Mickael Randour

LSV - CNRS & ENS Cachan, France

September 9, 2015 - CSL 2015, Berlin

Ackermann Award Lecture

Synthesis	Games and MDPs	Contributions	Going Further
000	0000000	0000000	00

Thesis: synthesis in multi-criteria quantitative games

- ▷ University of Mons, Belgium, April 2014.
- Currently post-doc in LSV, France, with Patricia Bouyer and Nicolas Markey.

Advisors

Véronique Bruyère UMONS, Belgium Jean-François Raskin ULB, Belgium

Synthesis	Games and MDPs	Contributions	Going Further
000	0000000	000000	00

Thesis: synthesis in multi-criteria quantitative games

- ▷ University of Mons, Belgium, April 2014.
- Currently post-doc in LSV, France, with Patricia Bouyer and Nicolas Markey.

Advisors

Véronique Bruyère UMONS, Belgium Jean-François Raskin ULB, Belgium

Aim of this talk

Sketch the **motivation** for the research and give some **examples** of the studied problems.

Synthesis	Games and MDPs	Contributions	Going Further
000	0000000	0000000	00

1 Synthesis in Quantitative Games

- 2 Quantitative Games and MDPs
- 3 Overview of the Contributions
- 4 Going Further

Synthesis	Games and MDPs	Contributions	Going Further
000	000000	0000000	00

1 Synthesis in Quantitative Games

- 2 Quantitative Games and MDPs
- **3** Overview of the Contributions
- 4 Going Further

Synthesis	Games and MDPs	Contributions	Going Further
000	0000000	0000000	00

General context

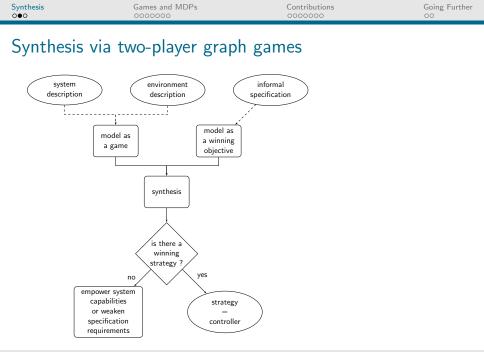
- Verification and synthesis:
 - > a reactive **system** to *control*,
 - ▷ an *interacting* environment,
 - ▷ a **specification** to *enforce*.
- Automated controller synthesis via games.

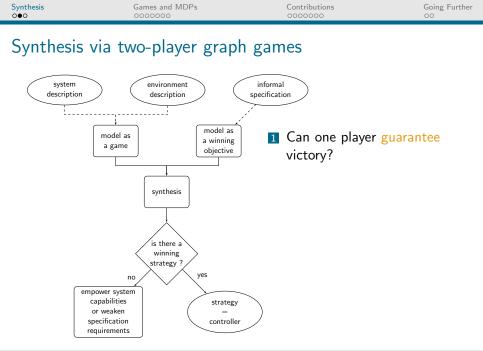
Synthesis	Games and MDPs	Contributions	Going Further
000	0000000	0000000	00

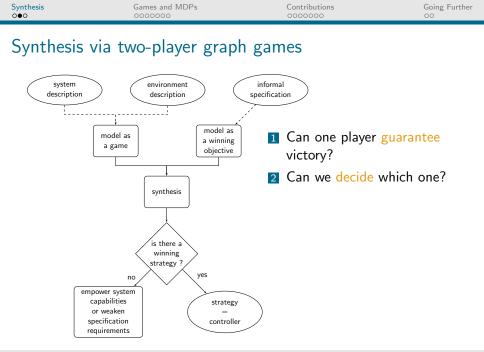
General context

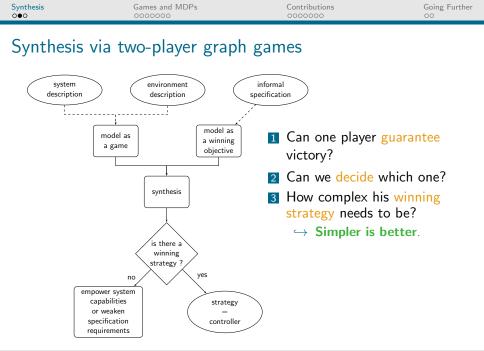
- Verification and synthesis:
 - > a reactive **system** to *control*,
 - ▷ an *interacting* environment,
 - ▷ a **specification** to *enforce*.
- Automated controller synthesis via games.
- Strong links between logic and games:
 - ▷ logic used as specification language,
 - \triangleright model checking via game solving (e.g., parity games for modal μ -calculus).

