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a b s t r a c t

In this paper we develop a differential analogue of o-minimal cell decomposition for
the theory CODF of closed ordered differential fields. Thanks to this differential cell
decomposition we define a well-behaving dimension function on the class of definable
sets in CODF . We conclude this paper by proving that this dimension (called δ-dimension)
is closely related to both the usual differential transcendence degree and the topological
dimension associated, in this case, with a natural differential topology on ordered
differential fields.
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0. Introduction

This paper is dedicated to the study of definable sets in the theory CODF of closed ordered differential fields. This theory
was introduced by M. Singer in 1978 (see [14]) as the model completion of the theory of ordered differential fields. Singer’s
definition of CODF clearly shows that this theory has quantifier elimination in the natural language of ordered differential
rings. Our approach here is to develop an analogue of o-minimality in the differential context of ordered differential fields.
O-minimal structures were introduced in the late 80s (see [8,4,17]) and are defined as totally ordered structures whose

one dimensional definable sets are the ones obtained using only the order and the equality (i.e. these sets are finite unions
of points and open intervals). Lots of interesting structures have been proved to be o-minimal: real closed fields, ordered
abelian divisible groups, the field of real numbers with the exponential function and others (see for example [20,15,18,19,
13] for the latter and other examples of o-minimal expansions of R).
O-minimal structures possess very nice geometric properties; in particular the Cell Decomposition Theorem (see [17,

Chapter 3 (2.11)]) states that every n-dimensional definable set can be decomposed into a finite union of ‘‘elementary’’
definable pieces called cells. As a consequence of this theorem, a well-behaving notion of dimension can be associated with
any definable set.
The goals of this paper are: firstly, to prove a differential analogue of the Cell Decomposition Theorem and secondly, to

define a natural notion of dimension for definable sets in CODF .
Our first step is to define a reasonable notion of cells in CODF (called δ-cells), keeping in mind that the subfield of

constant elements (i.e. element having derivative zero) of a closed ordered differential field M is a dense (w.r.t. the order
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topology onM) definable subset ofM . This simple question requires in fact quite a lot of work and leads to the introduction
of jet-spaces in CODF and a notion of equivalence (called δ-equivalence) on the ‘‘derivation free’’ definable sets in CODF .
Although this notion of δ-equivalence gives rise to some technical problems, it allows us to define a natural ‘‘differential’’
topology (called δ-topology) on any model M of CODF which can be interpreted as the trace on the infinite jet-space
Jω(M) := {(x, x′, . . . , x(n), . . .) | x ∈ M} of the product topology induced onMω by the order topology.
We are then able to introduce a notion of δ-cell generalizing the notion of o-minimal cell. Even if these δ-cells do not

behave as well as their o-minimal analogues (e.g. there exist (0)-δ-cells which are infinite!), it appears that they share quite
a lot of interesting properties with them. In particular we define a δ-dimension on δ-cells which, as in the o-minimal case,
resumes to summing 1’s and 0’s.
Furthermore we prove a theorem of differential cell decomposition which generalizes the Cell Decomposition Theorem

for o-minimal structures. As a consequence of this result we extend the definition of the δ-dimension to any definable set
in CODF and show that this δ-dimension is a dimension function in the sense of the axioms given par L. van den Dries in [16].
We also remark that the δ-dimension is equal to the differential transcendence degree of a generic point in an elementary
extension ofM and to the topological dimension associated with the δ-topology.
The rest of this paper is organised as follows: in Section 1 we recall the basic results concerning the theory CODF and

o-minimal structures. The notion of jet-spaces is introduced in Section 2 (Definition 2.1) where we also prove a simple but
important result of density on these jet-spaces (Lemma 2.2). In addition we fix some notation which will be crucial in the
subsequent developments and may seem quite complicated at first hand (Definition 2.3). The third section is dedicated to
the δ-topology and its elementary properties (see Definition 3.1, Proposition 3.3). In Section 4 we first introduce δ-cells
(Definitions 4.1 and 4.2) and then give the statement of our theorem of cell decomposition in CODF (Theorem 4.9). Finally,
in Section 5, we introduced a notion of δ-dimension first on δ-cells and then on any definable sets in CODF (Definitions 5.1
and 5.3). We conclude with a list of interesting properties satisfied by this δ-dimension (Theorems 5.14, 5.19 and 5.29,
Corollary 5.27, etc.).

1. Preliminaries

For any model M of CODF and for any l ≤ k, we denote by π(j1,...,jl) : M
k
→ M l the projection onto the coordinates

j1, . . . , jl and by πl the projection onto the l first coordinates. We also denote by L the language {+,−, ∗, <, 0, 1} of ordered
rings and by L′ the language {+,−, ∗, ′, <, 0, 1} of ordered differential rings.

1.1. O-minimal structures

O-minimal structures have become a huge domain of research since the 80s. Most of the classical results on these
structures can be found in [8,9,4] and [16]. We just recall here the basic definitions and results concerning these structures.
LetM = (M, <, . . .) be a densely totally ordered structure.M is o-minimal if any definable subset ofM is a finite union

of points and open intervals (a, b)with a, b ∈ M ∪{−∞,+∞}. In other words, there is no other definable subset inM than
thosewhich are definable using< and=. Densely linearly ordered (non-empty) sets (Q , <), divisible abelian ordered groups
(G,+, <, 0) and real closed fields (M,+,−, ∗, <, 0, 1) are classical examples of o-minimal structures (the o-minimality
of these structures directly follows from the fact that they admit quantifier elimination in their associated language, see for
example [2]). Any o-minimal structure is equipped with a natural definable topology, namely the order topology. A basis of
open subsets ofM for this topology is given by the open intervals (a, b) ⊆ M , i.e. this basis is uniformly defined by formulas
ϕ(a, b, X) ≡ a < X < b, where a, b ∈ M .
In what follows, unless explicitly stated (see the δ-topology in Section 3), all the topological objects appearing in the text

refer to the order topology (or to the product topology induced by the order topology when we work in a Cartesian power of M).
The classical tools in the study of o-minimal structures are the notion of cells and the Cell Decomposition Theorem

proved by J. Knight, A. Pillay and C. Steinhorn in 1986 [4]. Cells are defined inductively as follows.

Definition 1.1. For any definable subset A ofM let

CA∞ = {f : A→ M, f definable and continuous on A} ∪ {−∞,+∞}

(where we consider−∞ and+∞ as constant functions on A) and define

(f , g)A = {(x,m) ∈ A×M | f (x) < m < g(x)}

where f , g ∈ CA∞ are such that for all x ∈ A, f (x) < g(x).
Then

(i) a (0)-cell is a singleton {m} ofM and a (1)-cell is an open interval (a, b)with a, b ∈ M ∪ {−∞,+∞};
(ii) an (i1, . . . , ik, 0)-cell is the graph of a continuous definable function f : D→ M where D is an (i1, . . . , ik)-cell and an

(i1, . . . , ik, 1)-cell is a set (f , g)D where D is an (i1, . . . , ik)-cell (see Fig. 1).
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Fig. 1. Cells.

The tuple (i1, . . . , ik) is called the type of the cell (ij is called the type in the variable Xj) and the (1, . . . , 1)-cells are called
open cells (actually they are exactly the cells which are open inMk).
Before we give the statement of the Cell Decomposition Theorem, we recall that a decomposition of Mk (k > 1) is a

partition P of Mk into finitely many cells such that the projection πk−1(P ) is still a decomposition of Mk−1. In the case
where k = 1, a decomposition ofM is a collection

{(−∞,m1), (m1,m2), . . . , (mh,+∞), {m1}, . . . , {mh}}

withm1, . . . ,mh ∈ M .

Theorem 1.2 (Cell Decomposition Theorem (Knight–Pillay–Steinhorn)). Ik: For any finite collection A of definable (with
parameters in P ⊂ M) subsets of Mk, there exists a finite decomposition of Mk into cells compatible with A (i.e. such that
any A ∈ A is union of cells). Furthermore each cell of this decomposition is definable with parameters from P.

IIk: For any definable function f : A→ M where A ⊆ Mk, there exists a finite decomposition of Mk into cells (definable over the
same set of parameters as f ) partitioning A such that the restriction of f to any of these cells is continuous.

Proof. See [4] or [17, Chapter 3, (2.11)]. �

The Cell Decomposition Theorem allows to define a particularly well-behaving dimension on definable sets in an o-
minimal structure. Precisely, the dimension of an (i1, . . . , ik)-cell is equal to i1+ · · ·+ ik and, for each definable subset A of
Mk, the dimension of A is given by the cell of maximal dimension contained in A. One can consult [17, Chapter 3] for all the
properties satisfied by this dimension but most of them will be recalled in Section 5.

