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We study 4-dimensional charged and static black holes in a generalized scalar–tensor gravity model, in 
which a shift symmetry for the scalar field exists. For vanishing scalar field the solution corresponds 
to the Reissner–Nordström (RN) solution, while solutions of the full scalar-gravity model have to be 
constructed numerically. We demonstrate that these black holes support Galilean scalar hair up to a 
maximal value of the scalar–tensor coupling that depends on the value of the charge and can be up 
to roughly twice as large as that for uncharged solutions. The Hawking temperature TH of the hairy 
black holes at maximal scalar–tensor coupling decreases continuously with the increase of the charge 
and reaches TH = 0 for the highest possible charge that these solutions can carry. However, in this limit, 
the scalar–tensor coupling needs to vanish. The limiting solution hence corresponds to the extremal RN 
solution, which does not support regular Galilean scalar hair due to its AdS2 × S2 near-horizon geometry.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Black holes are amongst the most fascinating predictions of the 
best tested theory of gravity that we have to this day: General Rel-
ativity [1]. Already one year after Einstein formulated this theory, 
Schwarzschild found a static and spherically symmetric solution to 
the vacuum Einstein equation [2,3] that was later on used to de-
scribe the exterior of an object so dense that for an observer far 
from it light becomes infinitely red-shifted on the so-called event 
horizon of this object, which was successively called a black hole. 
Interestingly, Schwarzschild’s solution is described only in terms 
of one single conserved quantity measured at infinity, namely the 
ADM mass [4]. Israel [5] formulated a theorem named after him 
stating that the only static and asymptotically-flat vacuum space–
time possessing a regular horizon is the Schwarzschild solution.

Charged as well as rotating generalizations were constructed 
since then [6,7] and these are again described by a small number 
of conserved quantities at infinity. The charged and static solu-
tion – often referred to as the Reissner–Nordström (RN) solution 
– is described by its charge as well as ADM mass, while the 
Kerr(–Newman) solution, which is a rotating solution of the (elec-
tro)vacuum Einstein equation, is described by its angular momen-
tum (charge) and ADM mass. Uniqueness and no-hair conjectures 
have been formulated in this context [8–12]. It has since then been 
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found that these conjectures do not hold necessarily in the pres-
ence of non-linear matter sources such as Skyrme fields [13] or 
Yang–Mills fields [14].

The RN and Kerr(–Newman) solutions played a crucial rôle in 
the discovery of Black hole Thermodynamics, which assigns prop-
erties to black holes alike those of thermodynamical systems, e.g.
the Hawking temperature TH [15] which is proportional to the 
surface gravity of the black hole on its horizon or the Bekenstein–
Hawking entropy S [16] which is proportional to the horizon area. 
Moreover, it was shown that black holes fulfil laws that are equiv-
alent to those of thermodynamics [17]. The third law of thermo-
dynamics states that as the temperature of the system tends to 
absolute zero, the entropy should also tend to zero. Black holes 
with TH = 0 do exist – normally referred to as extremal black 
holes – but these have non-vanishing horizon area and hence 
non-vanishing Bekenstein–Hawking entropy. By counting the mi-
crostates of certain 5-dimensional extremal black holes, the ex-
pression of Bekenstein–Hawking was confirmed to be proportional 
to the horizon area and hence non-vanishing [18]. However, in [19]
it was suggested that the entropy of the extremal RN solution 
should be vanishing, despite its non-vanishing horizon area. The 
essential reason for that is that the extremal horizon is an infinite 
proper distance away from any point outside the horizon.

Extremal black holes typically exist in systems where the (at-
tractive) gravitational force is balanced by a (repulsive) force 
caused by electromagnetic fields and/or rotation. Moreover, they 
possess a very interesting property: their near-horizon geometry 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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is typically given by a product of a 2-dimensional Anti-de Sitter 
geometry AdS2 and another constant curvature manifold [20] (see 
also [21] for a detailed discussion on the geometry of extremal RN 
solutions). The fact, that an AdS factor appears makes it possible to 
associate a dual Conformal Field Theory (CFT) to it via the AdS/CFT 
correspondence [22] and hence compute the black hole entropy via 
the dual CFT [23].

