
Gmys J., Mezmaz M., Melab N., Tuyttens D. (2016) IVM-Based Work Stealing for Parallel Branch-and-Bound
on GPU. In: Wyrzykowski R., Deelman E., Dongarra J., Karczewski K., Kitowski J., Wiatr K. (eds) Parallel
Processing and Applied Mathematics. PPAM 2015. Lecture Notes in Computer Science, vol 9573. Springer,
Cham, pp. 548–557, 2016.
This is the author’s version of the work. It is posted for your personal use. The definitive version was published
with doi: 10.1007/978-3-319-32149-3 .

IVM-based Work Stealing for
Parallel Branch-and-Bound on GPU

J. Gmys1, M. Mezmaz1, N. Melab2 and D. Tuyttens1

1 Mathematics and Operational Research Department (MARO), University of Mons, Belgium
2 INRIA Lille Nord Europe, Université Lille 1, CNRS/CRIStAL, Cité scientifique - 59655,

Villeneuve d’Ascq cedex, France

Abstract. The irregularity of Branch-and-Bound (B&B) algorithms makes their
design and implementation on the GPU challenging. In this paper we present a
B&B algorithm entirely based on GPU and propose four work stealing strategies
to balance the workload inside the GPU. Our B&B is based on an Integer-Vector-
Matrix (IVM) data structure instead of a pool of permutations, and work units
exchanged are intervals of factoradics instead of sets of nodes. To the best of
our knowledge, the proposed approach is the pioneering to perform the entire
exploration process on GPU. The four work stealing strategies have been exper-
imented and compared to a multi-core IVM-based approach using standard flow
shop scheduling problem instances. The reported results show, on the one hand,
that the GPU-accelerated approach is more than 5 times faster than its multi-core
counterpart. On the other hand, the best of the four strategies provides a near-
optimal load balance while consuming only 2% of the total execution time of the
algorithm.

Keywords: GPU computing; Branch-and-Bound; Combinatorial optimization; Work
Stealing

1 Introduction

Many permutation-based combinatorial optimization problems, like flowshop, can be
solved to optimality using Branch-and-Bound (B&B) algorithms. These algorithms per-
form an implicit enumeration of all possible solutions by dynamically constructing and
exploring a tree. This is done using four operators: branching, bounding, selection and
pruning. Execution times of B&B algorithms significantly increase with the size of the
problem instance, and often only small or moderately-sized instances can be practically
solved. Because of their massive data processing capability and their remarkable cost
efficiency, graphics processing units (GPU) are an attractive choice for providing the
computing power needed to solve such instances. However, B&B is a highly irregular
application, in terms of control flow, memory access patterns and work load distribu-
tion. The acceleration of B&B algorithms using GPUs is therefore a challenging task
which is addressed by only a few works in the literature [2,3,10]. Most approaches use
pools of subproblems, implemented as linked-lists, stacks or queues to store and manage
the B&B tree. The GPU memory imposes limitations on the use of such dynamic data

https://doi.org/10.1007/978-3-319-32149-3_51

IVM-based Work Stealing for Parallel Branch-and-Bound on GPU 549

structures, and pool-based approaches perform at least one of the B&B operators on the
CPU, requiring costly data transfers between CPU and GPU. The Integer-Vector-Matrix
(IVM) data structure [16], used in our GPU-based algorithm, allows to overcome this
issue. To the best of our knowledge, the proposed approach is the pioneering to perform
the entire exploration process on GPU. Performing all B&B operators on the device
raises the issue of balancing the workload inside the GPU. In this paper, we present the
GPU-based B&B algorithm using the IVM structure and propose four work stealing
(WS) strategies to address the issue of work load imbalance.

2 Parallel B&B and flow shop

Serial B&B. B&B algorithms explore the space of potential solutions (search space) by
dynamically building a tree whose root node represents the initial problem to be solved.
The leaf nodes are possible solutions and the internal nodes represent subspaces of the
total search space. Subproblems (internal nodes) are stored in a data structure which
initially contains only the root node. The best solution found so far is initialized at ∞

and can be improved from one iteration to another. At each iteration of the algorithm,
the branching operator partitions a subproblem into several smaller, pairwise disjoint
subproblems. The bounding operator is used to compute a lower bound (LB) value
of the optimal solution of each generated subproblem. Based on this LB the pruning
operator decides whether to eliminate a node or to continue its exploration. According to
a predefined exploration strategy the selection operator chooses one subproblem among
all pending subproblems stored in the data structure. For instance, the selection of a
node can be based on its depth in the B&B tree which leads to a depth-first strategy,
which is used in this paper.