1.2. The theory CODF

We beginwith some basic definitions and results from differential algebra, our reference being [3]. LetM be a differential
field (equippedwith a non-trivial derivation), the ring of differential polynomials onM is the ringM[X, X ′, X (2), . . .]which
is denoted byM{X}. Its fraction field is denoted byM〈X〉. Remark thatM{X} is a differential ring equippedwith the derivation
extending the one onM and sending X (n) to X (n+1). Let f ∈ M{X}, the order of f (denoted by ord(f )) is the highest derivative
of X appearing in f (with the convention that the order of a non-zero constant polynomial is −1 and the order of the zero
polynomial is −∞). If ord(f ) = n we define the separant of f to be sf (X) = ∂ f

∂X(n)
(X). An element a in a differential field

extending M is a generic zero for f ∈ M{X} with sf 6= 0 if f (a) = 0 and g(a) 6= 0 for all g such that ord(g) < ord(f ). This
is equivalent to say that a, a′, . . . , a(n−1) are algebraically independent over M and that a(n), a(n+1), . . . are algebraic over
M(a, a′, . . . , a(n−1)).
In the samewaywe can define the ring of differential polynomials in k variablesM{X1, . . . , Xk} for each natural number

k. In this casewe also define the order of f ∈ M{X1, . . . , Xk} in each variables Xi as in the ‘‘one variable case’’ andwe denote it
by ordXi(f ). This notion of order will be extended to any first order formula ϕ of the natural language of ordered differential
fields in Chapter 2 (Definition 2.3).
The model-theoretic concept of an ordered differential field, i.e. an ordered field equipped with a derivation (no link is

assumed between the order and the derivation), was first introduced by A. Robinson in [12]. In 1978 M. Singer proved that
the L′-theoryODF of ordered differential fields has amodel completion CODF . Themodels of CODF are called closed ordered
differential fields.
Let us recall Singer’s axiomatization for CODF :

Definition 1.3. LetM be an ordered differential field, thenM |= CODF if

(i) M is a real closed field1;

1 In what follows, RCF will denote the L-theory of real closed fields.
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(ii) for all f , g1, . . . , gm inM{X}with n = ord(f ) > ord(gi) > −∞ (i = 1, . . . ,m),

∃X

(
f (X) = 0 ∧ sf (X) 6= 0 ∧

m∧
i=1

gi(X) > 0

)L
︸ ︷︷ ︸

(∗)

⇒ ∃X

(
f (X) = 0 ∧

m∧
i=1

gi(X) > 0

)
︸ ︷︷ ︸

(∗′)

where we use the superscript L to denote that we consider the formula as an L-formula (i.e. we consider each differential
polynomial appearing in the formula as an ordinary polynomial in the variables X0, X1, . . . , Xn).

The scheme of axioms in (ii) just says that if the system (∗) of (ordinary) polynomial equations and inequations above has
a solution (x0, . . . , xn) inMn+1 then the differential system (∗′) has a solution x inM .

As a direct consequence of the construction of CODF , Singer obtained the following important result:

Theorem 1.4 ([14]). CODF has quantifier elimination in the language L′ = {+,−, ∗,′ , <, 0, 1}.

2. Jet-spaces in CODF and associated notation

Definition 2.1. LetM be a differential field, the n-jet-space ofM is the subset ofMn+1 defined by

Jn(M) := {(x, x′, . . . , x(n)) | x ∈ M}.

More generally for each natural number k and each k-tuple (n1, . . . , nk) ∈ INk we define the (n1; . . . ; nk)-jet-space ofMk to
be the set2:

J(n1;...;nk)(M
k) := {(x1, x′1, . . . , x1

(n1); . . . ; xk, x′k, . . . , xk
(nk)) | (x1; . . . ; xk) ∈ Mk}

= Jn1(M)× · · · × Jnk(M).

Remark that this definition naturally extends to any subset A of Mk and we then can speak of the (n1; . . . ; nk)-jet-space
associated with A (denoted by J(n1;...;nk)(A)).

This notion of jet-space can be defined in any differential fields but, in the case of closed ordered differential fields, they
have the following interesting property.3

Lemma 2.2. If M |= CODF then for each k-tuple (n1, . . . , nk) of positive integers, the jet-space J(n1;...;nk)(M
k) is dense (and

co-dense when n1 + · · · + nk > 0) in M(n1+1)+···+(nk+1) w.r.t. the order topology.

Proof. Remark first that, since density is preserved by direct product of topological spaces, it suffices to prove the result for
k = 1. Hence let us fix a natural number n in order to show that Jn = {(x, x′, . . . , x(n)) | x ∈ M} is dense inMn+1.
For this let (m0, . . . ,mn) be an element ofMn+1 and consider the algebraic system

f (X) = Xn+1 = 0 ∧ sf (X) 6= 0 ∧
n∧
i=0

(mi − εi < Xi < mi + εi)

where X = (X0, . . . , Xn+1), sf (X) =
∂ f

∂Xn+1
(X) and εi > 0.

This system has an algebraic solution (m0, . . . ,mn, 0) and, since sf (X) is the constant polynomial 1, the axiomatization
of CODF provides a differential solution of the form (m,m′, . . . ,m(n), 0) (with m ∈ M) to this system. In particular, this
proves that each open neighbourhood of (m0, . . . ,mn) inMn+1 has non-empty intersection with Jn(M).
The co-density is trivial since, given any n ≥ 1, the projection π1 : Jn(M)→ M is a bijection. �

We now introduce some notation that will be used in the subsequent developments of this text.

Definition 2.3. Let M be a model of CODF , Aϕ := {x ∈ Mk | ϕ(x)} be a quantifier free4 L′-definable subset of Mk and
assume that the highest derivative of Xi appearing non-trivially in ϕ is X

(ni)
i . Hence the L

′-formula ϕ can be interpreted as
an L-formula ϕL in the differential variables X1, X1′, . . . , X1(n1); . . . ; Xk, Xk′, . . . , Xk(nk) such that:

∀X1, . . . , Xk(ϕ(X1, . . . , Xk)⇔ ϕL(X1, X1′, . . . , X1(n1); . . . ; Xk, Xk′, . . . , Xk(nk))).

(i) The tuple (n1; . . . ; nk) is called the order of ϕ (this generalizes the usual notion of order for differential polynomials).

2 We use the notation ‘‘;’’ to clearly distinguish the roles of the different differential variables.
3 In fact the same result holds for other examples of model complete theories of differential fields equipped with a definable topology (see [1]).
4 By thiswemean that the formulaϕ considered in thedefinition ofA is quantifier free. This not really restrictive sinceCODF admits quantifier elimination,
but it is technically needed in the subsequent developments.
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(ii) Aϕ L := {(x10, . . . , x1n1; . . . ; xk0, . . . , xknk) ∈ M
N
| M |= ϕL(x1; . . . ; xk)}

where xi = (xi0, . . . , xini) and N = (n1 + 1)+ · · · + (nk + 1).
(iii) Aϕ∗ := {(x1, . . . , x1(n1); . . . ; xk, . . . , xk(nk)) ∈ MN | M |= ϕ(x1; . . . ; xk)}.

In other words, since ϕ is quantifier free, Aϕ∗ is the intersection between the L-definable set Aϕ L and the (n1; . . . ; nk)-
jet-space of Mk. In the same way, for any element a = (a1; . . . ; ak) of A, we introduce the notation a∗ for the tuple
(a1, a′1, . . . , a

(n1)
1 ; . . . ; ak, a

′

k, . . . , a
(nk)
k ) ∈ Aϕ L. Remark that the singleton {a∗} is equal to J(n1;...;nk)({a}).

(iv) Since ϕ is quantifier free, Aϕ is the projection of Aϕ∗ onto some appropriate coordinates (namely X10, . . . , Xk0) and this
projection is a bijection. We call this projection the canonical projection of A∗ (or of Aϕ L when the context is clear). We
will also say that the L-definable set Aϕ L gives rise to (or is a source for) the L′-definable set Aϕ .

Remark 2.4. In what follows and in order to simplify the notation, we will drop the subscript ϕ in the sets Aϕ , Aϕ L and Aϕ∗

defined above and simply denote thembyA,AL andA∗ respectively. In otherwords, given any L′-definable setA, we arbitrarily
chose a quantifier free L′-formula ϕ defining A (such a formula always exists by quantifier elimination) and define the sets
AL and A∗ via the L-formula ϕL.

Let us illustrate these definitions by some examples.

Examples. . Let A := {x ∈ M | x′ > 0}, then AL is the half-plane {(xo, x1) ∈ M2 | x1 > 0} and A∗ is the intersection of this
half-plane with J1(M) = {(x, x′) | x ∈ M}. It is clear that A is the projection of A∗ onto the first coordinate.
. Let f (X) = X (3)X + 4XX ′ and denote by f L ∈ M[X0, X1, X2] the ordinary polynomial obtained by replacing X, X ′, X ′′, X (3)
by new variables X0, X1, X2, X3. More precisely,

f L(X0, X1, X2, X3) := X3X0 + 4X0X1.

Then if ϕ(X) is the L′-formula ‘‘f (X) = 0’’, the L-formula ϕL defined above is ‘‘f L(X0, X1, X2, X3) = 0’’ and it defines a
subset AL ofM4. The set A∗ is then the subset of AL consisting in all the 4-tuples of the form (x, x′, x′′, x(3)) and, projecting
it onto the first coordinate, we recover the subset A ofM defined by ϕ(X).

