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Abstract
Luminous deep-sea etmopterid sharks use hormonal control to regulate bioluminescence. Melatonin and prolactin trigger 
light emission and, conversely, α-melanocyte stimulating hormone actively reduces ongoing luminescence. Interestingly, 
these hormones are also known as regulators of skin pigment motion in teleost fish and epipelagic elasmobranchs. On the 
other hand, the melanin-concentrating hormone (MCH) is another regulator of the skin pigment motion in fish melanophores. 
Here, we studied the putative effect of MCH on the light emission control of the velvet belly lanternshark, Etmopterus spinax 
(Etmopteridae). In parallel, the presence of the MCH receptor in our model is investigated through database searches. Our 
results show that MCH is not involved in the bioluminescence triggering in the velvet belly lanternshark. Moreover, no MCH 
receptor transcript was found in a specific transcriptome of the luminous ventral skin of E. spinax.

Introduction

Etmopterid sharks are known to possess the ability to emit an 
intrinsic luminescence thanks to thousands of light organs, 
the photophores, spread mainly within the ventral epidermis 
(Claes and Mallefet 2009a, b; Renwart et al. 2014; Duch-
atelet et al. 2019a). Ultrastructurally depicted by Renwart 
et al. (2014), photophores are composed of emitting cells, 
called photocytes, embedded in a cup-shaped pigmented 
sheath, upholstered by a guanine crystal layer reflecting the 
light toward the outside. A specific shutter-like area, called 
the iris-like structure (ILS), is located between photocytes 
and lens cells topping the organ (Claes and Mallefet 2009a; 
Renwart et al. 2014). ILS cells include melanophores which 
control the amount of light emitted through pigment motion 
regulation (Claes and Mallefet 2010; Renwart et al. 2015). 

Dispersion of melanosome corresponds to the photophore 
closure, while pigment aggregation results in a photophore 
open state allowing light to pass toward the outside (Claes 
and Mallefet 2010; Renwart et al. 2015). Counterillumina-
tion, aposematism, and intraspecific communication are the 
main assumed bioluminescent function for this shark family 
(Claes and Mallefet 2008, 2009a; Claes et al. 2010a, 2013; 
Duchatelet et al. 2019b). Etmopterids regulate their light 
emission through a hormonal control. While melatonin (MT) 
and prolactin (PRL) trigger light emission, α-melanocyte 
stimulating hormone (α-MSH) and adrenocorticotropic hor-
mone (ACTH) decrease luminescence (Claes and Mallefet 
2009a; Duchatelet et al. 2019c). In addition, pharmacologi-
cal studies highlighted the involvement of neuromodulators 
such as nitric oxide (NO) and γ-aminobutyric acid (GABA) 
in the etmopterid light emission control (Claes et al. 2010b, 
2011; Claes and Mallefet 2015).

Interestingly, the previously mentioned actors are reg-
ulators of the pigment motion in teleost, amphibian, and 
to a lesser extent, mammals (Nery and de Lauro Castrucci 
1997; Fujii 2000; Sköld et al. 2002; Takahashi and Kawauchi 
2006; Aspengren et al. 2008; Slominski et al. 2008; Cal et al. 
2017). Other actors also regulate pigment aggregation or 
dispersion in teleost chromatophores such as the melanin-
concentrating hormone (MCH), catecholamines or light 
cues through opsin-based photoreception (Fujii 2000, for 
review). MCH has been shown to be involved in melano-
phore pigment aggregation in all investigated teleost species 
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to date (Nagai et al. 1986; Oshima et al. 1986; Baker 1993; 
Kawauchi 2006; Mizusawa et al. 2011, 2013) while it is also 
acting, in mammals, on different taxa-specific functions such 
as appetite and homeostasis regulation (Rossi et al. 1997; 
Griffond and Baker 2002; Saito and Nagasaki 2008). In 
elasmobranchs, although the presence of this hormone has 
been confirmed in the shark brain (Vallarino et al. 1989; 
Mizusawa et al. 2012), no effect on skin pigment motion has 
been observed in two Neoselachii species [i.e. (1) the batoid 
freshwater stingray Potamotrygon reticulatus (Visconti and 
Castrucci 1993; Visconti et al. 1999) and (2) the Galeomor-
phii two banded houndshark Triakis scyllium (Mizusawa 
et al. 2012)]. Although no effect of MCH on skin pigment 
motion has been described in few swallow water sharks 
previously investigated, no study clearly states the potential 
involvement of this hormone on skin melanophores of deep-
sea sharks. Here, the putative effect of MCH on the light 
emission and the skin pigment motion of the lanternshark 
species Etmopterus spinax was tested and searches for MCH 
receptors were performed within the recently available E. 
spinax skin transcriptome. Results demonstrated the ineffi-
ciency of MCH to trigger light emission. No pigment move-
ments in the ILS melanophore cells were induced by MCH 
applications. Furthermore, MCH receptor mRNAs were not 
found within the ventral skin reference transcriptome of this 
shark.