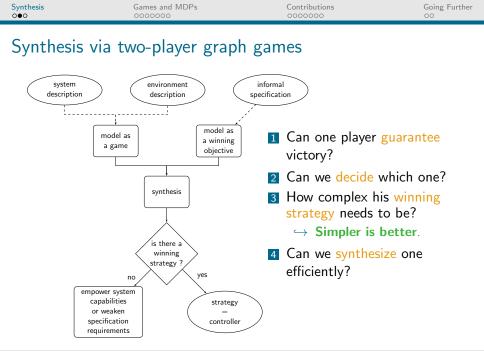
Here: focus on the game-theoretic view.











From Boolean to quantitative and beyond: an ongoing shift

Boolean view: behavior is either correct or incorrect. No interpretation of *how good* it is. OK for yes-no properties (e.g., no deadlock). Example: parity games [GTW02, EJS93, Jur98].

From Boolean to quantitative and beyond: an ongoing shift

Boolean view: behavior is either correct or incorrect. No interpretation of *how good* it is. OK for yes-no properties (e.g., no deadlock). Example: parity games [GTW02, EJS93, Jur98].

Quantitative view: rank the performance, model resource constraints. Traditionally, only *single-criterion* models. OK for energy consumption, response time [CdAHS03, BCHJ09, Ran13]. Example: mean-payoff games [EM79, ZP96, BCD⁺11].

From Boolean to quantitative and beyond: an ongoing shift

Boolean view: behavior is either correct or incorrect. No interpretation of *how good* it is. OK for yes-no properties (e.g., no deadlock). Example: parity games [GTW02, EJS93, Jur98].

Quantitative view: rank the performance, model resource constraints. Traditionally, only *single-criterion* models.

OK for energy consumption, response time [CdAHS03, BCHJ09, Ran13]. Example: mean-payoff games [EM79, ZP96, BCD⁺11].

Multi-criteria view: study interplays and trade-offs.

- E.g., response time vs. computing power vs. energy consumption.
 - Also, consider strategies with richer guarantees.
 - E.g., average performance vs. worst-case performance.

Synthesis	Games and MDPs	Contributions	Going Further
000	000000	000000	00

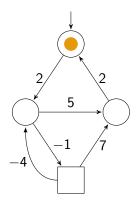
1 Synthesis in Quantitative Games

2 Quantitative Games and MDPs

3 Overview of the Contributions

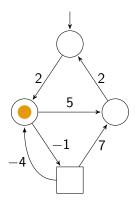
4 Going Further

Synthesis	Games and MDPs	Contributions	Going Further
000	● ○○ ○○○○	000000	00



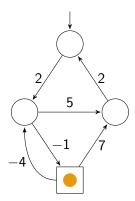
- Graph $\mathcal{G} = (S, E, w)$ with $w \colon E \to \mathbb{Z}$
- Deterministic transitions
- Two-player game $G = (G, S_1, S_2)$
 - $\begin{array}{l} \triangleright \ \ \mathcal{P}_1 \ \text{states} = \bigcirc \\ \triangleright \ \ \mathcal{P}_2 \ \text{states} = \square \end{array} \end{array}$
- Plays have values
 - $\triangleright \ f: \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \operatorname{Prefs}_i(G) \to \mathcal{D}(S)$
 - ▷ Finite memory \Rightarrow stochastic output Moore machine $\mathcal{M}(\lambda_i) = (\text{Mem}, m_0, \alpha_u, \alpha_n)$

Synthesis	Games and MDPs	Contributions	Going Further
000	● OO OOOO	000000	00



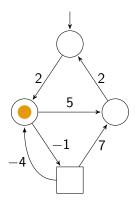
- Graph $\mathcal{G} = (S, E, w)$ with $w \colon E \to \mathbb{Z}$
- Deterministic transitions
- Two-player game $G = (\mathcal{G}, S_1, S_2)$
 - $\begin{array}{l} \triangleright \ \ \mathcal{P}_1 \ \, \text{states} = \bigcirc \\ \triangleright \ \ \mathcal{P}_2 \ \, \text{states} = \square \end{array}$
- Plays have values
 - $\triangleright \ f: \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \operatorname{Prefs}_i(G) \to \mathcal{D}(S)$
 - ▷ Finite memory \Rightarrow stochastic output Moore machine $\mathcal{M}(\lambda_i) = (\text{Mem}, m_0, \alpha_u, \alpha_n)$

Synthesis	Games and MDPs	Contributions	Going Further
000	● OO OOOO	000000	00



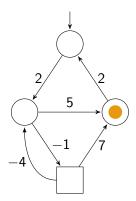
- Graph $\mathcal{G} = (S, E, w)$ with $w \colon E \to \mathbb{Z}$
- Deterministic transitions
- Two-player game $G = (G, S_1, S_2)$
 - $\begin{array}{l} \triangleright \ \ \mathcal{P}_1 \ \text{states} = \bigcirc \\ \triangleright \ \ \mathcal{P}_2 \ \text{states} = \square \end{array} \end{array}$
- Plays have values
 - $\triangleright \ f: \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \operatorname{Prefs}_i(G) \to \mathcal{D}(S)$
 - ▷ Finite memory \Rightarrow stochastic output Moore machine $\mathcal{M}(\lambda_i) = (\text{Mem}, m_0, \alpha_u, \alpha_n)$

