
UMONS
Faculty of Sciences

Department of Computer Sciences
Software Engineering Lab

Resolving Inconsistencies in Model-Driven
Engineering using Automated Planning

Jorge Pinna Puissant

A dissertation submitted in fulfillment of the requirements of
the degree of Doctor in Sciences

Advisor Jury
Prof. Dr. Tom Mens Prof. Dr. Jef Wijsen

Prof. Dr. Hadrien Mélot
Dr. Ragnhild Van Der Straeten

Prof. Dr. Xavier Blanc

September 2012





To my parents,
the lighthouse

that guided my life.





Acknowledgment

Firstly, I would like to thank Tom Mens, for allowing me to do this PhD, by being the
best advisor I could have and for proof-reading this dissertation. I also would like to
thank him for his endless patience, his friendship and his support all along this difficult
path.

I would like to thank my Jury members for taking the time to read and for giving
feedback on this dissertation. Especially I would like to thank Ragnhild Van Der Straeten
who helped and supported me since the beginning. She also proof-read this dissertation
and provided me with very useful comments.

I would also like to thank all my colleagues and former colleagues from the computer
science department. Especially Michaël, Mathieu, Sylvain, Romuald and Javier for having
put a good atmosphere in the lab, for having had interesting brainstormings about my
thesis and for having had good discussions about anything and everything.

I would never have been here without my parents and my family. I could never thank
enough my parents for giving me the opportunity to study and support me in every
decision I made. I thank my friends Jonathan, Yoan, Ulrik, Cat, Julien, Francois, Alex
and Lam for having been there to support me, motivate me, corrupt me, encourage me
to finish this dissertation and also proof-read parts of this dissertation. Thank you guys,
you are like family for me. I hope that, from now on, I will have more time to spend with
you.

Last but certainly not least, I would like to give a special thanks to Sandrine, for being
there for me, helping me and supporting me. She has not only helped me proof-reading
this dissertation. But also she made me better than I was. Sandrine, you will always be
in my heart. I would never have been able to travel this path without you. Thank you.

This work has been supported by ARC research project AUWB-08/12-UMH “Model-
Driven Software Evolution” financed by the Ministère de la Communauté française –
Direction générale de l’Enseignement non obligatoire et de la Recherche scientifique, Bel-
gium.





Abstract

One of the main research challenges in model-driven software engineering is to deal with
inconsistencies in software design models. Automated techniques to detect and resolve
these inconsistencies are essential. A wide range of model inconsistency resolution ap-
proaches have been presented in literature.

In this dissertation, we study a novel approach that uses automated planning, an arti-
ficial intelligence technique, for the purpose of automatically generating resolution plans
for model inconsistencies. We present two different planning approaches to generate
resolution plans: Fast-Forward Planning System (FF), an existing domain-independent
heuristic state-space progression planner; and Badger, a new domain-specific regression
planner that we have implemented in Prolog. We study their feasibility in the domain of
model inconsistency resolution. Badger has demonstrated good performance for inconsis-
tency resolution, is metamodel-independent and can generate multiple resolutions plans.
In addition, the planner algorithm of Badger can be adapted by taking full advantage of
the domain knowledge.

We validate Badger on a large number of automatically generated UML class diagram
models of various sizes, as well as on UML models obtained by reverse engineering five
Java programs, and on a classical toy example. We use a set of 13 structural inconsistency
types based on OCL constraints found in the UML metamodel specification. We analyse
the scalability results of the approach obtained through several stress-tests and discuss the
limitations of our approach. Our empirical analysis reveals a strong linear relationship
between the model size and the execution time, a quadratic relationship between the
number of inconsistencies and the execution time and a quadratic relationship between
the number of generated plans and the execution time. We also observe an increase of the
execution time as the number of actions in the resolution plans increases. In addition, our
approach scales up to models containing more than 10000 model elements. We validate
the metamodel independence of Badger by applying it to the problem of resolving code
smells in Java programs.

We explore how Badger can adapt the way it presents the resolution plans to the users
by modifying the evaluation function of the planner algorithm. We analyse and discuss
the solutions and possibilities that allows our planner to change the order in which the
resolution plans are generated.

We conclude that it is feasible to use automated planning in a scalable way for design-
model inconsistency resolution.





Résumé

Un des principaux défis de la recherche dans l’ingénierie logicielle dirigée par les modèles
est de faire face à des incohérences dans des modèles logiciels. Des techniques automatisées
pour détecter et résoudre ces incohérences sont essentielles. Un large éventail d’approches
de résolution d’incohérences de modèles a été présenté dans la littérature.

Dans cette thèse, nous présentons une nouvelle approche qui utilise la planification
automatisée, une technique d’intelligence artificielle visant à générer automatiquement
des plans pour résoudre des incohérences dans les modèles. Nous évaluons deux approches
différentes de planification dans le but de générer des plans de résolution. La première
approche est Fast-Forward Planning System (FF), un planificateur existant indépendant
du domaine qui se base sur une heuristique pour faire une recherche en avant dans un
espace d’état. La seconde approche est Badger, un nouveau planificateur spécifique au
domaine que nous avons développé en Prolog et qui effectue une recherche en arrière. Nous
réalisons une étude de faisabilité de ces deux planificateurs dans le domaine de la résolution
d’incohérences de modèles. Badger est performant lors de la résolution d’incohérences,
est indépendant du métamodèle et peut générer de multiples plans de résolution. De plus,
l’algorithme de planification de Badger peut être adapté afin de profiter pleinement des
spécificités du domaine.

Nous validons Badger sur un nombre important de diagrammes de classe UML de
tailles diverses générés automatiquement, sur des modèles UML obtenus par rétro-ingénie-
rie de cinq programmes Java, ainsi qu’un cas d’école classique. Nous utilisons un ensemble
de types d’incohérences structurelles. Ces types sont basés sur des contraintes OCL
issues de la spécification du métamodèle UML. Nous analysons le passage à l’échelle
de l’approche et discutons de ses limitations. Notre analyse empirique révèle une forte
relation linéaire entre la taille du modèle et le temps d’exécution ainsi qu’une relation
quadratique entre le nombre d’incohérences et le nombre de plans générés d’une part et le
temps d’exécution d’autre part. Nous observons également une augmentation du temps
d’exécution lorsque le nombre d’actions dans les plans de résolution augmente. De plus,
notre approche a été testée avec succès sur des modèles contenant plus de 10.000 éléments.
Nous validons l’indépendance de Badger vis-à-vis du métamodèle en l’appliquant à la
résolution de problèmes de conception (code smells) dans des programmes Java.

Nous explorons de quelle manière Badger peut être adapté par l’utilisateur dans la
façon dont il lui présente les plans de résolution. Cette adaptation est réalisée en modi-
fiant la fonction d’évaluation de l’algorithme du planificateur. Plus spécifiquement, nous
analysons et discutons les solutions et possibilités qui permettent à notre planificateur de
changer l’ordre dans lequel les plans de résolution sont générés.

Pour conclure, nous pouvons dire que l’utilisation de la planification automatisée est
possible et passe à l’échelle dans le cadre de la résolution des incohérences dans des modèles
logiciels.