Besides possessing an extremal limit, the RN and Kerr solutions 
share another interesting feature: they possess two horizons, one 
of which is the above mentioned event horizon, while the horizon 
lying inside the event horizon corresponds to a surface of infi-
nite blue-shift and is often referred to as a Cauchy horizon. This 
leads to the fact that the central physical curvature singularity is 
time-like instead of space-like as in the case of the Schwarzschild 
solution. An observer crossing the Cauchy horizon can hence avoid 
the physical singularity by travelling to another asymptotically flat 
space–time region [3]. To state it differently: the causal structure of 
the Kerr space–time is much more alike that of the RN space–time. 
The latter is hence often used as a simpler spherically symmetric, 
static analogue of the former [24]. We will adopt this view in the 
present letter as well and will study charged, static and spherically 
symmetric black hole solutions also with the motivation to learn 
something about axially symmetric, stationary, rotating solutions.

While General Relativity provides are very accurate description 
of astrophysical and cosmological processes, the question remains 
whether it is also applicable on microscopic scales, i.e. when quan-
tum effects become important. General Relativity is now regarded 
as a low energy effective limit of a more general Quantum Theory 
of Gravity, which involves additional fields such as scalar fields and 
gauge fields. And since black holes are the ideal testing ground for 
such theories, it is important to understand how the presence of 
other fields alters the properties of black hole solutions. Moreover, 
while black hole have been discussed extensively on theoretical 
grounds over the past decades, there exists no real “proof” for the 
existence of black holes up until now, though the direct observa-
tion of gravitational waves seems to give strong evidence in favour 
of their existence [25]. It is hence interesting to understand – in 
particular with view to recent and future high precision astrophys-
ical and cosmological data – whether black holes can be used to 
test any Quantum Gravity Model.

In the following, we will concentrate on the addition of scalar 
fields to generalized gravity models. Scalar fields appear in low 
energy limits of String Theory (e.g. dilaton, axion) as generic fields, 
but are also used as effective description of physical systems, e.g. 
in the Ginzburg–Landau model of superconductivity [26].

A 4-dimensional low energy effective model of String Theory is 
the Einstein–Gauss–Bonnet-dilaton (EGBD) model. In this case, the 
higher order curvature correction in terms of the Gauss–Bonnet
term G is coupled to the dilaton, a real scalar field φ, via a term 
of the form exp(φ)G . Static, spherically symmetric black hole so-
lutions to this model have been first discussed in [27] and it was 
shown that black holes can carry a non-vanishing dilaton field, i.e. 
an example of “scalar hair” on the horizon (see also [28] for a re-
view and [29] for the discussion of the thermodynamics of black 
branes in this model).

In recent years, so-called generalized scalar–tensor gravity models 
in 4 space–time dimensions have been discussed. The idea goes 
back to the construction of Horndeski [30] and has been extended 
in the past 10 years to so-called Galilean gravity models [31,32]
(for a review see also [33]) in which the scalar field possesses a 
shift symmetry (i.e. a symmetry under a Galilean transformation) 
of the form φ → φ + c + aμxμ , where c is a constant and aμ a 
constant co-vector. This symmetry has a conserved Noether current 
Jμ associated to it: ∇μ Jμ = 0.
A no-hair conjecture for black holes in generic Galilean theo-
ries has been presented in [34], however, for specific choices of 
the Galilean action it has been shown that black holes with scalar 
hair can be constructed (numerically) [35,36]. In these models, 
the scalar field couples directly to the Gauss–Bonnet term in the 
form φG . This leads to an equation of motion for the scalar field in 
which the massless and real scalar field is sourced by the Gauss–
Bonnet term and coupled to it via the scalar–tensor coupling. Note 
that black holes with Galilean scalar hair can also be constructed 
in models without this specific coupling between the scalar field 
and the Gauss–Bonnet term [37–39] and that this construction can 
be extended to include charge [40]. In [39] it was also realized 
that the black holes constructed in [36] evade the no-hair conjec-
ture of [34] because the norm of the Noether current diverges at 
the horizon of the black hole. However, one of the key assump-
tions of [34] is that the norm of the Noether current be finite on 
the horizon and it was further demonstrated in [39] that with the 
assumption of vanishing radial Noether current, black hole solu-
tions do not exist in this class of models. However, modifying the 
scalar–tensor gravity model allows for black hole solutions with fi-
nite norm of the Noether current [41].

