

(31)

If the LP is feasible and bounded, then the cost function J = λTv has a unique
minimum value J∗, but the corresponding flux distribution v̂ is not necessarily unique, still
implying underdeterminacy. In this latter case, it is possible to combine FBA (31) with FVA
by subsequently solving a set of 2nv LPs

vmin
i = min

v
vi

vmax
i = max

v
vi

∀i ∈ [1, nv]

s.t.


Aev = be
λTv = J∗

Aiv ≤ bi

(32)

This FVA problem includes an additional equality constraint enforcing the value
J∗ = λTv determined in the first FBA step.
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This can be illustrated with our toy example, first by applying FBA with the assump-
tion that v7 is maximum. In this case, v̂7 = 12 and the corresponding flux distribution is
given by

v̂ =
[

3.50 5.00 0 3.50 3.50 5.00 12.0 0
]T (33)

which is confirmed to be the unique solution by applying FVA (which produces a flux
spectrum which reduces to the single value v̂).

If we repeat this exercise with the maximization of v8, we find v̂8 = 3.5, but the
corresponding flux distribution is not unique and belongs to the spectrum

v1 = 3.5
0 ≤ v2 ≤ 1.5

v3 = 3.5
v4 = 0
v5 = 0

0 ≤ v6 ≤ 1.5
0 ≤ v7 ≤ 1.5

v8 = 3.5


(34)

5. An Overview of Important Topics

In this section, we address a few important questions when dealing with the analysis
of metabolic networks. Some of them have a direct impact on the underdeterminacy of
the metabolic flux analysis, such as the topology and size of the metabolic network or the
selection of the extra- or intra-cellular measurements. On the contrary, other issues, such as
the dynamic evolution of the extracellular fluxes, might have no particular influence on
this underdeterminacy, but will impact the computational procedure and the visualization
of the results, and this is why we include them in the global picture.

5.1. How to Select the Size/Detail of the Metabolic Network?

The structure and size of the metabolic network can be represented by an incidence
graph, whose topological properties are important for the solution of Equations (1)–(4).
The analysis of these properties, such as determinacy, redundancy, balanceability, and calcu-
lability, can be assessed using software tools such as CellNetAnalyser [37] or COPASI [44],
which were the first to propose such functionalities. The size of the network will also have
a tremendous influence on the number of EFMs. A large network will probably imply
that the EFMs are no longer enumerable due to memory and computation limitations.
Hence, the importance of procedures to compute only subsets of EFMs such as [31], and
of concepts such as the giant strong component (GSC), which represents the largest fully
connected part of a metabolic network as introduced originally in [45]. Indeed, the GSC
usually contains less than one-third of the nodes of the network, but key metabolites, and is
more feasible for analysis of flux distribution and computation of EFMs. Another concept
of interest is the introduction of minimal cut sets (MCSs), which represent sets of reactions
whose removal will disable certain network functions [46], and which have been shown
to be the EFMs of a dual network [47]. MCSs can be used to study the observability of
reaction rates in metabolic flux analyses. The selection of the network will therefore be a
compromise between describing the metabolic features of interest and the tractability of
the computation procedure underlying the flux determination. An open research question
is the selection of the right metabolic network for the derivation of low-order dynamic
models (as introduced in the following Section 5.4). Should a reduction be operated a priori
based on biological assumptions and simplifications or only a posteriori, in the course of
the derivation of the dynamic macroscopic model?

5.2. Dynamic Metabolic Flux Interval Analysis

To date, we have considered that the measured specific extracellular fluxes are constant.
This is typically the case in the early exponential growth phase of batch cultures or in
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the steady state of continuous cultures. However, there are other situations where the
fluxes are time varying following changes in the environmental conditions (substrate
excess or depletion, accumulation of byproducts). This can occur in fed-batch cultures,
the transient phase between batch and continuous modes, or the transient phase between
different setpoints in continuous operation. The previous analysis can be extended to these
situations by considering a time-scale separation where the bioreactor environment is the
slow subsystem and the cells or micro-organisms the fast subsystem, which can therefore
be considered in a pseudo steady-state. The dynamics of the extracellular substrates S and
products P can be described by a set of mass balance equations

dS
dt

= −vSX− D(S− Sin)

dP
dt

= vPX− D(P− Pin)

(35)

where S and P represent the extracellular substrate and product concentrations, respectively,
vS is the vector of specific uptake rates, vP the vector of specific production rates, D = Fin/V
is the dilution rate (ratio of the inlet flow rate Fin(t) to the culture volume V(t)).

