

nanoGe Fall Meeting Torremolinos-Spain October 22-26, 2018

« Effect of electronically inert organic spacers on the optoelectronic properties of 2D hybrid perovskites » Nadège Marchal

University of Mons Laboratory for Chemistry of Novel Materials

<u>Supervisor:</u> Prof. David Beljonne, <u>Co-supervisor:</u> Dr. Claudio Quarti

Table of contents

Results

Methodology: (TD-)DFT

Introduction

Table of contents

Methodology: (TD-)DFT

Introduction

Results

Hybrid perovskites ?

- Methylammonium Lead iodide (MAPbl₃)
 - Perovskite structure $\rightarrow ABX_3$

Hybrid perovskites ?

Methylammonium Lead iodide (MAPbl₃)

Perovskite structure $\rightarrow ABX_3$

Applications : **Photovoltaics**

3

Dimensionality

3D Perovskite

- Low temperature solution synthesis
- PV quantum efficiency (23,3%)
- Instability due to ionic diffusion in the inorganic network

Dimensionality

3D Perovskite

- Low temperature solution synthesis
- PV quantum efficiency (23,3%)
- Instability due to ionic diffusion in the inorganic network

2D Perovskite

- Low temperature solution synthesis
- PV quantum efficiency (12% 2D Mixed 3D/2D)
- Higher stability

M. Yuan, L. N. Quan et al., Nat. Nanotechnol. 2016

Dimensionality

3D Perovskite

- Low temperature solution synthesis
- PV quantum efficiency (23,3%)
- Instability due to ionic diffusion in the inorganic network
- Goldsmicht tolerance factor

$$t = \frac{r_A + r_X}{\sqrt{2(r_B + r_X)}} \qquad 0.7 > t > 1$$

2D Perovskite

- Low temperature solution synthesis
- PV quantum efficiency (12% 2D Mixed 3D/2D)
- Higher stability
- Chemical flexibility

G. Grancini, et al., Nat. Comm. 8 2017

M. Yuan, L. N. Quan et al., Nat. Nanotechnol. 2016

Dimensionality : $3D \rightarrow 2D$

1. Anisotropy

> Limited ionic diffusion, but also limited electron transport

- 2. Chemical flexibility

Reduced chemical space for 3D components (some cations, Pb, halide)

Larger number of possibilities for 2D, including the use of functional organic cations

Dimensionality : $3D \rightarrow 2D$

1. Anisotropy

> Limited ionic diffusion, but also limited electron transport

- 2. Chemical flexibility
 - Reduced chemical space for 3D components (some cations, Pb, halide)

Larger number of possibilities for 2D, including the use of functional organic cations

- **3. Electronic/dielectric confinement**
 - > Stronger excitonic effect
 - > Larger bandgap (BG)

Dimensionality : $3D \rightarrow 2D$

1. Anisotropy

- > Limited ionic diffusion, but also limited electron transport
- 2. Chemical flexibility
 - Reduced chemical space for 3D components (some cations, Pb, halide)

Larger number of possibilities for 2D, including the use of functional organic cations

3. Electronic/dielectric confinement

> Stronger excitonic effect

> Larger bandgap (BG)

Distance between inorganic layers = length of the organic cation

Is it the only effect of the nature (length) of the organic cation?

Studied systems : $(C_nH_{2n+1}NH_3)_2PbI_4$

D. G. Billing, A. Lemmerer, *Acta Crystallogr. Sect. B: Struct. Sci.* **2007** D. G. Billing, A. Lemmerer, *New J. Chem.* **2008**

Studied systems : $(C_nH_{2n+1}NH_3)_2PbI_4$

D. G. Billing, A. Lemmerer, *Acta Crystallogr. Sect. B: Struct. Sci.* 2007 D. G. Billing, A. Lemmerer, *New J. Chem.* 2008 6

→ Materials modeling & electronic properties

- → Density Functional Theory (DFT) : Plane Wave basis set (PW)
- \rightarrow PBE (GGA functional)

DFT (static, ground state)

→ Materials modeling & electronic properties

- → Density Functional Theory (DFT) : Plane Wave basis set (PW)
- \rightarrow PBE (GGA functional)

DFT (static, ground state)