In this letter we study charged, static, spherically symmetric 
black holes in the generalized scalar–tensor gravity model pre-
sented in [36]. For vanishing scalar–tensor coupling the solution 
corresponds to the RN solution. We report on a first study of these 
solutions and focus on the construction of the solutions outside 
the event horizon. In particular we discuss the extremal limit of 
these solutions and show that they do not support scalar Galilean
hair.

Our letter is organized as follows: in Section 2, we give the 
model, the Ansatz and the boundary conditions. In Section 3, we 
discuss our analytic as well as numerical results, while Section 4
contains our conclusions.

2. The model

The scalar–tensor gravity model we are working with here has 
been studied in detail without additional matter content [36]. The 
gravity part of this model is invariant under shift of the scalar field 
leading to an associated conserved Noether current. In this letter, 
we couple the model to a U(1) gauge field. The action then reads

S =
∫

d4x
√−g

[
R

16πG
+ γ

2
φG − β

2
∂μφ∂μφ − 1

4
Fμν F μν

]
,

(2.1)

where the Gauss–Bonnet term G and the field strength tensor Fμν

of the U(1) gauge field Aμ are given by

G = Rμνρσ Rμνρσ − 4Rμν Rμν + R2 , Fμν = ∂μ Aν − ∂ν Aμ ,

(2.2)

respectively. γ and β are dimensional coupling constants. In the 
case φ ≡ const. the Gauss–Bonnet term becomes a total divergence 
and we are left with the standard Einstein–Hilbert action coupled 
minimally to a U(1) gauge field. Appropriate scalings of the coor-
dinates and fields allow us to set β−1 = 8πG = 1 such that the 
action depends only on the parameter γ . Varying the action (2.1)
with respect to the metric, the scalar field and the gauge field, we 
obtain the following set of equations:

�φ = −γ

2
G , ∂μ

(√−g F μν
) = 0 ,

Gμν − ∂μφ∂νφ + 1
gμν∂αφ∂αφ + γ

Kμν = T (EM)
μν , (2.3)
2 2
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where

Kμν = (gρμgσν + gρν gσμ)∇λ(∂γ φεγσαβεδη Rδηαβ) (2.4)

results from the variation of the Gauss–Bonnet term with respect 
to the metric and T (EM)

μν is the energy–momentum tensor of the 
gauge field

T (EM)
μν = Fμα F α

ν − 1

4
gμν Fαβ F αβ . (2.5)

The locally conserved Noether current associated to the shift sym-
metry reads [39]:

Jμ = 1√−g

δS[φ]
δ(∂μφ)

. (2.6)

2.1. Ansatz and boundary conditions

We are studying spherically symmetric, static, electrically
charged black hole solutions in this letter. The Ansatz for the met-
ric, scalar field and gauge field, respectively, reads

ds2 = −N(r)A(r)2dt2 + 1

N(r)
dr2 + r2

(
dθ2 + sin2 θdϕ2

)
,

φ = φ(r) , Aμdxμ = V (r)dt . (2.7)

Inserting this Ansatz into the equations of motion (2.3) results in 
a coupled system of ordinary differential equations that has to be 
solved subject to the appropriate boundary conditions. Asymptotic 
flatness and finite energy requires

A(r → ∞) = 1 ,
(

r2 V ′) ∣∣∣∣
r→∞

= Q , (2.8)

where Q is the charge of the solution (in appropriate units) and 
the prime now and in the following denotes the derivative with 
respect to r.