A straightforward approach consists in smoothing the extracellular concentration
evolutions, computing the derivatives of the smoothed signals and evaluating the uptake
and production rates using Equation (35) and the knowledge about the transportation
terms (functions of the dilution rate and inlet concentrations Sin and Pin). This approach
was originally developed for MFA with no underdeterminacy or even overdeterminacy.
One of the earlier reports can be found in [48] where the lysine fermentation process by
Corynebacterium glutamicum is studied and the cell metabolic state is estimated online
based on a small metabolic network with 11 fluxes. This work is extended in [49], where
HEK cells are cultivated in perfusion and the metabolic fluxes are estimated online using
a medium-size metabolic network of 40 reactions. Other notable accounts include [50],
where Escherichia coli cultivations shifting from carbon limitation to nitrogen limitation
and vice versa are studied, and [51], where a human cell line is analyzed and the authors
compare Dynamic MFA (DMFA) to a flux average approach where the culture is divided
in phases over which constant (average) fluxes are considered.

When underdeterminacy prevails, the approaches previously reviewed can be ex-
tended to take account of the dynamic evolution of the extracellular fluxes as well.

In [52,53], Dynamic Flux Balance Analysis (DFBA) is introduced and applied to the
analysis of diauxic growth of Escherichia coli on glucose and acetate. Two optimization
approaches can be considered: (a) a sequence of static LP problems corresponding to
the subdivision of the batch time into time intervals over which the fluxes are assumed
constant, or (b) a global dynamic optimization formulated over the total batch duration
that can be solved using multiple shooting and orthogonal collocation to be converted
into a NLP. The latter approach allows the consideration of an integrated (over the system
trajectory) optimality objective or an end-of-batch objective, as well as nonlinear constraints
on the fluxes resulting from a priori knowledge about kinetic expressions, but results in
a significantly more complex problem. DFBA is nowadays a popular approach, which
has led to many interesting applications (see for instance [54–58]) and the emergence of
software tools such as DFBLAB [59].

In [60], Flux Spectrum Approach (FSA), which is a method based on the formulation
of a set of min/max LP problems taking account of a range of measurement errors, is
applied to the analysis of the evolution over time of the fluxes in small metabolic network
of the CHO metabolism and data borrowed from [35].

In [61], a linear objective function subject to elementary modes as constraints is opti-
mized to determine the fluxes in the metabolic network of Corynebacterium glutamicum at
different temporal phases of fermentation. The use of convex analysis and EFMs is investi-
gated in [35] to determine intervals for the metabolic fluxes of CHO cells in batch cultures,
which are decomposed into several time periods corresponding to different phases of the
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cell life cycle. This work is extended to more detailed metabolic networks in [62] and to
the dynamic evolution of the flux spectrum, without assuming a decomposition in phases,
in [34] where convex analysis is applied to hybridoma cultures switching from batch to
perfusion mode.

5.3. How to Represent the Accumulation of Internal Metabolites?

Besides the possible time evolution of the extracellular fluxes discussed in the previous
subsection, another dynamic phenomenon might need special attention: the accumula-
tion of an intracellular metabolite over time, implying that the traditional assumption
of quasi steady-state is no longer valid. This situation is, for instance, observed in cul-
tures of photosynthetic micro-organisms that can accumulate various components, such
as carbohydrates and lipids. It is also well-known that yeasts, such as Saccharomyces
cerevisiae, are able to accumulate some carbohydrates, e.g., trehalose, that play a role of
carbon and energy reserve, as well as of stress protectant against harmful environmental
conditions [63]. Abandoning the quasi steady state assumption for some of the intracel-
lular metabolites boils down to removing their corresponding rows in the stoichiometric
matrix N involved in Equation (1), hence increasing the number of degrees of freedom
that characterizes the system underdeterminacy. To compensate for the mass balance equa-
tions withdrawn from (1), the kinetics of accumulation and/or reuse of the intracellular
metabolites should be included in mass balance ODEs. However, the lack of intracellular
measurements along time usually hampers the identification of these intracellular reac-
tion rates. In [64], the authors propose the DRUM (Dynamic Reduction of Unbalanced
Metabolism) modeling framework that consists in defining subsets of balanced intracellular
metabolites that are interconnected via linking metabolites. These latter may accumulate
or be reused. The subsets of balanced metabolites are reduced to macroscopic reactions,
based on Elementary Flux Mode analysis, for which simple kinetic models are derived
that allow building mass balance ODEs for the linking metabolites, biomass production,
substrate consumption and product excretion. This methodology is applied to the lipid and
carbohydrate accumulation in the microalgae Tisochrysis lutea. The modeling approach
proposed in [65] can be applied to any metabolic network whose kinetics can be locally
linearized. As in [64], the authors also consider subnetworks of fast reactions (involving
metabolites that are assumed at quasi steady state) connected via metabolites consumed
at low rates. Based on this time scale separation, the methodology allows reducing high
dimensional linearized models, while accounting for the accumulation of some metabolites,
as well as for the dilution effect due to biomass growth. In [66], a FBA-based simulator of
Saccharomyces cerevisiae fed-batch cultures is proposed, using the assumption that the
intracellular alpha-ketoglutarate is unbalanced. Its dynamics are described with a linear
combination of the glucose and nitrogen specific uptake rates whose models involve the
alpha-ketoglutarate concentration.