Table of Contents

Acknowledgment v

Abstract vii

Résumé ix

Table of Contents xiii

List of Figures xvii

List of Tables xx

Introduction 1

1 Model Inconsistency Management 3
1.1 Model-Driven Software Engineering . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Model Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Challenges in Model-Driven Software Engineering . . . . . . . . . . 4

1.2 Model Inconsistency Management . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Terminology and Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Categories of Model Inconsistencies . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Inconsistencies Management Activities . . . . . . . . . . . . . . . . . . . . 12
1.6 Techniques and Formalisms . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 A Feature-Based Analysis of Design Model Inconsistency Resolution
Approaches 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Study Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Selection of Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Feature Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3 Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.4 Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.5 Extensibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1 Almeida da Silva’s Approach . . . . . . . . . . . . . . . . . . . . . . 23
2.3.2 Egyed’s Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.3 Kleiner’s Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.4 Mens’s Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



Table of Contents

2.3.5 Nentwich’s Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.6 Van Der Straeten’s Approach (I) . . . . . . . . . . . . . . . . . . . 33

2.3.7 Van Der Straeten’s Approach (II) . . . . . . . . . . . . . . . . . . . 35

2.3.8 Xiong’s Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Summary of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Introduction to Automated Planning 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Classical Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Formal Definition of Classical Planning . . . . . . . . . . . . . . . . . . . . 47

3.4 The Representation Language . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.1 States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.2 Problem Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.3 Specific Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.4 Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 The Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.1 Search for Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.2 Planning Solved by a Different Approach . . . . . . . . . . . . . . . 54

3.6 The Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.7 Automated Planning and Software Engineering . . . . . . . . . . . . . . . 55

4 Automated Planning for Inconsistency Resolution 57

4.1 Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Planning for Inconsistency Resolution . . . . . . . . . . . . . . . . . . . . . 59

4.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Fast-Forward Planning System . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.1 Representation Language . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Badger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5.1 Representation Language . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Badger Improvements for Inconsistency Resolution 79

5.1 Temporary Model Elements . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Metamodel Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.1 Achieving Metamodel Independence . . . . . . . . . . . . . . . . . . 83

5.2.2 Example of Metamodel Independence : Resolving Code Smells in
Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Logic Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xii



Table of Contents

6 Scalability 97
6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2 Generated Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2.1 First Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2.2 Second Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2.3 Third Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3 Reverse Engineered Models and a Toy Example . . . . . . . . . . . . . . . 104
6.3.1 First Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.2 Second Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4 Summary of the scalability analysis . . . . . . . . . . . . . . . . . . . . . . 107

7 Evaluation Function Analysis 109
7.1 The heuristic function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.2 The cost function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2.1 Two common questions about the plans generated by Badger . . . . 111
7.2.2 Changing the cost function . . . . . . . . . . . . . . . . . . . . . . . 113

7.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8 Conclusions and Future Work 125
8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.2 Threats to Validity and Limitations . . . . . . . . . . . . . . . . . . . . . . 126
8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Bibliography 143

xiii





List of Figures

1.1 Class diagram of the example . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Sequence diagram representing a specific scenario of user interaction. . . . 8

1.3 Protocol state machine representing the protocol of class Streamer. . . . . 9

1.4 Dimensions and model inconsistencies . . . . . . . . . . . . . . . . . . . . . 10

2.1 Main criteria for classifying model inconsistency resolution approaches . . . 20

2.2 Flexibility features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Usability features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Extensibility features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 SHAKEY: The first general purpose robot. . . . . . . . . . . . . . . . . . . 46

3.2 Blocks-world problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Search spaces for blocks-world problems . . . . . . . . . . . . . . . . . . . 53

4.1 Class diagram with 4 inconsistencies, inspired by [151]. . . . . . . . . . . . 58

4.2 Class diagram without the 4 inconsistencies founded in Figure 4.1. . . . . . 59

4.3 FF - Scalability timing results (the y-axis represents the time in seconds). . 68

4.4 A block diagram representing the functions which compose Badger. . . . . 73

4.5 Timing results for FF (blue circles) and Badger (red triangles) using a
complete model (experiment 3 of Table 4.2). The y-axis represents the
time in seconds on a logarithmic scale. The x-axis represents the number
of isolated classes added to the initial model. . . . . . . . . . . . . . . . . . 75

4.6 Timing results for adding intermediate superclasses to the partial model
using FF (blue circles) and regression Badger (red triangles). The y-axis
represents the time in seconds on a logarithmic scale. The x-axis represents
the number of intermediate superclasses added to the initial model. . . . . 76

4.7 Timing results for progression planning (blue circles) and regression plan-
ning (red triangles) for a different number of inconsistencies to be resolved
on a partial model. The y-axis represents the time in seconds on a logarith-
mic scale. The x-axis represents the number of intermediate superclasses
added to the initial model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1 A block diagram representing the functions which compose Badger. The
grey part represents the successor function that will be changed in this
chapter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Cyclic Inheritance Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 81



List of Figures

5.3 Timing results for resolving one inconsistency with and without the notion
of temporary model element. The y-axis represents the time in milliseconds.
The x-axis represents the number of isolated classes added to the initial
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Example of the input and output of the Java to Praxis plugin . . . . . . . 87

5.5 Metamodel of the structure of Java used by Praxis. . . . . . . . . . . . . . 88

5.6 The code smell: “abstract method overrides a concrete implementation”
and the proposed resolution plans . . . . . . . . . . . . . . . . . . . . . . . 90

5.7 The code smell: “class defines field that masks a superclass field” and the
proposed resolution plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.8 The code smell: “Unwritten field” and the proposed resolution plans. . . . 92

5.9 Small class diagram containing a cyclic inheritance inconsistency . . . . . . 93

6.1 Simplified fragment of the UML metamodel for class diagrams. . . . . . . . 99

6.2 Comparison of execution time (y-axis, expressed in milliseconds) per model
size (x-axis, expressed as number of model elements) for resolving a sin-
gle inconsistency in 941 different models. Different colours and symbols
represent different inconsistency types. . . . . . . . . . . . . . . . . . . . . 100

6.3 Time comparison (y-axis, in milliseconds) per model size (x-axis, in number
of model elements) for resolving multiple inconsistencies of different types
in 941 different models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.4 Boxplots showing effect of number of actions on execution time (y-axis, in
milliseconds). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.5 Execution time (y-axis, in seconds) per number of inconsistencies of the
same type (x-axis) for resolving multiple inconsistencies in a very large
model. Different colours and symbols represent different inconsistency types.103

6.6 Comparison of execution time (y-axis, expressed in milliseconds) per model
size (x-axis, expressed as number of model elements) for resolving a single
inconsistency in the 6 models. Different colours and symbols represent
different inconsistency types. . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.7 Comparison of the relative execution time (y-axis, expressed in percentage)
per model (x-axis, the model id) for resolving a single inconsistency in the
6 models. Different colours and symbols represent different inconsistency
types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.8 Execution time (y-axis, expressed in milliseconds) per number of generated
plans (x-axis) for 13 inconsistencies (one inconsistency per inconsistency
type) in the 6 models. Different colours and symbols represent different
models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.1 A block diagram representing the functions which compose Badger. The
grey part represents the evaluation function that will be changed in this
chapter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.2 Concrete and abstract syntax of a small class diagram with an inconsistency
of type I10 (cf. Table 6.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.3 The 4 resolution plans proposed by Badger to solve the inconsistency found
in Figure 7.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.4 Concrete and abstract syntax of a class with an inconsistency of type I13
(cf. Table 6.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

xvi



List of Figures

7.5 Concrete and abstract syntax of a small class diagram and sequence dia-
gram with an inconsistency of type “each message in a sequence diagram
needs to have a corresponding operation that needs to be owned by the mes-
sage receiver’s class” (rule R1 in Chapter 1). . . . . . . . . . . . . . . . . . 116

7.6 Concrete and abstract syntax of a small class diagram with an inconsistency
of type I8 (cf. Table 6.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.7 Concrete and abstract syntax of a small class diagram with an inconsistency
of type “Inherited Cyclic Composition” (ICC) [151]. . . . . . . . . . . . . . 121

xvii





List of Tables

2.1 Summary of model inconsistency resolution approaches for the Flexibility
criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2 Summary of model inconsistency resolution approaches for the Usability
criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3 Summary of model inconsistency resolution approaches for the Extensibility
criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Timing results using FF. Time is expressed in seconds and the standard
deviation is mentioned after the ± sign. . . . . . . . . . . . . . . . . . . . . 67

4.2 Comparison of timing results using both planners (FF and Badger). Time
is expressed in seconds and the standard deviation over 10 different runs is
mentioned after the ± sign. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Comparison of regression models on timing results of Figure 4.5. R̄2 values
higher than 0.95 are indicated in boldface. . . . . . . . . . . . . . . . . . 76

4.4 Comparison of regression models on timing results of Figure 4.6. R̄2 values
higher than 0.95 are indicated in boldface. . . . . . . . . . . . . . . . . . 77

5.1 R̄2 values of four different parametric regression models used to fit the
timing results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 List of elementary model operations and examples of their use for represent-
ing class diagrams. The given elementary model operations are performed
by the author a in a revision r. . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 List of code smells detected in the Java program FindBugs. . . . . . . . . . 88