We can use the shift symmetry of the scalar field and the fact 
that the electric potential is determined only up to a constant to 
fix the scalar field and the potential V on the horizon to

φ(rh) = 0 , V (rh) = 0 . (2.9)

Note that we could have equally fixed the value of the fields at in-
finity, but we found that our numerical results are more accurate 
with the choice of the fields on the horizon. Furthermore, the re-
quirement of regularity of the fields on the horizon r = rh implies 
N(rh) = 0 as well as the following constraint:[
γ (V ′)4r3(2γ φ′ − r) + 4A2(V ′)2

(
γ (2γ 2 + r4)(φ′)2

+ (2γ 2 + r4)rφ′ + 6γ r2
)

− 16A4
(
γ r2(φ′)2 + r3φ′ + 3γ

)]∣∣∣∣
r=rh

= 0 . (2.10)

This condition can be simplified by using the Maxwell equation 
which implies a relation between the potential V (r) and the metric 
function A(r):

dV (r)

dr
= c

A(r)

r2
, (2.11)

where c is an integration constant, which is fixed by the boundary 
conditions (2.8) to be c = Q . Using the above relation at r = rh , the 
condition (2.10) becomes independent of A(rh) and can be solved 
for φ′ . We find:
φ′±
∣∣∣∣
r=rh

= −
γ 2 Q 4 + 4γ 2 Q 2r2

h + 2Q 2r6
h − 8r8

h ±
√

|Q 2 − 4r4
h |√�1

4γ rh(2γ 2 Q 2 + Q 2r4
h − 4r6

h)

(2.12)

with

�1 = γ 4 Q 6 + 4γ 2r2
h Q 4(5γ 2 + 2r2

h)

− 4Q 2r2
h(24γ 4 + 20γ 2r4

h − r8
h) + 16r10

h (12γ 2 − r4
h) .

(2.13)

The equation �1 = 0 then gives the critical value of γ in de-
pendence on Q and rh . Moreover, φ′ diverges on the horizon for 
Q 2 → 4r6

h/(2γ 2 + r4
h).

2.2. Physical properties of black holes

The temperature TH and the entropy S of the black hole in 
rescaled coordinates and with our Ansatz read, respectively:

TH = 1

4π

(
N ′ A

)
r=rh

, S = Ah

4
= πr2

h , (2.14)

with Ah denoting the horizon area. The ADM mass can be read off 
from the behaviour of the metric function N(r) at spatial infinity. 
Defining the mass function m(r) via N(r) = 1 − 2m(r)/r, the ADM 
mass M (in rescaled units) reads

M = lim
r→∞m(r) , (2.15)

while the charge Q is determined by the asymptotic behaviour of 
V (r), see (2.8).

The radial component of the conserved Noether current associ-
ated to the shift symmetry reads [39]:

J r = N

[
γ (N − 1)

2r2

(
N ′

N
+ 2A′

A

)
− φ′

]
(2.16)

and the norm of the current will be√
Jr J r = γ (N − 1)

2r2

(
N ′

N
+ 2A′

A

)
− φ′ . (2.17)

Using that N(rh) = 0 and N ′|rh 	= 0 for non-extremal black holes 
(see the discussion below for the extremal case), it is easy to see 
that the norm of the radial Noether current diverges on the hori-
zon of the solutions constructed in this paper. We, in fact, checked 
numerically that the radial component of the Noether current J r

is non-vanishing for all black hole solutions that carry scalar hair. 
Hence, very similar to the uncharged case, our solutions evade the 
No-hair theorem of [34] by violating the assumption of finite norm 
of the Noether current on the horizon.

3. Charged black holes

As mentioned above, the equations allow an explicit solution in 
the case γ = 0. This is the RN solution [3,6]:

N(r) = 1 − 2M

r
+ Q 2

4r2
, V (r) = Q

rh
− Q

r
, A(r) ≡ 1 (3.18)

with M and Q the mass and charge of the solution, respectively. 
This solution has two horizons at r± = M ± √

M2 − Q 2/4. r+ cor-
responds to the event horizon, while r− is the Cauchy horizon. 
The extremal RN has M = Q /2 such that r+ = r− and TH → 0, 
while the entropy S stays finite. The Kretschmann invariant K =
Rμνρσ Rμνρσ is perfectly finite at r = r± . It only diverges at r → 0, 
i.e. at the physical singularity of the space–time.



Y. Brihaye, B. Hartmann / Physics Letters B 772 (2017) 476–482 479
Fig. 1. We show the critical value of the charge Q c , up to where charged black 
holes with Galilean scalar hair exist, in dependence on the parameter γ (solid). We 
also give the Hawking temperature TH of the black holes with charge Q = Q c in 
dependence on γ (dashed). The dot at Q ≈ 1.484 and γ ≈ 0.513 corresponds to 
the point at which Q 4

c − 24Q 2
c + 48 = 0 (see discussion in the text).

