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This study focuses on epoxy fiberglass (E-glass) laminates used as printed circuit boards, more particularly as
flexible substrates in fracture assemblies for the test of attachments of electronic components such as solder and
adhesive joints. Breaking these joints often requires large bending of E-glass substrates. Such circumstances
have not been investigated before. In fact, most research focused on the linear elastic behaviour of E-glass.
Therefore, static large bending tests were conducted on instrumented cantilever and square plates. Test data

consisting of pull force and strain versus deflection curves revealed that the behaviour of E-glass laminates
is overall non-linear-elastic. Next, the correlation between simulated and measured structural responses of test
prototypes led to determining E-glass lamina properties applicable upon large bending.

1. Introduction

Epoxy fibreglass (E-glass) laminates are widely used as flexible sup-
ports in test vehicles to emulate actual Printed Circuit Boards (PCBs).
In connection with space applications, E-glass laminates offer benefits
of lower cost and high resilience compared to PCBs usually made of
polymide and copper materials. Test vehicles are involved in the
mechanical qualification of solder and adhesive attachments of elec-
tronic components. In fact, the harsh vibratory environment of the
space launch causes PCB bending, which highly loads such joints.
The qualification phase entails fracture tests where E-glass supports
are prone to exhibit large deflections to possibly break the attachment
under test. The present study aims at exploring the mechanical beha-
viour of E-glass laminates under large bending and, after that, identi-
fying their mechanical properties.

From an experimental point of view, static and modal testing meth-
ods are mostly reported in the literature for the characterization of
laminated composites. Static testing is supplied with standards such
as ASTM-D882 and ISO-527 standard or IPC-TM-650, which has
numerous downsides. Firstly, Ullah et al. [1] emitted that the mechan-
ical properties of carbon fabric-reinforced polymer composites
obtained by tensile tests are lower than ones derived from bending
tests. Behind, there is a difference in stress distributions: while glass
fibres stretch uniformly under tension causing the weakest fibre to fail
first, it is the top/bottom fibres that are utmost stressed under con-
vex/concave bending. Secondly, tensile tests suffer from a matter of
generality referred to as mesh-size effect. According to Ref. [2], the
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strength and elastic moduli decrease with increasing thickness/vol-
ume due to the presence of larger defects. As regards bending tests,
a matter of completeness concerns 3-point and 4-point bend fixtures
disclosed in [3,4] standards which unable to emulate the biaxial
bending of real electronic boards. Together, tension and bending
tests suffer from a difficult characterization of out-of-plane proper-
ties of laminated composites. Fuchs et al. [5] handled this challenge
through micro-mechanics using a combination of experiments and
mean-field homogenization computation. The modal analysis hinges
on identifying the mechanical properties of tested components
through the update of an equivalent mathematical model. Paepegem
and Degrieck [6] applied the modal approach to determine the
mechanical properties of E-glass using vibrating cantilever beams.
Their updating method was adopted by Sol et al. [7], who updated
the anisotropic rigidity terms of fibre-reinforced composites through
the resonant frequencies of freely suspended rectangular plates. This
procedure provides better accuracy in yielding diagonal rigidity
terms of the material. Conversely, off-diagonal terms suffer from a
weak dependency on the resonance frequencies due to the Poisson’s
ratio. As a result, the updated mechanical properties can be incon-
sistent. This is obvious from the Poisson’s ratio estimated at 0.49
and 0.51 in Ref. [8] with isotropic and orthotropic behaviours
assigned to polyimide PCB, against 0.12 recommended for this
material in Ref. [9]. To cite one, the merit of the modal approach
lies to its rapid assessment of the mechanical properties of
complex-geometry structures such as ones including stiffening ribs
[10]. In addition, it is worth mentioning that the modal analysis
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operates on the linear response of the material invoking small
deformations.

On the one hand, it appears that the aforementioned research
investigated the linear elastic response of laminated composites. This
is attributed to the design under the requirement of elasticity, which
facilitates the numerical and analytical structural calculations, and to
the fact that vibrations are unlikely to induce large PCB deflections
in real applications. On the other hand, Dahale et al. [11] provided evi-
dence for the nonlinear elastic behaviour of E-glass laminates under
excessive tension loading. Similar findings were obtained in Ref.
[12] under off-axis tension. The authors scrutinized existing macro-
scopic and microscopic approaches used to predict the nonlinear beha-
viour of laminated composites. A three-parameter orthotropic
plasticity model was demonstrated suitable for E-glass laminates, fol-
lowing a macroscopic approach. So far, no study was found to put evi-
dence in the nonlinear behaviour of E-glass under large bending,
which corroborates the need to explore the behaviour of E-glass under
such conditions, and confirm the essence (elastic, plastic) of any non-
linearity. The present work proposes novel test prototypes for this pur-
pose. Unlike standard test arrangements, which dispose of established
analytical forms for the identification of the mechanical properties of
laminates directly from test data, here, the use of novel test prototypes
obliges to rely on the correlation between simulated and measured
structural responses of tested specimens. Accordingly, this suggests
developing accurate numerical models for test prototypes.

