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We study holographic superconductors in 3þ 1 dimensions away from the probe limit, i.e. taking

backreaction of the space-time into account. We consider the case of pure Einstein and Gauss-Bonnet

gravity, respectively. Similar to the probe limit we observe that the critical temperature at which

condensation sets in decreases with increasing Gauss-Bonnet coupling. The decrease is however stronger

when taking backreaction of the space-time into account. We observe that the critical temperature

becomes very small, but stays positive for all values of the Gauss-Bonnet coupling no matter how strong

the backreaction of the space-time is.
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I. INTRODUCTION

The gravity-gauge theory duality [1] has attracted a lot
of attention in the past years. The most famous example is
the AdS/CFT correspondence [2] which states that a grav-
ity theory in a d-dimensional anti-de Sitter (AdS) space-
time is equivalent to a conformal field theory on the ðd�
1Þ-dimensional boundary of AdS.

Recently, this theory has been used to describe so-called
holographic superconductors with the help of black holes
in higher dimensional space-time [3–5] and many aspects
have been discussed such as holographic superconductors
in Horava-Lifshitz gravity [6] and in Born-Infeld electro-
dynamics [7], fermions [8], the behavior of holographic
superconductors in external magnetic fields [9] and at zero
temperature [10], hydrodynamical aspects of holographic
superconductors [11] as well as rotating superconductors
[12]. Holographic superconductors in extended models
that allow for a first order phase transition [13] as well as
holographic superconductors in M theory [14] have also
been studied. Non–Abelian (or p-wave) holographic
superconductors have been studied in [15–23]. In [19,20]
a string theory realization of p-wave holographic super-
conductors in the probe limit has been discussed and the
Meissner effect has been studied in detail [20]. (For a
related analytical study see [21].) Sound modes for
p-wave superconductors have been considered in [22],
while fermions in these superconductors have been dis-
cussed in [23]. Various other aspects have also been studied
[24].

The general idea behind holographic superconductors
comes from the observation that below a critical tempera-
ture electrically charged black holes become unstable to
form scalar hair, i.e. they possess nonvanishing scalar fields
on the horizon [3]. The reason for this is that close to the

horizon of the black hole the effective mass of the scalar
field can become negative with masses below the
Breitenlohner-Freedman bound [25] such that the scalar
field becomes unstable and possesses a nonvanishing value
on and close to the horizon of the black hole. The value of
the scalar field on the AdS boundary is then associated with
the corresponding condensate in the dual theory.
In most cases, holographic superconductors have been

studied in the ‘‘probe limit’’ neglecting backreaction of the
space-time. This limit corresponds to letting the electric
charge e tend to infinity or equivalently Newton’s constant
G tend to zero. Backreaction of the space-time was con-
sidered in [4] for a ð2þ 1Þ-dimensional holographic su-
perconductor. It was found that the qualitative results are
similar for small charges, but that surprisingly the scalar
field can even form a condensate when being uncharged.
In [26] ð3þ 1Þ-dimensional superconductors were

studied by investigating scalar hair formation on black
holes in Gauss-Bonnet gravity. This has been extended to
higher dimensions in [27]. The motivation for this is the
apparent contradiction between the Mermin-Wagner theo-
rem that forbids spontaneous symmetry breaking in 2þ 1
dimensions at finite temperatures and the fact that ð2þ
1Þ-dimensional holographic superconductors do exist.
Consequently, it has been suggested that higher curvature
corrections should suppress condensation, where higher
curvature corrections can, of course, only be studied for
ð3þ 1Þ-dimensional superconductors (or higher dimen-
sional ones). [26,27] were concerned with the ‘‘probe
limit’’ and it was found that condensation cannot be sup-
pressed in Gauss-Bonnet gravity.
In this paper, we are interested in the model studied in

[26] but away from the probe limit, i.e. taking backreaction
of the space-time into account. We study ð3þ
1Þ-dimensional superconductors in pure Einstein and
Gauss-Bonnet gravity, respectively. While for large tem-
peratures, i.e. when the scalar field vanishes identically
analytic solutions to the equations of motion are known,
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this is different for a black hole with scalar hair that forms
below the condensation temperature. These solutions have
to be constructed numerically.