Parallel B&B. The pruning mechanism efficiently reduces the size of the search space
and thus the computing power needed for its exploration. However, especially for larger
instances, the exploration time remains significant and parallel processing is required to
speed up the exploration process. A taxonomy of models to parallelize B&B algorithms
is presented in [13]. Among the identified models are (1) the parallel tree exploration
model, and (2) the parallel evaluation of bounds model. Our GPU-based B&B algo-
rithm uses a combination of models (1) and (2).

Model (1) consists in simultaneously exploring different search subspaces of the
initial problem. This means that the selection, branching, bounding and pruning op-
erators are executed in parallel, synchronously or asynchronously, by different B&B
processes which explore these subspaces independently. In synchronous mode, like in
our GPU-based algorithm, the B&B algorithm has different phases between which the
B&B processes are synchronized and may exchange information. The degree of paral-
lelism in this model may be important, especially when solving large instances. Indeed,
the number of parallel exploration processes is only limited by the capacity to supply
them continuously with subproblems to explore. As the shape of the B&B tree is highly
irregular, this work supply strongly depends on the distribution and sharing of the work
load. Model (1) can be combined with other parallel B&B models.

Indeed, each independent B&B process may in turn be parallelized, adding a sec-
ond level of parallelism. For instance, each independent B&B process may use model

550 J. Gmys, M. Mezmaz, N. Melab and D. Tuyttens

(2), which parallelizes only the bounding operator. This model is data-parallel, syn-
chronous and fine-grained (the cost of the evaluation of a bound) and is thus suitable
for GPU computing. The GPU-accelerated B&B proposed in [14] is based on model
(2) and offloads pools of subproblems for bounding to the GPU. Although a consid-
erable acceleration of the algorithm is achieved, the data transfers between CPU and
GPU constitute a bottleneck for the offload-approach. Our GPU-based B&B uses a 2-
level combination of models (1) and (2). It aims at using enough parallel exploration
processes on the GPU such that the number of generated subproblems per iteration
saturates the device during the parallel bounding phase.

Flow-shop. The permutation flow shop problem is a well known NP-hard combinatorial
optimization problem. It belongs to the category of scheduling problems and is defined
by a set of N jobs J1,J2, . . . ,JN to be scheduled in the same order on M machines. The
scheduling obeys the chain production principle, i.e. a job can not be processed on a ma-
chine M j before it has finished processing on all machines Mi located upstream (i < j).
An operation cannot be interrupted, and a machine processes not more than one job at
a time. A duration is associated with each operation. The goal is to find a permutation
schedule that minimizes the total processing time called makespan. In [4], it is shown
that the minimization of the makespan is NP-hard from 3 machines upwards. The effec-
tiveness of B&B strongly depends on the relevance of the used LB for the makespan.
The LB proposed by Lageweg et al. [8] is used in our bounding operator. This bound is
known for its good results and has complexity of O(M2Nlog(N)), where N is the num-
ber of jobs and M the number of machines. It is mainly based on Johnson’s theorem [6]
which provides a procedure for finding an optimal solution for the flow shop problem
with M = 2.

The benchmark instances used in our experiments are the flowshop instances de-
fined by Taillard [17]. We use only the 10 instances where M = N = 20. For most
instances where M = 5 or 10, the bounding operator gives such good LBs that it is
possible to solve them in few seconds using a sequential B&B. Instances with M = 20
and N = 50,100,200 or 500 are very hard to solve. For example, the resolution of the
instance Ta056 (N = 50, M = 20), performed in [15], lasted 25 days with an average of
328 processors and a cumulative computation time of about 22 years.