From a numerical point of view, a substantial task consists in mod-
elling the E-glass laminate either as a stack of individual laminae or as
a single-layer. Know that the single-layer approach comes with
reduced number of governing equations and involves fewer parame-
ters compared to the layered approach [13]. The relationship between
(strains, curvatures) and (tractions, bending moments) of laminates
can rely either on the classical laminate plate theory (CLPT) or on
the first-order shear deformation theory (FSDT). Abrate and Di Sciuva
[14] stated CLPT pitfalls such as (1) the inextensibility in the trans-
verse direction with a transverse normal strain, ¢,, equal to 0, (2) line
segments that are perpendicular to the reference surface remain
straight, and (3) line segments normal to the reference surface that
remain perpendicular meaning that transverse shear strains, ¢, and
£, equal to zero. More readings on CLPT drawbacks could be found
in [15,16]. The FSDT permits to address pitfalls (2) and (3) and
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accounts for the transverse shear deformations as outlined in
[13,17]. Besides, the FSDT requires less computational effort relative
to the CLPT as the shape function of FSDT-based elements should only
satisfy C° continuity [17]. The background of FSDT relative to lami-
nates is fully detailed in Appendix A. This manuscript is organized
as follows: the second section reports static uniaxial and biaxial bend-
ing tests using cantilever and square E-glass specimens, respectively.
The third section deals with the finite element (FE) modelling of both
test prototypes and the behaviour of E-glass material. The fourth sec-
tion includes sensitivity analyses delineating the dependency of mod-
els’ output data on the mechanical properties of E-glass. Outcomes of
sensitivity studies helped devise a numerical/experimental procedure
for the identification of E-glass mechanical properties outlined in the
last section of this work.

2. Experimental procedure
2.1. Uniaxial bending test

2.1.1. Specimen preparation and test procedure

The uniaxial bending arrangement consists of a 120 mm long,
20 mm wide, and 2 mm thick E-glass specimen fastened against a rigid
mounting support made of aluminium. The specimen free end is con-
nected to a force cell attached to a universal Instron 4505 machine
(Fig. 1a) using a hinge joint, adaptation parts, and a universal joint.
An exploded view of the whole test prototype is depicted in Fig. 1b.
The center distance between the rotation axes of the hinge and univer-
sal joints should fit the workspace and minimize as much as possible
the longitudinal in-plane tension to preclude specimen slippage. A cen-
ter distance of 130 mm guarantees the slightest angular deviation
worth +6° for a maximum specimen deflection Z of 45 mm. The E-
glass fabric is composed of fibreglass warp and weft yarns aligned at
lengthwise and crosswise directions, respectively. The fact that warps
are finer than wefts permitted to distinguish them visually, thus, pre-
pared the measurement of E-glass crosswise strain, ¢. In practice,
Kyowa brand KFRP-2-120-C1-9 strain gage placed at 17 mm from
the clamped specimen edge (Fig. 2) provided ¢ at the mid-
longitudinal axis of the specimen. Other measurements consist of the
cross-head displacement, Z, and the pull-up force, F, measured by a
5kN load cell. A voltage input module NI-9202 recorded Z and F,

universal joint

adaptation parts —

mounting support

Fig. 1. Uniaxial bending prototype: (a) Real view, (b) Exploded view.
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strain gage

. =
-
30 (clamped
47

150

Fig. 2. Instrumented cantilever E-glass specimen.

while a NI-9237 strain bridge module recorded ¢.. The E-glass speci-
men was pulled up along its out-of-plane direction, as illustrated in
Fig. 1. ISO-95 25217:2009 [18] recommends using a cross-head speed
in 1-5 mm/min range when testing fibre-reinforced composites. Pre-
sently, tested specimens were subjected to a 1 mm/min cross-head
speed up to Z = 45 mm at room temperature.