In Sec. II, we present the model, the equations of motion
and the boundary conditions. In Sec. III, we discuss our
numerical results, while Sec. IV contains our conclusions.

II. THE MODEL

In this paper, we are studying the formation of scalar
hair on an electrically charged black hole in ð4þ
1Þ-dimensional anti–de Sitter space-time. The action reads

S ¼ 1

16�G

Z
d5x

ffiffiffiffiffiffiffi�g
p �

R� 2�þ �

4
ðR����R����

� 4R��R�� þ R2Þ þ 16�GLmatter

�
; (1)

where � ¼ �6=L2 is the cosmological constant and � the
Gauss-Bonnet coupling. Lmatter denotes the matter
Lagrangian:

Lmatter ¼ �1
4FMNF

MN � ðDMc Þ�DMc �m2c �c ;

M;N ¼ 0; 1; 2; 3; 4; (2)

where FMN ¼ @MAN � @NAM is the field strength tensor
and DMc ¼ @Mc � ieAMc is the covariant derivative. e
and m2 denote the electric charge and mass of the scalar
field c , respectively.

The Ansatz for the metric reads

ds2 ¼ �fðrÞa2ðrÞdt2 þ 1

fðrÞdr
2 þ r2

L2
d�2

k;3; (3)

where f and a are functions of r only. The 3-dimensional
metric is

d�2
k;3 ¼

8><
>:
d�2

3 for k ¼ 1
dx2 þ dy2 þ dz2 for k ¼ 0
d�2

3 for k ¼ �1
(4)

where k denotes the curvature of the 3-dimensional space.
We are only interested in plane-symmetric black holes in
this paper, so we will set k ¼ 0. However, we will keep the
k in the equations for completeness.

For the electromagnetic field and the scalar field we
choose [4]

AMdx
M ¼ �ðrÞdt; c ¼ c ðrÞ; (5)

such that the black hole possesses only electric charge.
The coupled Einstein and Euler-Lagrange equations are

obtained from the variation of the action with respect to the
matter and metric fields, respectively. They read:

f0 ¼ 2r
k� fþ 2r2=L2

r2 þ 2�ðk� fÞ � �
r3

2fa2

�
�
2e2�2c 2 þ fð2m2a2c 2 þ�02Þ þ 2f2a2c 02

r2 þ 2�ðk� fÞÞ
�
;

(6)

a0 ¼ �
r3ðe2�2c 2 þ a2f2c 02Þ
af2ðr2 þ 2�ðk� fÞÞ ; (7)

�00 ¼ �
�
3

r
� a0

a

�
�0 þ 2

e2c 2

f
�; (8)

c 00 ¼ �
�
3

r
þ f0

f
þ a0

a

�
c 0 �

�
e2�2

f2a2
�m2

f

�
c ; (9)

where � ¼ 16�G. Here and in the following the prime
denotes the derivative with respect to r. In [26], ð3þ
1Þ-dimensional holographic superconductors have been
studied in the probe limit corresponding to � ¼ 0. For � �
0 we take backreactions of the space-time into account.
Note that this limit is equivalent to letting e ! 1 since we
can perform the rescalings c ! c =e,� ! �=e, and � !
e2�. Hence without losing generality we can set e � 1.
In order to find an explicit solution of the equations of

motion, we have to fix appropriate boundary conditions. In
the following, we are interested in the formation of scalar
hair on electrically charged black holes with the horizon at
r ¼ rh such that

fðrhÞ ¼ 0; (10)

with aðrhÞ finite. In order for the matter fields to be regular
at the horizon we need to impose

�ðrhÞ ¼ 0;

c 0ðrhÞ ¼ m2c ðr2 þ 2�kÞ
2rkþ 4r=L2 � �r3ðm2c 2 þ�02=ð2a2ÞÞ

��������r¼rh

:

(11)