Remark 2.5. (i) The operation L : ϕ 7→ ϕL introduced at the beginning of Definition 2.3 commutes with the usual
connection operators on the set F (resp. F ′) of quantifier free L-formulas (resp. L′-formulas). More precisely, for any
quantifier free L′-formulas ϕ and ψ ,

(ϕ ∧ ψ)L ≡L ϕ
L
∧ ψ L, (ϕ ∨ ψ)L ≡L ϕ

L
∨ ψ L and (¬ϕ)L ≡L ¬(ϕ

L)

where≡L denotes the equivalence w.r.t. the L-theory RCF (recall that any model of CODF is a real closed field).
(ii) In the rest of this section we will often assume that the order of the formula defining A is equal to (n; . . . ; n)
(i.e. n1 = · · · = nk = n). In terms of formulas this is equivalent to consider ϕ as a formula in the variables
X1, . . . , X

(n)
1 ; . . . ; Xk, . . . , X

(n)
k where n is at least equal to the maximum of the ni’s. This assumption is harmless since

we can ‘‘swell’’ the set AL by taking appropriate direct products with some powers of M and obtain, after intersection
with the jet-space and canonical projection, the same L′-definable set A.

More precisely, we can consider the following L-definable subset ofMnk+k:

ÂL := {(x10, . . . , x1n1 , y1; . . . ; xk0, . . . , xknk , yk) | (x1, . . . , xk) ∈ A
L
∧ yi ∈ Mn−ni}

where for any i ∈ {1, . . . , k}, xi = (xi0, . . . , xini).
It is easy to check that ÂL also gives rise to A after intersection with the (n; . . . ; n)-jet-space of Mk and projection onto

the coordinates X10, . . . , Xk0 (see also the example).

Example. Let A = {(x1; x2) ∈ M2 | M |= x′1 = 0 ∧ x2 > 0}. Then

AL = {(x10, x11; x20) ∈ M3 | M |= x11 = 0 ∧ x20 > 0}.

But one could also consider the L-definable set

ÂL = AL ×M = {(x10, x11; x20, x21) ∈ M4 | M |= x11 = 0 ∧ x20 > 0}.

If we intersect ÂL with the (1; 1)-jet-space ofM2 and project canonically (i.e. onto the variables X10 and X20) thenwe recover
the set A.

Unfortunately, the construction described in the previous remark is not the only way to produce examples of distinct
L-definable sets giving rise to the same L′-definable set. In terms of formulas, this means that two L′-formulas ϕ, ψ can be
equivalent in the L′-theory CODF even if the corresponding L-formulas ϕL and ψ L are not equivalent in the L-theory RCF .
The following example illustrates this phenomenon.

Example. Let A be the subset ofM defined by the L′-formula ‘‘1 < X < 3∧ 1 < X ′ < 2’’. If we add to AL = {(x0, x1) ∈ M2 |
1 < x0 < 3 ∧ 1 < x1 < 2} the point with coordinates (2, 3), we obtain a new L-definable set which also gives rise to A
(since 2′ = 0 6= 3 and hence (2, 3) /∈ J1(M), see Fig. 2).
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Fig. 2. δ-equivalence.

Nevertheless the following easy lemma shows that the different ‘‘sources’’ of an L′-definable set must be quite like-
looking.
Lemma 2.6. Let{

A1L = {(x10, . . . , x1m1; . . . ; xk0, . . . , xkmk) | ϕ1
L(x10, . . . , x1m1; . . . ; xk0, . . . , xkmk)}

A2L = {(y10, . . . , y1n1; . . . ; yk0, . . . , yknk) | ϕ2
L(y10, . . . , y1n1; . . . ; yk0, . . . , yknk)}

be two quantifier free L-definable sets giving rise to the same L′-definable set A = A1 = A2 (that is the L′-formulas ϕ1 and ϕ2 are
equivalent in CODF).
Then if we assume that these two sets lie in the same ambient space MN (i.e. mi = ni = n for all i ∈ {1, . . . , k} and

N = k(n+ 1); see the swelling procedure described in Remark 2.5(ii)), they only differ by a set of empty interior in MN .
Proof. By the density of the jet-spaces (Lemma 2.2), if (A1L \ A2L) ∪ (A2L \ A1L) has non-empty interior in MN then it
contains a point (a1, . . . , a(n); . . . ; ak, . . . , a

(n)
k ) of the associated jet-space J(n;...;n)(M

k). But then (a1; . . . ; ak) belongs to
(A1 \ A2) ∪ (A2 \ A1) = ∅, a contradiction. �

We now formalize this ambiguity between the different sources of a given L′-definable set via the following definition.
Definition 2.7. Two quantifier free L-definable sets are δ-equivalent (denoted by ≡δ) if they give rise to the same L′-
definable set. This is equivalent to say that, considering these two sets as subsets of the same ambient space MN (where
N = k(n+ 1)), they have the same intersection with J(n;...;n)(Mk).
Lemma 2.6 directly implies the following result.

Corollary 2.8. Let A and B be two disjoint L′-definable subsets of Mk. Then for any sources AL of A and BL of B lying in the same
ambient space MN , AL ∩ BL has empty interior in MN . In particular, if AL and BL are open in MN then they are disjoint.
Remark 2.9. We can also define in the same way a notion of δ-equivalence on the set F of quantifier free L-formulas.
With this the operation L described Remark 2.5(i) becomes a bijection between F ′/≡L′ and F /≡δ (where ≡L′ denotes the
equivalence between two L′-formulas in CODF ).
We end this section with the following technical lemma which ensures that the operation L does not behave too badly

when we take fibers of definable sets.
Lemma 2.10. Assume that

. A = {x ∈ Mk | ϕ(x)} is a quantifier free L′-definable subset of Mk;

. a = (aj1; . . . ; ajl) ∈ π(j1;...;jl)(A) (where 1 ≤ j1 < · · · < jl ≤ k);

. π(j1;...;jl) : M
N
→ M(nj1+1)+···+(njl+1) is the ‘‘blocks’’ projection associated with π(j1;...;jl):

π(j1;...;jl) : (X10, . . . , X1n1; . . . ; Xk0, . . . , Xknk) 7→ (Xj10 , . . . , Xj1nj1
; . . . ; Xjl0 , . . . , Xjlnjl

);

. a∗ = (aj1 , a
′

j1
, . . . , a

(nj1 )
j1
; . . . ; ajl , a

′

jl
, . . . , a

(njl )
jl
) is the point of π(j1;...;jl)(A

L) corresponding to a (i.e. π(j10;...;jl0)(a
∗) = a).

Then the fiber (Aa)∗ is equal to the intersection of the fiber (AL)a∗ with an ‘‘appropriate’’ jet-space J of Mk−l (where AL is the
L-definable set defined by the L-formula ϕL).
Remark 2.11. This lemma seems to be very complicated and its statement could appear totally uninviting. Anyway themain
idea of this result (and the only thing one needs to remember) is the following:
The L-definable fiber (AL)a∗ of AL gives rise to the L′-definable fiber Aa of A. Equivalently (Aa)L = (AL)a∗ .
Proof. The result is an immediate consequence of Definition 2.3 and of the fact that the fibers of a definable set are definable
by the same quantifier free formula as the set, just by adding parameters.
Assume that {1, . . . , k} = {i1, . . . , ik−l}∪̇{j1, . . . , jl} and let J be the (ni1; . . . ; nik−l)-jet-space ofM

k−l. Then

(AL)a∗ ∩ J = {(ai1 , . . . , a
(ni1 )
i1
; . . . ; aik−l , . . . , a

(nik−l )
ik−l

) | (a1; . . . ; ak) ∈ A}

= (Aa)∗. �
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3. δ-topology

When we work with real closed fields, the order topology is really convenient since, for example, all polynomials are
continuous with respect to this topology. In fact this topology can be seen as the ‘‘natural’’ topology associated with the
language L of ordered rings. The word natural means here that the relation symbols of the language define open sets for
this topology and that the interpretation of each function symbol is continuous w.r.t. this topology. This corresponds to the
notion of topological system introduced by van den Dries in [16] and studied intensively by L. Mathews in his thesis [6,5].
Unfortunately the result of continuity does not hold anymore when we consider differential polynomials. For example

one can deduce from the axiomatization of CODF that the differential polynomial p(X) = X ′ is not continuous onM (w.r.t.
the order topology). Indeed, the preimage by p of the set {x ∈ M | x > 0} is a dense an co-dense subset ofM .
This observation leads us to consider another topology onM .

Definition 3.1. An L′-definable subset A ofM is a basic open set for the δ-topology (we say that A is a basic δ-open set) if
AL ⊆ Mn is δ-equivalent to a basic open L-definable set for the product topology inMn.
Example. Let a0, b0, a1, b1 ∈ M be such that a0 < b0 and a1 < b1. Then the L′-definable set

O := {x ∈ M | a0 < x < b0 ∧ a1 < x′ < b1}
is a basic δ-open subset ofM (since OL is a basic open box ofM2).
Remark 3.2. (i) The δ-topology can be seen as the topology induced on the infinite jet-space Jω(M) :=

{(x, x′, . . . , x(n), . . .) | x ∈ M} by the usual product topology on Mω
= M × M × · · · . The basic δ-open subsets of

M are canonical projections (cf. Definition 2.3) of basic open sets of Mω . We recall that these latter are of the form
I0 × · · · × In × · · · where each Ij is an open interval in M and only finitely many of these Ij’s are not equal to M . In
particular each basic open subset ofMω is definable by a quantifier free L-formula.
In the same way each basic δ-open subset of M is definable by a quantifier free L′-formula even if this δ-topology

itself cannot be uniformly defined by such an L′-formula.
(ii) Proposition 3.3(i) below shows that Definition 3.1 naturally extends to the product topology induced by the δ-topology
on any Cartesian power ofM .