Synthesis	Games and MDPs	Contributions	Going Further
000	● OO OOOO	000000	00



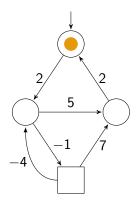
- Graph $\mathcal{G} = (S, E, w)$ with $w \colon E \to \mathbb{Z}$
- Deterministic transitions
- Two-player game $G = (\mathcal{G}, S_1, S_2)$
 - $\begin{array}{l} \triangleright \ \ \mathcal{P}_1 \ \, \text{states} = \bigcirc \\ \triangleright \ \ \mathcal{P}_2 \ \, \text{states} = \square \end{array}$
- Plays have values
 - $\triangleright \ f: \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \operatorname{Prefs}_i(G) \to \mathcal{D}(S)$
 - ▷ Finite memory \Rightarrow stochastic output Moore machine $\mathcal{M}(\lambda_i) = (\text{Mem}, m_0, \alpha_u, \alpha_n)$

Synthesis	Games and MDPs	Contributions	Going Further
000	● OO OOOO	000000	00



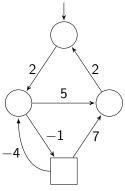
- Graph $\mathcal{G} = (S, E, w)$ with $w \colon E \to \mathbb{Z}$
- Deterministic transitions
- Two-player game $G = (\mathcal{G}, S_1, S_2)$
 - $\begin{array}{l} \triangleright \ \ \mathcal{P}_1 \ \text{states} = \bigcirc \\ \triangleright \ \ \mathcal{P}_2 \ \text{states} = \square \end{array}$
- Plays have values
 - $\triangleright f: \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \operatorname{Prefs}_i(G) \to \mathcal{D}(S)$
 - ▷ Finite memory \Rightarrow stochastic output Moore machine $\mathcal{M}(\lambda_i) = (\text{Mem}, m_0, \alpha_u, \alpha_n)$

Synthesis	Games and MDPs	Contributions	Going Further
000	● ○○ ○○○○	000000	00



- Graph $\mathcal{G} = (S, E, w)$ with $w \colon E \to \mathbb{Z}$
- Deterministic transitions
- Two-player game $G = (G, S_1, S_2)$
 - $\begin{array}{l} \triangleright \ \ \mathcal{P}_1 \ \text{states} = \bigcirc \\ \triangleright \ \ \mathcal{P}_2 \ \text{states} = \square \end{array} \end{array}$
- Plays have values
 - $\triangleright \ f: \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \operatorname{Prefs}_i(G) \to \mathcal{D}(S)$
 - ▷ Finite memory \Rightarrow stochastic output Moore machine $\mathcal{M}(\lambda_i) = (\text{Mem}, m_0, \alpha_u, \alpha_n)$

Synthesis	Games and MDPs	Contributions	Going Further
000	● OO OOOO	000000	00

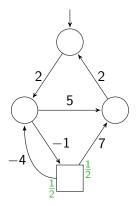


Then, $(2, 5, 2)^{\omega}$

- Graph $\mathcal{G} = (S, E, w)$ with $w \colon E \to \mathbb{Z}$
- Deterministic transitions
- Two-player game $G = (G, S_1, S_2)$
 - $\begin{array}{l} \triangleright \ \ \mathcal{P}_1 \ \text{states} = \bigcirc \\ \triangleright \ \ \mathcal{P}_2 \ \text{states} = \square \end{array} \end{array}$
- Plays have values
 - $\triangleright \ f: \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \operatorname{Prefs}_i(G) \to \mathcal{D}(S)$
 - ▷ Finite memory \Rightarrow stochastic output Moore machine $\mathcal{M}(\lambda_i) = (\text{Mem}, m_0, \alpha_u, \alpha_n)$

Synthesis 000	Games and MDPs	Contributions 0000000	Going Further
			(

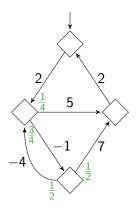
Markov decision processes



MDP P = (G, S₁, S_Δ, Δ) with Δ: S_Δ → D(S)
P₁ states = ○
stochastic states = □
MDP = game + strategy of P₂
P = G[λ₂]