2.1.2. Uniaxial bending test data

The notation SPX-u refers to an E-glass specimen tested in uniaxial
bending with “X” place holder indicating specimen number. Static
bending tests were conducted on specimens SP1-u and SP2-u. SP1-u
incurred a hysteresis loop: it was loaded for Z ranging between 0

and 25 mm, unloaded from 25 mm to —25 mm, and finally reloaded
from —25mm to 25 mm. This test attempted to verify the plastic
deformation of the E-glass laminate through hysteresis loss. As a result,
the evolution of F versus Z, or Z — F curve, exhibited no significant
hysteresis loss, as appears in Fig. 3a. SP2-u was bent up from 0 to
45 mm. Its corresponding Z — F curve is illustrated in Fig. 3b. It repro-
duces a perfect agreement with the SP1-u Z — F curve, which asserts
the reproducibility of the test procedure. Besides, SP2-u testing pro-
vided the evolution of ¢ versus Z, as illustrated in Fig. 3c. Both
Z — F and Z — ¢, curves permit to delimit the interval of linear elastic-
ity of SP2-u by the detection of a 1% relative error between fit lines
and experimental curves. In this way, the elastic limit of the E-glass

20| | —=Hysteresis ] 30(—SP2w
— SPl-u o linear elastic limit
251 - linear fit N
101 | - |
z _
A O 1
-10+ |
20 100 10 20 0 10 20 30 40
Z [mm] Z [mm]
(a) (b)
10000 . : ‘ .
—SP2-u
8000 || © linear elastic limit ]
----- linear fit '//’
= 6000
S
S 4000 f
2000 (14, 2654)
0 1 1 ! 1
0 10 20 30 40
Z [mm]
(c)

Fig. 3. Structural responses of E-glass specimens under uniaxial bending: (a) Z — F curve of SP1-u, (b) Z — F curve of SP2-u, and (c) Z — ¢ curve of SP2-u.



L. Ben Fekih et al.

specimen was established at Z = 13.85 mm on average from Z — F and
Z — g, and ¢, at 2645 ue based on Z — ¢.. Such a finding could be of
great interest to the design with a constraint on the elasticity.

2.2. Biaxial bending test

2.2.1. Specimen preparation and test procedure

The  biaxial bending  arrangement consists of a
150 x 150 x 1.85 mm?® E-glass specimen secured to fixed aluminium
support by a set of fasteners from holes drilled at its corners. The fas-
teners consist of M3 bolts and nuts, 6.95 mm diameter washers and
spacers of 10 mm diameter and height. Two steel blocks grip the
two sides of the test specimen using an M3 tightening bolt through a
hole drilled in. A ball joint put between the upper steel block and
the testing frame ensures the compensation of any vertical misalign-
ment. When subjected to cross-head displacement, the specimen
exhibited a biaxial bending (Fig. 4). Measurements include Z and F
as well as the lengthwise, crosswise, and diagonal strain components,
denoted by ¢, &, and ¢4, respectively. Strain measurements emanate
from Kyowa KFRP-2-120-D22-9 rosette placed at the backplane of
the E-glass specimen outside the clamped region, as shown in Fig. 5.
The biaxial bending test onsets with a manual pre-positioning of the
upper grip of the testing frame to counteract the weight of the test pro-
totype then to assign all measurements to zero. A number of three
specimens were tested at a cross-head speed of 1 mm/min. All tested
specimens sustained a deflection ramping up to 13 mm.

2.2.2. Biaxial bending test data

The structural responses of E-glass specimens under biaxial bending
are illustrated in Fig. 6. Looking at Z — ¢ and Z — ¢, lays out the aniso-
tropic behaviour of the E-glass material. The degree of anisotropy,
obtained from the ratio of ¢, per ¢, ranges between 1.1 and 1.4, which
is deemed slight to moderate. Importantly, the specimen response splits

Composite Structures 255 (2021) 112892

Fig. 5. Instrumented square E-glass specimen.

into three regions. A first linear elastic region ranges from the origin to
(Z=279+£078mm — F= 176N — & = 652 ue — e, = 787 pe —
e. = 478 pe), worth 760 pe of maximum principal in-plane specimen
strain. A second region starts from the end of the first region and extends
to (Z=10.03+0.70 mm — F = 544 N - =1361 pe — e,=1779 pe —
&. = 1329 pe). This behaviour can arise from a geometric nonlinearity

M3 nut,
flat washer
M3 threaded rod

spacer

aluminium suppor

specimen

upper clamp

lower clamp

M3 screw

(b)

Fig. 4. Biaxial bending prototype: (a) Real view, (b) Exploded view.
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Fig. 6. Structural responses of E-glass specimens under biaxial bending: (a) Applied load, (b) E-glass backplane lengthwise strain, (c) E-glass backplane diagonal

strain, and (d) E-glass backplane crosswise strain.

due to large bending or/and from material hardening. When releasing
the specimen, all strain components return to zero. Thus, the assumption
of geometric non-linearity is retained over material hardening. A third
region exhibited an accentuated E-glass laminate stiffening apparent
from the increasing pulling force and decreasing strains. This third zone
is delimited, with caution at this stage, by slope deviation points indi-
catedonZ — F and Z — ¢4 curves. The rapid change of the specimen stiff-
ness in region 3 will be investigated next.