(iii) The δ-topology can also be considered as thenatural topology onM associated to the language L′ (as the order topology is
the natural topology associated to L). In particular, since ordinary polynomials are continuous (w.r.t. the order topology)
and the derivative of a differential polynomial is still a differential polynomial, one can deduce that each differential
polynomial inM{X1; . . . , Xk} is continuous w.r.t. the δ-topology (we say that it is δ-continuous). This will be developed
more explicitly in the forthcoming note [10].

(iv) In what follows we will use the prefix ‘‘δ-’’ before any topological object to specify that we consider it in the δ-topology
(e.g.: δ-open, δ-closed, δ-interior, δ-continuous, etc.).
Here are some elementary properties of the δ-topology.

Proposition 3.3. Let A, A1, . . . , Al be quantifier free5 L′-definable subsets of Mk.
(i) A is a basic δ-open set of Mk iff AL is δ-equivalent to a basic open subset of MN (where N = (n1 + 1)+ · · · + (nk + 1) and
(n1; . . . ; nk) is the order of a quantifier free formula defining A

)
.

(ii) A has non-empty δ-interior in Mk iff any L-definable set BL which is δ-equivalent to AL has non-empty interior in MN . In
particular A has non-empty δ-interior iff AL has non-empty interior in MN .

(iii) A is δ-open (resp. δ-closed) in Mk iff AL is δ-equivalent to an open (resp. closed) subset of MN .
(iv) If A =

⋃l
i=1 Ai and each Ai has empty δ-interior in M

k then A has empty δ-interior in Mk.
Proof. (i) Assume first that A is the product A1× · · ·× Ak where each Ai is a basic δ-open set ofM . For each i in {1, . . . , k},

Definition 3.1 implies that AiL is δ-equivalent to a L-definable basic open subset OiL of Mni+1. The Cartesian product
OL = O1L × · · · × OkL is a basic open subset ofMN and, since J(n1;...;nk)(M

k) = Jn1(M)× · · · × Jnk(M), O
L is δ-equivalent

to AL proving that A is a basic δ-open subset ofMk.
The right-to-left implication is similarly proved. Assume that AL is δ-equivalent to the basic open subset OL = O1L ×
· · · × OkL ofMk. Then O1, . . . ,Ok are basic δ-open subsets ofM and A = O1 × · · · × Ok is a basic δ-open subset ofMk.

(ii) Suppose that AL has non-empty interior in MN . Then it contains a basic open set OL. Since real closed fields admit
quantifier elimination in the language L, we can assume that OL is quantifier free L-definable. Hence O∗ ⊂ A∗ and the
δ-open set O is contained in A, implying that this latter has non-empty δ-interior inMk.
Suppose now that A contains a basic δ-open subset O and let BL be any L-definable set δ-equivalent to AL. Using

the swelling procedure introduced in Remark 2.5(ii), we can assume that OL and BL lie in the same ambient spaceMN .
Remark that we cannot assure that OL ⊆ BL. Nevertheless

BL ∩ OL≡δAL ∩ OL≡δOL

since all these sets give rise to the L′-definable set O. But OL is open and then, by Lemma 2.6, BL ∩ OL has non-empty
interior inMN . Hence BL has non-empty interior inMN .

5 As in Definition 2.3 this means that we can assume that each L-definable set AL, A1L, . . . , AlL gives rise (after canonical projection) to A, A1, . . . , Al
respectively.
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Fig. 3. Examples of δ-cells.

(iii) Suppose first that AL is δ-equivalent to the open set OL = ∪iOiL where the OiL’s are basic open subsets ofMN . Then A is
equal to the union of the basic δ-open subsets Oi ofMk and hence it is δ-open inMk.
Assume now that A = ∪iAi where each Ai is a basic δ-open subset of Mk. Then each AiL is δ-equivalent to a basic open
subset OiL ofMni . Since we can again assume that these open L-definable sets belong to the same ambient spaceMω , AL
is δ-equivalent to the open subset ∪iOiL of Mω . To finish the proof we just remark that the definability of A and AL (in
their respective language) implies that (AL)c = (Ac)L (where c denotes the complement of a set) and that two sets are
δ-equivalent iff their complements are (cf. Remark 2.5(i)).

(iv) As before we assume that the AiL’s lie in the same ambient space. By (ii) each AiL has empty interior in this space and,
since the order topology in real closed fields satisfies (iv) (see for example [6, Lemma 5.4]),

⋃l
i=1 Ai

L has empty interior.
But this union gives rise, after canonical projection, to A and hence this set has empty δ-interior inMk (again by (ii)).

�

4. A theorem of δ-decomposition for definable sets in CODF

We begin with the definition of δ-cells which generalizes the usual definition of cells in o-minimal structures. Let us first
recall that any model of CODF is a real closed field and then is an o-minimal L-structure. We will continually use this fact in
what follows.

Definition 4.1. An L′-definable set C ⊆ M is a (1)-δ-cell if C L is δ-equivalent to an (o-minimal) open cell DL of Mn+1 for
some n ∈ N. If C L is δ-equivalent to a non-open cell (i.e. a cell containing a 0 in its type6) then C is a (0)-δ-cell.

Examples. . Let C L ⊆ M2 be the (1, 0)-cell C L = {(x0, x1) | x1 = 1}. Then C l gives rise to the (0)-δ-cell C = {x ∈ M |
x′ = 1}.
. If we replace the symbol = by > in the definition of C L above, the latter becomes the (1, 1)-cell {(x0, x1) | x1 > 1} and
then C is the (1)-δ-cell whose elements have derivative strictly greater than 1 (see Fig. 3).

We proceed similarly to define δ-cells in higher dimension.

Definition 4.2. C ⊆ Mk is an (i1; . . . ; ik)-δ-cell if C L is δ-equivalent to an (i10, . . . , i1n1; . . . ; ik0, . . . , iknk)-cell D
L such that:

for any j ∈ {1, . . . , k},{
ij = 1 if ijl = 1 for each l ∈ {0, . . . nj},
ij = 0 otherwise.

The idea of this definition is the following: the digit ij in the δ-type of C is equal to 0 iff the tuple (ij0, . . . , ijnj) in the o-minimal
type of C L contains a 0.

Definition 4.3. (i) As in Definition 2.3, the o-minimal cell DL appearing in Definitions 4.1 and 4.2 will be called a source
cell of C . Obviously this cell is not unique but the definition of a δ-cell ensures the existence of at least one source cell.
Hence, in the rest of this work, we will always use the notation C L to denote a source cell giving rise to C even if this

source cell does not correspond exactly to the L-definable set C L appearing in Definition 2.3.
(ii) The tuple (i1; . . . ; ik) appearing in Definitions 4.1 and 4.2 is called a δ-type of C . Furthermore, for each l in {1, . . . , k}, il
is called a δ-type of C in the variable Xl.

Example. Assume C is the L′-definable subset ofM2 given by the formula ‘‘X ′ = 0∧Y ′′ > 0’’. Then C L is the (1, 0; 1, 1, 1)-cell
equal to

{(x0, x1; y0, y1, y2) ∈ M5 | x1 = 0 ∧ y2 > 0}

and, taking the intersection of C Lwith J(1,2)(M2) and projecting onto the coordinatesX0 and Y0, we see that C is a (0; 1)-δ-cell.

6 For the purposes of this work, we do not need to distinguish between different kinds of (0)-δ-cell. More exactly, we do not care about the positions of
the 0’s in the type of C L since these positions do not play any roles in the dimension theory developed in the subsequent sections.
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Remark 4.4. As in the previous section, we could replace C L by any appropriate direct product with powers ofM and obtain
the same δ-cell C . In this case we introduce the following notation: if s = (s1, . . . , sk) is a tuple of positive integers then

C Ls := {(x10, . . . , x1n1 ,M
s1; . . . ; xk0, . . . , xknk ,M

sk) | (x10, . . . , x1n1; . . . ; xk0, . . . , xknk) ∈ C
L
}

is an (i10, . . . , i1n1 , 1, . . . , 1︸ ︷︷ ︸
s1 times

; . . . ; ik0, . . . , iknk , 1, . . . , 1︸ ︷︷ ︸
sk times

)-cell δ-equivalent to C L.

Before proceeding further we have to be careful and verify that these definitions make sense (this is not clear a priori
since a δ-cell can be obtained from many different o-minimal source cells). In other words: are we sure that to each δ-cell C
corresponds a unique δ-type?
Next lemma gives a positive answer to this question, so that we can now speak of the δ-type of a δ-cell.

Lemma 4.5. Let C be an (i1; . . . ; ik)-δ-cell and BL be an L-definable set which is δ-equivalent to C L. Then each (o-minimal) cell
decomposition of BL contains a cell which gives rise to a δ-cell with δ-type (i1; . . . ; ik). In particular, each source cell of C gives
rise to this δ-type (i1; . . . ; ik).

We first prove the following lemma which makes explicit the behavior of δ-cells under coordinates projections and
fibrations.

Lemma 4.6. If C is an (i1; . . . ; ik)-δ-cell then πk−1(C) is an (i1; . . . ; ik−1)-δ-cell and for each a ∈ πk−1(C) the fiber Ca = {y ∈
M | (a; y) ∈ C} is an (ik)-δ-cell.