3 GPU IVM-based B&B

3.1 Serial IVM-based B&B

The pool of Fig. 1a is represented as a tree in order to visualize the problem-subproblem
relationship between nodes. In Fig. 1b the corresponding Integer-Vector-Matrix (IVM)
is represented. The notation 23/14 denotes the subproblem where jobs 2 and 3 are
scheduled, while 1 and 4 are unscheduled. In the initial problem all jobs are unsched-
uled. The root node /1234 is decomposed into four nodes, namely 1/234, 2/134, 3/124
and 4/123. In the IVM-approach this decomposition corresponds to the first row of the
matrix M which contains all job numbers 1,2,3,4. The example assumes that the algo-
rithm selects and branches the second node 2/134. For the IVM-structure this translates

IVM-based Work Stealing for Parallel Branch-and-Bound on GPU 551

to setting V (0) = 1. The so-called position-vector V always points to the currently ac-
tive node at depth I. The decomposition of 2/134 gives three nodes, 21/34, 23/14 and
24/13. In IVM-terms this decomposition consists in copying the elements of row I = 0,
except the scheduled job M(0,V (0)) = 2, to the next row. Also, the integer I is incre-
mented by one when a subproblem is decomposed. The example also assumes that the
node 21/34 is processed or pruned. The IVM-based selection operator should therefore
ignore the corresponding cell of M and move rightward to the next cell by increment-
ing V (1). Cells that correspond to pruned nodes are flagged, multiplying them by −1.
Therefore, the algorithm decomposes the second node 23/14, obtaining two new nodes
which are 231/4 and 234/1. Again, the next-row process performs this decomposition
in the IVM structure.

Each of the pool management operators can be expressed in terms of actions on
the IVM. The depth-first selection strategy is naturally encoded in this data structure.
In order to enable the bounding operator to compute the lower bounds of a subproblem
encoded by the IVM structure, a decode operation is required. For example, the solution
encoded in Fig. 1b can be directly read by looking (from row I = 0 to row I = 3) at the
values that are pointed by the position vector. With the same vector and matrix, if the
integer is I = 1, then the represented subproblem is 23/14.

(a) pool of subproblems (b) IVM-structure

Fig. 1: Example of a pool of subproblems and an IVM-structure obtained when solving a permu-
tation problem of size four

3.2 Work unit: interval of factoradics

Throughout the exploration process, the position-vector behaves like a counter. In the
example of Fig. 1b, the vector successively takes the values 0000, 0010, 0100, . . ., 3200,
3210. These 24 values correspond to the numbering of the 4! solutions using a number-
ing system in which the weight of the ith position is equal to i! and the digits allowed
for the ith position are 0,1, . . . , i. Applied to the numbering of permutations, the French
term numération factorielle was first used in 1888 [9], while Knuth [7] uses the term
factorial number system. The term factoradic, which seems to be of more recent date is
used, for instance, in [12]. This mixed radix numeral system satisfies the conditions of
what Cantor called a simple number system in [1].

552 J. Gmys, M. Mezmaz, N. Melab and D. Tuyttens

Subtrees of the B&B tree can be identified with intervals of factoradics. In the exam-
ple of Fig. 1b, the algorithm explores [0000,3210[. It is possible to have two IVMs3 R1,
R2 such that R1 explores [0000,X [and R2 explores [X ,3210[. These factoradic inter-
vals are used as work units, instead of conventional sets of nodes. If R2 ends exploring
its interval before R1 does, then R2 steals a portion of R1’s interval. Therefore, R1 and
R2 can exchange their interval portions until the exploration of all [0,N![. With the ex-
ception of rare works such as [15], work units exchanged between processes are sets of
nodes. To enable an IVM to explore any interval [A,B[an initialization process is neces-
sary. The correct initialized state of the IVM is such that it would be the same if the new
position vector V = A had been reached through the exploration process. Therefore, the
initialization process differs from the normal B&B process only in the selection oper-
ator. Instead of depth-first selecting the next node, an initializing IVM selects at each
level k the node pointed by V (k) as long as the selected subproblem is promising. If
a pruned node is selected, the initialization process is finished and the IVM resumes
exploration, searching for the next node to decompose. Thus, the initialization process
may last for 1 to N iterations.

3.3 GPU-based parallel B&B

IVM is well-adapted to a GPU implementation of the parallel B&B algorithm. Contrary
to a conventional pool of subproblems, IVM requires no dynamic memory allocation
and provides good data locality. A fixed number T of IVM structures is allocated in
device memory and the B&B operators, implemented as CUDA-kernels, act on these
data structures in parallel. Figure 2 provides an overview of the GPU-based algorithm.
Depending on the current state of an IVM different actions are performed. An IVM
cycles through three different states: exploring, empty or initializing.

