Abstract

The eigensolutions of many-body quantum systems are always difficult to compute. The envelope theory (ET) is methol to easily obtain approximate, but reliable, hations it solution in mes omputarial cost is iffer here to treat systems with different particles (bosons or fermions). The accuracy is tested for several systems composed of identical particles plus a different one. With the ET, it is possible to treat the following Hamiltonians

$$
H=\sum_{i=1}^{N} T_{i}\left(p_{i}\right)+\sum_{i<j=2}^{N} V_{i j}\left(r_{i j}\right),
$$

with $p_{i}=\left|\boldsymbol{p}_{\mid}\right|$and $r_{i j}=\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|$ all computations are performed in the \boldsymbol{P} mass frame $\boldsymbol{P}=\sum_{i=1}^{N} \boldsymbol{p}_{i}=\mathbf{0}$. One-body potentials can also be considered.

Previous results for identical particles

Coulomb potential $V(r)=-g / r$ with a non-relativistic kinematics $T(p)=p^{2} / 2 m$ for $D=3$ for the bosonic ground state (BSG).
\Rightarrow approximate result [1]: $E_{\mathrm{ET}}=-\frac{N^{2}(N-1)}{4} \frac{m q^{2}}{(\phi+1)^{2}}$ with $\phi=\left\{\begin{array}{l}2 \text { for an upper bound } \\ 1 \text { for improved }\end{array}\right.$ $\{1$ for improved ET

Fig. 1: ET results for $\phi=2$ (diamond), improved ET results for $\phi=1$ (line) and exact results (dot) for the energy (left) and mean relative distance (right)

Harmonic oscillator

The key element of the ET is the fact that the complete solution of an N-body harmonic oscillator Hamiltonian

$$
\begin{equation*}
H_{\mathrm{ho}}=\sum_{i=1}^{N} \frac{p_{i}^{2}}{2 m_{i}}+\sum_{i<j=2}^{N} k_{i j} r_{i j}^{2} \tag{2}
\end{equation*}
$$

can be obtained by the diagonalization of a matrix of order $(N-1)$ [2]. It is useful to define

$$
\begin{equation*}
Q(N)=\sum_{i=1}^{N}\left(2 n_{i}+l_{i}+D / 2\right) . \tag{0}
\end{equation*}
$$

For a system composed of N_{a} identical particles a plus a different one b, we obtain

$$
\begin{equation*}
E_{\mathrm{ho}}=Q\left(N_{a}\right) \sqrt{\frac{2}{m_{a}}\left(N_{a} k_{a a}+k_{a b}\right)}+Q(2) \sqrt{\frac{2\left(N_{a} m_{a}+m_{b}\right)}{m_{a} m_{b}} k_{a b}} . \tag{4}
\end{equation*}
$$

The same solution can be found with a clever decomposition of H_{ho} yielding solution for a system with $N_{a}+N_{b}$ particles [3]

General properties of the method

Let's build the auxiliary Hamiltonian, with $\{\alpha\}=\left\{\left\{\mu_{i}\right\},\left\{\rho_{i j}\right\}\right\}$,

$$
\begin{aligned}
\tilde{H}(\{\alpha\}) & =\sum_{i=1}^{N}\left[\frac{p_{i}^{2}}{2 \mu_{i}}+T_{i}\left(G_{i}\left(\mu_{i}\right)\right)-\frac{G_{i}^{2}\left(\mu_{i}\right)}{2 \mu_{i}}\right] \\
& +\sum_{i<j=2}^{N}\left[\rho_{i j} r_{i j}^{2}+V_{i j}\left(J_{i j}\left(\rho_{i j}\right)\right)-\rho_{i j} J_{i j}^{2}\left(\rho_{i j}\right)\right]
\end{aligned}
$$

Another form is $\tilde{H}(\{\alpha\})=H_{\mathrm{ho}}(\{\alpha\})+B(\{\alpha\})$. An eigenvalue of (5) is thus

$$
\begin{equation*}
\tilde{E}=E_{\mathrm{ho}}(\{\alpha\})+B(\{\alpha\}) . \tag{6}
\end{equation*}
$$

The principle of the method is to search for the set of parameters $\left\{\alpha_{0}\right\}=\left\{\left\{\mu_{i 0}\right\},\left\{\rho_{i j 0}\right\}\right\}$ such that

$$
\begin{equation*}
\left.\frac{\partial \tilde{E}}{\partial \mu_{i}}\right|_{\left\{\alpha_{0}\right\}}=\left.\frac{\partial \tilde{E}}{\partial \rho_{i j}}\right|_{\left\{\alpha_{0}\right\}}=0 \quad \forall i, j . \tag{7}
\end{equation*}
$$

Let's define $\tilde{H}_{0}=\tilde{H}\left(\left\{\alpha_{0}\right\}\right)$ with an eigenstate $\left|\alpha_{0}\right\rangle$ and the eigenvalue $\tilde{E}_{0}=\left\langle\alpha_{0}\right| \tilde{H}_{0}\left|\alpha_{0}\right\rangle$. The latter is an approximate eigenvalue E_{ET} of H.
We can show that, when minimisation equations (7) are fulfilled, each respective parts of Hamiltonians H and \tilde{H}_{0} will be tangent at least at one point, thus forming an envelope. When some conditions are fulfilled, lower or upper bounds are possible.
(5)