• Grimme correction:
$$E_{DFT-D} = E[\rho] + E_{disp} \ et \ E_{disp} = -s_6 \sum_{i=j}^{N_{at}-1} \sum_{j=i+1}^{N_{at}} \frac{C_6^{ij}}{R_{ij}^6} \frac{1}{1 + e^{-d(\frac{Rij}{R_r} - 1)}}$$

7

→ Materials modeling & electronic properties

- → Density Functional Theory (DFT) : Plane Wave basis set (PW)
- \rightarrow PBE (GGA functional)

DFT (static, ground state)

• Grimme correction:
$$E_{DFT-D} = E[\rho] + E_{disp} \ et \ E_{disp} = -s_6 \sum_{i=j}^{N_{at}-1} \sum_{j=i+1}^{N_{at}} \frac{C_6^{ij}}{R_{ij}^6} \frac{1}{1+e^{-d\left(\frac{Rij}{R_r}-1\right)}}$$

- <u>Spin-orbit coupling (SOC)</u>
- <u>Hybrid functional (PBE0)</u>

A N T U M E S P R E S S O

→ Materials modeling & electronic properties

- → Density Functional Theory (DFT) : Plane Wave basis set (PW)
- \rightarrow PBE (GGA functional)

• Grimme correction:
$$E_{DFT-D} = E[\rho] + E_{disp} \ et \ E_{disp} = -s_6 \sum_{i=j}^{N_{at}-1} \sum_{j=i+1}^{N_{at}} \frac{C_6^{ij}}{R_{ij}^6} \frac{1}{1 + e^{-d\left(\frac{Rij}{R_r} - 1\right)}}$$

- <u>Spin-orbit coupling (SOC)</u>
- <u>Hybrid functional (PBE0)</u>

(P. Umari et al., Sci. Rep. 4, 4467, 2014)

MAPbl₃

- PBE (GGA) agrees with experimental BG
- GW approximation → BG opening of 1 eV

(P. Umari et al., Sci. Rep. 4, 4467, 2014)

MAPbl₃

- PBE (GGA) agrees with experimental BG
- GW approximation → BG opening of 1 eV
- SOC → BG closing of 1.1eV

(P. Umari et al., Sci. Rep. 4, 4467, 2014)

MAPbl₃

- PBE (GGA) agrees with experimental BG
- GW approximation → BG opening of 1 eV
- SOC → BG closing of 1.1eV

Compensation of errors

(P. Umari et al., Sci. Rep. 4, 4467, 2014)

→ PBE agrees with SOC-GW and is in good agreement with experimental data

• PBE (GGA) BG does not agree with experimental data (2.7 eV)

 $(C_6H_{13}NH_3)_2PbI_4$

- PBE (GGA) BG does not agree with experimental data (2.7 eV)
- SOC → BG closing of 0.66 eV

9

- PBE (GGA) BG does not agree with experimental data (2.7 eV)
- SOC → BG closing of 0.66 eV
- PBE0 → BG opening of 1.47 eV

No compensation of errors Better Exchange interaction description

overcomes SOC correction

9

- PBE (GGA) BG does not agree with experimental data (2.7 eV)
- SOC → BG closing of 0.66 eV
- PBE0 → BG opening of 1.47 eV

No compensation of errors

Better Exchange interaction description overcomes SOC correction

• Calculation with both corrections lead to BG close to the average of the contributions from the separated calculations

9

- PBE (GGA) BG does not agree with experimental data (2.7 eV)
- SOC → BG closing of 0.66 eV
- PBE0 → BG opening of 1.47 eV

No compensation of errors

Better Exchange interaction description overcomes SOC correction

• Calculation with both corrections lead to BG close to the average of the contributions from the separated calculations

Effect of SOC mostly on CBE (splitting of j=1/2 and 3/2 on Pb)

2D CASE

9

- PBE (GGA) BG does not agree with experimental data (2.7 eV)
- SOC → BG closing of 0.66 eV
- PBE0 → BG opening of 1.47 eV

No compensation of errors

Better Exchange interaction description overcomes SOC correction

• Calculation with both corrections lead to BG close to the average of the contributions from the separated calculations

Effect of SOC mostly on CBE (splitting of j=1/2 and 3/2 on Pb)

