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Abstract: This paper develops a new algorithm for the discrete 
time linear filtering problem. The crucial component of this 
algorithm involves the computation of the singular value 
decomposition (SVD) of an unsymmetric matrix - without explicitly 
forming its left factor that has a high dimension. The presented 
algorithm has a good numerical stability and can handle correlated 
measurement noise without any additional transformation. This 
algorithm is formulated in the form of vector-matrix and matrix- 
matrix operations, so it is also useful for parallel computers. Details 
of the algorithm are provided and a numerical example is given. 

I. INTRODUCTION 

The Kalman filter [14] has been one of the most widely applied 
techniques in the area of modem control, signal processing, and 
communication applications. By using a state space model, it 
facilitates the estimation of the unknown state vector recursively for 
each new observation. It is considered an optimal estimator because 
it provides a minimum variance estimate. Discussion and 
applications on Kalman filter can be found in many literature. 

The following equations define a discrete time state space system: 
= @k+l,kXk+GkWk (1) 

where x ~ E ' W  is the state vector, %E%'" is the measurement vector, 
wreW is the disturbance input vector, vk€R" is the measurement 
noise vector, *+,.,~Wnx", Gk~'Wxr and Hlr~%jnxs are the system 
matrices. The disturbance w, and noise v, are assumed to be zero 
mean Gaussian white noise sequences with symmetric positive 
definite covariance matrices Q, and &, respectively. Furthermore, 
sequences w, and v, assumed to be statistically independent. The 
Kalman filter is then described by the following recursive equations 
under assumptions that matrices G,, €&, Q, and Rk are known: 

Time extrapolation: 

(4) 

Measurement update: 

K, = P,H,T(H,P,H,+R,)-' U) 
where Pk is the covariance of estimation uncertainty, superscript + 
refers to values after the measurement update, and & is the Kalman 
gain matrix. 

The major disadvantage of the Kalman formulation is that the 
matrix subtraction in Eq.(6), representing the reduction in uncertainty 

due to the measurement, can yield a result P c  that is computationally 
not positive definite (or, at least, nonnegative) -- a theoretical 
impossibility. To circumvent this difficulty, Potter [2] introduced the 
idea of using a square mot of the covariance matrix in the 
algorithmic implementation. This is a matrix 

S = PIn such that P = SST 

where S is obtained in triangular form by the well-known Cholesky 
decomposition. Although equivalent algebraically to the conventional 
Kalman filter recursion, the square root approach exhibits improved 
numerical precision and stability, particularly in ill-conditioned 
problems. The advances in square root filtering up to 1971 have 
been summarized by Kaminski, Bryson and Schmidt [15]. 
Subsequently, Carlson [6] and Bierman [5 ]  have introduced strictly 
algorithmic approaches to the square root filtering. Bierman also 
introduced the idea of using a UDL decomposition of the covariance 
matrix in place of the square root decomposition. This is a 
decomposition of the sort 

P = U D U T  

where D is a diagonal matrix and U is an upper triangular matrix 
with 1's along its main diagonal. This factorization does not require 
taking scalar square roots and is superior in most respects to the 
basic square root algorithm [21]. 

Both the square root and the UDUT decompositions may result in 
numerically stable filter algorithms. But these formulations can only 
be used if one has single dimension measurements with uncorrelated 
measurement noise. Generally one does not have this in practice. To 
handle correlated measurement noise, additional transformations have 
to be used which increase the computation cost. Moreover, these 
formulations cannot be effectively implemented on vector processors 
because their designs are virtually serial in structure. 

Extensions of the Potter and the Bierman methods to the multiple 
measurement case have been devised by several researchers 
[1][3][18]. Especially, in a recent paper by Hotop [13], the author 
gives a fresh Kalman filter formulation which is based on a special 
Givens orthogonal transformation. Hotop's algorithm has been shown 
to be very useful for parallel computers. In the sequel of this paper 
we will present an SVD-based Kalman filter algorithm which has the 
UDUT formulation as in the Bierman method. Like Hotop's 
algorithm, our algorithm is also suitable for parallel computers, but 
it has a higher numerical stability than Hotop's and other previous 
algorithms. 