Materials and methods

Animal collection

Sixteen adult velvet belly lanternsharks, E. spinax were 
sampled during a field session in January 2017 by longlines 
in the Raunefjord, Norway (60°15′54″N; 05°07′46″E). 
Collected specimens were maintained in dark conditions 
in tanks filled with running cold sea water at the Bergen 
University Marine Station (Espegrend, Norway). All sharks 
were euthanised by a blow to the head followed by a full 
incision of the spinal cord, following the local rules for 
experimental vertebrate care and the European rules for ani-
mal handling. Sharks were sexed, measured and weighed 
before experimentation took place.

Pharmacological tests

Skin tissues were dissected from the ventral luminous area 
of each shark. Round shape skin patches were sampled from 
the skin using a 6 mm diameter metal cap driller (Claes 
and Mallefet 2009c; Duchatelet et al. 2019c). These ventral 
skin patches were rinsed with shark saline [292 mmol l−1 
NaCl, 3.2 mmol l−1 KCl, 5 mmol l−1 CaCl2, 0.6 MgSO4, 
1.6 mmol l−1 Na2SO4, 300 mmol l−1 urea, 150 mmol l−1 

trimethylamine N-oxide, 10 mmol l−1 glucose, 6 mmol l−1 
NaHCO3; total osmolarity: 1.080 mosmol; pH 7.7 (Ber-
nal et al. 2005)] in a 96-well plate. Afterward, ventral skin 
patches were soaked in either MT 10−6 mol l−1, PRL 10−6 
mol l−1, MCH 10−8 to 10−6 mol l−1 or shark saline (as con-
trol). Drugs were obtained at Sigma, St. Louis, Missouri, 
USA. Application of either MT or PRL served as control of 
the light emission induction since these hormones are known 
to trigger shark bioluminescence (Claes and Mallefet 2009c, 
2010; Duchatelet et al. 2019c). Luminescence of ventral skin 
patches subjected to the various treatments was measured 
using a microplate luminometer (Berthold MPL12/Orion; 
Pforzheim, Germany) calibrated using a standard 470 nm 
light source (Beta light; Saunders Technology, Hayes, 
UK). Light outputs were recorded using Simplicity soft-
ware (Berthold, Pforzheim, Germany) during 60 min with a 
measurement every minute. Luminescence responses were 
characterised according to the total amount of light emitted 
during this experimentation [Ltot, in Gigaquanta per hour 
(Gq h−1); Claes and Mallefet 2009c; Duchatelet et al. 2019c]. 
This light parameter was standardised according to the skin 
patch surface area [(in cm2); Duchatelet et al. 2019c].

At the end of each pharmacological experiments, skin-
associated photophore states were pictured thanks to a 
Lumix DMC-FZ300 camera (Panasonic Corporation, Osaka, 
Japan) mounted on a stereomicroscope.

Transcriptomic analyses

Parallel to pharmacological assays, in silico searches for 
MCH receptors were undergone. Using available E. spi-
nax transcriptomic data (SRA/NCBI accession number: 
SRX4379543; Delroisse et  al. 2018), homology-based 
local tBLASTn searches (Altschul et al. 1990) for MCH 
receptor sequences were performed using vertebrate refer-
ence sequences as queries. Top hit candidates (i.e. e val-
ues < 10−5) were used as request in reciprocal BLASTx 
searches (i.e. first top hit) against online NCBI databases 
(https​://www.ncbi.nlm.nih.gov/) to emphasise sequence 
potentially homologous to MCH receptors. All BLAST 
analyses were performed using default parameters. In silico 
translations were performed for the putative MCH recep-
tor sequences retrieved from the shark transcriptome using 
the ExPaSY online tool (http://web.expas​y.org/trans​late; 
Gasteiger et al. 2005).