Proof. Assume that C is obtained via the (i10, . . . , i1n1; . . . ; ik0, . . . , iknk)-cell C
L. By a classical result on o-minimal cells

[17, Proposition 3.5, p. 60], the projection of C L onto the (n1 + 1) + · · · + (nk−1 + 1) first coordinates (let us denote this
projection by πk−1) and the fiber C

L
a∗ (with {a∗} = J(n1;...;nk−1)({a})) are still cells. Furthermore a quick look at the proof of

this property shows that these two cells have types (i10, . . . , i1n1; . . . ; ik−1,0, . . . , ik−1,nk−1) and (ik0, . . . , iknk) respectively.
But one can easily see that πk−1(C

L) is a source cell of πk−1(C) and, by Lemma 2.10, C La∗ is a source cell of Ca. Hence πk−1(C)
is an (i1; . . . ; ik−1)-δ-cell and Ca is an (ik)-δ-cell. �

Proof of Lemma 4.5. Let C ⊆ Mk be a δ-cell and BL be an L-definable set which is δ-equivalent to the source cell C L of C . Let
CL = {C L1, . . . , C

L
l } be a cell decomposition of B

L.
We proceed by induction on k:

k = 1: Assume that C is a (1)-δ-cell. Then, by Lemma 2.6, BL has non-empty interior in its ambient space. By [6, Lemma
5.4], there exists j in {1, . . . , l} such that C Lj has non-empty interior, i.e. is an open cell. Hence C

L
j gives rise to a

δ-cell Cj with δ-type (1).
On another hand if C has δ-type (0), the same argument implies that BL has empty interior in its ambient space

and then each cell included in BL is non-open in this space (i.e. its o-minimal type contains a zero). Hence each cell
included in BL gives rise to a δ-cell with δ-type (0).

k > 1: Let C have δ-type (i1; . . . ; ik). Remark first that πk−1(B
L) is a source set for πk−1(C) and hence, by Lemma 4.6 and

the induction hypothesis, πk−1(C
L) (which is a cell decomposition of πk−1(C

L)) contains a cell C̃ L which gives rise
to a δ-cell C̃ ⊆ πk−1(C)with δ-type (i1; . . . ; ik−1). For the following, it is worth noting that

C̃ L = πk−1(C
L
j1) = · · · = πk−1(C

L
js)

for some subset {j1, . . . , js} of {1, . . . , l} (see Fig. 4). Assume that ik = 1 and let

Ca = C(a1;...;ak−1) = {ak | (a1; . . . ; ak) ∈ C}

where a = (a1; . . . ; ak−1) belongs to C̃ . By Lemma 4.6, Ca is a (1)-δ-cell and hence it has non-empty δ-interior in
M . But

C̃ La1∗;...;ak−1∗ = C̃
L
a∗

is also a source cell of Ca (cf. Lemma 2.10) and then it has non-empty interior in its ambient space. Furthermore

C̃ La∗ = (C
L
j1)a
∗ ∪ · · · ∪ (C Ljs)a∗

and then (again by [6, Lemma 5.4]) there exists t in {j1, . . . , js} such that (C Ljt )a∗ is an open cell (i.e. has type
(1, . . . , 1)). This implies that C Ljt has a type equal to (type of πk−1(C

L
jt ); 1, . . . , 1) and so it gives rise to a δ-cell

with δ-type (i1; . . . ; ik−1; 1)which is the δ-type of C .
The case where ik = 0 can be proved in a similar way using, as in the case where k = 1, the fact that any source

set of Ca has empty interior in its ambient space.
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Fig. 4.

Remark 4.7. . As in o-minimal structures, (1; . . . ; 1)-δ-cells will be called δ-open δ-cells and, by Proposition 3.3(ii) and
Definition 4.2, they are exactly the δ-cells which are δ-open in their ambient space. Furthermore any L′-definable subset
ofMk with non-empty δ-interior contains a δ-open δ-cell. This follows from Proposition 3.3(ii) and the analogous result
for o-minimal structures.
. In the same way, (0; . . . ; 0)-δ-cells will be called trivial δ-cells. Remark that, contrary to the o-minimal case and many
other examples of structures admitting a cell decomposition (e.g.: weakly o-minimal structures, p-adically closed fields,
etc.), the trivial δ-cells are not necessarily finite (d-minimal theories provide other examples of structures where the
basic ‘‘cells’’ are not finite, see [7]).

Now we have proved that the notion of δ-cells is well-defined, we can make our way to the statement of a ‘‘differential
cell decomposition theorem’’ for CODF.
Before that we generalize the notion of decomposition introduced for o-minimal structures.

Definition 4.8. A δ-decomposition ofM is a partition ofM into finitely many δ-cells. A δ-decomposition ofMk (k > 1) is
a partition C ofMk into finitely many δ-cells such that the projection πk−1(C) is still a δ-decomposition ofMk−1.

We are now able to state the main result of this section.

Theorem 4.9 (δ-decomposition Theorem). Let M be a closed ordered differential field. For any finite collectionA = {A1, . . . , Al}
of L′-definable (over P ⊆ M) subsets of Mk there exists a finite δ-decomposition C of Mk (definable over P) compatible with A
(i.e. partitioning each of the Ai’s).

Proof. LetA = {A1, . . . , Al} be a finite collection of L′-definable subsets ofMk and suppose that the order of each L′-formula
ϕj defining Aj is equal to the tuple (nj1; . . . ; njk). For each s ∈ {1, . . . k}, let Ns = max{n1s, . . . , nls} and consider the sets AjL

as subsets of the spaceM(N1+1)+···+(Nk+1) = MN .
Since real closed fields are o-minimal there exists a finite cell decomposition CL ofMN compatible with the L-definable

collection AL = {A1L, . . . , AlL}. Take the intersection between CL and the (N1; . . . ;Nk)-jet-space of Mk and then the
projection onto the coordinatesX10, . . . , Xk0 to obtain a finite partitionC ofMk into δ-cells compatiblewithA. By Lemma4.6,
C is a δ-decomposition ofMk.
The definability of the δ-cells over the set of parameters P follows from the analogous fact in the o-minimal cell

decomposition theorem (Theorem 1.2), since a δ-cell is definable from the same set of parameters as its source cell (cf.
Definitions 4.1 and 4.2). �

Remark 4.10. In the proof of Theorem 4.9, it is possible that the cell decompositionCL ofMN contains several cells which do
not intersect the jet-space J(N1,...,Nk)(M

k). Without lost of generality we can forget these cells and simply consider the subset
ofCL consisting of all the cells having a non-empty intersectionwith J(N1,...,Nk)(M

k). Actually, this subset ofCL is δ-equivalent
to CL so that it gives rise to the same δ-decomposition of Mk. In the rest of the paper we will always assume that the cells
we consider have non-empty intersection with the jet-space.

Example. Let AL be the line

{(x0, x1, x2) ∈ M3 | x1 = 0 ∧ x0 = x2}.

Then AL = C L1 ∪C
L
2 ∪C

L
3 where C

L
1 = {(0, 0, 0)} is a (0, 0, 0)-cell and C

L
2 (resp. C

L
3) is the (1, 0, 0)-cell containing the elements

of AL which have a strictly positive (resp. negative) first coordinate. One can see that C L2 and C
L
3 have empty intersection with

J(2)(M) and that the L′-definable set A = {x ∈ M | x′ = 0 ∧ x′′ = x} resumes to the singleton {0}. In fact, in this example, it
is easy to see that the L′-formula defining A is equivalent to the formula x = 0.
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Fig. 5.

5. δ-dimension in CODF

In this section we develop a dimension theory for the theory of closed ordered differential fields based on the
δ-decomposition theorem.
We prove that this notion of dimension is a dimension function on the class of definable sets in CODF in the sense of

the axioms introduced by van den Dries in [16].
We also show that it is strongly related with two other notions of dimension (or rank) on definable sets in CODF , namely

the differential transcendence degree and the topological dimension induced by the δ-topology.

5.1. Definition and first properties

We first define the δ-dimension of a δ-cell.

Definition 5.1. Let C be an (i1; . . . ; ik)-δ-cell, then δ-dim(C) =
∑k
j=1 ij.

Lemma 4.5 ensures that this definition makes sense and furthermore it trivially implies the following result.

Corollary 5.2. If a δ-cell C is equal to an o-minimal cell then its δ-dimension is equal to its o-minimal dimension.

We now generalize the δ-dimension to any L′-definable subset ofMk.

Definition 5.3. LetA be a non-empty L′-definable subset ofMk, the δ-dimension ofA (δ-dim(A)) is themaximal δ-dimension
of a δ-cell C included in A. By convention we assign to the empty set a δ-dim equal to−∞.

The following result directly follows from Definition 5.3.

Corollary 5.4. If A ⊆ B are two L′-definable subsets of Mk then δ-dim(A) ≤ δ-dim(B).

Definition 5.5. Let A be a non-empty definable subset of Mk. A δ-cell C ⊆ A of maximal δ-dimension is called a witness
δ-cell of A.

Remark 5.6. (i) Similarly to what happens in o-minimal structures (where we can also define a notion of witness cell),
the witness δ-cell of A is not necessarily unique. Furthermore, a given δ-decomposition of A can contain several witness
cells with different δ-types (although they have the same δ-dimension). E.g.: if A is the disjoint union of two δ-cells C1
and C2 with δ-type (1, 0) and (0, 1) respectively then each of C1, C2 is a witness δ-cell of A (see Fig. 5).