11. SINGULAR VALUE DECOMPOSITION AND ITS 
COMPUTATION 

One of the basic and most important tools of modern numerical 
analysis, particularly numerical linear algebra, is the singular value 
iecomposition. For a survey of the theory and its many interesting 
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applications, see Vandewalle and De Moor [22]. 
The singular value decomposition of an m-by-n matrix A(m2n), 

is a factorization of A into a product of three matrices. That is, there 
exist orthogonal matrices UE 'Prn and VE 3""" such that 

A = U A V T ,  A = 1 :] 
where AE %" and S=diag(o,, ..., or) with 

o1 L ... 2 or > 0 . 

The numbers (J ,,..., or together with or+,=O ,..., o,=O are called the 
singular values of A and they are the positive square roots of the 
eigenvalues of ATA. The columns of U are called the left singular 
vectors of A(the orthonormal eigenvectors of AAT) while the 
columns of V are called the right singular vectors of A(the 
orthonormal eigenvectors of A~A) .  

It is known that the singular values and singular vectors of a 
matrix are relatively insensitive to perturbations in the entries of the 
matrix, and to finite precision errors [24]. Furthermore, since the (3,'s 
are, in fact, the eigenvalues of a symmetric matrix, they are 
guaranteed to be well-conditioned so that, with respect to accuracy, 
we are in the best of possible situations [16]. 

In practice, if ATA is positive definite then (8) can be reduced to 

A = U!:] V T  

where S is an n-by-n diagonal matrix. Especially, if A itself is 
symmetric positive definite then we will have a symmetric singular 
value decomposition 

A = USUT = U D Z U T  (10) 

In our filter algorithm derivation, (9) and (10) will be of 
particularly real interest. 

The standard method for computing (8) is the Golub-Kahan- 
Reinsch SVD algorithm ([9] and [lo]), in which the Householder 
transformation is fxst used to bidiagonalize the given matrix and 
then the QR method to compute the singular values of the resultant 
bidiagonal form. Recently, with the advent of massively parallel 
computer architectures, two classical SVD computation methods, that 
is, Hestenes algorithm (one-sided Jocabi) [12] and Kogbetliantz 
algorithm (two-sided Jocabi) [17], have gained a renewed interest for 
their inherent parallelism and vectorizability (see a good overview 
written by Berry and Sameh [4] summarizing parallel algorithms for 
the singular value and symmetric eigenvalue problems). For 
illustration, Table I gives the computation flops of Golub-Kahan- 
Reinsch algorithm (G-K-R), row-oriented Hestenes algorithm (R- 
Hestenes), column-oriented Hestenes algorithm (C-Hestenes), and 
Kogbetliantz algorithm (Kogbetliantz) for random n-by-n mamces A 
whose elements are uniformly distributed in the interval (0, 1)(An 
initial QR step is done before the SVD procedures are applied to A). 

All algorithms are implemented in the MATLAB environment and 
ran on a PC 486 [23]. It can be seen that the Golub-Kahan-Reinsch 
algorithm is most computationally efficient on the sequential 
machine. However, this algorithm will become less attractive on a 
parallel processor [20], while Hestenes algorithm and Kogbetliantz 
algorithm will be of importance there. 

Our present Kalman filter formulation is based on Golub-Kahan- 
Reinsch algorithm and ran on the sequential machine. In a future 
paper we will discuss its parallel implementation on a transputer 
network in which Kogbetliantz's two-sided Jocabi algorithm will be 
used. 