5.4 Logic Operators - Atoms. Although the operators value comparison, prop-
erty comparison and counting are only shown with the > function, the
other comparison functions can be used as well : <, ≥, ≤, =, 6= . . . . . . 95

5.5 Logic Operators - Boolean Combinations. . . . . . . . . . . . . . . . . . . . 96

6.1 List of considered structural model inconsistency types. . . . . . . . . . . . 99

6.2 R̄2 values of five different parametric regression models used to fit the
timing results of Figure 6.2. . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3 R̄2 values of five different parametric regression models used to fit the
timing results of Figure 6.5. . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.4 Reverse engineered models and a toy example . . . . . . . . . . . . . . . . 104

6.5 R̄2 values of five different parametric regression models used to fit the
timing results of Figure 6.8. . . . . . . . . . . . . . . . . . . . . . . . . . . 107



List of Tables

7.1 Order in which the resolution plans for resolving the inconsistencies in
Figure 7.4, are generated depending on the chosen cost function with kind
of actions priority. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2 Order in which the resolution plans for resolving the inconsistencies in Fig-
ure 7.5, are generated depending on the chosen cost function with meta-
model priority. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.3 Using model priorities to change the order in which the resolution plans
for resolving the inconsistencies in Figure 7.5 are depending on the chosen
cost function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.4 Changing author priorities to change the order in which the resolution plans
for resolving the inconsistencies in Figure 7.6 are generated, depending on
the chosen cost function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.5 Order in which the resolution plans are generated for resolving the incon-
sistencies in Figure 7.7, depending on the chosen cost function with kind
of actions and metamodel priority. . . . . . . . . . . . . . . . . . . . . . . . 123

xx



Introduction

As a consequence of the increasing adoption of model-driven software engineering, large-
scale industrial projects make use of multiple models, being developed by hundreds of
developers [103, 134]. In such a context, inconsistencies invariably arise in models and
may be the cause of project failure [60]. Developing techniques for dealing with model
inconsistencies then becomes crucial.

A model is considered to be inconsistent if it contains undesirable patterns, which
are specified by so-called inconsistency rules [4]. These patterns and rules can reveal
and capture problems of lexical, structural, behavioural or visual nature. Inconsistency
detection consists in identifying the presence of these undesirable patterns in the model.

As defined by Spanoudakis and Zisman [140], inconsistency management not only
consists in the detection of inconsistencies but also in their handling. Once inconsistencies
have been detected in models, they have to be dealt with, either by resolving them, or by
ignoring or postponing them to later [4]. Inconsistency resolution consists in automating
the modification of a model in order to make it consistent.

If one desires to resolve model-driven inconsistencies with automated techniques, the
approaches need to generate possible resolutions without the need of manually writing
resolution rules or writing any procedures that generate possible resolutions. The ap-
proaches need to enable the resolution of multiple inconsistencies at once and to perform
the resolution in a reasonable time. In addition, the approaches need to be generic, i.e.,
it should be easy to apply them to different modelling languages.

In this dissertation, we propose to use the technique of Automated Planning from
Artificial Intelligence domain to address this problem. Automated planning aims to au-
tomatically generate plans, i.e., sequences of actions that lead from an initial state to a
state meeting a specific predefined goal. Automated planning will be used for the purpose
of automatically generating resolution plans for model inconsistencies. It seems that au-
tomated planning fulfills the conditions to address the problem of inconsistency resolution
in design models. Furthermore, the use of automated planning for the purpose of model
inconsistency resolution is a novel approach, we are not aware of any other work having
used this technique for this purpose.

Therefore, in this dissertation we will investigate the following thesis statement:

Automated Planning can be used to resolve, in a scalable way, design-model
inconsistencies.

The remainder of this dissertation is structured as follows.
Chapter 1 presents the context of the problem that motivates this dissertation. It

presents the software development methodology of model-driven software engineering and
its research challenges. Model inconsistency management is identified as one of these
challenges. The activities of model inconsistency management are described and a state



Introduction

of the art of the techniques and formalisms used in model inconsistency management is
presented.

Chapter 2 proposes a feature-based analysis of design model inconsistency resolution
approaches based on three main criteria: flexibility, usability and extensibility. This study
will allow us to identify weaknesses in eight recent approaches. We will take into account
these weaknesses to avoid them in the development of our own solution.

Chapter 3 introduces automated planning, and presents and formally defines classical
planning. Classical planning is composed of a representation language and an algorithm.
We introduce the most common representation languages and algorithms and conclude
this chapter by presenting some classical planning implementations.

Chapter 4 explains how automated planning can be used for resolving model incon-
sistencies. We present two different planning implementations: Fast-Forward Planning
System (FF), an existing domain-independent heuristic state-space progression planner;
and Badger, a new domain-specific regression planner that we have implemented in Pro-
log. We study their feasibility in the domain of model inconsistency resolution and make
a small scalability study. We conclude this chapter with a discussion about the strengths
and limitations of these implementations. Chapter 5 presents the improvements that we
have made to Badger to address the limitations found in the previous chapter.

Chapter 6 assesses the scalability of Badger. For this purpose we use automatically
generated UML models, reverse engineering models and a toy example model. We gradu-
ally increase during our experiments the size of the model, the number of inconsistencies
to resolve, and the number of generated plans. We conclude this chapter with a summary
of the scalability analysis results.

Chapter 7 analyses and discusses the solutions and possibilities we have explored to
allow Badger to adapt the way it presents the resolution plans to the users, by changing
the order in which the resolution plans are generated.

Chapter 8 summarises the outcomes of this dissertation, discusses its results, contri-
butions and limitations and presents the open research perspectives.

2



1
Model Inconsistency Management

This chapter presents the software development methodology of model-driven software
engineering, it also presents the research challenges of this methodology. Model inconsis-
tency management is identified as one of these challenges. We describe the activities of
model inconsistency management. We conclude this chapter with a state of the art of the
techniques and formalisms used in model inconsistency management. The work presented
in this chapter was previously published in:

(i) “Challenges in model-driven software evolution” in the 7th BElgian-NEtherlands
software eVOLution workshop (BENEVOL) 2008 [64], co-authored with Michaël
Hoste (University of Mons, Belgium) and Tom Mens (University of Mons, Belgium).

(ii) “Amélioration de la qualité de modèles: Une étude de deux approches complémen-
taires” in Technique et Science Informatiques, 2010 [96], co-authored with Tom Mens
(University of Mons, Belgium); Dalila Tamzalit (University of Nantes, France) and
Michaël Hoste (University of Mons, Belgium)



Chapter 1. Model Inconsistency Management

1.1 Model-Driven Software Engineering

In software engineering, there is a growing interest in the use of models as primary artifacts
in the development of software systems. This has created a new software development
methodology known as model-driven software engineering (MDE) [40,77,133,142]. MDE
promises to cope with the intrinsic complexity of software-intensive systems by raising
the level of abstraction, and by hiding the accidental complexity of the underlying tech-
nology as much as possible [16]. This opens up new possibilities for creating, analysing,
manipulating and formally reasoning about systems at a high level of abstraction. Model
transformation techniques and languages [26] enable a wide range of different automated
activities such as translation of models (expressed in different modelling languages), gen-
erating code from models, model refinement, model synthesis or model extraction, model
restructuring, etc.

1.1.1 Model Evolution

It is generally acknowledged that software employed in a real-world environment must
be continuously evolved and adapted, otherwise it is doomed to become obsolete due
to changes in the operational environment or user requirements [81, 118]. On the other
hand, any software system needs to satisfy certain well-defined quality criteria related
to performance, correctness, security, safety, reliability and soundness and completeness
w.r.t. the problem specification. It is a very challenging task to reconcile these conflicting
concerns, in order to develop software that is easy to maintain and evolve, yet continues
to satisfy all required quality characteristics. When we look at contemporary support for
software evolution at the level of models, however, research results and automated tools
for this activity are still in their infancy [155].

1.1.2 Challenges in Model-Driven Software Engineering

In Hoste et al. [64], we identified a number of fundamental research challenges in MDE. It
is important to note that this list of challenges is inevitably incomplete. Also, the order
in which we present the challenges here is of no particular importance.