3. Finite element modelling of test prototypes

The FE modelling of test prototypes is needed for the generation
of simulated counterparts of experimental data following the
approach indicated in Fig. 7. This section sketches out the prepara-
tion and validation of these models. The next section includes sensi-
tivity studies invoked to figure out the dependency between models’
outputs on the mechanical properties of the E-glass laminate, which

F— — = = - e e e — — - = = | r—— - - - - r-—-—-=-
| Building FE models | — Output data! 1E-glass |
I | uniaxial I o ) |
| | | 7 _F I 1lamina |
i geometry > bending 37 Lo |
| . . ! | | |properties |
| - material propertles test of a plexiglass : model | Z — €c B |
(e c
Il - mesh characteristics plate for the I : | 8: :
: H o . . ! | Z — F I §| El |
(type, size of elements) validation of the || biaxial | | B |
| _) ) | 7 — e | E | Vic |
: - connectors modelling of H— bending _:) 2 G |
| le
. 7 — |
: - load (imposed Z) specimens’ [ model : “ |—:) G :
| _ lz
I|- boundary conditions bolted fixture I ! Z — € : : I
| | | |

Fig. 7. Flowchart outlining the rationale of the FE modelling of test prototypes.
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guides to establish a relevant experimental-numerical updating
strategy.

3.1. Laminates modelling

The E-glass plate was modelled under Abaqus FE commercial Soft-
ware using a single layer of shell elements, which are preferred over
solid elements since they permit to avoid membrane and shear locking
[19]. Abaqus supports conventional and continuum shell elements
relying on FSDT and CLPT, respectively [20]. Conventional S4 four-
node shell elements were chosen, similarly to many studies [21]. It
is worth noting that S4 elements incorporate full integration, which,
compared to reduced integration, circumvents spurious zero strain
energy modes, so gains accuracy. Besides, Simpson integration was
preferred to Gauss integration since it considers integration points at
the top and bottom surfaces of the E-glass laminate, which avoids aver-
aging results at such output locations. The authors realized that the
convergence of the results requires at least five integration points with
Simpson integration. Furthermore, the need for simulating large bend-
ing of the test specimen dictated the activation of the non-linear geom-
etry option under Abaqus.

3.2. Uniaxial bending model

The degrees of freedom of the cantilever specimen were locked
over 30 mm in length, as shown in Fig. 8a. Discrete rigid wires mod-

10

5y Clampedﬁ
5%
A2 -
Cylindrical
7z LY
K
‘RP
€
AN, S
. —
g K

(a) (b)

Fig. 8. Uniaxial bending model: (a) Loads and BCs (b) Geometry and mesh
details (e refers to the element where the E-glass strain is retrieved).
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elled the intermediate bar and the arm link between the universal joint
and the force cell. In Fig. 8a, the reference point labelled “RP” defines
the position of each wire. Abaqus built-in connectors modelled the
kinematic joints: a hinge connector was interposed between the free
end of the specimen along 12 mm (zone in grey in Fig. 8b) and the bot-
tom of the intermediate bar, while a universal connector linked the top
of the intermediate bar to the force cell. Lastly, a prismatic joint was
connected to the force cell to ensure vertical displacement up to
45 mm. An element size of 1 mm was overall adopted, for which force
and strain results begin to stabilize.

3.3. Biaxial bending model

Contrary to the uniaxial bending model, the E-glass unknown
mechanical properties complicates the validation of boundary condi-
tions (BC)s of the biaxial arrangement. The major difficulty lies in
modelling contact properties between joined parts with an unquanti-
fied (slight) tightening torque applied on fixture bolts. Such a torque
produces an axial force in bolts, referring to as preload force. It seems
important to evaluate the effect of such a preload force on outputs of
the biaxial prototype. As a solution, it is proposed to validate the BCs
of this model on plexiglass XT material. Contrary to the E-glass mate-
rial, the mechanical properties of the plexiglass are known (Table 1).
Said validation relies on matching between measured and simulated
Z — F curves of a 150 x 150 x 3 mm?® plexiglass plate. A full biaxial
model is developed as depicted in Fig. 9a, where the sets of fasteners
(nut + washer + threaded rod + spacer) are physically represented
and all contacts modelled using a finite surface-to-surface sliding with
normal and tangential behaviours based on “hard contact” and ”pen-
alty” formulations, respectively. From now onwards, the square
plexiglass/E-glass plate is meshed using structured quad-dominated
elements of 1 mm edge size over the clamped region and the area sur-
rounding the strain gage (highlighted in grey in Fig. 9b). Elsewhere,
free quad shape elements of approximate 2 mm size apply. This mesh
is the coarsest, yielding mesh-independent force and strain results. A
vertical displacement, Z, is applied to a master reference point
attached to a slave surface corresponding to the area of steel clamps.