111. NEW KALMAN FILTER FORMULATION 

Time Extrapolation Formulation 

In the covariance equation (4) of the conventional Kalman filter, 
assume that the singular value decomposition of P; is available for 
all 4 and has been propagated and updated by the filter algorithm. 
Thus, we have 

p i  = U'D'Zu;T f k  

Eq.(4) can therefore be written as 

Our goal is to find the factors U,, and D,, from Eq.(ll) such that 
Pk+I=U,,D,,ZU,+,T, where U factors are orthogonal and D factors are 
diagonal. Provided that there is no danger of numerical accuracy 
deterioration, one could, in a brute force fashion, compute P,,, and 
then apply the singular value decomposition of symmetric positive 
definite matrix which is given by Eq.(lO). However, it has been 
shown that this is not a good numerical exercise [lo]. Instead we 
define the following (s+n)-by-n matrix 

and compute its singular value decomposition 

Multiplying each side on the left by its transpose, we have 

@k+l,kuk*Dk+TDk+ u;T@:+l> + G k / a / a T G l  

TABLE I 
AVERAGE NUMBER OF FLOPS FOR DIFFERENT SVD ALGORITHMS 

I n Trials G-K-R R-Hestenes C-Hestenes Kogbetliantz 

4 100 1480 2607 2918 3412 
6 100 486 1 10686 11839 14017 
8 100 10992 27841 31061 35489 
10 100 20573 57939 63972 7557 1 
20 10 149700 537220 601350 686890 
30 10 488670 1973400 2119208 2428400 
40 10 1 136000 4867800 5 162000 5950600 

I I 
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Comparing the result with (1 l), we find that vk' and 4' are just the 
U,,, and Q+l we are looking for. Here we want to point out that the 
(s+n)-by-(s+n) orthogonal matrix Ut' and its transpose Uk'T are not 
needed directly in our algorithm and it is not necessary to store or 
compute them explicitly. 

Measurement Uudate Formulation 

In the conventional Kalman measurement update, substituting Eq. 
(7) into (6) yields 

pk+ = pk- pkH:(HkPkH:+$ I-' HkPk (13) 

To obtain the new measurement update result, we will require use 
of the well-known matrix inversion lemma, valid for positive definite 
N a n d M  

(N+BMB?-' = N-'-N-'B(B TN'iB+M-')-'B 'N-' 

It follows from this and (13) that 

(P; I-' = + H:R;'H, (14) 

Applying the singular value decomposition of symmetric positive 
definite matrix to Pc and Pk, respectively, we may get 

(uk'Dk'2 Uk+T)-l  = (ukD,'u:)-' + H:R;'Hk 

In (15) let 

L,L; = R;' (16) 

be the Cholesky decomposition of the inverse of the covariance 
matrix. If the inverse is available then there is no difficulty. If the 
covariance mamx q is known, but not its inverse, then the reverse 
Cholesky decomposition &RHT=R, 5" upper triangular, can be 
found(see, for example, [ 111). It then follows that &=RH?-' is the 
required Cholesky decomposition in (16). 

Now considering the Im+n)-bv-n matrix [L2"j 
and computing its singular value decomposition, we have 

Multiplying each side on the left by its transpose yields 

Dk-' + U: H:Lk LIHk U k  = vk' 0,' ' vk' (18) 
Then EQ. (15) can be written as 

( ')- '  (Dk+  ) -' ( U,' )-' = ( U:)-' vk' 4' ' vk' U;' 

Lompanng two siaes or 4 4 1 ~ ) .  we get 

vk' 

D i  = (Di )-' (21) 
In this manner, a new measurement update formulation has been 

obtained. The crucial component of the update, like that of time 
extrapolation, involves the computation of the singular value 
decomposition of an unsymmetric matrix - without explicitly forming 
its left orthogonal factor that has a high dimension. 

For the Kalman gain an alternative expression may also be 
derived. Beginning with Q. (7) we have 

Insertion of P,+(Pc)-' and R;'R, will not alter the gain. Thus, & can 
be written as 

We now use Q. (14) for (P,')-' and get 

Kk = P i H : q i  

There is no need to obtain a formula for the singular value 
decomposition of &. 

The state vector measurement update is given by 

Together with the time extrapolation described in the above 
section and the measurement update of the covariance matrix and the 
state vector described here, a new Kalman filter algorithm is 
formulated, and it is summarized in Fig. 1. 

Algorithmic Details 

In this section we provide a few details and references for the new 
algorithm summarized in Fig. 1. 

(i) Determine initial U, and D,,. In practice, the initial Po is 
generally assumed to be diagonal, in which case we set U,=I and 
D,=P,. If Po is not diagonal then a symmetric QR algorithm [ 111 can 
be used to compute the U, and Po, and about 9n' flops are required. 