5.4. Model Reduction to Macroscopic Scale

Macroscopic models mainly predict biomass growth, the consumption of external
substrates and the secretion of external products. Their structural simplicity allows their
use for bioprocess optimization, control and online monitoring. To these purposes, it can be
worthy to reduce metabolic models to a macroscopic scale. In [67,68], the authors propose
a systematic methodology to build macroscopic reaction rate models via the definition
of additional constraints whose number corresponds exactly to the number of degrees
of freedom, i.e., the difference between the number of metabolic fluxes and the number
of available equality constraints, hence removing the system underdeterminacy. These
constraints express linear combinations of the metabolic fluxes as nonlinear functions
of the extracellular concentrations, which correspond to the macroscopic reaction rate
models. Another method that has often been used to define macroscopic reactions is the
Elementary Flux Mode analysis [32–34,69]. As discussed above, EFMs are the shortest
pathways from substrates to products. However, the main drawback with EFMs is that
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their total number dramatically increases with the network size. To overcome this problem,
different solutions have been proposed. To avoid the exhaustive enumeration of all EFMs,
refs [31,70] propose fast algorithms that randomly compute minimal sets of EFMs. In [71],
the number of EFMs is reduced through a projection from the flux space to the yield
space. Refs. [72,73] select EFMs, via ranking or controlled random search algorithms,
using a multi-criteria objective function that combines prediction error, model size and
efficiency of the EFMs (investment required to produce the enzymes). Another approach
is made of Lumped Hybrid Cybernetic Models in which EFMs are grouped into clusters,
each of them being associated to an average EFM [74]. In [75], the column generation
method is used to determine a (non-necessarily unique) minimal subset of EFMs, which
consists in solving iteratively two levels of optimization problems: the master problem
is a quadratic optimization problem that identifies the macroscopic flux values using
a subset of EFMs, and the subproblem is a linear problem for identifying EFMs that
improve the model prediction in the master problem. Based on extensions of Dynamic
Metabolic Flux Analysis introduced in [76], that only uses concentration measurements
and avoids any numerical differentiation, refs. [77,78] select reduced sets of EFMs via a
geometrical reduction (excluding EFMs with a cosine-similarity algorithm) followed by a
multi-objective genetic algorithm that minimizes the prediction error and the size of the
EFMs subset. A linear optimization problem has been formulated in [79] for selecting the
best subset of EFMs based on a relaxation criterion. The methodology is extended in [80]
and includes a more efficient selection procedure for the minimal subset of EFMs. Note that
once the macroscopic reactions have been deduced from the metabolic network, it remains
to identify their kinetic models. To that purpose, general kinetic models and systematic
identification procedures can be very useful [81,82]. Model reduction methodologies
based on subsets of balanced metabolites interconnected via linking metabolites that
may accumulate within cells [64,65], have also been introduced in the previous section.
Finally, independently of any EFM computation, macroscopic models may also consist of
ODEs describing the mass balances for the biomass and the extracellular species, in which
the reaction rates are computed at each time point by solving a FBA problem [16,17,66].
In [66], the underdeterminacy of the FBA problem is taken into account within the set of
mass balance ODEs by computing the minimum and maximum admissible values of the
ethanol concentration associated to the respective minimum and maximum admissible
values of the specific ethanol production rate that are computed through FVA. Hence,
the underdeterminacy at the level of FBA leads to corridors of admissible values along
time for the concentrations of some macroscopic components, typically the extracellular
products that are secreted.

5.5. How to Handle the Measurement Errors?

In the toy example, the adverse effect of an error on the measured extracellular flux
was alleviated by relaxing an equality constraint and reformulating it as two inequality
constraints (see Equation (19)). Such errors are frequent in practice, as it is necessary to
compute the specific extracellular fluxes from the measurements of the evolution of the
biomass and the extracellular concentrations. If we consider, for simplicity, the exponential
growth phase of a batch culture, this can be formulated in the following way:

dS
dt

= −vSX

dP
dt

= vPX

dX
dt

= µX

(36)
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The solution of these equations are in the form of a linear regression