Abaqus can account for the preload force in bolts through “bolt
load” or “initial stress” approaches [23]. According to [23], the “bolt
load” procures a better agreement between the simulated and test
results in comparison with the “initiation stress” approach. This led
to apply the “bolt load” approach following these steps:

- Step 0: application of BCs.

- Step 1: bolt preload applied on the two sides of the bolt middle
surface + activation of contacts between interfaces.

- Step 2: fixing the bolt length [23] + application of a vertical dis-
placement deemed as an external load.

Used as received (without lubricant), M3 bolts made of 8.8 stainless
steel can sustain a preload force of 1866 N [24]. This maximum pre-
load force is applied during the simulation of the plexiglass biaxial
model with preload. As a result, Fig. 10a reveals an obvious discrep-
ancy starting at Z = 2mm between the measured and simulated
Z — F curves. Therefore, considering the preload should be disre-
garded. Without preload, the foregoing Z — F curves agree perfectly
until Z = 7 mm, as depicted in Fig. 10a. Fig. 10b shows that the plex-
iglass plate slips along x- and y-axes. The deviation point occurs when

Table 1

Mechanical properties of plexiglas XT [22].
Property Young’s modulus Poisson’s ratio Flexural strength Density
Unit MPa MPa kg/m®
Value 3300 0.37 105 1190
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Fig. 9. Full biaxial bending model: (a) Loads and BCs, (b) Mesh and geometry details of quarter of the square E-glass plate.
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Fig. 10. Simulation of the biaxial bending model using plexiglass under different modelling assumptions: (a) Z — F structural responses, (b) In-plane slippage of

the plexiglass plate.

the latter comes against bolts. Accordingly, the clearance between the
threaded rod and the plate plays an important role in defining the limit
of usage of the biaxial model. Here, results were derived for 0.275 mm
clearance. In these conditions, a maximum von Mises stress of
560 MPa corresponding to the yield limit of grade 8.8 steel, the consti-
tutive material of fasteners, is reached at Z = 9.52mm (Fig. 11).

6.
5.
4.
3
3.
2.
1.
0

-0

[ X YE NS, B N A

3
5
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.9
1
3
5
7

=}
=

(a)

Therefore, the requirement of elasticity restrains the usage of the biax-
ial model to Z = 9.52 mm regardless of the matching between the sim-
ulated and experimental curves. Given the above, it seems appropriate
to substitute the full biaxial model with a reduced model of similar
specimen mesh, but where BCs would replace the set of fasteners.
The two in-plane degrees of freedom of displacement and rotation

S, Mises
fraction = =0.949108
(Avg: 75%)

(b)

Fig. 11. Simulation of full biaxial bending model without preload force: (a) Vertical displacement response, (b) Von Mises stress state in an 8.8 grade steel bolt at

Z = 9.52 mm.
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Fig. 12. Reduced biaxial model.

about z- axis of nodes of the outline of holes were freed, while the
remaining degrees of freedom hold locked, which ensures specimen
slippage. Fig. 10a shows that the Z — F curve obtained from the
reduced model agrees with its experimental and full model (without
preload) counterparts until Z = 7 mm. The CPU-times for simulating
one increment using the reduced and the full models are worth 41
and 1054 s, respectively. This led to continuing with the reduced
model depicted in Fig. 12.

4. Sensitivity analyses

The forthcoming sensitivity analyses attempt to figure out the influ-
ence of the mechanical properties of E-glass material on the simulated

Table 2
Full factorial design: range of factors for the E-glass material.