(ii) Update U: and D:. The key to this step is the construction of 
the (m+n)-by-n matrix 

and then its SVD computation. Because of the iterative nature of the 
SVD algorithm it is difficult to give a reliable flop count. In terms 
of Golub and Van Loan's estimate, forming the explicit matrix 
product and doing a standard SVD(inc1uding accumulating the U and 
V factors) using the efficient Golub-Reinsch algorithm requires 
4(1n+n)~n+8(m+n)n~+9d flops. In our filter formulation, only the 
right SVD factor V is needed, so the practical flop count is 
4(m+n)n2+8n3=4mn2+12n3. Furthermore, if we nonce the fact that the 
above matrix has the form 
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Enter %, U, and Do 
(U, and Do are obtained 
from the SVD of Po) 

Compute gain &: 

K~=U;D;~U:~H:L,L; 

* * * *  
* * * *  
* o o o  
o * o o  
o o * o  
o o o *  

Fig.1. New Kalman filter recursive loop. 

where * denotes the non-zero element of the matrix, then we can 
further reduce the computation flops to approximately 5mnz+10n3 by 
bidiagonalizing this matrix using both Givens rotations and 
Householder reflections(Here we assume that m is less than n, as it 
often does in practical Kalman filter applications). 

In the above matrix, L is the Cholesky decomposition of the 
inverse of the m-by-m covariance matrix R,, and its computation 
requires 1/3 m’ flops. If the covariance matrix Rk is known, but not 
its inverse, then L can be obtained from the reverse Cholesky 
decomposition, with an additional 1/3 m3 flops for computing the 
inverse of the Cholesky factor[8]. Especially, if the covariance 
matrix Rk cannot be always guaranteed to be positive definite then 
the numerical reliable SVD algorithm can be used for computing its 
inverse@seudo-inverse)@= [9]). In this case L=UkD’ where D’ is 
obtained from D by replacing each positive diagonal entry by its 
reciprocal, and approximately 9m’ flops are required for this process. 
JII summary, together with the approximate mzn+2mnz flops for 

computing the product of bTH,U,, this step requires approximately 
1/3m3+m2n+7mn2+10n3 flops (Assume that the Cholesky 
decomposition of the inverse of Rk has been used here). 

(iii) Compute gain I(I, and update estimate ?;. Computations of I<I, 
from (22) and 2; form (23) are straightforward. The essential 
calculation for I<I, and %: is the matrix-matrix and matrix-vector 
multiplications. Notice that H;L=(LTHaT can be obtained from the 
previous computation and LT is triangular, the flop count for I<I, is 
approximately m2n+2mn2+2n3. Calculation of ?: takes on the order 
of O(mn) flops and can be computationally negligible. 

(iv) compute the extrapolations ~ + l , ~ k + l ,  and Dk+,. ?k+l can be 
directly computed from Eq. (3) with trivial flops. U,+, and D,, can 
be obtained from the singular value decomposition of the (s+n)-by-n 
matrix 

without explicitly forming the (n+s)-by-(n+s) left orthogonal factor, 
which requires about 4sn2+12n3 flops. Computation of the Cholesky 
factor Qw and related matrix-matrix multiplications requires 
approximately 1/3s3+s2n+2n’ flops. In summary, a total of 
approximately 1/3s’+s2n+4sn2+14n3 flops are needed in this step. 

To summarize, one measurement update and one time 
extrapolation(not including the initial computations) can be computed 
by the above procedure in approximately 1/3m3+2m2n+9mn2+1/3s3+ 
szn+4sn2+26n3 flops. Here, we want to point out that the operation 
count is very rough, and only tribasic amount of work O(m3), 
O(m2n), O(mnz), O(s3), O(s2n), O(sn2), O(n3)) is considered. Not too 
much weight should be attached to these flop count estimates. Actual 
running time of an algorithm depends on the specific language and 
compiler used, the efficiency of the source and machine code, details 
of the floating-point arithmetic used, VO, and a variety of other 
architecture-dependent details. Extensive empirical experience with 
a robust software implementation on a specific computing machine 
is a more reliable guide for the timing associated with a particular 
algorithm [19]. 