Synthesis	Games and MDPs	Contributions	Going Further
000	0000000	0000000	00

Markov chains

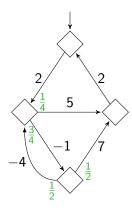


- MC $M = (\mathcal{G}, \delta)$ with $\delta \colon S \to \mathcal{D}(S)$
- $\blacksquare MC = MDP + strategy of \mathcal{P}_1$
 - = game + both strategies

$$\triangleright \ M = P[\lambda_1] = G[\lambda_1, \lambda_2]$$

Synthesis	Games and MDPs	Contributions	Going Further
000		0000000	00

Markov chains



- MC $M = (\mathcal{G}, \delta)$ with $\delta \colon S \to \mathcal{D}(S)$
- $MC = MDP + strategy of \mathcal{P}_1$
 - = game + both strategies

$$> M = P[\lambda_1] = G[\lambda_1, \lambda_2]$$

- Event $\mathcal{A} \subseteq \mathsf{Plays}(\mathcal{G})$ \triangleright probability $\mathbb{P}^M_{s_{\mathsf{init}}}(\mathcal{A})$
- Measurable f: Plays $(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$ \triangleright expected value $\mathbb{E}^{M}_{\text{Smit}}(f)$

Synthesis Ga	ames and MDPs (Contributions	Going Further
000 00	000000	0000000	00

Winning semantics and decision problems

- **Qualitative** objectives $\phi \subseteq Plays(G)$
 - $\triangleright \ \lambda_1 \text{ surely winning: } \forall \lambda_2 \in \Lambda_2, \ \mathsf{Outs}_G(s_{\mathsf{init}}, \lambda_1, \lambda_2) \subseteq \phi$
 - $\triangleright \ \lambda_1 \text{ almost-surely winning: } \forall \lambda_2 \in \Lambda_2, \mathbb{P}^{G[\lambda_1,\lambda_2]}_{s_{\text{init}}}(\phi) = 1$

Synthesis	Games and MDPs	Contributions	Going Further
000	000000	0000000	00

Winning semantics and decision problems

- Qualitative objectives $\phi \subseteq Plays(G)$
 - $\triangleright \ \lambda_1 \text{ surely winning: } \forall \lambda_2 \in \Lambda_2, \ \mathsf{Outs}_G(s_{\mathsf{init}}, \lambda_1, \lambda_2) \subseteq \phi$
 - $\triangleright \ \lambda_1 \text{ almost-surely winning: } \forall \lambda_2 \in \Lambda_2, \mathbb{P}^{G[\lambda_1, \lambda_2]}_{s_{\text{init}}}(\phi) = 1$
- **Quantitative** objectives f: Plays $(G) \rightarrow \mathbb{R} \cup \{-\infty, \infty\}$

 \triangleright worst-case threshold problem, $\mu \in \mathbb{Q}$:

 $\exists ? \lambda_1 \in \Lambda_1, \forall \lambda_2 \in \Lambda_2, \forall \pi \in \mathsf{Outs}_G(s_{\mathsf{init}}, \lambda_1, \lambda_2), f(\pi) \ge \mu$

 $\triangleright \text{ expected value threshold problem (MDP), } \nu \in \mathbb{Q}: \\ \exists ? \lambda_1 \in \Lambda_1, \mathbb{E}_{s_{\text{init}}}^{P[\lambda_1]}(f) \geq \nu$

Synthesis	Games and MDPs	Contributions	Going Further
000	000000	000000	00

Classical qualitative objectives

•
$$\operatorname{Reach}_{G}(T) = \{\pi = s_0 s_1 s_2 \ldots \in \operatorname{Plays}(G) \mid \exists i \in \mathbb{N}, s_i \in T\}$$

Buchi_G(T) = {
$$\pi = s_0 s_1 s_2 \dots \in \mathsf{Plays}(G) \mid \mathsf{Inf}(\pi) \cap T \neq \emptyset$$
}

Parity_G = {
$$\pi = s_0 s_1 s_2 \dots \in \mathsf{Plays}(G) \mid \mathsf{Par}(\pi) \mod 2 = 0$$
}

0000000 000000 000000 00000000000000000	Synthesis	Games and MDPs	Contributions	Going Further
	000	0000000	0000000	00

Classical quantitative objectives and value functions

• Total-payoff:
$$\underline{TP}(\pi) = \liminf_{n \to \infty} \sum_{i=0}^{i=n-1} w((s_i, s_{i+1}))$$

• Mean-payoff:
$$\underline{\mathsf{MP}}(\pi) = \liminf_{n \to \infty} \frac{1}{n} \sum_{i=0}^{i=n-1} w((s_i, s_{i+1}))$$

- Shortest path: truncated sum up to first visit of $T \subseteq S$
- Energy: keep the running sum positive at all times