MCH receptor phylogenetic inference

Reference metazoan MCH receptors, as well as closely 
related somatostatin receptors (i.e. SSTR), were collected in 
NCBI databases. A multiple alignment was performed with 
the MAFFT algorithm in Geneious Prime 2019.1.1. (https​://
www.genei​ous.com). A strict trimming was then performed 
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using TrimAL algorithm (Capella-Gutiérrez et al. 2009) 
implemented in Metapiga 3.1. (Helaers and Milinkovitch 
2010). Maximum likelihood phylogenetic analysis was per-
formed using PhyML 3.0. using the JTT + G + I + F model 
of amino acid substitution [(Akaike Information Criterion 
(Lefort et al. 2017)] and optimised with SPR tree searching 
(Guindon et al. 2005). Bootstrap analysis (1000 replicates) 
was performed. The urotensin-2 receptors (UTR2) of the 
whale shark, the elephant shark and the cattle were selected 
as a global outgroup based on Sailer et al. 2001.

Statistical analyses

All analyses [ANOVA, post-hoc Tukey tests] were per-
formed with the software JMP pro v.14 (SAS Institute Inc., 
Cary, NC, USA, 1989–2007). The Gaussian distribution 
condition was obtained for all analyses after logarithm 
transformation allowing the use of parametric tests. ANOVA 
was used to show a significant difference between treatments 

while post-hoc Tukey tests allowed the differentiation of 
clusters.

Results

The effect of MCH on the ventral skin patches of E. spinax 
(n = 16) was tested. Typical long-lasting weak luminescence 
is obtained with MT 10−6 mol l−1 applications, while appli-
cations of PRL 10−6 mol l−1 trigger fast and strong lumi-
nescent responses (Fig. 1a, b, Table 1). Conversely, MCH 
applications (dose–response at 10−8 to 10−5 mol l−1) do not 
induce a significant light production and stay similar to the 
control level (shark saline; p value > 0.05; Fig. 1b, Table 1). 
PRL and MT Ltot present a value statistically different from 
all other experiments (p value < 0.05; Fig. 1b).

End-experiment ILS melanophore states show fully 
open photophores with a bluish reflection (i.e. resulting 
from the reflection of the stereomicroscope light system on 

Fig. 1   Effects of MT, PRL and MCH applications on E. spinax 
light emission. a Mean time course evolution of the light emissions 
(Mq s−1 cm−2) from ventral skin patches of velvet belly lanternshark 
after drug applications (n = 16). b Total amount of light produced 
(Ltot; Gq  h−1  cm−2) by ventral skin patches under hormonal treat-

ments. Ltot is integrated on 60  min. c Representative ventral skin 
patch pictures after the end of each experimental procedures present-
ing photophores (red arrowhead). CTRL, shark saline, n = 16, error 
bars correspond to SEM. ** and *** correspond to statistically differ-
ent groups. Scale bar, 1 mm
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the guanine layer) in both MT and PRL experiments. Con-
versely, ventral skin photophores do not present black pig-
ment location modifications after MCH treatment, similar to 
control with shark saline (Fig. 1c).

Top hit mRNA search for MCH receptor within the avail-
able E. spinax skin transcriptome (Delroisse et al. 2018) lead 
to one putative mRNA sequence. After in silico translation 
and reciprocal BLASTx analysis, this sequence is shown to 
rather be associated with somatostatin receptor than MCH 
receptor. Phylogenetic inference reveals the clustering of 
the retrieved sequence within the closely related somato-
statin receptor (Es-somatostatin receptor) rather than MCH 
receptor, confirming the absence of an MCH receptor within 
the skin of E. spinax (Fig. 2a). Reference metazoan MCH 
receptors, as well as closely related somatostatin receptors, 
are listed in Fig. 2b.

Discussion

A common core mechanism, based on hormone activity, 
regulates both bioluminescence and pigment motion in lan-
ternsharks (Claes and Mallefet 2009c, 2010). Hormones 
regulating luminescence in sharks possess two distinct tar-
gets within the photophore: (1) the photocytes, for the light 
emission itself, and (2) the ILS melanophores, for the regu-
lation of the shutter function (Claes and Mallefet 2009c; 
Claes et al. 2012; Renwart et al. 2015). MT, PRL, α-MSH 
and ACTH were shown to act at both levels in the velvet 
belly lanternshark (Claes and Mallefet 2009c; Duchatelet 
et al. 2019c). Therefore, we hypothesised the involvement 
of MCH on light emission and pigment motion in E. spinax. 