Asymptotically, we want the space-time to be that of a
Reissner-Nordström–anti–de Sitter black hole, i.e. we can
choose aðr ! 1Þ ! 1. Other choices of the asymptotic
value of aðrÞ would simply correspond to a rescaling of the
time coordinate. The matter fields on the other hand obey
[26]

�ðr � 1Þ ¼ �� �=r2; c ðr � 1Þ ¼ c�
r��

þ cþ
r�þ

;

(12)

with
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�� ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3ðLeff=LÞ2

q
;

�þ ¼ 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3ðLeff=LÞ2

q
;

L2
eff �

2�

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�=L2

p � L2ð1� �=L2 þOð�2ÞÞ:
(13)

Note that the value of the Gauss-Bonnet coupling � is
bounded from above: � � L2=4 where � ¼ L2=4 is the
Chern-Simons limit. For larger values of � the solution
would possess a naked singularity.

The parameters �, � are the chemical potential and
density of electric charge, respectively. Along with [26]
we choose c� ¼ 0. cþ will correspond to the expectation
value hOi of the operator O which, in the context of the
gauge theory-gravity duality, is dual to the scalar field and
as such represents the value of the condensate.

There are analytic solutions of the equations of motion
for c ðrÞ � 0:

fðrÞ ¼ kþ r2

2�

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

L2
þ 4�M

r4
� 4���2

r6

s �
;

aðrÞ ¼ 1; �ðrÞ ¼ �

r2h
� �

r2
;

(14)

where M and � are arbitrary integration constants that can
be interpreted as the mass and the charge density of the
solution, respectively. In the limit � ! 0, the metric func-

tion fðrÞ becomes fðrÞ ¼ kþ r2

L2 � M
r2
þ ��2

r4
. These solu-

tions are electrically charged black holes which are the
only solutions for temperatures larger than the critical
temperature Tc. For T < Tc these solutions will be unstable
to form scalar hair, i.e. develop a nonvanishing value of c
on the horizon. The aim of this paper is to study the
formation of scalar hair black holes in dependence on �
and �. The temperature mentioned here corresponds to the
Hawking temperature of the black hole and reads

T ¼ 1

4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gttgMN@Mgtt@Ngtt

q ��������r¼rh

¼ 1

4�
f0ðrhÞaðrhÞ;

M;N ¼ 1; 2; 3; 4: (15)

In the gauge theory-gravity duality Tc is the temperature
below which superconductivity appears.

III. NUMERICAL RESULTS

In the following we are only interested in the plane-
symmetric black holes with k ¼ 0. The equations of mo-
tion (6)–(9) depend in principle on a number of constants
but due to the scale invariances noted in [4] two of them
can be scaled out and hence be fixed to particular values
without loosing generality. In the following we fix rh ¼ 0:5
and L ¼ 1. Along with [26] we set m2 ¼ �3=L2 � �3
which guarantees the stability of AdS5 since m

2 <m2
BF ¼

�4=L2 with m2
BF the Breitenlohner-Freedam (BF) mass

[25].
To find a unique solution to the equations of motions we

fix the boundary conditions (10) and (11) at the horizon,
and choose að1Þ ¼ 1, c� ¼ 0. In addition we fix cþ to a
particular value. In this way we are able to construct
branches of solutions labeled by the parameter cþ. Note
that� and � are uniquely fixed by the choice of cþ and are
not free parameters. However, in the literature on holo-
graphic superconductors, the solutions are typically pre-
sented for fixed electric charge density �, while the horizon
value rh is treated as a free parameter. These two ap-
proaches are connected to each other. Indeed, it is easy to
convert a branch of solutions with fixed rh and varying
cþ—where � ¼ �ðcþÞ—into a branch of solutions with
a constant charge density. In the following we denote
quantities corresponding to a fixed charge density by a

hat. Setting �̂ ¼ 1, the relevant Hawking temperature T̂

and condensate ĉþ are, respectively, given by

T̂ ¼ T

�1=3
; ĉþ ¼ cþ

�ð�þ=3Þ ; (16)

where �þ is defined in (13).