(ii) It is worth noting that the canonical projection of a witness cell of an L-definable set AL must not be a witness δ-cell of
the L′-definable set A. For example, let

AL = {(x0, x1, x2) ∈ M3 | x1 = 0 ∧ x0 = x2} = C L1 ∪ C
L
2 ∪ C

L
3

where C L1 = {(0, 0, 0)} and C
L
2, C

L
3 are (1, 0, 0)-cells. Remark that C

L
2 and C

L
3 are witness cells for A

L while the
corresponding δ-cells C1, C2 are empty and then are not witnessing the δ-dimension of A (which is actually witnessed
by the δ-cell C1 = {0}).

The following theorem proves that the δ-dimension of an L′-definable set A is detectable in any partition of A.

Theorem 5.7. Any partition C = {C1, . . . , Cs} of A ⊂ Mk into δ-cells contains a witness δ-cell of A.

We begin with the proof of a slightly stronger o-minimal analogue of this theorem.

Lemma 5.8. Let M be an o-minimal L-structure and AL ⊆ MN be L-definable. If C L ⊆ AL is an (i1, . . . , iN)-cell then any finite
(not necessarily disjoint) family CL of cells covering AL contains a (j1, . . . , jN)-cell such that il ≤ jl for any l ∈ {1, . . . ,N}.
In particular, if C L is a witness cell for AL then any cell decomposition of AL contains a witness cell of AL which has the same

type as C L.
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Proof. Suppose that AL has dimension d and let C L be an (i1, . . . , iN)-cell contained in AL. We first recall that, given two cells
C1L ⊂ C2L ⊂ MN of types (i1, . . . , iN) and (j1, . . . , jN) respectively, the equality jl = il holds for each l ∈ {1, . . . ,N} iff C1L
and C2L have the same dimension [17, Lemma 1.14, Ch. 4]. Moreover, a straightforward induction on N shows that, in the
case where dim(C1L) ≤ dim(C2L), jl ≥ il for each l ∈ {1, . . . ,N}.
Consider a cell decompositionDL of AL which is compatible with CL and which partitions C L (such a cell decomposition

exists by Theorem 1.2). Since C L is a definable set, DL contains a witness cell DL for C L and then DL has the same type as
C L. Furthermore,DL is compatible with CL and then there exists C̃ L ∈ C containing DL. Hence C̃ L has type (j1, . . . , jN)with
jl ≥ il for each l in {1, . . . ,N}.
In particular, if C L is a witness cell of AL then C̃ L is also a witness cell of AL and jl = il for any l ∈ {1, . . . ,N}. �

We are now able to prove Theorem 5.7.

Proof. If δ-dim(A) = 0 then, by Definition 5.3, each δ-decomposition of A contains only trivial δ-cells. Hence we can assume
that the δ-dimension of A is equal tom ≥ 1.
We proceed by induction on k:
k = 1: In this case δ-dim(A) = 1 and A contains a δ-open δ-cell C of M . Hence A has non-empty δ-interior in M and,
Lemma 3.3(iv), each finite δ-decomposition of Amust contain a δ-cell with non-empty δ-interior, i.e. a δ-open δ-cell.
k > 1: Assume that the theorem is proved for any k′ < k and let π denote the projection onto the (k− 1) first coordinates.
Let A ⊆ M be L′-definable and C = {C1, . . . , Cs} be a partition of A into δ-cells. Remark that, by Definition 4.8 and

Lemma 4.6, δ-dim(π(A)) ≥ m− 1. On another hand, if π(A) contains a δ-cell C of δ-dimension at leastm+ 1, the induction
hypothesis implies that any δ-decomposition D of (C × M) ∩ A contains a δ-cell D such that π(D) is a witness cell for C ,
i.e. δ-dim(π(D)) ≥ m + 1 (since any such δ-decomposition D projects onto a δ-decomposition of C). This implies that
δ-dim(D) ≥ m+ 1, contradicting the fact that δ-dim(A) = m. It follows that the δ-dimension of π(A) is either m or m− 1.
Assume first that δ-dim(π(A)) = m.
The induction hypothesis implies that {π(C1), . . . , π(Cs)} contains an element π(Cj) of δ-dimension m. Hence Cj has
δ-dimension at leastm and since it is included in A, this δ-dimension is exactlym.
Suppose now that π(A) has δ-dimensionm− 1.
By Lemma 4.6 and the inductive hypothesis, A contains a witness δ-cell C of δ-type (i1; . . . ; ik−1; 1)with

∑k−1
h=1 ih = m− 1.

Otherwise eachwitness δ-cell of A has δ-type (i1; . . . ; ik−1; 0)with
∑k−1
h=1 ih = m. Taking the projection of one of these δ-cell

onto the k− 1 first coordinate, we get a (i1; . . . ; ik−1)-δ-cell included in π(A). This contradicts the fact that δ-dim(π(A)) =
m− 1.
Remark now that, sinceC is a partition of A, (C L1∪· · ·∪C

L
s )∩C

L is δ-equivalent to C L. Hence, by Lemma 4.5, (C L1∪· · ·∪C
L
s )

contains a cell C̃ L which gives rise to the δ-type (i1, . . . , ik−1, 1). Let (i1; . . . ; ik−1; 1, . . . , 1) be the (o-minimal) type of C̃ L.
By Lemma 5.8, there exists r ∈ {1, . . . , s} such that C Lr has type (j1; . . . ; jk−1; 1, . . . , 1)with

j1 ≥ i1, . . . , jk−1 ≥ ik−1 (where jl ≥ il means jl0 ≥ il0 ∧ · · · ∧ jlnl ≥ ilnl ).

Hence Cr has type (j1; . . . ; jk−1; 1) with j1 ≥ i1, . . . , jk−1 ≥ ik−1 and its δ-dimension is at least m. But Cr ⊂ A and then
δ-dim(Cr) = m. �

Remark that in the last part of the proof above, C L may not be a witness cell for AL and it is why we needed to introduce
Lemma 5.8.
We end this section by the following easy corollary of Theorem 5.7.

Corollary 5.9. If A is an L′-definable subset of Mk which is also definable in the language L then its δ-dimension is equal to its
o-minimal dimension.

Proof. By Corollary 5.2 and Theorem 5.7. �

5.2. Homeomorphism and δ-cells

We first recall a classical definition from topology.

Definition 5.10. Let X, Y be two topological spaces and f : X → Y be a bijection. Then f is a homeomorphism if both f
and the inverse function f −1 : Y → X are continuous (we say that f is bi-continuous).

In o-minimal structures cells have the following nice property.

Proposition 5.11. Let M be an o-minimal structure and C L be an (i1, . . . , iN)-cell. Let 1 ≤ j1, . . . ,≤ jl ≤ N be such that iv = 1
iff v ∈ {j1, . . . , jl}. Then the projection π(j1,...,jl) is an homeomorphism between C

L and the open cell π(j1,...,jl)(C
L) ⊆ M l.

Proof. By induction, using the definition of cells. �

Remark 5.12. This property remains true in many other variants of o-minimality and was taken as a basis for the definition
of topological cell by L. Mathews in his thesis [6,5].
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Fig. 6.

Unfortunately the example below shows that we cannot expect such a powerful result in our context.

Example. Let A = {(x; y) | x > 0 ∧ y′ = 0}, it is easy to see that A is a (1, 0)-δ-cell but, since the subfield of constants ofM
is infinite, πX : M2 → M is not injective on A (see Fig. 6).

Hence in order to express an analogous result as in Proposition 5.11 we have to weaken the condition of injectivity.

Definition 5.13. An L′-definable function f : A→ B is almost injective if for each b in B, the set f −1(b) = {a ∈ A | f (a) = b}
has δ-dimension 0 (i.e. f −1(b) is a finite union of trivial δ-cells, see Theorems 4.9 and 5.7).

We then have the following theorem.

Theorem 5.14. Let C be an (i1; . . . ; ik)-δ-cell and suppose that there exist l > 0 and 1 ≤ j1, . . . ,≤ jl ≤ k such that iv = 1 iff
v ∈ {j1, . . . , jl}. Then π(j1;...;jl)(C) is δ-open in M

l and the projection π(j1,...,jl) is almost injective and δ-continuous on C.

Proof. We prove the theorem by induction on k.
If k = 1 then l = 1 and there is nothing to prove. Assume then that k > 1 and that the result is true for all k′ < k. Let Ck−1

be the projection of C onto the k− 1 first coordinates. We consider two cases (in both cases the δ-continuity is immediate
since in any topological space, coordinate projections are continuous).
ik = 0: By the inductive hypothesis, there exists an almost injective projection π(j1;...;jl) which sends Ck−1 onto a δ-open
subset inM l. It remains to prove that this projection applied to C (let us denote it π ) is still almost injective.
Let u belong to π(C) = π(j1;...;jl)(Ck−1). Then

π−1(u) = π−1k−1 ◦ π
−1
(j1;...;jl)

(u).

Hence, since π−1(j1;...;jl)(u) is a finite union of trivial δ-cells and ik = 0, π
−1(u) has also δ-dimension zero (Lemma 4.6).

ik = 1: Let π(j1;...;jl−1) be an almost injective projection which sends Ck−1 to a δ-open subset of M
l−1. Define a projection π

on C by

π(a1; . . . ; ak) := (aj1; . . . ; ajl−1; ak)

so that

π(C) =
⋃
a∈Ck−1

π(j1;...;jl−1)(a)× Ca.