2D CASE

- Effect on PBEO on both bands, but more on VBE
 - PBE (GGA) BG does not agree with experimental data (2.7 eV)
 - SOC → BG closing of 0.66 eV
 - PBE0 → BG opening of 1.47 eV

No compensation of errors

Better Exchange interaction description overcomes SOC correction

• Calculation with both corrections lead to BG close to the average of the contributions from the separated calculations

10

PBEO calculation

➔ The best agreement with the experimental BG (2.7 eV) is at 30% of Hartree-Fock exchange

Electronic properties

		In (100) direction					
PBE	E _g (eV)	m* _h	m* _e				
C6 (monoclinic)	2.06	0.24	0.17				
C6 (orthorhombic)	2.04	0.24	0.17				
C12 (monoclinic)	2.05	0.22	0.17				
C12 (orthorhombic)	2.38	0.40	0.24				
MAPI	1.6	0.15	0.13				

11

Electronic properties

	In (100) direction				
PBE	E _g (eV)	m* _h	m* _e		
C6 (monoclinic)	2.06	0.24	0.17		
C6 (orthorhombic)	2.04	0.24	0.17		
C12 (monoclinic)	2.05	0.22	0.17		
C12 (orthorhombic)	2.38	0.40	0.24		
MAPI	1.6	0.15	0.13		

E_g *** ?** Distance between inorganic layers = length of the organic cation

→ Different behaviour of C12 (orthorhombic) → WHY ?

→ Same observations at other levels of theory (SOC – PBEO)

Structural effect

out-of-plane

		BG	b_1	b ₂	b ₃	θ	β_1	β_2
C6	mono	2.06	3.19	3.18	3.26	152	92	88
	ortho	2.04	3.20	3.20	3.25	154	89	91
C12	mono	2.05	3.22	3.21	3.22	153	88	92
	ortho	2.38	3.23	3.24	3.24	143	94	86

polyethylene

polyethylene

→ Alkyl chains stacked like PE in C12 orthorhombic → tilt of PbI octohedras and increase the BG!

→ Alkyl chains stacked like PE in C12 orthorhombic → tilt of PbI octohedras and increase the BG!

Top view

Structural effect

- → Influence of organic component
 → Alkyl chains stacked like PE
 → Tilt of Pb-I octahedra: BG↗
 - → Consistant with the literature Amat, Nano Lett., 14,p. 3608–3616 (2014)

out-of-plane

		BG	b_1	b ₂	b ₃	θ	β_1	β_2
C6	mono	2.06	3.19	3.18	3.26	152	92	88
	ortho	2.04	3.20	3.20	3.25	154	89	91
C12	mono	2.05	3.22	3.21	3.22	153	88	92
	ortho	2.38	3.23	3.24	3.24	143	94	86

Structural effect

out-of-plane

		BG	b_1	b ₂	b ₃	θ	β_1	β_2
C6	mono	2.06	3.19	3.18	3.26	152	92	88
	ortho	2.04	3.20	3.20	3.25	154	89	91
C12	mono	2.05	3.22	3.21	3.22	153	88	92
	ortho	2.38	3.23	3.24	3.24	143	94	86

15

Optical properties

Energy of the excited states

BG of the 2 systems at different level of theory

Optical properties

Energy of the excited states

BG of the 2 systems at different level of theory

	Experim	ental data	Calculations (HF 15%)		
	Excitonic transition (eV)	Excitonic Exciton binding nsition (eV) energy (eV)		Exciton binding energy (eV)	
C6	2.37	0.36	2.14-2.22	0.6	
C12	2.57	/	2.18-2.31	/	

→ Consistant with experimental data

E. P. Booker, et al., J. Am. Chem. Soc. 2017

K. Tanaka, et al., Phys. Rev. B 2005

Optical properties

16

- Methodology → PBE0 30% of HF exchange + SOC lead to a good description of the electronic properties
 → PBE0 15% HF seems to be better for optical properties (without SOC)
- Even if the organic part is not directly involved in the description of the frontier crystaline orbitals, it has an indirect effect on the electronic structure, namely the value of the bandgap! Same effect on the optical gap, no significant change on the exciton binding energy

Acknowledgement

 Laboratory for Chemistry of Novel Materials

 UMONS Research Institute for Materials Science and Engineering

materials UMONS RESEARCH INSTITUTE

MONS RESEARCH INSTITUTE For materials science And engineering

• nanoGe Fall Meeting

THANK YOU FOR YOUR KIND ATTENTION

Phase transition

Orthorhombic \rightarrow Monoclinic

In C12PbI perovskites with should be accompanied by a sudden change in the band gap!!!