Factors Unit Minimum value Maximum value

Composite Structures 255 (2021) 112892

results of the uniaxial and biaxial models. A full factorial design
reported in Table 2 is considered. With minimum and maximum levels
assigned to each factor, each FE model will be simulated over 32 cases.
The uniaxial model was computed from O to 45 mm, while the biaxial
model was simulated from O to 7 mm, its upper limit (subSection 3.3).
A first sensitivity analysis considered Y = (F,e¢.), the vector of
responses of the wuniaxial model with respect to X =
(E, E., v, Gy, Gi,), vector of E-glass unknown mechanical properties.
The average of response i, denoted by Y, is sketched out for the min-
imum and maximum levels relative to each parameter Xj. It comes out
that F is exclusively dependent on E, (Fig. 13a). Fig. 13b shows the
interaction between ¢, and the subset of X composed of (E;, E., and
vi). Hence, the latter subset is potentially identifiable from &.. Never-
theless, Fig. 13b depicts that ¢, is most sensitive to v;.. A major asset of
this work consists in the determination of the Poisson’s ratio, difficult
to obtain by standard experiments [25]. Besides, the slight difference
between experimental ¢. and ¢ is in support of the material low degree
of anisotropy. This permits to assert the equivalence between E; and
E.. Thus, it could be inferred that uniaxial responses Y would identify
a unique subset X = (E., vi.). A second sensitivity study interests to the
effect of E-glass mechanical properties on outputs of the biaxial model
designated by Y = (F, &, €, €4). Its outcomes are illustrated graphically
in Fig. 14. Including additional outputs led to choose an automated
sensitivity analysis through an SVD-QR method [26]. The SVD-QR
operates on S sensitivity matrix defined by

aY;

Sj = (1)

X and Y have different units. Therefore, it becomes more advanta-
geous to consider the relative sensitivity matrix writing

< XY, 2
Ey GPa 10 30 Y Y0X;
E, GPa 10 30
Ve 0.1 0.45 Following the SVD, S can be written as S = UZV*, with U and V left
Gie GPa 1 10 and right singular vectors and X a matrix of singular values. The rank
Gis GPa 1 10 of 3, denoted by r, corresponds to the number of identifiable parame-
60 60 60 60 60
2 40— 40 40— 4B @ 408 =
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Fig. 13. Sensitivity of outputs of the uniaxial bending model to E-glass mechanical properties: (a) Main effects on the pull-up load, (b) Main effects on E-glass

crosswise strain.
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Fig. 14. Sensitivity of outputs of the biaxial bending model to E-glass mechanical properties: (a) Main effects on pull-up load, (b) Main effects on lengthwise strain,
and (c) Main effects on crosswise strain, and (d) Main effects on diagonal strain.

ters from n being the size of X. This logic led to partition V in the form
V = [V;, V,._;]. The QR decomposition is used to compute the matrix, P,
according to VP = QR. The definitions of Q and R could be found in
[26]. The matrix P permits to reorder the X vector into X such that
X = P'X. X vector includes r and n — r, namely the E-glass mechanical
properties that are sensitive or not to outputs of the model, respec-
tively. The vector of sensitive properties includes components sorted
from the most to the least sensitive. The application of the SVD-QR
technique to X = (E., E;, v, Gi, Giz) gives r=4 and
X, = (E1,Ec,Gie,vic) sorted in order of best identification and
X, = Gy, unidentifiable. It can be inferred, thus, that the biaxial
bending test does not permit to determine all E-glass mechanical prop-
erties. This drives the need to invoke uniaxial test data, capable of
determining E, and v,. So, when focusing on X = (E;, G, Gi;), the re-
application of SDV-QR technique yields r = 3 and X, = (Gie, E¢, Giz ).
The property identification procedure will be outlined in next section.

5. Updating lamina mechanical properties of the E-glass material

The updating procedure relies on an iterative change of lamina
mechanical properties into uniaxial or biaxial FE models until finding
the minimum mismatch, according to a cost function. The iterative
updating strategy was developed in Matlab using the derivative-free
method fminsearch. Outcomes of the sensitivity studies were
conjugated to the following three-step sequential identification
process:

- Step 1: identification of E. from the minimization of |F* — F¢| fed
from the uniaxial bending response data. |.| stands for Euclidean
norm while s and e designate the simulated and experimental
responses, respectively. The updating process is tracked through
the variation of E. with respect to the number of iterations, as dis-
played in Fig. 15a. Simulated responses are, initially, generated
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Fig. 15. The stabilization of E-glass mechanical properties upon their updating: (a) Step 1: updating of E,, (b) Step 2: updating of v, and (c) Step 3: updating of
Ei, G, G-

Table 3

Comparison of manufacturer and updated lamina mechanical properties of E-glass material.
Lamina properties E; E. G Giz = Gy Vie V4
Units MPa MPa MPa MPa kg/m*
Updated 20722 18750 6260 5343 0.158 -
NEMA brand FR4 [28] 20000 18000 - - 0.15 1900

from an arbitrary value of Poisson’s ratio and under the supposition
of isotropic lamina behaviour. The convergence toward the effec-
tive E, value was reached with less than 20 iterations for an initial

value arbitrary set to 15 GPa in [10-30] GPa search interval.