Recall that π(j1;...;jl−1)(Ck−1) is δ-open inM
l−1 and remark that, since ik = 1, a source cell C La∗ of Ca has type (1, . . . , 1) (i.e.

is open in its ambient space). Hence, for each a in Ck−1, Ca is δ-open inM .
Suppose now that π(C) is not δ-open in M l. Then there exists a = (a1; . . . ; ak) ∈ C such that each δ-open ball of

M l centered on (aj1; . . . ; ajl−1; ak) = π(a) contains a point which does not belong to π(C). Furthermore, since Ca is a
δ-open δ-cell, this point can be chosen outside the fiber (aj1; . . . ; ajl−1) × Ca. Hence each δ-open ball in M

l−1 centered
on (a1; . . . ; al−1) contains a point which does not belong to π(j1;...;jl−1)(Ck−1), contradicting the fact that this set is δ-open in
M l−1. This implies that π(C) is δ-open.
It remains to prove the almost injectivity of π . This follows from the fact that, if u ∈ π(C), then u is of the form

(aj1; . . . , ajl; au)with (aj1; . . . , ajl) ∈ π(j1,...,jl−1)(Ck−1). Hence π
−1(u) is equal to the set

(π−1(j1,...,jl−1)(aj1; . . . , ajl))× au.

By the induction hypothesis, the leftmember of this direct product has δ-dimension 0 and thenπ−1(u) has also δ-dimension
0. �
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Fig. 7. The application τ ∗ .

5.3. The δ-dimension as a dimension function

We now prove some properties of the δ-dimension. In particular we show that it satisfies the axioms of a definable
dimension function as appearing in [16].
Lemma 5.15. Let A, B be two L′-definable subsets of Mk,
(i) δ-dim(A) = −∞ iff A = ∅;
(ii) if A = {a} with a ∈ Mk then δ-dim(A) = 0;
(iii) if A = Mk then δ-dim(A) = k.

Proof. This is an immediate consequence of Theorem 5.7 or Corollary 5.9 and of the fact that the o-minimal dimension
satisfies the same properties. �

Lemma 5.16. Let A, B be two L′-definable subsets of Mk,
δ-dim(A ∪ B) = max{δ-dim(A), δ-dim(B)}.

Proof. The case where A∩ B = φ directly follows from Definition 5.3 and Theorem 5.7. If this intersection is non-empty we
write

B = (B \ A)∪̇(A ∩ B)

and then

max{δ-dim(A), δ-dim(B)} = max{δ-dim(A), δ-dim(B \ A), δ-dim(A ∩ B)}
= max{δ-dim(A), δ-dim(B \ A)} (since A ∩ B ⊆ A)
= δ-dim(A∪̇(B \ A))
= δ-dim(A ∪ B). �

Lemma 5.17. Let A be an L′-definable subsets of Mk. If σ is any permutation of {1, . . . , k} and
Aσ := {(xσ(1), . . . , xσ(k)) | (x1, . . . , xk) ∈ A},

then A and Aσ have the same δ-dimension.

Proof. Since any permutation can be expressed as a product of transpositions (i, i + 1) it suffices to prove the lemma in
the case where σ is equal to such a transposition τ . Furthermore, if we prove that δ-dim(Aτ ) ≥ δ-dim(A) then the reverse
equality is obtained by the same method using the inverse transposition τ−1 = τ .
Suppose that the result holds for δ-cells and that A contains a witness δ-cell C of δ-dim l. Then Aτ ⊇ Cτ (remark that Cτ

is not necessarily a δ-cell) and Corollary 5.4 implies

δ-dim(Aτ ) ≥ δ-dim(Cτ ) ≥ δ-dim(C) = δ-dim(A).

We now prove the result for a δ-cell C with δ-dim(C) = l. By Theorem 5.14, there exists an almost injective coordinate
projection p = π(j1,...,jl) on C such that p(C) is δ-open inM

l. Let pτ be the ‘‘twisted’’ projection

π(τ (j1),...,τ (jl)) : M
k
→ M l : (X1, . . . , Xk) 7→ (Xτ(j1), . . . , Xτ(jl))

and define the application τ ∗ such that the diagram 7 below commutes.
Remark that, for any (aj1 , . . . , ajl) in p(C),

τ ∗(aj1 , . . . , ajl) =
{
(aτ(j1), . . . , aτ(jl)) if i and i+ 1 belong to {j1, . . . , jl}
(aj1 , . . . , ajl) if i or i+ 1 does not belong to {j1, . . . , jl}.

It is easy to see that τ ∗ is 1-1 and δ-bi-continuous (i.e. τ ∗ is a δ-homeomorphism). Hence τ ∗(C) = pτ (Cτ ) is δ-open in M l
implying that its δ-dimension is equal to l.
It follows that δ-dim(Cτ ) ≥ l = δ-dim(C). �
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Fig. 8.

Lemma 5.18. Let A be an L′-definable subset of Mk and, for each x ∈ Mk−1 and i ∈ {0, 1}, let

Ax := {y ∈ M | (x, y) ∈ A} and A(i) := {x ∈ Mk−1 | δ-dim(Ax) = i}.

Then A(i) is L′-definable and δ-dim({(x, y) ∈ A | x ∈ A(i)}) = δ-dim(A(i))+ i (Fig. 8).

Proof. The proof is similar to the proof of the o-minimal analogous result (see [17, ch. 4, Prop. 1.5]).
Suppose first that A is an (i1; . . . ; ik)-δ-cell. Then Lemma 4.6 implies that A(ik) = π(A) and A((ik + 1)mod 2) = ∅. The

result then follows trivially.
Suppose now that A is any L′-definable subset ofMk and let C be a δ-decomposition ofMk partitioning A. Let E ∈ C and

consider C1, . . . , Cl, the elements of C which partition A and such that

π(C1) = · · · = π(Cl) = π(E).

For each x ∈ π(E),

Ax = (C1)x ∪ · · · ∪ (Cl)x

and hence, by Lemma 5.16,

i = δ-dim(Ax) = maxlj=1{δ-dim((Cj)x)}.

Furthermore Lemma 4.6 implies that, for any j in {1, . . . , l},

δ-dim(Cj) = δ-dim(π(Cj))+ δ-dim((Cj)x)

for any x ∈ π(Cj) = π(E). Hence

i = maxj{δ-dim(Cj)− δ-dim(π(E))}
= maxj{δ-dim(Cj)} − δ-dim(π(E))

= δ-dim

(⋃
j

Cj

)
− δ-dim(π(E))

= δ-dim

( ⋃
x∈π(E)

({x} × Ax)

)
− δ-dim(π(E)) .

Remark that, in the equality above, i is independent of the choice of x in π(E). Hence π(E) ⊆ A(i) and A(i) is an union of
δ-cells belonging to π(C). It is then L′-definable. Taking the union over all E ∈ C such that π(E) ⊆ A(i) in this equality we
get

δ-dim

(⋃
x∈A(i)

({x} × Ax)

)
− δ-dim(A(i)) = i

⇒ δ-dim({(x, y) ∈ A | x ∈ A(i)}) = δ-dim(A(i))+ i . �

Lemmas 5.15–5.18 resume into the following theorem (see [16, p.189]).

Theorem 5.19. δ-dim is a definable dimension function on the class of L′-definable sets in a closed ordered differential field.

Corollaries (i) and (ii) below present some usual properties of dimension functions and their proofs can be found in [16,
ch. 1]. The first one is a coordinate free version of Lemma 5.18 and it is easy to see that it implies (iii).
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Corollary 5.20. (i) Let A ⊂ Mk and f : A→ M l be an L′-definable function. For each j ∈ {0, . . . , k}, let

B(j) := {y ∈ M l | δ-dim(f −1(y)) = j}.

Then B(j) is definable and

δ-dim(B(j))+ j = δ-dim(f −1(B(j))).

(ii) For any L′-definable sets A, B,

δ-dim(A× B) = δ-dim(A)+ δ-dim(B).

(iii) If f is an L′-definable almost injective function from A to M l then

δ-dim(A) = δ-dim(f (A)).

In particular, if there exists a definable bijection between A and B then

δ-dim(A) = δ-dim(B).

Proof. As said before the proofs of (i) and (ii) can be found in [16, Corollaries 1.5]. To see that (iii) is true, just remark that if
f is almost injective then B(0) = f (A) and f −1(B(0)) = A. The result now follows immediately from (i). �

In order to compare the δ-dimension with other notions of dimension on the class of definable sets in CODF in the next
sub-section, we need the following corollary.

Corollary 5.21. Assume that A is an L′-definable (with parameters from M) subset of Mk, N is an elementary extension of M and
AN is the subset of Nk defined by the same formula as A. Then δ-dim(A) = δ-dim(AN).

Proof. Since AN is defined by a formula with parameters fromM , there exists a finite partition C of A into δ-cells such that
CN is a partition of AN into δ-cells (Theorem 4.9). By Theorem 5.7, it suffices to show that δ-dim(C) = δ-dim(CN) for each
δ-cell C definable with parameters in M . Remark that the fact that C L is a source cell of C is first-order L′-definable by the
following formula (with parameters fromM):

∀X1, . . . , Xk((X1; . . . ; Xk) ∈ C ⇔ (X1, . . . , X
(n1)
1 ; . . . ; Xk, . . . , X

(nk)
k ) ∈ C L).