An Examule Problem 

An algorithm can be said to be. numerically stable if the computed 
result of the algorithm corresponds to an exactly computed solution 
to a problem that is only slightly perturbed from the original one. By 
this criterion, the Kalman filter is numerically unstable in the 
conventional formulation. Examples illustrating the numerical 
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TABLE I1 
COMPARISON OF ROUNDED SOLUTIONS FOR DIFFERENT 

FILTER IMPLEMENTATIONS 

Filter implementation Rounded solution 

Exact value 

A = 1-2E+k2(2+E2) 

Conventional 
Kalman 

Potter square 
root 

Bierman UDUT 
factorization 

SVD formulation 

4 = 1-2E 

(1+2E)' - (1 -3~ )4 - '  * 1 -(1-3&)4' 2 

h [-(;+E)-('?!* 

* These covariances are not part of algorithm. Only the updated factors are needed 

divergence of the conventional Kalman filter algorithm can be found 
in [3]. [5] and [l5]. To appreciate and compare the performance of 
the new algorithm and other filter implementations, we include a 
simple but illuminating example which is taken from [ 5 ] .  

We are to estimate x1 and x2 from the measmments 

where the measurements have been normalized so that the v error 
terms have zem m a n  and unity covariance. O e a l  and is small 
enough so that in tern of machine computation 1+~>1,1+~*-1. The 
a priori estimate and covariance for x are assumed to be zero and 
P=oZI. We can % o large because this parameter estimation 
problem is well defined even if there were no a priori information 
about x. To keep the number of free parameters to a minimum we 
take o=l/e. The results as they would be computed are tabulated in 
Table II. 

Here we want to point out that it is difficult for our filter 
formulation to give an analytic representation of E because the SVD 
computation in our algorithm needs a fairly sophisticated iterative 
implementation. Instead we let &=O after the factors in Eq. (15) have 
been clearly formed, so that a purely numerical result has to be 
given in Table 11 for our algorithm (This computation was done in 
MATLAB on PC 4616, and for convenience the printing result does 
not include the full fifteen decimal place output that was produced 
by the long precision computation on the machine). We believe that, 
however, such a handling does not destroy OUT illustration. 

Note first that the conventional Kalman algorithm computed 
covariance has completely degenerated and if further measurements 
were processed the estimates would soon become completely 
inaccurate. As expected, our algorithm. together with Potter's and 
Bierman's. agrees with the rounded exact result. Remember that in 
this example R has been normalized, and measurement noise has 
been assumed to be uncomlated. If not so additional transformations 
have to be done before Potter's and Bierman's algorithms can be 

used. In this situation, the advantage of our algorithm is clear. 
Furthermore, all computations have to be done in sequence in 
Potter's and Bierman's algorithms, and evidently this is not suitable 
for parallel computers, while our algorithm does not have this defect. 

Finally, we want to point out that, except the conventional Kalman 
covariance, these covariances are not part of algorithm. They are 
included for comparison purposes only. In practical computations, 
only the updated covariance factors, such as 

8567 -.5257 
= tzn .8m1 

and 

.382€l 0 

D +  = [ 0 *,d' 
in our algorithm, are needed. 

IV. CONCLUSIONS 

In this paper we developed a new Kalman filter algorithm which 
is based on the well-known singular value decomposition - one of 
the most important and fundamental working tools for the 
controlhystems community, particularly in the area of linear systems. 
SVD is essential for the numerical stability, and is unsurpassed when 
it comes to producing a numerical solution to a nearly singular 
system [ll][16], so it can be expected that the SVD-based new 
Kalman filter formulation will have the highest accuracy and stability 
characteristics in all existing filter algorithms. 

Another advantage of the new Kalman formulation is the ability 
to handle comlated measurement noise without any additional 
transformations as might be used with the Potter and the Bierman 
algorithms. In many present day applications, measurements are 
generally designed to be uncomlated; and this may be a large source 
of error. Our algorithm can efficiently overcome this defect. 
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