In the goToNext kernel, all exploring IVMs try to select the next subproblem to
decompose. If no next subproblem is found, the interval is empty and the IVM-state is
set to empty. Initializing IVMs skip this depth-first selection procedure as the next node
to decompose is pointed by the position vector the IVM is initializing at. If the initial-
ization process is terminated, then the state is set to exploring. All non-empty IVMs
move to the next row in the matrix.

For IVMs with non-empty intervals the decode kernel reads the IVM structure
and builds the father subproblem to be decomposed. The kernel bound uses this data
and computes the lower bounds for the children subproblems. The granularity is the
computation of the lower bound for a child subproblem. The degree of parallelism de-
pends on the number of non-empty IVMs and on the average depth of these explorers
in the B&B-tree. In order to maintain a high device occupancy, the number of empty
IVMs should be as low as possible. Also the number of initializing IVMs should be low,
because the bounding procedure for these IVMs contributes to computational overhead.
As the number of children per non-empty IVM is variable a remap phase precedes the
bounding kernel. Using a parallel prefix sum [5] computation, the remapping performs
a compaction of the mapping of threads onto children subproblems. It also detects the

3In the rest of this paper the term IVM designates the data structure as well as, by extension,
the exploration process associated with a part of the B&B-tree.

IVM-based Work Stealing for Parallel Branch-and-Bound on GPU 553

INITEMPTYEXPLORE

finished init?

sleep

generate next line

interval

empty?

got stolen?

end?

copy

result

to

CPU

sleep (can’t share)

bound

prune

NO YES

NOYESYESNO

copyDevice

ToHost

(end)

NO

YES

decode IVM

new state: INIT

new state:

EMPTY

new state:

EXPLORE

STOP

1 thread / IVM

1 thread / IVM

1 thread / IVM

1 thread / IVM

1 thread / subproblem

try select next node

(depth-first)

stole work?

NO YES

assign new

 position/end vectors

assign new

 end vector

try steal from

victim-map[R]

generate next line

sleep

sleep

decode IVMsleep

bound

prune

Remap / determine end / share best so far.

kernel <bound>

kernel <decode>

kernel <goToNext>

kernel <steal>

kernel <prepareBound>

kernel <prune>

Try to find suitable victim for each empty IVM R. If successful, write victim-ID to victim-map.
kernel(s) <selectVictim>

Fig. 2: Flowchart of the CUDA B&B algorithm

end of the algorithm (⇔ all IVMs empty) and determines global best solution found
so far using a min-reduce. The prune kernel uses the lower bounds computed in the
bounding kernel to decide whether a subproblem is pruned or not.

Empty IVMs remain unchanged during an iteration, they try to steal work in the
steal kernel. A work stealing (WS) operation is determined by a victim selection
strategy, defining which IVM to steal from, and a granularity policy, defining how much
of a victim’s work unit is stolen. In the selectVictim phase a one-to-one mapping
of empty IVMs onto suitable victim IVMs is built. As in the steal kernel all empty
IVMs try to acquire work in parallel, two empty IVMs should never select the same vic-
tim. Initializing IVMs can not be selected as WS victims, because this could result in a
deadlock situation. Moreover, the victim selection operation should (1) induce minimal
overhead, thus the mapping should be build in parallel, (2) select victim IVMs whose
intervals are likely to contain more work than others, (3) serve a maximum of empty
IVMs.

4 Work stealing strategies

This section explains the IVM-based WS strategies for the GPU-B&B algorithm. In
[11] several WS strategies for multi-core IVM-based B&B algorithms have been pro-
posed. For instance, the Ring-1/T strategy can be directly transposed from the asyn-
chronous multi-core WS to the synchronous GPU case. The proposed WS strategies
are extensions of this strategy. They are described in Alg. 1 and correspond to different
choices for a set of parameters.

554 J. Gmys, M. Mezmaz, N. Melab and D. Tuyttens

Algorithm 1 Victim selection
Ring-1/T: B = 1; S = 0; C = 0; Search-1/T: B = 1; S = 25, C = 0;
Large-1/2: B = 1; 10 < S < T, C = 1; Circle-1/2: B = iter%T; 10 < S < T; C = 1;

1: procedure SELECTVICTIM(B, S, C)
2: for (k = B→ B+S) do
3: beg<<<T threads>>>(k, victim-map, C,...)
4: end for
5: end procedure
6: procedure <<< >>> BEG(k, victim-map, C,...)
7: ivm ← blockIdx.x*blockDim.x + threadIdx.x
8: if (state[ivm]=empty) then
9: V ← (ivm-k)%T
10: if (state[V]=exploring AND flag[V]= 0 AND length[V]>C*meanLength) then
11: victim-map[ivm]← V
12: flag[V]← 1
13: end if
14: end if
15: end procedure