A. Effect of backreaction in Einstein gravity

This corresponds to the case � � 0 and � ¼ 0. We
solved the equations for several values of � and cþ and
find that solutions exist for generic values of these
parameters.
When studying solutions for � fixed and varying cþ we

find that in the limit cþ ! 0 the solutions tend to (14) for
very specific values of� and �which depend on the choice
of � and can only be determined numerically.

Correspondingly, the critical temperature T̂c at which

ĉþ ¼ 0 can also only be determined numerically. We
find the values given in the table below:

� 0.0 0.025 0.05 0.1 0.15 0.2 0.3 0.35

4�T̂c 2.48 2.02 1.61 0.99 0.57 0.33 0.10 0.06

For large � the construction of the solutions becomes
increasingly difficult. In principle we would want to know
what happens for very large �. In order to understand this,
we fitted the numerical data and found that

Tc � 0:198 	 expð�10:6 	 �Þ�1=3 (17)

fits the data for � 
 0:2 very well. This, on the other hand,
means that no matter how large we choose �, we will
always have Tc > 0. This has already been observed for
superconductors in 2þ 1 dimensions [4], where it was
shown that Tc > 0 in the limit e ! 0 which corresponds
to � ! 1 here. Apparently, this phenomenon persists for
ð3þ 1Þ-dimensional superconductors.
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Fixing � and increasing the value of the condensate cþ
we find that the values aðrhÞ and �0ðrhÞ slowly approach
zero. At the same time, the function fðrÞ develops a local
maximum and a local minimum at values rM, rm such that
rh < rM < rm <1. This is illustrated for the metric func-
tions fðrÞ and aðrÞ in Fig. 1 (left) for � ¼ 0:2 and three
different values of cþ.

This would suggest that for sufficiently large cþ the
function fðrÞ develops a double zero at r ¼ rm which
would correspond to the formation of an extremal black
hole with vanishing Hawking temperature. A detailed
analysis, however, shows that the value fðrmÞ remains
strictly positive, while the value of aðrhÞ decreases with
cþ increasing according to an exponential behavior
aðrhÞ � expð�ccþÞ with c some constant. This result
suggests that the black hole solutions are not limited by a
maximal value of the condensate cþ and that the tempera-
ture stays positive for all values of cþ.

In Fig. 1 (right) we show the matter field functions�ðrÞ,
c ðrÞ, and�0ðrÞ. We observe that for fixed � and increasing
cþ the maximum of�0ðrÞ is pushed further away from the
horizon of the black hole. Indeed, for small values of � and
cþ, the maximum of �0ðrÞ is on the horizon of the black
hole. Note that when fixing cþ and increasing � we
observe a similar phenomenon.

To understand how the scalar field c becomes unstable
close to the horizon, we plot the effective mass

m2
eff ¼ m2 þ e2A2

t g
tt ¼ � 3

L2
� �2

fa2
(18)

in Fig. 2 for L ¼ 1. Indeed, the effective mass drops below
the Breitenlohner-Freedman bound of �4=L2 ¼ �4 close
to the horizon. For fixed cþ and increasing � the quantity

� 3
L2 � �2

fa2
becomes more narrow and smaller in absolute

value. For fixed � and increasing cþ it becomes broader
and larger in absolute value.
To understand this in more detail note that close to the

horizon the functions can be expanded as follows:

fðrÞ ¼ f0ðrhÞðr� rhÞ þ f00ðrhÞ
2

ðr� rhÞ2 þ . . . ; (19)

aðrÞ ¼ aðrhÞ þ a0ðrhÞðr� rhÞ þ a00ðrhÞ
2

ðr� rhÞ2 þ . . . ;

(20)

�ðrÞ ¼ �0ðrhÞðr� rhÞ þ�00ðrhÞ
2

ðr� rhÞ2 þ . . . ; (21)

FIG. 2 (color online). The value of the effective mass m2
eff ¼

m2 þ e2A2
t g

tt ¼ � 3
L2 � �2

fa2
close to the horizon of the black hole

for several values of � and cþ.