Model quality. Model quality is important because models are fundamental artifacts in
software development process, as any other software artifact the individual quality
affects the internal and external software product. There is not a consensus on how
to define model quality and how to relate model quality metrics to software quality
factors. It is common sense that model quality has a great important in software
product [41]. A model can have many different non-functional properties or quality
characteristics that may be desirable (e.g., usability, readability, performance and
adaptability). It remains an open challenge to identify which qualities are necessary
and sufficient for which type of stakeholder, as well as how to specify these qualities
formally, and how to relate them to one another.

The next logical question concerns how we can objectively measure, predict and
control the quality of models during their evolution. One possible solution is by
resorting to model metrics, the model-level equivalent of software metrics. The
challenge here is to define model metrics in such a way that they correlate well with
external model quality characteristics.

4



1.1. Model-Driven Software Engineering

Model improvement. The technique of model refactoring, the model-level equivalent
of program refactoring, is used in order to improve model quality. An important
point of attention is the study of the relation between model metrics and model
refactoring. In particular, the assessment to which extent model refactoring affects
metric values. A formal specification of model refactoring is required to address
these issues.

In a similar vein, a precise understanding of the relation between model smells
and model refactoring is required, in order to be able to suggest, for any given
model smell, appropriate model refactorings that can remove this smell. The other
way around, the assurance that model refactorings effectively reduce the number of
smells is needed. This challenge is currently addressed by several authors [93–95,
102,126,152,153,166].

Model inconsistency management. In MDE, model inconsistencies invariably arise,
because a (software) system description is composed of a wide variety of diverse
models; some of which are maintained in parallel, and most of which are subject
to continuous evolution. Therefore, there is a need to formally define the various
types of model inconsistencies in a uniform framework, and to resort to formally
founded techniques and strategies to detect and resolve these model inconsistencies.
A prerequisite for doing so is to provide traceability mechanisms, by making explicit
the dependencies between models.

Various research groups are currently working to address this challenge [2,10,32,33,
35,37,70,83,97–99,109,110,128,135,154,156,157,161,164].

Language evolution. Not only models evolve, but so do the modeling languages in
which the models are expressed, though at a lower pace. In order to ensure that
models do not become obsolete because their languages have evolved, we need mech-
anisms to support the co-evolution between both. In a similar vein, the model trans-
formation languages may evolve in parallel with the model transformations being
used, so we also need to support co-evolution at this level [39,100,158].

Conflict analysis. Another important challenge has to do with the ability to cope with
conflicting goals. During model evolution, trade-offs need to be made all the time:

• When trying to improve model quality, different quality goals may be in con-
tradiction with each other. For example, optimising the understandability of
a model may go at the expense of its maintainability.

• In the context of inconsistency management, inconsistency resolution strategies
may be in mutual conflict.

• In the context of model refactoring, a given model smell may be resolved in
various ways, by applying different model refactorings. Vice versa, a given
model refactoring may simultaneously remove multiple model smells, but may
also introduce new smells.

It should be clear from the discussion above that uniform formal support for analysing
and resolving conflicts during model transformation is needed. Mens et al. [95,97,98]
have started to explore formal techniques based on critical pair analysis and sequen-
tial dependency analysis to detect and reconcile conflicting concerns.

5



Chapter 1. Model Inconsistency Management

Collaborative modelling. Another important challenge in model-driven software evo-
lution is to cope with models that evolve in a distributed collaborative setting? This
naturally leads to a whole range of problems that need to be addressed, such as the
need for model differencing, model versioning, model merging or model integration,
model synchronisation, and so on. This challenge is already under active study by
Blanc et al. [105,141].

To address the previously described MDE challenges, tool support needs to be developed.
But these tools encounter more technical challenges that also need to be tackled:

Model independence. How can we represent and manipulate different types of models
in a uniform way, without needing to change the infrastructure (tools, mechanisms
and formalisms) for reasoning about them? Such model independence is of scien-
tific as well as practical importance, because we want the solutions to be sufficiently
generic, in order to be applicable beyond more software models. Indeed, we want
to be able to support an as wide range of models as possible, including process
models, workflow models, ontology models, and many more. Zhang et al. [166] have
illustrated the feasibility of achieving such model independence by implementing a
generic model transformation that can be used to transform domain-specific mod-
els. Blanc et al. [10] also illustrated this by presenting an unique way to represents
models and model changes as sequences of elementary model operations. Eclipse
modeling framework (EMF)1 is a framework for building and using modeling lan-
guages based on a structural data model. EMF is based on the metamodel Ecore
for describing models. It’s another example of model independence. Some examples
of tools developed using EMF and Ecore metamodel are : ATL2 which is a model
transformation language; Kermeta3 which is a model transformation language and
model checking tool; Epsilon4 which is a code generation, model-to-model transfor-
mation, model validation, comparison, migration, merging and refactoring tool.

Scalability and incrementality An important practical aspect in MDE is the ability
to provide tool support that is scalable to large and complex models. This scalability
is essential in order to allow, on a medium to long term, to transfer research results
to industrial practice by integrating them into commercial modelling environments
and by validating them on industrial models. Obviously, this requirement imposes
important restrictions on the underlying formalisms to be used. Truly incremental
techniques help to close the gap between formal techniques and pragmatic soft-
ware development approaches, which are inherently evolutionary in nature. That
it is indeed possible to come up with such an incremental approach, as illustrated
by Egyed [32, 33], who proposes a lightweight incremental approach to model con-
sistency checking that scales up to large industrial models. In a similar vein, De
Fombelle [27] provides a formal treatment of incremental consistency checking of
UML models. Blanc et al. [10, 11] also illustrated this by proposing an incremental
inconsistency detection approach.

In this dissertation, we will limit ourselves to the study of the MDE challenge of model
inconsistency management.

1http://www.eclipse.org/emf/
2http://eclipse.org/atl/
3http://www.kermeta.org/
4http://eclipse.org/gmt/epsilon/

6

http://www.eclipse.org/emf/
http://eclipse.org/atl/
http://www.kermeta.org/
http://eclipse.org/gmt/epsilon/


1.2. Model Inconsistency Management

1.2 Model Inconsistency Management

As aforementioned, an effect of the increasing adoption of model-driven software engineer-
ing is that large-scale industrial projects make use of multiple models, being developed
by hundreds of developers [103,134]. In such a context, inconsistencies invariably arise in
models and may be the cause of project failure [60]. Developing techniques for dealing
with model inconsistencies becomes crucial.

Model inconsistency management is defined by Finkelstein et al. [45] as the process
in which inconsistencies are handled. Initially, inconsistency management approaches
were developed to address the problem of inconsistencies typically encountered during
the merging of software models in distributed multi-user environments [44, 45]. These
approaches have been generalized later to deal with inconsistencies in all contexts of
model-driven software development [11,35,54,97,140].

A model is considered to be inconsistent if it contains undesirable patterns, which
are specified by so-called inconsistency rules [4, 5]. These patterns and rules can reveal
and capture problems of lexical, structural, behavioural or visual nature. Inconsistency
detection consists in detecting the presence of these undesirable patterns in the model.

As defined by Spanoudakis and Zisman [140], inconsistency management not only
consists in the detection of inconsistencies but also in their handling. Once inconsistencies
have been detected in models, they have to be dealt with, either by resolving them, or by
ignoring or postponing them to later [4, 5].

Inconsistency management becomes even more important when a model consists of
several diagrams. During the evolution of the model, it is possible that these diagrams
become incompatible with each other and that inconsistencies appear.

An alternative approach, more conservative than model inconsistency management, is
to maintain the consistency of a model at all costs [38]. This consistency maintenance
approach is not very appropriate in the MDE context [5, 112]. According to Nuseibeh
et al. [112], maintaining consistency at all times is counterproductive. It constrains the
developer and reduces significantly her freedom. It is also almost impossible to avoid the
inconsistencies that arise in a metamodel evolution environment and in a collaborative
development. For these reasons this approach will not be discussed in this dissertation.

1.3 Terminology and Example

Many definitions exist for the notion of model [1, 9, 22, 47, 77, 90, 115]. We adopt the one
of Mellor et al. [90] that defines a model as “a coherent set of formal elements describing
something ( e.g., a system, bank, phone or a train) built for some purpose that is amenable
to a particular form of analysis.”