The Ring-selection policy consists in selecting a victim in round-robin fashion,
meaning that an empty IVM R ∈ {1, ...,T} tries to steal a portion of work from IVM
(R− 1)%T . In Alg. 1 this corresponds to parameters B = 1 and S = 0. If the state of
the selected potential victim (R−1)%T is exploring, then work can be stolen. No con-
ditions on the length of the victim’s interval are imposed, which corresponds to setting
C = 0 in Alg. 1. To use this information in the steal-kernel, victim-map[R] is
set to (R− 1)%T . A thief steals all but the Tth part of its victim’s interval. In [11] it
is shown that this granularity policy better suits the Ring selection strategy than a 1/2-
policy.

The Search-1/T selection policy extends the Ring strategy by checking successively
if work can be stolen from IVMs (R− 1)%T , (R− 2)%T , ... , (R− S)%T . Seaching
the entire ring (S = T) results in excessive overhead, so for experimental purposes the
length of the search window S is set to 25. The idea behind this strategy is to avoid
the following situation. Using the Ring policy, if a group of l empty IVMs is queued
behind a group of exploring IVMs, then it takes at least l iterations to serve all IVMs
in that group. In order to avoid multiple selections of the same victim, a flag-variable is
introduced (Alg. 1, line 10). The Search policy aims at increasing the probability that
an empty IVM succeeds its WS attempt at a given iteration.

The idea behind the Large selection policy is to steal from larger intervals as they
are likely to contain more nodes to decompose. This requires computing the length
of each interval at each iteration. In order to avoid the costly operation of sorting the
IVM-IDs by their corresponding interval-lengths, the current mean interval-length is
computed prior to the victim selection phase. Having an interval larger than average is
added as a criterion for the eligibility of an IVM as a WS victim. In Alg. 1 this cor-
responds to setting C = 1. However, this length-criterion increases the probability that
no victim is found in the search window of fixed length S. The parameter S is therefore
allowed to float between 10 and T . If more than 10% of IVMs are empty at a given it-
eration, then S is incremented by one, otherwise S is decremented by one. Auto-tuning
this parameter requires copying the number of empty IVMs to the host at each iteration.
Choosing large intervals justifies the granularity policy that consists in stealing half of
the victim’s interval.

IVM-based Work Stealing for Parallel Branch-and-Bound on GPU 555

Table 1: Exploration time (in seconds) for solving flowshop instances Ta021-Ta030
Ring-1/T (CPU) Ring-1/T (GPU) Search-1/T (GPU) Large-1/2 (GPU) Circle-1/2 (GPU)

Inst. ×106 Nodes Time Time Rate Time Rate Time Rate Time Rate

21 41.4 1371 386 3.6 338 4.1 280 4.9 250 5.5
22 22.1 668 247 2.7 229 2.9 146 4.6 129 5.2
23 140.8 4466 1002 4.6 934 4.8 915 5.4 813 5.5
24 40.1 1142 359 3.2 254 4.5 255 4.5 219 5.2
25 41.4 1422 431 3.3 327 4.3 280 5.1 250 5.7
26 71.4 1975 459 4.3 443 4.5 429 4.6 384 5.2
27 57.1 1600 404 3.9 370 4.3 336 4.8 301 5.3
28 8.1 263 120 2.2 79 3.3 59 4.4 52 5.1
29 6.8 216 95 2.3 88 2.5 50 4.4 42 5.1
30 1.6 58 39 1.5 36 1.6 20 2.9 12 4.8
Avg 43.1 1318 354 3.7 310 4.3 277 4.8 245 5.4

In the Circle selection policy the search window is shifted by one position at each
iteration of the algorithm. In Alg. 1 this corresponds to setting B = iter%T. Like in the
Large policy the parameter S is adapted dynamically and half of the victim’s interval is
stolen. The main idea behind this policy is to reduce the length of the search window as
a large value for S induces most overhead.