- Step 2: identification of v based on |& — £¢| provided by uniaxial
bending response data within the E. value already determined in
Step 1 and the assumption of E, = E;. Fig. 15b exhibits a conver-
gence performance similar to E.. The standard identification

10000 3
30 i i ' ' exp
exp .
| p— best fit
251 |- num (best fit) 8000 num (best fit)
20 ~ 6000t
Z. =
o B & 4000
10
2000f
s p
O L L L L
0 1‘0 2'0 3‘0 4‘0 0 10 20 30 40
Z [mm)] Z [m]
(a) (b)

Fig. 16. Correlation between measured and simulated E-glass laminate structural responses in uniaxial bending: (a) Applied load, (b) Crosswise strain.

10
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Fig. 17. Correlation between measured and simulated structural responses of E-glass laminate in biaxial bending: (a) Applied load, (b) E-glass Backplane
lengthwise strain, (c) E-glass backplane crosswise strain, and (d) E-glass backplane shear strain.

method of Poisson’s ratio consists of the negative ratio of the trans-
verse strain per the axial strain along the direction of uniaxial ten-
sion [27].

- Step 3: identification in one pass of E;, G, and G;, through biaxial
bending response data and setting of orthotropic behaviour for
lamina. The cost function consists in the sum error
[F* — Fé|+ el — €8]+ |e] — €§| + e — €5|. The convergence stabilizes
after roughly 80 iterations as obvious from Fig. 15c.

As shown in Table 3, the identified parameters greatly agree with
manufacturer data. Additionally, obtaining E; greater than E. makes
sense, knowing that warps are stiffer than wefts.

The result of identification achieved outstanding agreement
between measured and simulated response data. This is apparent from
Fig. 16 as concerns F and ¢, over [0-45] mm deflection in uniaxial
bending. The same agreement is confirmed in [0 6.5] mm deflection
range under biaxial bending as illustrated in Fig. 17 regarding
F, e, & and slightly less ¢,.

6. Conclusions

Original test models are designed in support of uniaxial and biaxial
static bending tests of composite laminates, in occurrence, of E-glass
material. These models ensure low cost, engineering applicability,
and scalability. Beyond experiments, corresponding FE models are
readily developed once boundary conditions correctly represented.
This work settled the suitability of FSDT in conjunction with shell ele-
ments regarding thin laminates modelling, which can be deemed as a

11

guideline applicable to any other arrangement. The correlation
between measured and simulated structural data of test specimens sub-
jected to bending led to the identification of the lamina mechanical
properties of E-glass material. It comes out that a complete determina-
tion of these properties shall be provided imperatively by a combina-
tion of uniaxial and biaxial bending tests. The proposed updating
scheme is validated through the good agreement between some
updated and known manufacturer properties. Testing more specimens
is, however, required to ensure the statistical consistency of the deter-
mined E-glass mechanical properties.
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Appendix A. Application of the FSDT to laminated composites

According to the FSDT, the kinematics of laminates are described by:

u u by
vi=1V|+z|9 (A1)
w wP 0

u,v,w, ¢, ¢. are two dimensional functions. u,v represent the in-
plane displacements along x- and y-axes, respectively. w is the out-
of-plane displacement which is independent of z the coordinate across
thickness by supposing the inextensibility in the transverse direction
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(ez = 0). ¢, and ¢, describe the rotations about x- and y-axes. Note
that x- and y-axes are confounded with [- and c-axes, respectively.
The prime (.)° refers to the laminate mid-plane. There, strains
(€%, x,y) are expressed as follows:

0 ou

o ov oudby Oby Dby | O
o +¢ +

[8 V4 7]: dy ox ay ox ay  ox ay (/)x+3_‘;/(/)y+()@w:|

(A2)

e,y and y designate the in-plane strain, curvature change, and
transverse shear strain vectors, respectively. That said, the constitutive
equations of laminates write:

N A Ba 0 0
M|=|Ba B 0]y (A3)
Q 0 0 Asf|7

N, M and Q represent the force, moment and transverse shear force
resultants. A,Ba and B designate the axial, bending-axial coupling,
and bending stiffness matrices of the laminate, respectively. For an
n-layer laminate, the former matrices become expressed in terms of
in-plane laminae stiffness matrices, Df.; (k=1,2,...,n), by
Zk+1