There are also many definitions for model inconsistency [4,5,32,36,44,84,98,114,140,
154]. Nuseibeh et al. [114] define a model inconsistency as “any situation in which a
set of descriptions does not obey some relationship that should hold between them. The
relationship between descriptions can be expressed as a consistency rule against which
the descriptions can be checked”. Different authors have used a different terminology
to refer to consistency rules such as well-formedness rules [140], structural rules [154],
detection rules [98], syntactic rules [36], and inconsistency detection rules [10]. In this
dissertation we will use the term inconsistency rule to refer to a rule that allows to detect
an inconsistency. We will also use the term inconsistency type to refer to the set of all

7



Chapter 1. Model Inconsistency Management

inconsistencies detected using the same inconsistency rule.
Based on the above definitions, we consider a model to be inconsistent if and only

if there exists at least one inconsistency that is present in the model. When a model is
inconsistent, the goal of any inconsistency resolution approach is to change the model in
order to remove some of its inconsistencies. We acknowledge here the fact that, in some
cases, some of the inconsistencies can be tolerated (e.g., because they have a low priority,
or because they cannot be resolved right now) and therefore ignored by the resolution [4,5].

To illustrate the terminology introduced above, we present a classical example of de-
sign model inconsistency resolution borrowed from Egyed et al. [35] and Xiong et al. [164].
It is a system that displays a stream (e.g., a video stream) to a user. The UML model
of this system is composed of a class diagram representing the structure (Figure 1.1),
and a sequence diagram and state machine diagram representing the behaviour (Fig-
ures 1.2 and 1.3). The class diagram presents three classes (User, Display and Streamer).
Class User is associated to class Display, which is associated to class Streamer.

 

 

User

+ select():void
+ stop():void
+ play():void
+ draw():void

 

Display

+ stream():void
+ wait():void
+ connect():void

 

Streamer

* 1
1

1

Figure 1.1 – Class diagram of the example

The sequence diagram (Figure 1.2) presents one scenario of interaction between the
user, the display and the streamer. The protocol state machine diagram (Figure 1.3)
defines the streamer protocol. “A protocol state machine is always defined in the context
of a classifier. It specifies which operations of the classifier can be called in which state
and under which condition, thus specifying the allowed call sequences on the classifiers
operations.” [117]

UML models are constrained by inconsistency rules [117, 139]. In this example, at
least three inconsistencies, corresponding to different inconsistency rules (named R1, R2

and R3), can be distinguished.

u: User d: Display st: Streamer

1 : select
2 : connect

3 : play

4 : draw

Figure 1.2 – Sequence diagram representing a specific scenario of user interaction.

8



1.4. Categories of Model Inconsistencies

Waiting Playing

stream

connect

wait

Figure 1.3 – Protocol state machine representing the protocol of class Streamer.

• Rule R1: each message in a sequence diagram needs to have a corresponding oper-
ation that needs to be owned by the message receiver’s class.

• Rule R2: scenarios (i.e., traces of messages sent to a particular object) expressed
by a sequence diagram need to be included in state machine diagrams that may be
attached to classes of objects to which the lifelines in the sequence diagram belong.

• Rule R3: each message in a sequence diagram needs to have a corresponding navi-
gable association in a class diagram.

The UML model m that is composed of Figures 1.1, 1.2 and 1.3 contains three inconsis-
tencies regarding those three inconsistency rules. The first inconsistency I1, corresponding
to rule R1, arises because message play used in the sequence diagram is not defined by an
operation in the class Streamer. This could be resolved in numerous ways: by renaming
message play into stream, by making the object d:Display the receiver of message play,
by removing message play, and so on.

The second inconsistency I2 of rule R2 arises because the scenario presented in the
sequence diagram is not included in the Streamer’s protocol state machine (the message
play is not allowed to follow connect). This could be resolved by either adapting the
sequence diagram or by adapting the state diagram.

The third inconsistency I3 corresponding to rule R3 arises because message draw in
the sequence diagram has no corresponding navigable association in the class diagram. To
resolve this inconsistency it suffices to make the association navigable in both directions.

1.4 Categories of Model Inconsistencies

To deal with model inconsistencies, the aim of this dissertation, we first need to know the
different inconsistency kinds that can arise on the different dimensions of modelling.

A real software system is often too complex to be described in a single representation.
A given system is specified by a set of different artifacts (e.g., languages, programs,
diagrams) and different views [54, 76]. In MDE, a system is usually represented by one
or more models that are described in one or more modeling languages. Typically, in the
context of UML [117], a system model is described by the diagrams (e.g., class, sequence,
state-transition) that can be considered as models representing a specific point of view on
the system.

As aforementioned, when a model evolves, inconsistencies may arise that are sometimes
necessary temporarily [4, 5], especially in iterative and evolutionary process in multi-
user environments. If a model contains at least one inconsistency it is considered as an
inconsistent model, otherwise it is considered as a valid model.

9



Chapter 1. Model Inconsistency Management

UML

Java

Entity-relationship 
model

M2

Relational 
model

Class 
Diagram

Java 
Program

Conceptual 
Data Schema

M1

Database 
Schema

Mi : Modeling level

Inter-level of Modeling

intra-level of abstraction
(horizontal inconsistency)

conformance
(conformance inconsistency)

Intra-level of Modeling

inter-level of abstraction
(vertical inconsistency)

Inter-level of 
Modeling

Intra-level of 
Modeling

Figure 1.4 – Dimensions and model inconsistencies

Let us define and identify the main categories of inconsistencies in a model.

Modeling Level. As defined by the OMG [116], modeling levels represent the confor-
mance relationship between a model and its metamodel(s). For example, in Fig-
ure 1.4, a class diagram is consistent with the UML metamodel, and a conceptual
data schema [143] conforms to the entity-relationship model. There is a confor-
mance inconsistency if a model does not respect the rules and constraints imposed
by the metamodel.

Level of abstraction. Within the same level of modeling, there are several levels of
abstraction. In the modeling level M1 of figure 1.4, the class diagram and the
conceptual data schema are at the same level (intra-level) of abstraction: they both
represent a model in the design phase of a same system S. It is the same for
the database schema and the Java program. The class diagram (respectively, the
conceptual data schema) and the Java program (respectively, the database schema)
are two different levels (inter-level) of abstraction but remain at the same level of
modeling (M1 level). We can distinguish two kinds of inconsistencies: Horizontal
and Vertical inconsistency.

• Horizontal inconsistency (intra-level of abstraction). This kind of incon-
sistency occurs when two linked models in the same level of abstraction are
incompatible. This is for example the case when a message in a sequence dia-
gram does not have a corresponding operation owned by the message receiver’s
class (Rule R1 of the example in the previously section).

• Vertical inconsistency (inter-level of abstraction). A refinement relation can
exist between two related models that reside at different levels of abstraction.
If the refinement between all or part of the two models is not checked, this is
called vertical inconsistency. This is for example the case when an attribute

10



1.4. Categories of Model Inconsistencies

present in a class C of a class diagram is missing in the Java class refining the
class C of the class diagram.

Syntax. Any model can be constrained by a syntax. There are two types of syntax: the
concrete syntax and the abstract syntax.

• Concrete syntax. The concrete syntax represents the used visual notation
and the special arrangement constraints of the modeling elements. A concrete
syntax inconsistency can occur if these constraints are not met, for example,
due to a superposition of elements or the use of a visual notation that is not
recognized.

• Abstract syntax. The abstract syntax can be derived from the concrete syn-
tax by a parser that generates a grammar (such as textual programming lan-
guages) or a metamodel (as for most visual modeling languages). The abstract
syntax formalizes the conformance rules between a model and its metamodel: a
model that does not conform to its metamodel yields an abstract syntax incon-
sistency. In the remainder of this dissertation we will refer to it as a structural
inconsistency. However, the constraints imposed by a metamodel can be ex-
tended to encompass other ones (e.g., business rules). As part of UML, this is
possible through the mechanisms of profiles, stereotypes and OCL constraints.