5 Experiments

Hardware/Experimental protocol. For all experiments an NVIDIA Tesla K20m GPU,
and version 5.0.35 of the CUDA Toolkit are used. As explained in Section 2, the
medium-sized instances Ta021-Ta030 [17] are used. The execution times are compared
to a multi-core B&B [11] running on 2 Sandy Bridge E5-2650 processors with 32
threads. When an instance is solved twice using a multi-threaded B&B, the number of
explored subproblems often differs between the two resolutions. Therefore, we choose
to always initialize our B&B by the optimal solution of the instance to be solved. With
this initialization, the number of decomposed nodes is the same in each exploration.
The number of used IVMs is T = 768.

Experimental results. Table 1 shows the exploration time for flow shop instances Ta021-
Ta030 using different WS strategies. It also shows the rate comparing the GPU-based
approaches to a multi-core IVM-based B&B using 32 threads (= 32 IVMs) and an
asynchronous Ring-1/T WS strategy. For all instances the best performance is achieved
with the Circle WS strategy. On average, this approach performs the exploration the
B&B-trees 5.4 times faster than the multi-core version.

Comparing the different WS strategies, the decreasing exploration time can be ex-
plained by the fact that more nodes are decomposed per iteration. Table 2 shows the
IVM-efficiency (= 100%× #decomposed nodes

#iter ×T) which provides a measure for the efficiency
of the proposed WS strategies. Indeed, with an ideal work load balance each IVM de-
composes a node per iteration. In that case IVM-efficiency= 100% and the number of
required iterations (Table 2) is minimal for the fixed number of IVMs. The results show
that the Circle strategy is close to that ideal situation – per iteration on average only
2.5% of the T = 768 IVMs are either empty or initializing.

556 J. Gmys, M. Mezmaz, N. Melab and D. Tuyttens

Table 2: Average percentage of IVMs in exploring state (IVM-Efficiency) and average number of
iterations performed to complete the exploration

Ta021 Ta022 Ta023 Ta024 Ta025 Ta026 Ta027 Ta028 Ta029 Ta030 Avg #Iterations

Ring-1/T 52.0 38.4 74.5 48.2 45.6 71.0 63.9 24.6 29.1 14.8 46.2 96781
Search-1/T 67.4 46.3 84.2 84.2 73.8 80.4 79.0 53.8 36.7 19.9 62.5 74402
Large-1/2 93.3 92.9 93.4 93.2 93.3 93.2 93.4 91.5 90.4 76.4 91.1 60108
Circle-1/2 99.4 98.9 99.8 99.4 99.3 99.7 99.5 96.8 96.8 85.3 97.5 56368

Finally, the overhead induced by WS is evaluated. Figure 3 shows, for the four WS
strategies, the average time spent in different phases of the algorithm. For all WS strate-
gies, the bounding phase consumes > 85% of the total execution time. Using the Ring-
1/T strategy on average 327 seconds are spent in the bounding kernel, against 226 sec-
onds using the Circle-1/2 strategy. This corresponds to the observations regarding the
efficiency of that kernel (Tab. 2). Compared to basic ring, the search-window of length
S = 25 greatly improves the efficiency of the WS, at the cost of spending ≈ 3% instead
of ≈ 0.1% in victim-selection. The Large strategy further improves the work load bal-
ance, but victim-selection amounts for≈ 9% (including computation of interval-length)
as the average value for the auto-tuned parameter S increases to 110. Extending the lat-
ter to the Circle strategy allows a modest further improvement of the load balance and,
more importantly, as the average value for S decreases to 15, it achieves this with a
victim selection cost of < 2%.

6 Conclusion and future work

In this work, we have presented a GPU-based B&B algorithm which is, to the best of
our knowledge the pioneering to perform the entire exploration process on the GPU. We
focused on the challenge of balancing the irregular work load using work stealing (WS).
The results show that the performance of B&B on GPU significantly depends on work
load balancing. Compared to a 32-threaded multi-core version the GPU-based counter-
part provides an average acceleration of 5.4 using the most efficient of the proposed WS
strategies. As a future work we plan to investigate the use of other hardware accelerators

0 50 100 150 200 250 300 350 400

Circle−1/2

Large−1/2

Search−1/T

Ring−1/T

Execution time breakdown

time (sec)

W
S

 s
tr

a
te

g
y

Bound

Select

Manage IVM

Share + Other

Fig. 3: Average elapsed time for solving instances Ta021-Ta030 and its repartition among differ-
ent phases of the algorithm

IVM-based Work Stealing for Parallel Branch-and-Bound on GPU 557

like Intel Xeon Phi for B&B and to extend the IVM-based B&B to a cluster-based ver-
sion using many-core accelerators. Solving Taillard’s 50-job flowshop instances within
a reasonable amount of time requires indeed the combined computing power of multi-
ple multi-core and many-core processors. We also plan to enable the algorithm to use a
library of bounding functions in order to validate our results on other permutation-based
optimization problems.