Synthesis	Games and MDPs	Contributions	Going Further
000	000000	000000	00

Single-criterion models - known results

		reachability Büchi parity			
C A MES	complexity	P-c. UP∩coU			
GAMES	\mathcal{P}_1 mem.	pure memoryless			
sure sem.	\mathcal{P}_2 mem.	pure memoryless			
MDPS	complexity	P-c.			
almost-sure sem.	\mathcal{P}_1 mem.	pure memoryless			

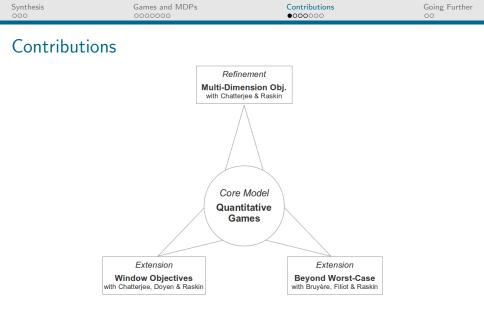
		TP MP SP EG			
CAMES	complexity	UP∩	coUP	P-c.	$UP\capcoUP$
GAMES worst-case	\mathcal{P}_1 mem.	pure memoryless			
worst-case	\mathcal{P}_2 mem.	pure memoryless			55
MDPS	complexity	P-c.		n/2	
expected value	\mathcal{P}_1 mem.	pure memoryless n/a		ii/a	

▷ Simple strategies suffice (no memory, no randomness).
 ▷ "Low" complexity but important open problem: UP ∩ coUP ~> P ?

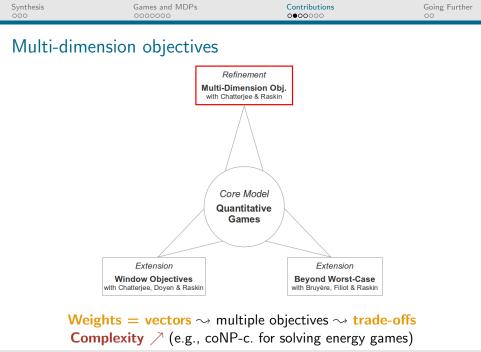
Synthesis in Multi-Criteria Quantitative Games

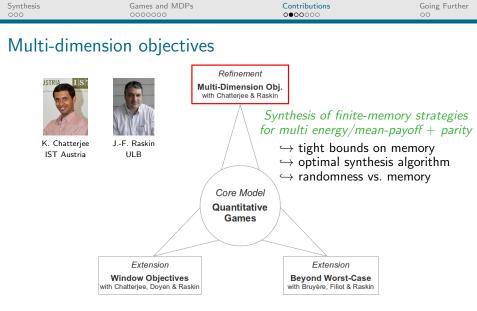
Synthesis	Games and MDPs	Contributions	Going Further
000	0000000	0000000	00

- **1** Synthesis in Quantitative Games
- 2 Quantitative Games and MDPs
- 3 Overview of the Contributions
- 4 Going Further



Shift from single-criterion models to multi-criteria ones.





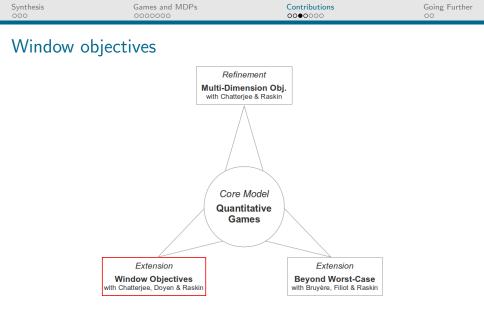
Weights = vectors \sim multiple objectives \sim trade-offs Complexity \nearrow (e.g., coNP-c. for solving energy games)

Synthesis in Multi-Criteria Quantitative Games

Synthesis 000	Games and MDPs 0000000		Contributions 000000	Going Further 00		
Multi-dimension objectives						
K. Chatterjee IST Austria JF. Raskin ULB		Refinement Multi-Dimension Obj. with Chatterjee & Raskin Synthesis of finite-memory strategies for multi energy/mean-payoff + parity ← tight bounds on memory ← optimal synthesis algorithm ← randomness vs. memory				
L. Doyen LSV, ENS Cachan		Core Model Quantitative Games	Undecida of multi tot			
	Extension Window Objectives with Chatterjee, Doyen & Rask	in	Extension Beyond Worst-Case with Bruyère, Filiot & Raskin			

Weights = vectors \sim multiple objectives \sim trade-offs Complexity \nearrow (e.g., coNP-c. for solving energy games)

Synthesis in Multi-Criteria Quantitative Games



Mean-payoff and total-payoff have: **limited tractability** ($\in P$?? + multi TP undec.) and **no timing guarantee** (limit behavior)

Synthesis in Multi-Criteria Quantitative Games

Synthesis	
000	

Games and MDPs 0000000 Contributions

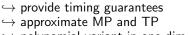
Window objectives

K. Chatterjee IST Austria

J.-F. Raskin ULB

L. Doyen LSV. ENS Cachan

Alternative objectives based on sliding windows



 \hookrightarrow polynomial variant in one-dim.