For γ > 0, the corresponding equations do not admit explicit 
solutions, so we need to solve the equations numerically. We have 
used a grid adaptive collocation solver [42] to find solutions to the 
system of coupled, non-linear ordinary differential equations. Our 
results are described in the following section.

3.1. Charged black holes with scalar hair

Now and in the following, we will use the fact that we can 
rescale the radial variable r to set r+ = rh = 1. The equation �1 = 0
(see (2.10)) then gives the critical value γ = γc for a fixed Q :

γ
(±)

c =
√(

24 − 4Q 2
) ± 2

√
3(Q 4 − 24Q 2 + 48)

Q 2(Q 2 + 24)
(3.19)

or the critical value of the charge Q = Q c for a fixed value of γ :

Q c =
√

2

γ

√(
−6γ 4 − 2γ 2 + γ

√
3(12γ 4 + 12γ 2 + 1)

)
(3.20)

As discussed in detail in [36] �1 = 0 gives γc = 1/
√

12 ≈ 0.289
for Q = 0. For γ = 0 it follows from (2.10) that Q = 2. Note that 
Q → 2 for γ → 0 leads to φ′|r=rh → −∞.

We have integrated the equations of motion for r ≥ 1, i.e. out-
side the horizon rh = 1. Our numerical results suggest that there 
are three different regimes in the γ –Q -plane that limit the exis-
tence of solutions:

1. Q � 1: this includes the Q = 0 case studied in ([36]) for 
which γc ≈ 0.289. Increasing the charge Q from this solution, 
we find a branch of charged black holes that carry Galilean
scalar hair on their horizon. Since Q enters (2.13) at order 
O(Q 2), we expect that – as long as Q is small – the value 
of γc not to differ much from its value at Q = 0. This is 
confirmed by our numerics, see Fig. 1, where we give the crit-
ical value of Q c in dependence on γ (or vice versa, γc in 
terms of Q ) for charged hairy black hole solutions. We also 
show the Hawking temperature TH in dependence on γ . The 
uncharged solution is the solution with highest temperature 
and the increase of the charge Q lowers the temperature. 
Some physical properties of the uncharged solution (Q = 0) 
are shown in Fig. 2. In this case, the value of φ′ at r = rh is 
(see (2.12)): φ′±(rh) = (−1 ± √

1 − 12γ 2)/(2γ ). Increasing γ
from zero, the derivative of φ′ decreases on the φ′+(rh) branch 
until it reaches its critical value at γ = γc = 1/

√
12 which is 

φ′+,c(rh) = −√
12/2 ≈ −1.732. Our numerical results indicate 

that from this value of γ , a second branch extends backwards 
in γ corresponding to values of φ′−(rh) such that φ′(rh) fur-
ther decreases. Since the objective of this paper has not been 
to study the uncharged case newly, we have not investigated 
this in more detail, but we remark that our numerical results 
indicate that this second branch exists though it has not been 
mentioned in the literature previously.

2. Q ≈ 1: when Q becomes of the order of unity, we find that 
γc strongly increases. The critical values of Q and γ , respec-
tively, are still determined by �1 = 0. The condition, �1 = 0, 
however can only be fulfilled up to a certain value of the 
charge Q . The limiting critical value of the charge Q c = Q̃ c

is given by the condition Q̃ 4
c − 24Q̃ 2

c + 48 = 0 (see (3.19)). 

This gives Q̃ c =
(

12 − 3
√

6
)1/4 ≈ 1.484 with corresponding 

value γ̃c =
√

(−2
√

6 + 3)/(24
√

6 − 66) ≈ 0.513. Our numeri-
cal results confirm this reasoning, see Fig. 1, in which we have 
marked this point by a dot. We also observe that the tempera-
ture of the black hole decreases continuously with the increase 
of the charge.