Semantics. Beyond the syntactic level, a model may be valid according to semantic
constraints. Such a constraint can affect all levels but also one or more models.
Therefore, any model is constrained by semantics but can also be constrained ac-
cording to some practices. Semantics is the meaning given to all or part of a model
in a context [56]. Semantics focuses on the interpretation of a model while the
syntax focuses on its representation. Meaningful semantics is an unambiguous in-
terpretation of an expression built according to a given syntax. In the remainder of
this dissertation we will refer to it as a behavioural inconsistency. An example of a
syntactic symbol that has different unambiguous semantics and does not have any
semantic inconsistency is the sign ‘+’, which has adding as semantic consensus. Its
semantics is different in the expression “x + y”according to the types of x and y
(e.g., numbers, strings, tables). An example of semantic inconsistency is inheritance
because of its ambiguity. According to Meyer [101], it may have eleven different
interpretations, such as specialization (for subtype inheritance) or factorization (for
extension inheritance). B is a subtype of A if the set of all instances of B is a
subset of the set of all instances of A, for example, tenured professor and associated
professor are subtypes of professor. B is an extension of A if B introduces features
(attributes and operations) not present in A, and those features are not applicable
to the instances of A, for example, an interactive whiteboard is an extension of a
whiteboard.

One or more models may have different types of inconsistencies, without any particular
constraint between these types of inconsistencies. However, it is preferable to ensure that
the model syntax is correct before attempting to rule on its semantics validity. Different
models (considered as syntactically correct) may have the same the semantics: they can
provide different representations with the same meaning. For example, a model with
redundancies has same semantics after removal of these redundancies.

11



Chapter 1. Model Inconsistency Management

Syntactic inconsistencies are the most obvious to detect, especially when the meta-
model has a formal representation. It becomes more difficult if part of the metamodel is
semi-formal, under-specified, or informal, such as UML [117], especially when it induces
semantic ambiguities. Semantic inconsistencies can be particularly difficult to detect,
diagnose and treat. These difficulties may be even more drastic when a model evolves.

In this dissertation, we will limit ourselves to deal with conformance, horizontal and
abstract syntax inconsistencies.

1.5 Inconsistencies Management Activities

Three inconsistency management activities are generally identified: detection, diagnosis
and resolution of inconsistencies [45,112].

Inconsistency detection. Inconsistency detection focuses on the definition of inconsis-
tency rules, the detection of inconsistencies in the model using these rules, and the
identification of the source and cause of these inconsistencies. An inconsistency was
previously defined as the occurrence of an inconsistency rule in the model. The
source of an inconsistency is the set of model elements that are involved in the
inconsistency [112,140]. The inconsistency detection policy defines when and what
rules will be checked.

Inconsistency diagnosis. The diagnostic activity is focused on the analysis of previ-
ously detected inconsistencies to identify the severity, importance, risk and impact.
The impact of an inconsistency is the consequence of the inconsistency on all models.
Based on this information, the user determines in which order the inconsistencies
must be addressed, and if an inconsistency is treated individually or treated in group
with all the dependent inconsistencies. The manager may also decide not to consider
inconsistencies, or to process the inconsistencies late.

Inconsistency resolution5. A resolution is defined as a model change that removes
some inconsistencies of the input model. A model inconsistency resolution approach
produces one or more resolutions in order to remove inconsistencies from an incon-
sistent model. The inconsistency resolution activity is divided into the following
steps [140]:

1. Compute the possible resolutions to remove the selected inconsistencies in the
diagnosis activity.

2. Perform a cost-benefit analysis of the application of each of these resolutions.
This includes the possible introduction of new inconsistencies by this resolution,
the model distance between the input model and the solution model (which
and how much elements were added, modified or deleted?) and the cost of
model changes of the resolutions (each model change can have a different cost,
for example, the cost of changing a model element may be smaller than the
cost of deleting a model element).

3. Selection and application of the resolution model changes, based on the previ-
ous choices.

5Some authors use the term resolution [98], while others authors use the term fixing, repair [35] or
handling [44]

12



1.6. Techniques and Formalisms

An inconsistency management policy defines which activities will be implemented and
their scheduling. It responds to the following questions: (a) When and how often should
inconsistencies be detected, diagnosed or resolved? (b) Who is responsible for what ac-
tivity? (c) What techniques will be used for the detection, diagnosis and resolution of
inconsistencies? (d) What inconsistency rules will be checked during the detection of
inconsistencies? (e) Which inconsistency should be considered to be resolved ?

In this dissertation we do not focus on the problem of inconsistency detection, due to
the abundance of scientific research that is available in this domain [10,32,37,83,98,157].
We prefer to focus our research on a problem that has been much less addressed, namely
the resolution of inconsistencies.

1.6 Techniques and Formalisms

Some techniques to detect, diagnose and resolve inconsistencies are based on well-known
mathematical domains such as formal logic and graph transformation. Other approaches
are tailored for a precise objective or modeling tool. The most common techniques used
in inconsistency management are:

Techniques based on graph transformation. Graphs are an obvious choice for rep-
resenting models, since most types of models have a graph-based structure.

The technique based on graph transformation is based on rules [55]. These graph
transformation rules are separated in two parts: preconditions and the change to
apply. The preconditions are graph structures that have to be present (positive) or
absent (negative) before applying the change.

Thanks to these graph transformation rules, inconsistencies can be detected auto-
matically by looking for mattes of the left-hand side of the rule in the model. For
that, detection rules are defined for each type of inconsistency. The application of
each rule on a given model results in the detection of one or several inconsistencies
(if they are present). The procedure is very similar for the inconsistency resolution.
As for detection, one or several graph transformation rules have to be defined for
the resolution of each inconsistency. The application of these rules corrects the
inconsistencies in the model.

One of the main problems of this technique is that only the inconsistencies which
can be expressed as a graph structure can be detected and resolved. This limits the
application of the technique to the structural inconsistencies only.

Graph transformation has been used by several authors [59,97,98,127] to deal with
model inconsistencies. It also has been used to deal with inconsistencies in require-
ments engineering [52]. Mens et al. [97,98] use the technique to present an iterative
and interactive method of resolution of inconsistencies. The resolution of an incon-
sistency can have, as a consequence, the introduction of new inconsistencies which
will be corrected, following the approach during the next iteration. In the process of
resolution, the user has different possibilities. He has the responsibility to choose,
in an interactive way, the resolution to apply. This approach uses critical pair
analysis to determine the dependencies between the detection and the resolution of
inconsistencies.

Techniques based on logic. The main idea in the techniques based on logic is to trans-
late the models of a modeling language in a logic language, such as in a knowledge

13



Chapter 1. Model Inconsistency Management

base. The steps of detection, diagnostic and resolution of inconsistencies are realised
by the formal inference of the logic rules.

As opposite to the previous approach, this one presents the advantage of not being
limited to the treatment of structural inconsistencies. But it has a major incon-
venient: the need to translate a model to the logic language and vice versa before
and after the management of inconsistencies. This translation can introduce errors.
Moreover, it is not always obvious to find back the source of the inconsistency.

Initially, logic has been used to manage the inconsistencies in requirement engineer-
ing [30,44,113]. Liu et al. [83] use logic to detect inconsistencies in UML models.

Van Der Straeten et al. [150,151,154] introduce a mechanism of inconsistency man-
agement based on the theory of Description Logics (DL) [3]. DLs are a family of
formalisms for representing knowledges. They are decidable fragments of first order
predicate logic. This decidability property is very interesting to reason formally on
inconsistencies and to analyse their impact on the model.

Blanc et al. [10] present an incremental detection and an unique way to express the
models in a logic language. This approach translates the model using a sequence of
model construction operations. This sequence is composed of elementary operations
such as create, delete, addProperty, remProperty, addReference, remReference. This
allows to detect not only structural inconsistencies (in the model itself), but also
methodological inconsistencies (i.e., inconsistencies in the process followed to build
the model).

Other techniques. Some techniques have been developed to be used directly with one
or several specific modeling tools. Some other techniques have been developed for
a very specific purpose (e.g., deal with inconsistencies in a diagram or in a very
specific situation). These techniques are typically hardcoded.

