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Abstract

The eigensolutions of many-body quantum systems are always difficult to compute.
The envelope theory (ET) is a method to easily obtain approximate, but reliable,
solutions in the case of identical particles. The big advantage of the method is that its
computational cost is independent of the number of particles N . It is extended here
to treat systems with different particles (bosons or fermions). The accuracy is tested
for several systems composed of identical particles plus a different one.
With the ET, it is possible to treat the following Hamiltonians

H =
N∑
i=1

Ti(pi) +
N∑

i<j=2

Vij(rij), (1)

with pi = |pi| and rij = |ri − rj|. All computations are performed in the centre of
mass frame P =

∑N
i=1 pi = 0. One-body potentials can also be considered.

Previous results for identical particles

Coulomb potential V (r) = −g/r with a non-relativistic kinematics T (p) = p2/2m
for D = 3 for the bosonic ground state (BSG).

⇒ approximate result [1]: EET = −N 2(N−1)
4

mg2

(φ+1)2 with φ =

{
2 for an upper bound
1 for improved ET

Fig. 1: ET results for φ = 2 (diamond), improved ET results for φ = 1 (line) and exact results (dot) for the energy (left)

and mean relative distance (right).

Harmonic oscillator

The key element of the ET is the fact that the complete solution of an N -body
harmonic oscillator Hamiltonian

Hho =
N∑
i=1

p2
i

2mi
+

N∑
i<j=2

kijr
2
ij (2)

can be obtained by the diagonalization of a matrix of order (N − 1) [2]. It is useful
to define

Q(N) =
N∑
i=1

(2ni + li + D/2) . (3)

For a system composed of Na identical particles a plus a different one b, we obtain

Eho = Q(Na)

√
2

ma
(Nakaa + kab) + Q(2)

√
2(Nama + mb)

mamb
kab. (4)

The same solution can be found with a clever decomposition of Hho yielding solution
for a system with Na + Nb particles [3]

General properties of the method

Let’s build the auxiliary Hamiltonian, with {α} = {{µi}, {ρij}},

H̃({α}) =
N∑
i=1

[
p2
i

2µi
+ Ti(Gi(µi))−

G2
i(µi)

2µi

]

+
N∑

i<j=2

[
ρijr

2
ij + Vij(Jij(ρij))− ρijJ2

ij(ρij)
]
,

(5)

Another form is H̃({α}) = Hho({α}) + B({α}). An eigenvalue of (5) is thus

Ẽ = Eho({α}) + B({α}). (6)

The principle of the method is to search for the set of parameters {α0} = {{µi0}, {ρij0}}
such that

∂Ẽ

∂µi

∣∣∣∣
{α0}

=
∂Ẽ

∂ρij

∣∣∣∣
{α0}

= 0 ∀ i, j. (7)

Let’s define H̃0 = H̃({α0}) with an eigenstate |α0〉 and the eigenvalue Ẽ0 = 〈α0|H̃0|α0〉.
The latter is an approximate eigenvalue EET of H .
We can show that, when minimisation equations (7) are fulfilled, each respective parts of
Hamiltonians H and H̃0 will be tangent at least at one point, thus forming an envelope.
When some conditions are fulfilled, lower or upper bounds are possible.

Compact equations

It has been shown [4] that solving (7) is equivalent to solve the following set of 5
equations

Ẽ0 = NaTa (p′a) + Tb (P0) + C2
Na
Vaa (raa) + NaVab (r′0) , (8a)

NaT
′
a(p
′
a)
p2
a

p′a
= C2

Na
V ′aa(raa)raa +

Na − 1

2
V ′ab(r

′
0)
r2
aa

r′0
, (8b)

1

Na
T ′a(p

′
a)
P 2

0

p′a
+ T ′b(P0)P0 = NaV

′
ab(r

′
0)
R2

0

r′0
, (8c)

Q(Na) =
√
C2
Na
paraa, (8d)

Q(2) = P0R0, (8e)

with p′a
2 = p2

a + P 2
0

N 2
a

and r′0
2 = Na−1

2Na
r2
aa + R2

0. The resolution of (8) is as follow: first

we compute the variables pa, P0, raa and R0 by solving (8b)-(8e). Then we substitute
their values in (8a) to compute the energy Ẽ0.
Equations (8) are more interesting than (7) because the variables give direct access
to more interesting expectation values than {α0}. They have a nice semiclassical
interpretation and it is possible to improve the ET starting from these equations.

Results for different particles

1.D = 3 Hamiltonian for a three-body system of ultra-relativistic
harmonic oscillators (arbitrary units)

H =
3∑
i=1

|pi| + r2
12 + λ

2∑
i=1

r2
i3. (9)

2. Hamiltonian of atoms (a.u.)

H =
1

2

Ne∑
i=1

p2
i +

1

2m
p2
N − Z

Ne∑
i=1

1

riN
+

Ne∑
i<j=2

1

rij
. (10)

ET [3] and IET [5] results for the two Hamiltonians (9) and (10):

1. The ET (φ = 2) predicts an upper bound.

Exact ET IET

λ = 0.1 5.288 5.597 [5.8] 5.307 [0.4]
λ = 10 14.506 15.353 [5.8] 14.699 [1.3]

Tab. 1: BGS eigenvalues of Hamiltonian (9) for two values of λ.

The relative errors in % are indicated between square brackets.

2. Due to the mixing of attractive and repulsive po-
tentials, the ET has no variational character.

ET IET Exp. ET IET Exp.
4He 33 47 79
6Li 66 95 203 6Li+ 85 123 198
12C 321 496 1030 12C4+ 386 568 882
16O 672 1062 2044 16O6+ 707 1047 1611

Tab. 2: Ground state binding energies (in eV) of Hamiltonian (10) for

some atoms with two or more electrons.

Improved envelope theory (IET)

For systems with all identical particles, it has been shown that the modification of
Q(N) in the following way

Qφ(N) =
N∑
i=1

(
φni + li +

D + φ− 2

2

)
(11)

can allow a noticeable improvement of the ET results. The value of φ can be de-
termined by using the ET in combination with a generalisation of the Dominantly
Orbital State (DOS) method. We retrieve the original ET when φ = 2. This im-
provement procedure has been recently generalised for systems with Na + 1 particles
[5] where we need to introduce two parameters φa and φb.

Conclusion

In this work, it is shown that the envelope theory can be extended to treat systems
with different particles. The approximate energies can be computed with a set 5
equations. The accuracy is tested with two different systems: relativistic oscillators
and atoms. As in the case of identical particles, fairly good results can be obtained
with the original envelope theory for some kinds of potentials, and an improvement
of the accuracy can always be obtained thanks to the IET.
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