 \mapsto remains decidable in multi-dim.

Extension Beyond Worst-Case with Bruyère, Filiot & Raskin

Mean-payoff and total-payoff have: **limited tractability** (\in P ?? + multi TP undec.) and **no timing guarantee** (limit behavior)

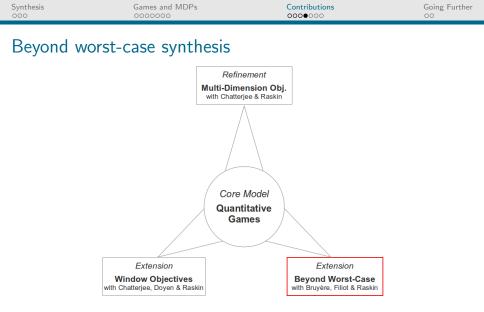
Refinement

Multi-Dimension Obj. with Chatteriee & Raskin

Core Model

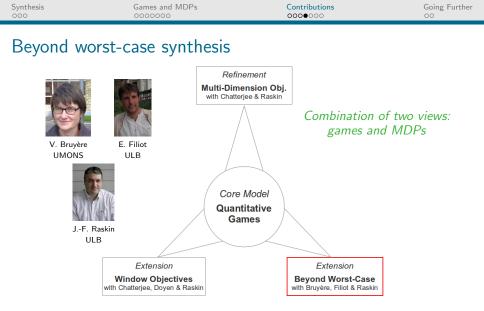
Quantitative Games

Synthesis in Multi-Criteria Quantitative Games



Framework for the analysis of performance trade-offs w.r.t. the **nature of the environment**.

Synthesis in Multi-Criteria Quantitative Games



Framework for the analysis of performance trade-offs w.r.t. the **nature of the environment**.

Synthesis in Multi-Criteria Quantitative Games

Synthesis	Games and MDPs	Contributions	Going Further
000	000000	000000	00

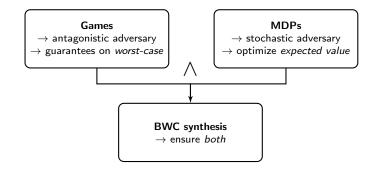
Beyond worst-case synthesis

Games

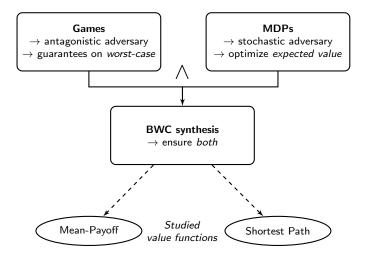
 \rightarrow antagonistic adversary \rightarrow guarantees on *worst-case*

MDPs

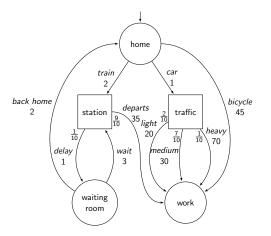
 \rightarrow stochastic adversary \rightarrow optimize *expected value*



Beyond worst-case synthesis



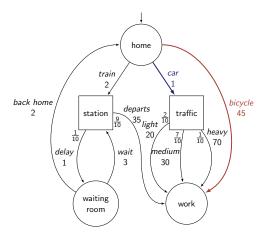
Example: going to work (shortest path)



- \triangleright Weights = minutes
- Goal: minimize our expected time to reach "work"
- But, important meeting in one hour! Requires strict guarantees on the worst-case reaching time.

Synthesis	Games and MDPs	Contributions	Going Further
000	0000000	0000000	00

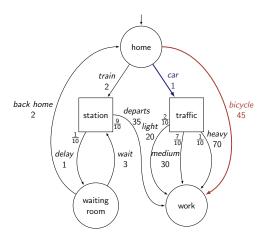
Example: going to work (shortest path)



- Optimal expectation strategy: take the car.
 - $\mathbb{E} = 33$, WC = 71 > 60.
- Optimal worst-case strategy: bicycle.

• $\mathbb{E} = WC = 45 < 60.$

Example: going to work (shortest path)



 Optimal expectation strategy: take the car.

• $\mathbb{E} = 33$, WC = 71 > 60.

 Optimal worst-case strategy: bicycle.

• $\mathbb{E} = WC = 45 < 60.$

- Sample BWC strategy: try train up to 3 delays then switch to bicycle.
 - $\mathbb{E} \approx 37.45$, WC = 58 < 60.
 - Optimal E under WC constraint
 - Uses finite memory

BWC synthesis: overview

Mean-payoff

	worst-case	expected value	BWC
complexity	$NP\capcoNP$	P-c.	$NP \cap coNP$
memory	pure memoryless		pure pseudo-poly.