An example of a technique developed to be directly used in the context of modeling
tool is the tool UML/Analyzer [32,33]. It has been integrated in the modeling envi-
ronment IBM Rational Rose to manage inconsistencies in UML diagrams. The tool
has been used to detect inconsistencies instantaneously. The approach automati-
cally searches inconsistencies in the model to each change done in it. According to
the change, it determines which consistency constraint has to be checked.

Graaf and van Deursen et al. [53] propose to deal with the semantic inconsistencies
using the model transformation language ATL6. Sabetzadeh et al. [130] propose
another approach developed with a very specific purpose: inconsistency detection
in models after fusion of different points of view of the same model. Other techniques
and approaches developed directly in the context of a specific modeling tool are [78,
79].

1.7 Conclusion

The aim of this dissertation is to tackle the problem of inconsistency resolution by gener-
ating possible resolutions without the need of manually writing resolutions rules or writing
any procedures that generate possible resolutions. The approach needs to enable the res-
olution of multiple inconsistencies at once and to perform the resolution in a reasonable

6www.eclipse.org/m2m/atl

14

www.eclipse.org/m2m/atl


1.7. Conclusion

time. In addition, the approach needs to be generic, i.e., it needs to be easy to apply it to
different modelling languages. In Van Der Straeten et al. [156] we explored the usage of
model finders for this purpose. In this dissertation, we propose to use the logic reasoning
base technique of Automated Planning from the domain of Artificial Intelligence.

15





2
A Feature-Based Analysis of Design Model

Inconsistency Resolution Approaches

In this chapter, we propose a feature-based analysis of design model inconsistency resolu-
tion approaches based on three main criteria: flexibility, usability and extensibility. This
study will allow us to identify weaknesses in eight recent approaches. We use it to study
eight recent design model inconsistency resolution approaches. We will take into account
these weaknesses to avoid them in the development of our own solution.

The work presented in Sections 2.1, 2.2 and 2.3 was made with the collaboration of:
Tom Mens (University of Mons, Belgium); Ragnhild Van Der Straeten (Vrije Universiteit
Brussel, Belgium); Marcos Aurélio Almeida da Silva (University Pierre et Marie Curie,
France); Xavier Blanc (University of Bordeaux 1, France); and Jean-Rémy Falleri (Uni-
versity of Bordeaux 1, France) in the context of a Tournesol research project1.

1Tournesol - Hubert Currien partnership co-financed by Wallonie - Bruxelles International, the Fonds
de la Recherche Scientifique, the Ministère Français des Affaires étrangères et européennes, and the
Ministère de l’Enseignement supérieur et de la Recherche, Belgium.



Chapter 2. A Feature-Based Analysis of Design Model Inconsistency Resolution
Approaches

2.1 Introduction

As defined by [140], inconsistency management not only consists in the detection of incon-
sistencies but also in their handling. Once inconsistencies have been detected in models,
they have to be dealt with, either by resolving them, or by ignoring or postponing them to
later [4]. Many approaches focus on inconsistency resolution, which consists in automating
the modification of a model in order to make it consistent. Some of these approaches aim
at automatic generation of solutions thanks to logic rules [44,110,164]. Some are based on
generator functions and aim at composing them in order to resolve inconsistencies [33,35].
Others are based on resolution rules that have been hand-coded [98,154].

Confronted with such a diverse set of approaches, it is difficult to measure the ad-
vantages and the drawbacks of each of them. Some approaches use different underlying
mechanisms but seem to obtain similar results. Moreover, as some approaches claim
to completely support the resolution of inconsistencies, this raises the questions of the
existence of this research domain. Is it closed or is their still room for novel research?
Finally, there are no guidelines to choose the most adequate approach for a researcher
or practitioner that wishes to select an approach to deal with inconsistencies in his/her
model.

This chapter aims at answering those questions by objectively studying the features
of existing approaches that deal with model inconsistency resolution. In order to perform
our analysis we select a representative set of approaches that correspond to the rigorous
definition for model inconsistency resolution, presented in section 1.3. Even with the
formal definitions presented in section 1.3, the scope is still too wide. Therefore, we will
focus on software design models (e.g., UML models) because most recent inconsistency
resolution approaches address such models. Other types of models, e.g., requirements
models [159] and context models [165] will not be considered in this dissertation. Never-
theless the feature-based analysis that we propose should be applicable to those as well,
as it does not depend on a particular type of model or modeling language.

2.2 Study Criteria

2.2.1 Selection of Criteria

In order to study inconsistency resolution approaches, many different criteria can be
used. We present the most important ones below, and explain them in terms of the type
of questions that need to be answered for an approach in order to fit the criteria.

• Usability. Is the resolution approach user-friendly?

• Flexibility. What is the functionality offered by the resolution approach? Does it
provide only one resolution or multiple ones? Can it introduce new inconsistencies
when resolving existing ones? Can it resolve multiple inconsistencies simultane-
ously?

• Extensibility. How easy is it to extend, customize or reuse the resolution approach?

• Scalability. Does the resolution approach scale up (in terms of execution time or
memory usage) as the number of model elements, number of inconsistency rules or
number of model inconsistencies grows in size?

18



2.2. Study Criteria

• Expressiveness. How expressive is the language used to describe the inconsistency
rules? Does it allow to specify all inconsistency rules the user would like to resolve?

• Quality. Is the resolution approach able to resolve model inconsistencies in the
way that the user expects it to? Doesn’t the approach propose resolutions that are
useless or meaningless to the user? Does the approach always propose an acceptable
resolution if one exists? Doesn’t the approach propose too many resolutions, making
it difficult or impossible for the user to select the most appropriate one?

Of these criteria, we have decided to rule out the latter three for our study. The
reasons are given below.

In order to address the scalability criterion, we would need to define a benchmark
that would allow us to carry out an experimental study of different approaches. Defining
such a benchmark is a challenge of its own because the existing model inconsistency
resolution approaches that can be found in research literature are quite diverse. They are
implemented in different programming languages and on different operating systems, and
use different input and output formats for the models, inconsistencies and resolutions.
Even if it would be possible to come up with a commonly acceptable benchmark, it would
only present a starting point for the real experimental scalability study. We therefore
decided not to include the scalability criterion in this chapter as it would lead us too far.

We will not address the expressiveness criterion now because it is beyond our scope
to study the expressiveness of languages, especially if these languages belong to different
programming paradigms. In fact, expressiveness should be part of the aforementioned
benchmark: the benchmark should impose a fixed set of inconsistency rules that need to
be resolved by each resolution approach. If some approach is not able to do this, it has
lesser expressiveness.

We will not address the quality criterion as it would require a controlled user study.
Indeed, in presence of a wide variety of different resolution approaches, the only mean-
ingful notion of quality would be the quality as perceived by the user. Since different
users may have different ideas of what a good resolution strategy entails, an extensive
and controlled user study would be needed. One needs to have access to all the tools to
perform this controlled user study. Unfortunately, we do not have access to these tools
and studying the quality of these approaches is not the aim of this dissertation.

As our study focused on model inconsistency resolution, we did not take into account
information related to the inconsistency detection. While our study is well-suited to
study inconsistency resolution approaches, other criteria would need to be taken into
account to be able to study inconsistency detection approaches. An important feature to
study detection approaches would be the incrementality of the detection. Rather than
rechecking the detection rules on the entire model each time, incremental approaches will
narrow down the focus on the relevant subset of the model and detection rules only.

2.2.2 Feature Modeling

To present the criteria for studying model inconsistency resolution approaches we resort to
feature modeling [25]. Feature modeling are used to model the variability of applications
“features” at a relative high level of granularity. Feature models are visually represented
by means of feature diagrams. The feature diagram of Figure 2.1 presents our three
selected study criteria: Flexibility, Usability and Extensibility. Each of these criteria play
a crucial role in determining which inconsistency resolution approach is more appropriate,

19



Chapter 2. A Feature-Based Analysis of Design Model Inconsistency Resolution
Approaches

from a specific point of view. The next subsections will further decompose each of the
three criteria.

Inconsistency 
Resolution 
Approach

Usability ExtensibilityFlexibility

optional
mandatory

alternative
(xor)

or

Legend

Figure 2.1 – Main criteria for classifying model inconsistency resolution approaches

2.2.3 Flexibility

To start with, we introduce three features to analysis the flexibility of a model inconsis-
tency resolution approach. All considered features are summarised in Figure 2.2.