Hence, since N is an elementary extension of M , (C L)N is a source cell of CN . Furthermore the type of (C L)N is equal to the
type of C L and, by Lemma 4.5, the δ-type of CN is equal to the one of C . It follows that δ-dim(CN) = δ-dim(C). �

5.4. δ-dimension, differential rank and topological dimension

In this sub-section we consider two modelsM,N of CODF where N is an |M|+-saturated elementary extension ofM .

Differential rank:
Definition 5.22. Let A be an L′-definable subset ofMk and AN be the subset of Nk defined by the same formula as A. Then

δ-rk(A) = maxa∈AN {differential transcendence degree ofM〈a〉 overM}.

A point a of AN such thatM{a} has maximal differential transcendence degree overM is called a differentially generic (or
L′-generic) point of A.

Theorem 5.23. If C ⊆ Mk is a δ-cell then δ-dim(C) = δ-rk(C).

Before we prove this theorem we introduce some intermediate lemmas.

Lemma 5.24. If a δ-cellC ⊆ Mk is δ-open then CN contains a point (a1, . . . , ak)whose components are differentially independent
over M (i.e. a differentially generic point of Mk).

Proof. Let C LN be the source cell of CN defined by the same formula as C L and recall that the analogous algebraic result holds
for real closed fields (see for example [6, Lemma 8.11]).
Assume first that k = 1.
For each natural number s, the open cell (C LN)s = C L × N s contains an algebraic generic7 point (a0, . . . , an+s) of M(n+1)+s

(where n is the order of the formula defining C). Hence each finite system of polynomial inequations

f1(X0, . . . , Xn+s) 6= 0 ∧ · · · ∧ ft(X0, . . . , Xn+s) 6= 0 (∗)

7 An algebraic generic point in an L-definable (with parameters from M) set AN ⊆ Nk is a point of AN such that the algebraic transcendence degree of
M(a) overM is maximal amongst the elements of AN . In the particular case where AN = Nk this means (since N is |M|+-saturated) that the components of
a are algebraically independent overM .
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with f1, . . . , ft ∈ M[X0, . . . , Xn+s] defines an open subset ofMn+1+s. This set contains (a0, . . . , an+s) and so has a non-empty
intersection with the open cell (C LN)s. Since this intersection is also an open subset of Mn+1+s, it contains an element of
Jn+s(M) (Lemma 2.2) that we denote by (a, a′, . . . , a(n+s)). Hence (a, a′, . . . , a(n+s)) ∈ (C LN)s is a solution to the system (∗).
It follows that CN contains a point awhich is a solution to the system of differential inequations

f1(X) 6= 0 ∧ · · · ft(X) 6= 0

with f1, . . . , ft ∈ M{X}.
This proves that each finite system of differential inequations has non-empty intersection with CN . By the saturation of

N , CN contains a differentially transcendental point.
We act similarly in the case where k > 1.
We use appropriate direct products of C LN and N (see Remark 4.4) to prove that any finite system of differential inequations
in k variables (with parameters fromM) has a solution in CN and then we conclude again by the saturation of N . �

Since each L′-definable setwith non-empty δ-interior contains an open δ-cell, the following result is a trivial consequence
of Lemma 5.24:

Corollary 5.25. If A ⊆ Mk is L′-definable and has non-empty δ-interior in Mk then AN contains a L′-generic point of Mk.

The next lemma gives a more precise characterization of the links between the differential transcendence degree and
the δ-type of a δ-cell.

Lemma 5.26. Let C be an (i1; . . . ; ik)-δ-cell such that ij = 1 iff j ∈ {j1 . . . , jl}. Then CN contains a point whose components
j1 . . . , jl are differentially independent over M.

Proof. If k = 1 then we can suppose that C is a (1)-δ-cell and the result follows from Lemma 5.24 (there is nothing to prove
in the case where C has δ-dimension 0).
If k > 1, we assume that l < k (otherwise the result follows from Lemma 5.24). By Theorem 5.14,π(j1;...;jl)(C) has non-empty
δ-interior inM l and then π(j1;...;jl)(CN) contains an L

′-generic point ofM l (Corollary 5.25). Hence CN contains a point whose
components j1 . . . , jl are differentially independent overM . �

We now prove Theorem 5.23.

Proof.
. Lemma 5.26 clearly implies that δ-rk(C) ≥ δ-dim(C).
. Let δ-rk(C) = l and a = (a1; . . . ; ak) ∈ CN be an L′-generic point of C with components aj1 , . . . , ajl differentially
independent. Assume that there is j ∈ {j1, . . . , jl} such that ij = 0. Then, by Lemma 4.5, if C LN is a source cell of CN with
o-minimal type (. . . ; ij0, . . . , ijnj; . . .), there exists s ∈ {0, . . . , nj} such that ijs = 0. But

(a1, . . . , a
(n1)
1 ; . . . ; ak, . . . , a

(nk)
k ) ∈ C LN

and so, using the equivalence between algebraic transcendence degree and dimension in o-minimal structures [6,
Lemma 8.11], we deduce that a(s)j is algebraic over the others components of (a1, . . . , a

(n1)
1 ; . . . ; ak, . . . , a

(nk)
k ). This

contradicts the assumption on a and prove that, for each j ∈ {j1, . . . , jl}, ij = 1. Hence δ-dim(C) is a least l. �

Corollary 5.27. For any L′-definable set A ⊆ Mk, δ-rk(A) = δ-dim(A).

Proof. If δ-dim(A) = l then there exists a witness δ-cell C of A with δ-dim l and, by Lemma 5.23, CN contains a point
a = (a1; . . . ; ak) such that M〈a〉 has differential transcendence degree l. Since C is a witness δ-cell of A, a is an L′-generic
point of A and δ-rk(A) = l. �

Topological dimension
The notion of topological dimension can be defined in any topological space but here we only consider it in the case

where this space is a first-order structure (in a language L) equipped with a topology τ .

Definition 5.28. Let M be any L-structure equipped with a topology τ and let A be an L-definable subset of Mk. The
topological dimension associated to τ is defined as follow:

tdim(A) = max{l ∈ {1, . . . , k} | there exist 1 ≤ j1 < · · · < jl ≤ k s.t.
πj1,...,jk(A) has non-empty interior inM

l w.r.t. τ },

and tdim(A) = 0 iff for every j ∈ {1, . . . , k}, π(j)(A) has empty interior (w.r.t. τ ) inM .
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Remark that if A ⊆ Mk then tdim(A) = k iff A has non-empty interior in Mk. Moreover, in most of classical examples of
first-order topological structures (e.g. RCF , RCR and pCF where the respective topologies are the natural ones associated
with the language of the structure), the equivalence ‘‘tdim(A) = 0 ⇐⇒ A is finite’’ holds (see [6]).
This is not true anymore in closed ordered differential fields if we consider the topological dimension associated with the
δ-topology. Indeed, there exist infinite definable sets with topological dimension 0 (e.g. the subfield of constants ofM is an
infinite subset of M which has empty δ-interior in M). This has to be related with the fact that there exist infinite trivial
δ-cells (cf. Remark 4.7 and Theorem 5.29).
The next theorem proves the equivalence between the δ-dimension and the topological dimension associated with the

δ-topology in CODF .
Theorem 5.29. Let M |= CODF and A ⊂ Mk be L′-definable, then

tdim(A) = δ-dim(A)
where tdim is the topological dimension associated with the δ-topology on M.
Proof.
. Suppose first that tdim(A) = 0. If δ-dim(A) > 0 then A contains a non-trivial δ-cell C and Theorem 5.14 implies that a
coordinate projection π(C) ⊂ π(A) has non-empty δ-interior. Hence π(A) has non-empty δ-interior and tdim(A) > 0
(Definition 5.28), a contradiction.
On another hand, if δ-dim(A) = 0 and π(A) is a coordinate projection of A which has non-empty δ-interior, then π(A)

contains a δ-open δ-cell. Hence
0 < δ-dim(π(A)) ≤ δ-dim(A)

and this contradicts the assumption δ-dim(A) = 0. So tdim(A) = 0.
. Suppose now that δ-dim(A) = l > 0. Then A contains a δ-cell C of δ-dimension l and, by Theorem 5.14, there exists a
coordinate projection π(j1;...;jl) such that π(j1;...;jl)(C) has non-empty δ-interior inM

l. By Definition 5.28, tdim(A) ≥ l.
. Finally let tdim(A) = l > 0 and π(A) ⊂ M l be a coordinate projection of A with non-empty δ-interior. By Lemma 5.25,
π(A)N contains a differentially generic point a = (a1; . . . ; al) ofM l. Hence AN contains a point which is projected on a and
δ-rk(A) ≥ l. By Theorem 5.23, δ-dim(A) ≥ l, finishing the proof. �

6. A final remark

All thework developed in this paper only depends on three basic results: the quantifier elimination in CODF , the existence
of a cell decomposition for RCF and the density of the jet-spaces w.r.t. the order topology. This is why we think that all
these methods should apply to other examples of theories of differential fields (eventually equipped with finitely many
commuting derivations) as soon as the three conditions above hold. It is worth noticing that the third author obtained in
his thesis the same results as the ones in this paper in the case of existentially closed ordered fields equipped with finitely
many commuting derivations [11].
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