- Additional modeling power for free!
- Constructing correct strategies require careful analysis and is technically involved.

BWC synthesis: overview

Mean-payoff

	worst-case	expected value	BWC
complexity	$NP\capcoNP$	P-c.	$NP \cap coNP$
memory	pure memoryless		pure pseudo-poly.

- Additional modeling power for free!
- Constructing correct strategies require careful analysis and is technically involved.

Shortest path

	worst-case	expected value	BWC
complexity	P-c.		pseudo-poly./NP-hard
memory	pure memoryless		pure pseudo-poly.

▷ Problem **inherently harder** than worst-case and expectation.

Synthesis	Games and MDPs	Contributions	Going Further
000	0000000	0000000	00

- **1** Synthesis in Quantitative Games
- 2 Quantitative Games and MDPs
- **3** Overview of the Contributions
- 4 Going Further

Synthesis 000	Games and MDPs 0000000	Contributions 0000000	Going Further ●0

Key idea

We need innovative models to encompass the complexity of practical applications: trade-offs, strategies with rich guarantees...

Synthesis	Games and MDPs	Contributions	Going Further
000	0000000	0000000	•0

Key idea

We need innovative models to encompass the complexity of practical applications: trade-offs, strategies with rich guarantees...

- > Further extend our frameworks.
 - \hookrightarrow Example: complex strategy profiling in multi-objective MDPs through percentile queries [RRS15a, RRS15b].

Synthesis	Games and MDPs	Contributions	Going Further
000	000000	000000	●O

Key idea

We need innovative models to encompass the complexity of practical applications: trade-offs, strategies with rich guarantees...

- > Further extend our frameworks.
 - $\hookrightarrow \mbox{ Example: complex strategy profiling in multi-objective MDPs through percentile queries [RRS15a, RRS15b].}$
- ▷ Full-fledged tool support.
 - $\hookrightarrow \mbox{ Some results led to integration in Acacia+ [BBFR13] and $$UPPAAL [DJL+14]$.}$

Synthesis	Games and MDPs	Contributions	Going Further
000	000000	000000	•0

Key idea

We need innovative models to encompass the complexity of practical applications: trade-offs, strategies with rich guarantees...

Some challenges:

- > Further extend our frameworks.
 - \hookrightarrow Example: complex strategy profiling in multi-objective MDPs through percentile queries [RRS15a, RRS15b].
- ▷ Full-fledged tool support.
 - $\hookrightarrow \text{ Some results led to integration in Acacia+ [BBFR13] and UPPAAL [DJL+14].}$

▷ Mixed objectives.

Key idea

We need innovative models to encompass the complexity of practical applications: trade-offs, strategies with rich guarantees...

- > Further extend our frameworks.
 - $\hookrightarrow \mbox{ Example: complex strategy profiling in multi-objective MDPs through percentile queries [RRS15a, RRS15b].}$
- ▷ Full-fledged tool support.
 - $\hookrightarrow \text{ Some results led to integration in Acacia+ [BBFR13] and UPPAAL [DJL+14].}$
- ▷ Mixed objectives.
- ▷ Work toward a unifying meta-framework.
 - $\hookrightarrow \mbox{ Seems difficult in full generality but still room to extract} \\ \mbox{ common underlying principles to instantiate in specific settings.}$

Synthesis	
000	

Thank you!

Any question?

References I

A. Bohy, V. Bruyère, E. Filiot, and J.-F. Raskin. Synthesis from LTL specifications with mean-payoff objectives. In <u>Proc. of TACAS</u>, LNCS 7795, pages 169–184. Springer, 2013.

L. Brim, J. Chaloupka, L. Doyen, R. Gentilini, and J.-F. Raskin. Faster algorithms for mean-payoff games. Formal Methods in System Design, 38(2):97–118, 2011.

R. Bloem, K. Chatterjee, T.A. Henzinger, and B. Jobstmann. Better quality in synthesis through quantitative objectives. In Proc. of CAV, LNCS 5643, pages 140–156. Springer, 2009.

V. Bruyère, E. Filiot, M. Randour, and J.-F. Raskin.

Expectations or guarantees? I want it all! A crossroad between games and MDPs. In Proc. of SR, EPTCS 146, pages 1–8, 2014.

V. Bruyère, E. Filiot, M. Randour, and J.-F. Raskin.

Meet Your Expectations With Guarantees: Beyond Worst-Case Synthesis in Quantitative Games. In Proc. of STACS, LIPIcs 25, pages 199–213. Sch. Dagstuhl–LZI, 2014.