Here, to complete the understanding of the bioluminescence 
control, we pharmacologically demonstrated the inefficiency 
of MCH to modify (1) E. spinax skin color and (2) light 
emission. While MT and PRL trigger light emission and 
open the ILS (i.e. through ILS melanophore pigment aggre-
gations), MCH was then unable to modify pigment position 
within the ILS. Moreover, via transcriptome analyses, the 
absence of MCH receptor mRNA was highlighted in E. spi-
nax. To date, MCH and associated receptors are involved in 
physiological pigment aggregation in Neopterygii fish mel-
anophores (Vallarino et al. 1989; Qu et al. 1996; Rossi et al. 
1997; Takahashi et al. 2004; Matsuda et al. 2006; Baker and 
Bird 2002). Only two other elasmobranch species have been 
tested based on pharmacological applications of MCH (i.e. 
at 10−8 to 10−6 mol l−1) and pigment cell responses revealed 
the inefficiency of this hormone to regulate color change 
and aggregate melanosomes within skin melanophores (Vis-
conti and Castrucci 1993; Mizusawa et al. 2012). Mizusawa 
et al. (2012), also showed that MCH and its receptor, located 
in the brain of the scalloped hammerhead shark (Sphyrna 
lewini), affect feeding behaviour, but not skin pigment 
migration. The absence of MCH receptor in the velvet belly 
lanternshark skin transcript is in agreement with previous 
works on other Neoselachii species revealing the absence 
of skin-related MCH receptors hence MCH inefficiency on 
skin color modulation. Present results confirm the absence of 
MCH activity on skin pigment motion in sharks, particularly 
here, for a deep-sea shark species. Additionally, MCH was 
demonstrated to be inefficient on the E. spinax light emission 
triggering. MCH hormone is ancestrally associated with the 
central nervous system in gnathostomes while the periph-
erical function (i.e. skin pigment potion regulator) appears 
to be a Neopterigii-specific apomorphy (Sherbrooke et al. 
1988). The name “melanin-concentrating hormone”, given 
after its discovery and function characterization within the 
melanophores of the chum salmon (Kawauchi et al. 1983), 
now appears slightly confusing when considering the whole 
gnathostome clade.

Other actors also involved in pigment aggregation or dis-
persion are suggested to be part of the mechanical control of 
light emission through pigment location modulation, such as 
the extraocular opsin-based photoreception (e.g. Es-Opn3; 
Delroisse et al. 2018; Duchatelet et al. 2019d). Efforts are 
still needed to fully understand the whole mechanistic frame-
work behind light emission and ILS cell shutter actions in 
the velvet belly lanternshark and luminous elasmobranchs, 
in general.

Table 1   Total amount of light emitted after melatonin (MT), prol-
actin (PRL) or melanin-concentrating hormone (MCH) applications 
integrated on 60 min

n = 16, data presented as mean ± SEM

Drug Concentration 
(mol l−1)

Ltot (Gq h−1 cm−2)

MT 10−6 2.32 ± 0.29
PRL 10−6 13.07 ± 3.65
MCH 10−8 0.08 ± 0.02

10−7 0.06 ± 0.01
10−6 0.08 ± 0.02
10−5 0.06 ± 0.01

Shark saline (control) – 0.10 ± 0.02
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Fig. 2   MCH receptor phylogenetic inference. a Maximum likelihood 
tree based on an amino acid sequence alignment of MCH receptors 
(MCHR) and somatostatin receptors (SSTR). Tree is calculated by 
PhyML using JTT + G + I + F model of evolution. SPR setting was 
used for tree optimization. Numbers at the nodes indicate bootstrap 
percentages based on 1000 replicates. The scale bar represents the 

percentage of amino acid substitutions per site. The Whale shark, ele-
phant shark and cattle urotensin-2 receptor (UTR2) sequences were 
used to root the tree. b MCH and somatostatin receptor sequences 
from various organisms used as references for the maximum likeli-
hood phylogenetic analysis
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