FIG. 1 (color online). The metric functions fðrÞ and aðrÞ (left) and the matter functions�ðrÞ, c ðrÞ, and�0ðrÞ (right) for � ¼ 0:2 and
for three values of cþ.
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c ðrÞ ¼ c ðrhÞ þ c 0ðrhÞðr� rhÞ þ c 00ðrhÞ
2

ðr� rhÞ2

þ . . . : (22)

Moreover note that there are the following relations be-
tween the values of the functions at r ¼ rh:

�00ðrhÞ ¼ �0ðrhÞ
�
a0ðrhÞ
aðrhÞ þ 2e2

c ðrhÞ2
f0ðrhÞ � 3

rh

�
; (23)

c 0ðrhÞf0ðrhÞ ¼ m2c ðrhÞ ¼ � 3

L2
c ðrhÞ; (24)

f0ðrhÞ ¼ 4
rh
L2

� rh�

�
m2c ðrhÞ2 þ �0ðrhÞ2

2aðrhÞ2
�

¼ 4
rh
L2

þ rh�

�
3

L2
c ðrhÞ2 � �0ðrhÞ2

2aðrhÞ2
�
; (25)

a0ðrhÞ ¼ rh�

�
aðrhÞc 0ðrhÞ2 þ e2

�0ðrhÞ2c ðrhÞ2
aðrhÞf0ðrhÞ2

�
: (26)

Several quantities characterizing the solutions are given
in Fig. 3 for � varying and cþ ¼ 0:2 fixed (left) and for
cþ varying and � ¼ 0:2 fixed (right), respectively. First,
note that c ðrhÞ increases with � and cþ, respectively.
That c ðrhÞ is an increasing function of the condensate
cþ was already noticed in [26] for the probe limit. Here,
we find in addition that the stronger the backreaction the
higher the value c ðrhÞ for a given condensate cþ. Since
we would like c to have its maximal positive value on the
horizon we have c ðrhÞ> 0, c 0ðrhÞ< 0 and then from (24)
obviously f0ðrhÞ> 0. For � ¼ 0, the value of f0ðrhÞ ¼ 4 rh

L2

which for rh ¼ 0:5 and L ¼ 1 is just f0ðrhÞ ¼ 2:0. For
increasing � the value f0ðrhÞ is first decreasing due to the
decrease of the electric field �0ðrhÞ=aðrhÞ on the horizon
[the negative term in (25)] and then for sufficiently strong

backreaction c ðrhÞ becomes larger and larger such that
f0ðrhÞ starts increasing again. This is similar for � fixed and
varying cþ. For cþ ¼ 0, the solution is given by (14). For
small cþ > 0 the electric field on the horizon�0ðrhÞ=aðrhÞ
decreases and leads to a slight decrease in f0ðrhÞ. For
increasing cþ the value c ðrhÞ becomes larger and f0ðrhÞ
increases. For both � and cþ increasing, respectively, the
value of aðrhÞ decreases from aðrhÞ ¼ 1.
Finally, the charge density � decreases for small cþ and

increases for larger cþ when � is fixed. For fixed cþ and
varying � the behavior is qualitatively similar.
When studying the dependence of the condensate cþ

on the temperature T one can take two different view-
points. First, we consider the system for fixed horizon
(rh ¼ 0:5 here). The dependence of hOi¼ cþ as a func-
tion of the temperature T is given in Fig. 4 (left) for several
values of �.
The solid line represents the condensate cþ and the

dashed line represents the charge density �, respectively.
For completeness we give the corresponding lines for � ¼
0 (dashed line), where the bullet indicates the minimal
value of �. Apparently, the behavior is quite different
when comparing large and small �. For small � the tem-
perature of the condensate is larger than the temperature of
the critical limit, for large � it is vice versa.
Following the literature, we also present our results for

fixed charge density �̂ ¼ 1. The dimensionless quantity

hÔi1=�þ=T̂c ¼ ðĉþÞ1=�þ=T̂c (with �þ ¼ 3 in the limit� ¼
0) as a function of the rescaled temperature T̂=T̂c is given
in Fig. 4 (right). Qualitatively, the behavior for large � is
similar to that for small �. However, the condensate can
become quite large when increasing �. Moreover, the

critical temperature T̂c at which ĉþ ¼ 0 decreases with
increasing �.