References
1. Cantor, G.: Ueber die einfachen Zahlensysteme. Zeitschrift für Mathematik und Physik 14,

121–128 (1869)
2. Carneiro, T., Muritiba, A., Negreiros, M., Lima de Campos, G.: A New Parallel Schema for

Branch-and-Bound Algorithms Using GPGPU. In: 23rd International Symposium on Com-
puter Architecture and High Performance Computing (SBAC-PAD). pp. 41–47 (2011)

3. Chakroun, I., Mezmaz, M., Melab, N., Bendjoudi, A.: Reducing thread divergence in a GPU-
accelerated branch-and-bound algorithm. Concurrency and Computation: Practice and Ex-
perience 25(8), 1121–1136 (2013)

4. Garey, M.R., Johnson, D.S., Sethi, R.: The Complexity of Flowshop and Jobshop Scheduling.
Mathematics of Operations Research 1(2), pp. 117–129 (1976)

5. Harris, M., Sengupta, S., Owens, J.D.: Parallel prefix sum (scan) with CUDA. GPU Gems
3(39), 851–876 (2007)

6. Johnson, S.M.: Optimal two- and three-stage production schedules with setup times included.
Naval Research Logistics Quarterly 1(1), 61–68 (1954)

7. Knuth, D.E.: The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumerical Algo-
rithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1997)

8. Lageweg, B.J., Lenstra, J.K., Kan, A.H.G.R.: A General Bounding Scheme for the Permuta-
tion Flow-Shop Problem. Operations Research 26(1), 53–67 (1978)

9. Laisant, C.A.: Sur la numération factorielle, application aux permutations. Bulletin de la
Société Mathématique de France 16, 176–183 (1888)

10. Lalami, M., El-Baz, D.: GPU Implementation of the Branch and Bound Method for Knap-
sack Problems. In: IEEE 26th Intl. Parallel and Distributed Processing Symp. Workshops
PhD Forum (IPDPSW). pp. 1769–1777. Shanghai, CHN (May 2012)

11. Leroy, R., Mezmaz, M., Melab, N., Tuyttens, D.: Work Stealing Strategies For Multi-Core
Parallel Branch-and-Bound Algorithm Using Factorial Number System. In: Programming
Models and Applications on Multicores and Manycores (PMAM). pp. 111–119. Orlando,
FL (February 2007)

12. McCaffrey, J.: Using permutations in .NET for improved systems security (2003)
13. Melab, N.: Contributions à la résolution de problèmes d’optimisation combinatoire sur grilles

de calcul. LIFL, USTL (November 2005), thesis HDR
14. Melab, N., Chakroun, I., Bendjoudi, A.: Graphics processing unit-accelerated bounding for

branch-and-bound applied to a permutation problem using data access optimization. Concur-
rency and Computation: Practice and Experience 26(16), 2667–2683 (2014)

15. Mezmaz, M., Melab, N., Talbi., E.G.: A grid-enabled branch and bound algorithm for solv-
ing challenging combinatorial optimization problems. In: 21th IEEE Intl. Parallel and Dis-
tributed Processing Symp. (IPDPS). pp. 1–9. Long Beach, CA (March 2007)

16. Mezmaz, M., Leroy, R., Melab, N., Tuyttens, D.: A Multi-Core Parallel Branch-and-Bound
Algorithm Using Factorial Number System. In: 28th IEEE Intl. Parallel & Distributed Pro-
cessing Symp. (IPDPS). pp. 1203–1212. Phoenix, AZ (May 2014)

17. Taillard, E.: Benchmarks for basic scheduling problems. Journal of Operational Research 64,
278–285 (1993)

	IVM-based Work Stealing for Parallel Branch-and-Bound on GPU
	1 Introduction
	2 Parallel B&B and flow shop
	3 GPU IVM-based B&B
	3.1 Serial IVM-based B&B
	3.2 Work unit: interval of factoradics
	3.3 GPU-based parallel B&B

	4 Work stealing strategies
	5 Experiments
	6 Conclusion and future work