3. Q � Q̃ c ≈ 1.484: increasing the charge Q further, �1 is al-
ways positive and no critical behaviour results from (2.13). 
We find that first the value of γc increases when increas-
ing Q up to a maximal value γM ≈ 0.56 and corresponding 
Q = Q M ≈ 1.5. Examining the solutions for γ ∈ [γ̃c : γM ] fur-
ther shows that the values of φ′ , V ′ and A on the horizon are 
large, see Fig. 3 (left) for γ = 0.55, but that there exists a finite 
radius surface, which lies outside the horizon on which both 
the Kretschmann scalar K as well as the Ricci scalar R become 
very large (see Fig. 3 (right)). The metric function N(r) stays 
perfectly finite in this case. Note that the location of this sur-
face is given by the double zero of the derivative of the scalar 
field function (φ′)2, see Fig. 3 (left).
In Fig. 2 (left) we show the values of the metric and matter 
fields at the horizon in dependence on γ for Q = 1.5. This 
figure shows clearly the difference between the charged and 
uncharged case, in particular we note that there is no back-
bending of the curves for Q = 1.5. Moreover, the value N ′(rh)

is continuously increasing in the uncharged case, while it de-
creases in the charged case. The right side of Fig. 2 demon-
strates that the Hawking temperature for the charged black 
hole is smaller than that of the uncharged one, the ADM mass 
is larger, and the difference �φ := φ(∞) − φ(rh), which is 
a physical quantity, increases slower than for the uncharged 
case.
Note that γ = γM ≈ 0.56 is the maximal possible scalar–tensor 
coupling for charged black hole, which is roughly twice as 
large as that for uncharged solutions.
However, increasing Q further from Q M ≈ 1.5, γc decreases 
from γM . In this case, we find that the phenomenon that lim-
its the existence of solutions is very different from that for 
smaller charges. We find that for this part of the branch the 
denominator in (2.12) tends to zero indicating that the scalar 
field function has a diverging derivative at rh . This happens 
for

γc =
√

2

Q 2
− 1

2
, Q c =

√
4

2γ 2 + 1
. (3.21)
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Fig. 2. Left: We show the value of the metric function A(r) (black) as well as the derivatives N ′(r) (blue), φ′(r) (red), V ′(r) (green) of the metric function N(r), the scalar field 
φ(r) and the electric potential V (r), respectively, at the horizon rh in dependence on γ for Q = 0 (solid) and Q = 1.5 (dashed). Right: We show the Hawking temperature 
TH (black), the ADM mass M (red) and �φ = φ(∞) −φ(rh) (blue) in dependence on γ for Q = 0 (solid) and Q = 1.5 (dashed). (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Left: We show (φ′)2 and (V ′)2 in function of the radial coordinate r close to rh = 1 for Q ≈ Q M = 1.5 and γ = 0.55 close to γM ≈ 0.56. Right: We show the metric 
functions N(r) and A(r) as well as the Ricci scalar R and the Kretschmann scalar K = Rμνρσ Rμνρσ in function of the radial coordinate r close to rh = 1 for Q ≈ Q M = 1.5
and γ = 0.55 close to γM ≈ 0.56.
γc hence becomes a decreasing function in terms of Q and 
tends to zero for Q → 2. Our numerical results confirm this, 
see Fig. 1. In Fig. 4 we demonstrate this approach by showing 
the dependence of the ADM mass M , of the Hawking temper-
ature TH, the value of the scalar field derivative at the horizon 
φ′(rh) and the physical difference �φ = φ(∞) − φ(rh) on the 
charge Q for γ = 0.27. While the ADM mass and the Hawking 
temperature show a very similar dependence on the charge Q
as for the RN solution, we find that for γ > 0 and Q suffi-
ciently large that as Q approaches Q c the derivative of the 
scalar field function at the horizon diverges, i.e. φ′(rh) → −∞
for Q → Q c . For γ = 0.27 we find that Q c ≈ 1.85.
Note that the γ = 0 limit corresponds to the RN solution, and 
to be more precise, the extremal RN solution, since rh = 1 =
Q /2. This is also indicated by the fact that the Hawking tem-
perature TH tends to zero in this limit. We hence find that the 
solution with maximal possible charge Q is the extremal RN solu-
tion which does not allow regular Galilean hair on its horizon.