V. Bruyère, E. Filiot, M. Randour, and J.-F. Raskin.

Meet your expectations with guarantees: Beyond worst-case synthesis in quantitative games. Information and Computation, pages 1–44, 2015. To appear.

References II

P. Bouyer, N. Markey, M. Randour, K.G. Larsen, and S. Laursen. Average-energy games. In Proc. of GandALF, EPTCS, 2015.

A. Chakrabarti, L. de Alfaro, T.A. Henzinger, and M. Stoelinga. Resource interfaces. In Proc. of EMSOFT, LNCS 2855, pages 117–133. Springer, 2003.

K. Chatterjee, L. Doyen, M. Randour, and J.-F. Raskin. Looking at mean-payoff and total-payoff through windows. In Proc. of ATVA, LNCS 8172, pages 118–132. Springer, 2013.

K. Chatterjee, L. Doyen, M. Randour, and J.-F. Raskin. Looking at mean-payoff and total-payoff through windows. Information and Computation, 242:25–52, 2015.

K. Chatterjee, M. Randour, and J.-F. Raskin. Strategy synthesis for multi-dimensional quantitative objectives. In <u>Proc. of CONCUR</u>, LNCS 7454, pages 115–131. Springer, 2012.

K. Chatterjee, M. Randour, and J.-F. Raskin.

Strategy synthesis for multi-dimensional quantitative objectives. Acta Informatica, 51(3-4):129–163, 2014.

A. David, P.G. Jensen, K.G. Larsen, A. Legay, D. Lime, M.G. Sørensen, and J.H. Taankvist. On time with minimal expected cost! In Proc. of ATVA, LNCS 8837, pages 129–145. Springer, 2014.

References III

E.A. Emerson, C.S. Jutla, and A.P. Sistla.

On model-checking for fragments of μ -calculus. In Proc. of CAV, LNCS 697, pages 385–396. Springer, 1993.

A. Ehrenfeucht and J. Mycielski.

Positional strategies for mean payoff games. Int. Journal of Game Theory, 8(2):109–113, 1979.

E. Grädel, W. Thomas, and T. Wilke, editors.

Automata, Logics, and Infinite Games: A Guide to Current Research, LNCS 2500. Springer, 2002.

M. Jurdziński.

Deciding the winner in parity games is in UP \cap co-UP. Inf. Process. Lett., 68(3):119–124, 1998.

M. Randour.

Automated synthesis of reliable and efficient systems through game theory: A case study. In Proc. of ECCS 2012, Springer Proceedings in Complexity XVII, pages 731–738. Springer, 2013.

M. Randour.

Synthesis in Multi-Criteria Quantitative Games. PhD thesis, University of Mons, Belgium, 2014.

M. Randour, J.-F. Raskin, and O. Sankur.

Percentile queries in multi-dimensional markov decision processes. In Proc. of CAV, LNCS 9206, pages 123–139. Springer, 2015.

References IV

M. Randour, J.-F. Raskin, and O. Sankur.

Variations on the stochastic shortest path problem. In Proc. of VMCAI, LNCS 8931, pages 1–18. Springer, 2015.

U. Zwick and M. Paterson.

The complexity of mean payoff games on graphs. Theor. Comput. Sci., 158(1&2):343–359, 1996.

Multi-dimension games

		EG	<u>MP</u>	MP	<u>TP</u>	TP	
	complexity	$NP \cap coNP$					
one-dim.	\mathcal{P}_1 mem.	pure memoryless					
	\mathcal{P}_2 mem.	pure memoryless					
<i>k</i> -dim.	complexity	coNP-	с.	$NP\capcoNP$	undec.		
	\mathcal{P}_1 mem.	pure finite	pu	pure infinite			
	\mathcal{P}_2 mem.	pur	-				

Randomness instead of memory?

	Multi EG and EG parity	Multi MP (parity)	MP parity	
one-player	×	\checkmark	\checkmark	
two-player	×	×	\checkmark	

000000

Window objectives

	one-dimension			k-dimension			
	complexity	P_1 mem. P_2 mem.		complexity	\mathcal{P}_1 mem.	P_2 mem.	
<u>MP</u> / MP	$NP \cap coNP$	memoryless		coNP-c. / NP ∩ coNP	infinite	memoryless	
<u>TP</u> / TP	$NP \cap coNP$	memoryless		undec.	-	-	
WMP: fixed	P-c.			PSPACE-h.			
polynomial window	г-с.	mem. req.		EXP-easy	exponential		
WMP: fixed	$P(S , V, I_{max})$	$\leq linear(S \cdot l_{max})$		EXP-c.	exponential		
arbitrary window	(J , V, /max)						
WMP: bounded	NP ∩ coNP	memoryless	infinite	NPR-h.			
window problem	ndow problem		innite	NEIX-II.	-	-	