THIS IS ACTUALLY THE CASE FOR C10PbI

FIG. 7. Energies of absorption (Δ) and luminescence peaks (\odot) in a single crystal of ($C_{10}H_{21}NH_3$)₂PbI₄ as a function of temperature.

Phys. Rev. B, 42, 11099 (1990)

Electronic properties

Energy of the valence and conduction band edge for the C6 and C12 polymorphs

Table S1. Energy of the valence band edge (VBE) and conduction band edge (CBE) and band gap (Eg), computed for the monoclinic and orthorhombic polymorphs of C6 and C12, using the various computational approaches. All energies are referred to the averaged electrostatic potential of the crystal cell, computed using the various methods. Data in eV.

method	VBE	CBE	Eg	VBE	CBE	Eg	
	C6-monoclinic			C6-orthorhomib			
PBE	-0.34	1.70	2.04	-0.47	1.55	2.02	
PBE+SOC	-0.39	0.99	1.38	-0.55	0.80	1.35	
PBEO	-1.23	2.28	3.51	-1.60	1.82	3.42	
PBE CORRECT	-1.28	1.57	2.85	-1.68	1.07	2.75	
PBE0+SOC	-1.41	1.32	2.73	-1.41	1.32	2.73	
	C12-monoclinic			C12-orthorhombic			
PBE	-0.45	1.72	2.17	-0.23	2.12	2.44	
PBE+SOC	-0.50	1.00	1.50	-0.37	1.34	1.71	
PBEO	-1.57	2.03	3.60	-1.46	2.43	3.89	
PBE CORRECT	-1.68	1.07	2.93	-1.46	1.65	3.11	
PBE0+SOC	-1.45	1.42	2.87				

Electronic properties

Density of States (DOS) of the C6 and C12 polymorphs

Figure S2. Atomic Density of State of the C6PbI and C12PbI polymorphs. The contribution from the different chemical elements is listed. Electronic structure obtained with the PBE functional for the description of the exchange-correlation interaction, including spin-orbit coupling.

Variable cell

Comparison of the results for fixed cell and variable cell calculation

Table S3. Comparison of the band gap a (E_g , PBE), and structural parameters (bond lengths , b_1 , b_2 , b_3 , and Pb-I-PB angle θ) for fixed cell and variable cell relaxations.

system		Eg	b1	b ₂	b₃	θ
		(eV)	(Å)	(Å)	(Å)	(°)
			fixed cell			
C6	mono	2.04	3.18	3.19	3.26	152.3
	ortho	2.02	3.20	3.19	3.25	153.8
C12	mono	2.17	3.22	3.21	3.23	153.4
	ortho	2.44	3.24	3.23	3.23	143.4
			variable cell			
C 6	mono	1.98	3.09	3.09	3.23	148.8
	ortho	2.04	3.10	3.10	3.23	146.5
C12	mono	2.00	3.07	3.08	3.23	146.3
	ortho	2.33	3.07	3.09	3.22	138.9

Letter

Tuning the Optoelectronic Properties of Two-Dimensional Hybrid Perovskite Semiconductors with Alkyl Chain Spacers

Claudio Quarti,*[®] Nadège Marchal, and David Beljonne

Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc, 20, B-7000 Mons, Belgium

S Supporting Information

ABSTRACT: Layered two-dimensional organo-metal halide perovskites are currently in the limelight, largely because their versatile chemical composition offers the promise of tunable photophysical properties. We report here on (time-dependent) density functional theory [(TD)DFT] calculations of alkyl-ammonium lead iodide perovskites, where significant changes in the electronic structure and optical properties are predicted when using long versus short alkyl chain spacers. The mismatch between the structural organization in the inorganic and organic layers is epitomized for dodecyl chains that adopt a supramolecular packing similar to that of polyethylene, at the cost of distorting the inorganic frame and, in turn, opening the electronic band gap. These results rationalize recent experimental data and demonstrate that the optoelectronic properties of layered halide perovskite semiconductors can be modified through the use of electronically inert organic saturated chains.