Note that we are in fact plotting ðeĉþÞ1=�þ=T̂c but that e
does not appear here due to our choice e � 1. Moreover,

FIG. 3. Several quantities characterizing the black holes in pure Einstein gravity (� ¼ 0) with cþ ¼ 0:2 for � varying (left) and for
� ¼ 0:2 and cþ varying (right).
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comparing our results to the ð2þ 1Þ-dimensional case [4]
our choices of � ¼ 0:0, 0.05, 0.1, 0.2, and 0.3, respectively,
would correspond to e ¼ 1, 4.47, 3.16, 2.24, and 1.83
when setting � ¼ 1 instead of e ¼ 1.

B. Effect of backreaction in Gauss–Bonnet gravity

This corresponds to the case � � 0 and 0<� � 0:25.
The � ¼ 0 limit was studied in [26]. Our numerical results
indicate that, also for � � 0, the presence of the Gauss-
Bonnet term leads to a decrease in the critical temperature.

This is shown in Fig. 5 where we give the dependence of T̂c

on � for different values of �. Apparently backreaction on
the space-time also cannot suppress condensation, i.e. the
critical temperature stays positive for all values of � and �
that we have studied in this paper. We find, e.g., for � ¼

0:1 that Tc ¼ 0:185�1=3 for � ¼ 0 (in agreement with

[26]), Tc ¼ 0:051�1=3 for � ¼ 0:1, and Tc ¼ 0:008�1=3

for � ¼ 0:2. For� ¼ 0:25we find Tc ¼ 0:158�1=3 for � ¼
0 (again in agreement with [26]), Tc ¼ 0:024�1=3 for � ¼
0:1, and Tc ¼ 0:001�1=3 for � ¼ 0:2. Hence, the critical
temperature can become arbitrarily close to zero for � and
� large enough, however within our numerical accuracy,
we never find Tc ¼ 0 for finite values of � and � � 0:25.

IV. CONCLUSIONS

In this paper, we have studied holographic superconduc-
tors in 3þ 1 dimensions away from the probe limit. We
considered the case of pure Einstein and Gauss-Bonnet
gravity, respectively, and have constructed numerically
electrically charged black holes that carry scalar hair. For
pure Einstein gravity we find that, in agreement with the
results for holographic superconductors in 2þ 1 dimen-
sions [4], the critical temperature at which condensation
sets in is strictly positive for all values of the gravitational
coupling. Considering Gauss-Bonnet corrections further
decreases the critical temperature, but all our numerical
results indicate that it stays positive when taking back-
reaction into account. Hence, even when taking the gravi-
tational coupling to infinity—which corresponds to letting
the electric charge e of the condensate tend to zero—there
would still be condensation. Similar to 2þ 1 dimensions
this signals the existence of an additional instability of the
scalar field. The explanation is similar to that in 2þ 1
dimensions [4,5]: since the scalar field is uncharged the
instability cannot be caused by the spontaneous symmetry
breaking. Rather it is caused by the fact that for large � the
black hole is close to the extremal limit in which its horizon
geometry would correspond to AdS2 � R3. In AdS2 the
Breitenlohner-Freedman bound [25] is m2

BF ¼ �1=ð4L2Þ.
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FIG. 5 (color online). The critical temperature T̂c at which
superconductivity sets in as a function of the Gauss-Bonnet
coupling constant � for several values of the gravitational
coupling �.
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FIG. 4 (color online). The values cþ and � as functions of the temperature T for several values of � with rh ¼ 0:5 (left). The values
ðĉþÞ1=3=T̂c as a function of T̂=T̂c for several values of � with �̂ ¼ 1 (right).
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Hence a scalar field with mass m2 ¼ �3=L2 that is stable

in AdS5 is certainly unstable in AdS2.
When considering non–Abelian holographic supercon-

ductors it has been observed that the phase transition that

leads to the formation of vector hair becomes first order if
the gravitational coupling is large enough [17]. It would be

interesting to see how the Gauss-Bonnet term influences
this result.
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