3.2. No Galilean hair on extremal black holes

Extremal black holes do usually not allow scalar field in their 
near-horizon geometry. In the following we will demonstrate that 
this is also true for Galilean scalar hair. For that we use the metric 
of an AdS2 × S2 space–time given by

ds2 = v1

(
−ρ2dτ 2 + 1

ρ2
dρ2

)
+ v2

(
dθ2 + sin2 θdϕ2

)
(3.22)

where v1 and v2 are positive constants. The coordinate ρ is related 
to the coordinate r by ρ = r − rh such that ρ → 0 corresponds to 
r → rh . Now considering the scalar field equation in this space–
time, the equation �φ = − γ G and its solution read:
2
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Fig. 4. We show the dependence of the ADM mass M , of the Hawking temper-
ature TH, the value of the scalar field derivative at the horizon φ′(rh) and the 
physical difference �φ = φ(∞) −φ(rh) on the charge Q for the RN solution (γ = 0, 
solid) and a charged black hole solution with scalar hair (γ = 0.27, dashed). Note 
that the two curves for TH are indistinguishable.

(
ρ2φ′)′ = 4

γ

v2
⇒ φ(ρ) = 4γ

v2
ln(ρ) + c1

ρ
+ c2 , (3.23)

where c1 and c2 are integration constants. This indicates that the 
scalar field and all its derivatives diverge at the horizon of an ex-
tremal black hole with ρ → 0.

In Fig. 4 we show the dependence of the ADM mass, the Hawk-
ing temperature TH, the value of φ′ on the horizon as well as 
�φ = φ(∞) − φ(rh) on the charge Q for the RN solution (γ = 0) 
and for a charged black hole solution with scalar hair. We have 
chosen γ = 0.27 is this latter case such that black holes with scalar 
hair exist in the uncharged case Q = 0. When increasing Q to its 
maximal possible value Q = 2 the two curves for the ADM mass 
and the Hawking temperature TH join, indicating that the limiting 
solution at Q = 2 with TH = 0 does not carry scalar hair. Follow-
ing our analytical arguments above as well as comparing with the 
numerical data show in Fig. 4, it is obvious that in this limit, the 
scalar field as well as its derivative on the horizon tend to infinity. 
Black holes regular at the horizon can only exist if γ = 0, i.e. when 
the solutions are RN black holes, in this case the extremal solution 
with AdS2 × S2 horizon geometry.

4. Conclusions and outlook

We have discussed charged black holes in a generalized scalar–
tensor gravity model in which the scalar field is invariant under a 
scale transformation. In this model, the Gauss–Bonnet curvature 
invariant sources the scalar field. We demonstrate that charged 
black holes with scalar hair on their horizon exist, but that the ex-
istence is limited by a maximal value of the scalar–tensor coupling 
that depends on the value of the charge. We find that the maxi-
mal possible value of the scalar–tensor coupling for any charge is 
roughly twice as large as that for vacuum black holes of the model. 
Let us remark that although the charged black hole solutions with 
scalar hair have to be constructed numerically, their domain of 
existence in the γ –Q -plane is (mainly) determined by analytical 
expressions, which agree to high accuracy with our numerical re-
sults.

The difference of our present study in comparison to the one 
done in [36] is the fact that extremal black hole solutions do ex-
ist. Since extremal black holes are supposed to be important in 
the understanding of Black Hole Thermodynamics, i.e. semiclassical 
models including gravity, as well as possible candidates for a full 
Quantum Theory of gravity such as String Theory, we have studied 
the extremal limit in this letter as well. We come to the conclusion 
that the generalized scalar–tensor gravity model at hand does not 
allow extremal solutions that carry scalar hair. Since the RN solu-
tion has a similar causal structure as the Kerr solution, we believe 
that similar arguments will hold in the case of rapidly rotating 
black hole solution in scalar–tensor gravity when exchanging Q
by the angular momentum J (for slow rotation see [36]).

Finally, let us mention that we have only investigated the solu-
tions outside of the event horizon. Following the analysis in [36]
one could also investigate the solution inside the event horizon of 
the black hole. Now, since the RN solution does possess an ad-
ditional Cauchy horizon that lies inside the event horizon, it will 
be interesting to see how the presence of the scalar field changes 
the causal structure. In particular, it will be interesting to see how 
the location of the finite surface on which the curvature invari-
ants become very large (and probably diverge) is influenced. This 
is currently under investigation.
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