Compact equations

 equations$$
\begin{gather*}
E_{0}=N_{a} T_{a}\left(p_{a}^{\prime}\right)+T_{b}\left(P_{0}\right)+C_{N_{a}}^{2} V_{a a}\left(r_{a a}\right)+N_{a} V_{a b}\left(r_{0}^{\prime}\right), \\
N_{a} T_{a}^{\prime}\left(p_{a}^{\prime}\right) \frac{p_{a}^{2}}{p_{a}^{\prime}}=C_{N_{a}}^{2} V_{a a}^{\prime}\left(r_{a a}\right) r_{a a}+\frac{N_{a}}{2} V_{a b}^{\prime}\left(r_{0}^{\prime}\right) \frac{r_{a a}^{2}}{r_{0}^{\prime}}, \\
\frac{1}{N_{a}} T_{a}^{\prime}\left(p_{a}^{\prime}\right) \frac{P_{0}^{2}}{p_{a}^{\prime}}+T_{b}^{\prime}\left(P_{0}\right) P_{0}=N_{a} V_{a b}^{\prime}\left(r_{0}^{\prime}\right) \frac{R_{0}^{2}}{r_{0}^{\prime}}, \\
Q\left(N_{a}\right)=\sqrt{C_{N_{a}}^{2}} p_{a} r_{a a}, \tag{8d}\\
Q(2)=P_{0} R_{0},
\end{gather*}
$$

with $p_{a}^{\prime 2}=p_{a}^{2}+\frac{P_{0}^{2}}{N_{a}^{2}}$ and $r_{0}^{\prime 2}=\frac{N_{a}-1}{2 N_{a}} r_{a a}^{2}+R_{0}^{2}$. The resolution of (8) is as follow: first we compute the variables $p_{a}, P_{0}, r_{a a}$ and R_{0} by solving (8 b)-(8e). Then we substitute their values in (8a) to compute the energy \tilde{E}_{0}.
Equations (8) are more interesting than (7) because the variables give direct access to more interesting expectation values than $\left\{\alpha_{0}\right\}$. They have a nice semiclassical interpretation and it is possible to improve the ET starting from these equations.

Results for different particles

1. $D=3$ Hamiltonian for a three-body system of ultra-relativistic harmonic oscillators (arbitrary units)

$$
H=\sum_{i=1}^{3}\left|p_{i}\right|+r_{12}^{2}+\lambda \sum_{i=1}^{2} r_{i 3}^{2} .
$$

(9)
2. Hamiltonian of atoms (a.u.)

$$
H=\frac{1}{2} \sum_{i=1}^{N_{e}} p_{i}^{2}+\frac{1}{2 m} p_{N}^{2}-Z \sum_{i=1}^{N_{e}} \frac{1}{r_{i N}}+\sum_{i<j=2}^{N_{e}} \frac{1}{r_{i j}} .
$$

ET [3] and IET [5] results for the two Hamiltonians (9) and (10)

1. The ET $(\phi=2)$ predicts an upper bound Exact ET IET
$\begin{array}{llll}\lambda=0.1 & 5.288 & 5.597[5.8] & 5.307[0.4]\end{array}$ $\lambda=10 \quad 14.50615 .353\left[\begin{array}{llll}{[5.8]} & 14.699 & {[1.3]}\end{array}\right.$ Tab. 1: BGS eigenvalues of Hamiltonian (9) for two values of λ The relative errors in $\%$ are indicated between square brackets.
2. Due to the mixing of attractive and repulsive potentials, the ET has no variational character.

$$
\text { ET IET Exp. } \quad \text { ET IET Exp }
$$

ET ${ }^{4} \mathrm{He} \quad 33 \quad 47 \quad 79$
 ${ }^{12} \mathrm{C} \begin{array}{lllllll}321 & 496 & 1030 & { }^{12} \mathrm{C}^{4+} & 386 & 568 & 882\end{array}$ ${ }^{16} \mathrm{O} \quad 6721062 \quad 2044{ }^{16} \mathrm{O}^{6+} 7071047 \quad 1611$ Tab. 2: Ground state binding energies (in eV) of Hamiltonian (10) for some atoms with two or more electrons.

Improved envelope theory (IET)

For systems with all identical particles, it has been shown that the modification of $Q(N)$ in the following way

$$
\begin{equation*}
Q_{\phi}(N)=\sum_{i=1}^{N}\left(\phi n_{i}+l_{i}+\frac{D+\phi-2}{2}\right) \tag{11}
\end{equation*}
$$

can allow a noticeable improvement of the ET results. The value of ϕ can be determined by using the ET in combination with a generalisation of the Dominantly Orbital State (DOS) method. We retrieve the original ET when $\phi=2$ This in provement procedure has been recently generalised for systems with $N_{a}+1$ particles [5] where we need to introduce two parameters ϕ_{a} and ϕ_{b}.

Conclusion

In this work, it is shown that the envelope theory can be extended to treat systems with different particles. The approximate energies can be computed with a set 5 equations. The accuracy is tested with two different systems: relativistic oscillators and atoms. As in the case of identical particles, fairly good results can be obtained with the original envelope theory for some kinds of potentials, and an improvement with the original envelope theory for some kinds of poten
of thays be obtained thanks to the IET

References

[1] C. Semay, Few-body Syst. 56, 149 (2015)
[2] B. Silvestre-Brac, C. Semay, F. Buisseret, F. Brau, J. Math. Phys. 51, 032104 (2010)
[3] C. Semay, L. Cimino, C. Willemyns, Few-body Syst. 61, 19 (2020) [4] L. Cimino, C. Semay, arXiv:2108.05719
[5] C. Chevalier, C.T. Willemyns, L. Cimino, C. Semay, arXiv:2111.14744