[A Ba B]:}n] Di[1 z 22)dz

k=1 Jz

(A4)

where z; = —h/2, 2 is the z-coordinate of lower surface of the kth lam-
ina, 2,,1 = h/2 with h is the laminate thickness. In this study, the E-
glass laminate is symmetric about its mid-plane as made of a stack of
identical laminae. Accordingly, Ba takes 0 [14]. Furthermore, a unique
stiffness matrix D could fairly replace D* [13]. This is referred to as
“single-layer” concept. From their manufacture process, laminae are
quasi-homogeneous in the plane (plain weave fabric). Thus, xz and yz
are planes of symmetry of the E-glass laminate. From this finding, the
material behaviour can be considered orthotropic with D expressed by

D11 D12 0 0 0

D Dyy 0O 0 O
D= (;2 ;2 D 0 o |=|P (A.5)
B o0 “ 1o D, '

0 0 0 Dsu O
0 0 0 0 Dss

Eq. (A.5) can be subdivided into an in-plane stiffness matrix, Dy,
defined by

E viEe
1*bllcvc1 1*1%%1 0
Dy, = | b Ec 0 (A.6)
T-veva  1-veva
0 0 G
and a transverse stiffness matrix, Dy, given by
G 0
D, = { g } (A7)
0 G,

E E., Gy, Ge, Gy v,y are namely the lengthwise and crosswise
moduli, axial and transverse shear moduli, and the in-plane major
and minor Poisson’s ratios. The homogeneity of the E-glass laminate
lets assume Gj, equivalent to G,. Furthermore, the requirement of
symmetric stiffness matrix gives rise to the following restriction:

E
Vie = Vel 7~

E, (A.8)

Summarizing, D could be completely defined by five (5) mechani-
cal properties (E;, E., Gy, Gi,, v). The latter will make the object of FE
experimental updating. Call of the single-layer concept permits to inte-
grate Eq. (A.4) between —h/2 and h/2 which results in the following
expressions of A and B:

[A B]=Dyu[h h*/12] (A9)
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The sequel of this section will be devoted to define the explicit form
of A,. Call of Hooke’s law and recall of 6, = O lead to the following
relation between stress and strain components:

Oy £y
oy &y
D, 0
= A.10
Txy [ 0 D, } Ezy ( )
T}'Z yyz
TXZ J/XZ

Apart from the mid-plane, ¢ can be expressed in any reference
plane z = 2, as follows:

e=e"+(2— 20l (A.11)

The combination of Egs. (A.3) and (A.10) yields the stress state of
the laminate from through-thickness integration of (N,M and Q).
According to [29], the determination of A arises from the equivalence
between the laminate shear strain energy and the result of integration
of shear strain energy density of laminae. This writes

1 1= 21
-QA'Q=2Y / D'z (A.12)
2 2k:l 2

Retrieving A, under pure bending assumed in [29] fits to the pre-
sent study. Under such conditions, N is set to 0. In-plane strain compo-
nents initially brought by Eq. (A.3) become expressed by

x=BM
e — A 'N=0 (A.13)
€= (2 — 2o
Thus, in-plane stress components can be rewritten as
6 = Dje = Dyy(2 — 240)B'M (A.14)

Eq. (A.9) has brought B = %Din. Taking Eq. (A.14) into account, oy
writes

ox = MMX (A.15)
Besides it is known that
OM,
Q=" (A.16)

According to [29], the equilibrium in bending about x-axis is gov-
erned by the following relation:

Joy Oty
ox "oz 0

Incorporating Egs. (A.16) and (A.15) in Eq. (A.17) yields the

following

12(2 — 2,0)Qx
= (h—30> (A.18)
The following boundary conditions apply in the top and bottom
surfaces of the laminate

1}220 at 2=2 = —
7, =0 at

(A.17)

Oty

0z

(A.19)

NS Pl

2 =2Znp1 =

Taking into account Egs. (A.19) in the integration of Eq. (A.18) and
duplicating the same for y-axis yield the following:

= —% (2> —1*/4)Q (A.20)

The through-thickness integration of the right side of Eq. (A.12)
using Eq. (A.20) provides the following expression of the transverse
shear stiffness for the laminate
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5

h
A=2Q, (A21)

5/6 is referred to as correction factor of the transverse shear stiffness.
The explicit definition of all terms of the laminate stiffness matrix is
very attractive in non-linear analyses where the element matrices are
calculated many times [30]. This theoretical review is essential to
understand the main assets of FSDT as well as its implementation into
shell finite elements.
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