S(t) = −vS
µ

X(t) + (S(0) +
vS
µ

X(0)) = a1X(t) + b1

P(t) =
vP
µ

X(t) + (P(0)− vP
µ

X(0)) = a2X(t) + b2

ln(X(t)) = µt + ln(X(0)) = a3t + b3

(37)

where the regressors ai give the estimation of the specific fluxes. If the environmental
conditions evolve over time, it will be necessary to consider the inflows and outflows
of the bioreactor as in dynamic model (35), and the variation of the growth rate of the
biomass. This will imply the evaluation of the time derivatives using smoothing and
numerical differentiation as explained in Section 5.2, or the formulation of the fluxes as
piecewise linear functions without the need for numerical differentiation as proposed
by [76]. Whatever the numerical procedure, experimental and numerical errors will always
corrupt the information about the specific fluxes, which could in turn become incompatible
with the constraints imposed by the metabolic network and prior knowledge about the
system biology. This has to be taken into account by some form of constraints relaxation
such as developed in Flux Spectrum Analysis [6] or Adaptive Flux Variability Analysis [38],
where the uncertainty on the extracellular fluxes is represented as an interval around
the measured values. In [38], minimum values for these uncertainties are determined by
solving a sequence of optimization problems. The impact of these uncertainties on the
solution, i.e., on the extent of the intervals for the intracellular fluxes, will largely depend
on the structure and size of the metabolic network. This point is, however, still an open
research question.

5.6. Some Further Perspectives on Sampling Algorithms

The ongoing research on sampling algorithms aims at improving their computational
efficiency, convergence properties and ability to extensively explore the convex polytope of
admissible flux distributions. To avoid the above mentioned problem of the samples that
often become stuck in some part of the polytope when using hit-and-run algorithms [43],
other methods have been proposed such as the artificial centering hit-and-run method
(ACHR) [83] and the optimized general parallel sampler (OPTGP) [9]. Ref. [84] showed
that the ACHR algorithms have convergence problems with high-dimensional polytopes,
and introduced rounding methods with better performances. These methods were further
improved in [10], leading to the coordinated hit-and-run with rounding (CHRR) method
that computes the largest ellipsoid inscribed in the polytope and the rounding transforma-
tion of this ellipsoid into a unit ball. This latter transformation is then applied to the convex
polytope whose sampling therefore becomes much more efficient in terms of computational
time and convergence. Regarding these criteria, refs. [41,42] have shown that CHRR outper-
forms ACHR and OPTGP. Recently, refs. [39,85] have proposed the DISCOPOLIS (DIscrete
Sampling of COnvex POlytopes via Linear program Iterative Sequences) algorithm that,
instead of being a Markov Chain Monte Carlo method, provides (subsets of) samples that
are independent of each other. This allows obtaining larger ranges of admissible flux values.
Given the increasing complexity of the available metabolic networks, involving thousands
of fluxes, there is still a need for the development and improvement of sampling algorithms
with a reasonably low computational time and extensive exploration abilities for irregular
shaped polytopes. Another difficult challenge consists in sampling non-convex solution
spaces that are observed when using thermodynamical constraints for preventing infeasible
loops in the metabolic network [20,84].

6. Conclusions

This paper reviews and applies to a toy example (the Matlab code of this example
is provided in the Supplementary Materials associated to this article) some methods that
can be used with underdetermined problems in metabolic flux analysis. These methods
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are grouped in two different strategies, the former consisting in simply dealing with the
underdeterminacy without trying to reduce it, and the latter consisting in reducing or even
eliminating the underdeterminacy. The choice between these two strategies depends on the
specific problem to be solved and on the goals of the analysis. On the one hand, one could
be interested by a unique solution that would be representative of a specific metabolic
behavior in the considered cell line, e.g., by adding additional constraints describing these
specific conditions and/or by defining an appropriate optimal behavior through FBA.
On the other hand, one could be interested by the diversity of the possible metabolic be-
haviors resulting from the underdeterminacy, e.g., by analyzing the marginal distributions
of each flux obtained from a sampling method. The point of utmost importance is to be
aware of the system underdeterminacy. For example, even if one solution is provided
by an algorithm used to solve the linear program of a FBA problem, that solution is not
necessarily unique and a quick check via FVA could highlight that the system remains un-
derdetermined. Many of the methods that have been presented are actually complementary,
as illustrated in the abovementioned coupling of FBA with FVA. System underdeterminacy
is a direct consequence of biological complexity and of the limited access to intracellular
measurements. Developing methods to analyze underdetermined systems and/or to re-
duce their underdeterminacy in diverse and complementary ways will therefore remain an
important research topic in the future. The interested reader might also consider the recent
review [86], which includes an in-depth discussion of kinetic approaches for modeling
cell metabolism.

Supplementary Materials: The following material is available online at https://www.mdpi.com/
article/10.3390/pr9091577/s1, code S1: toy_example.zip.
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