Feature 1 (Coverage). A resolution approach has full coverage, if it aims at proposing
resolutions for all inconsistencies in the model at the same time. It has multiple coverage,
if it aims at proposing resolutions for some inconsistencies at the same time. Finally, it
has single coverage, if it aims at fixing only one inconsistency at a time, without taking
into consideration if the proposed resolutions have an impact on other inconsistencies, e.g.
if they create new inconsistencies.

Feature 2 (Monotonicity). A resolution is monotonic if it does not introduce any new
inconsistency (and does not reintroduce an existing inconsistency). A resolution approach
can allow for non-monotonicity, or can impose monotonicity. It can even accommodate
both options, by allowing for non-monotonicity in certain cases while imposing mono-
tonicity in others.

Feature 3 (Resolution space). As there may be more than one way to resolve a (set of)
inconsistencies, a resolution approach may return either multiple resolutions, or only one
resolution. In practice, a resolution approach is not able to return all possible resolutions
if the resolution space is infinite.

Feature 4 (Language independence). A resolution approach is language independent if
it is not specific to a particular type of model or modeling language.

2.2.4 Usability

To evaluate the usability of a model inconsistency resolution approach we distinguish
three features, displayed in Figure 2.3, that are important for someone that wishes to use
the approach in practice.

Feature 5 (Selection). A resolution approach can allow the user to select (respectively,
ignore) either a subset of the inconsistencies that target the model, and/or a subset of the
inconsistency rules he wishes to consider, and/or a sub-part of the model.

20



2.2. Study Criteria

Flexibility

Coverage Monoticity Resolution 
Space

MultipleSingle MultipleOne

Language 
Independence

NoYesFull

Figure 2.2 – Flexibility features

Feature 6 (Tool integration). A resolution approach can be integrated into a computer-
aided software engineering (CASE) tool. Such integration, if present, allows the user to
resolve model inconsistencies from within his CASE tool.

Examples of CASE tools for UML modeling are Rational Software Architect, Poseidon,
ArgoUML, Eclipse EMF, MagicDraw, VisualParadigm.

Feature 7 (User intervention). A resolution approach may allow the user to intervene
while an approach produces resolutions, in order to guide the solver towards particular
resolutions. A resolution approach may also proceed without allowing for user interven-
tion. Approaches may accommodate both options, by allowing the user to choose whether
she wants to intervene.

Usability

User 
Intervention

Tool 
integrationSelection

RuleInconsistency Model NoYes

Figure 2.3 – Usability features

2.2.5 Extensibility

To assess the extensibility of a model inconsistency resolution approach we consider four
features, displayed in Figure 2.4, that vary between the considered approaches.

21



Chapter 2. A Feature-Based Analysis of Design Model Inconsistency Resolution
Approaches

Feature 8 (Solver). Some approaches may support multiple solvers to choose from de-
pending on the user’s requirements.

Examples of solvers are planners, constraint solvers, SAT solvers, or rule engines.

Feature 9 (Resolution). An approach is resolution extensible if it can be extended to
generate more resolutions. This means that the approach can extend its solution space,
for example by adding more resolution rules.

Feature 10 (Automation). An approach supports automatic inconsistency rules if it can
generate resolutions to new inconsistency rules, without forcing the user to specify new
resolutions for these inconsistencies. It supports semi-automatic inconsistency rules if
the support to the automatic generation of resolutions for new inconsistencies is limited
to some cases. Finally, it supports manual inconsistency rules if no automatic support is
provided.

Extensibility

SolverResolutionAutomation

Semi-
AutomaticManual Automatic

Figure 2.4 – Extensibility features

2.3 Approaches

The features defined in the previous section allow us to identify the variations across
different model inconsistency resolution approaches. The criteria of section 2.2 are, in
principle, applicable to any conflict resolution approach, regardless of whether the models
represent requirements, design models, documentation, code or any other type of artefact.
In order to restrict the scope of our study, however, we decided to consider only relatively
recent (i.e., less than 10 years old) inconsistency resolution approaches that specifically
focus on software design models, with an emphasis on UML models. In this category,
we were able to find eight different approaches that have been proposed over the years
by different researchers in the model-driven software engineering community. For ease of
reference, we will refer to each approach using the name of its principal author: Almeida

22



2.3. Approaches

da Silva [2], Egyed [33, 35, 128, 161], Kleiner [70], Mens [97, 98], Nentwich [109, 110], Van
Der Straeten I [99, 135,154], Van Der Straeten II [156], Xiong [164].

2.3.1 Almeida da Silva’s Approach

a) Description of the approach

Almeida da Silva [2] proposes a search-based approach for handling inconsistencies. This
approach takes as input a model and the last changes performed over it by the user.
The approach uses sequences of atomic changes to represent both models and resolutions
[10]. The relative order of the changes is used as an heuristic during the computation of
resolutions.

The approach uses inconsistency rules that detect inconsistencies and specify the
causes of the inconsistencies. Generator functions are then used to compute, for ev-
ery change that has been spotted as a possible cause of inconsistency, a set of resolutions.
The goal of the underlying algorithm is to construct resolutions that reduce the number
of inconsistencies in the model. It does that by combining resolutions for n single causes
into more complete resolutions that intend to fix all inconsistencies these causes gener-
ate. Note that a resolution for one inconsistency may cause new inconsistencies when
combined with other resolutions.

b) Overall process

The overall process employed by this approach is described below.

Input: A model m with a set of inconsistencies I and a sequence of changes C.
Steps:

1. Approach uses the inconsistency detection rules to detect, in the change-based rep-
resentation of m, the changes that cause the inconsistencies.

2. Approach uses pre-defined generator functions to compute a set of resolutions for
each possible cause.

3. Approach uses the search algorithm to combine the resolutions computed in the
previous step into a set of resolutions that reduce the number of inconsistencies in
m.

4. User selects the resolution that will be applied.

Output: A model m′ with a set of inconsistencies I ′ where |I ′| ≤ |I|.

c) Example

In our motivating example (cf. Section 1.3), the three inconsistency rules R1, R2 and R3

have to specify the causes. Regarding R1, one can specify, for example, that the cause of
this kind of inconsistency lies in the last change that modifies the name of a message in
the sequence diagram.

Now suppose that the current inconsistency has been added to the model by modifying
the name of the second message from stream to play. This modification is represented

23



Chapter 2. A Feature-Based Analysis of Design Model Inconsistency Resolution
Approaches

by a sequence of two changes. The first change removes stream as the name of that
message and the second change sets it to play. The cause detection rule corresponding to
R1 detects that this new model is inconsistent. Moreover, it identifies the second change
as the cause of this inconsistency.

This cause is then passed to the generator functions that compute the possible resolu-
tions for this inconsistency. Three examples of proposed resolutions are: (i) deleting the
play message, (ii) removing its name and adding one that matches the name of one of the
operations in the class Streamer, and (ii) renaming some operation in the class Display
to play.

The underlying search algorithm then tries each resolution in combination with the
resolutions computed for the other inconsistencies in the model. This is done to determine
the combinations that reduce the number of inconsistencies in the model. Finally, these
combinations are presented to the user so that he can choose which one he wants to apply
to the model.

d) Key concepts

If one wants to apply the current approach one needs to define the set of cause detection
rules and the generator functions for a given meta-model. Notice that both kinds of rules
are independent. Whereas the cause detection rules define new kinds of inconsistencies
to be detected, the generator functions define new ways to change the model in order to
correct them.

e) Analysis of the approach

The following lines analyze the present approach according to our previously defined cri-
teria.

Flexibility features:

• The approach has multiple coverage. The approach tries to find a resolution to fix
all inconsistencies in the model but it only guarantees that the repaired model has
less inconsistencies than the initial one.

• The approach is non monotonic because new inconsistencies might be introduced by
resolutions. The approach only makes sure that the repaired model has less inconsis-
tencies than the initial one, but no guarantees can be made on which inconsistencies
are present in the final model.

• The resolution space is multiple because it presents all found solutions to the user.

• The approach is language independent because it is based on a meta-model neutral
approach.

Usability features:

• The approach does not have any selection capability.

• The approach has tool integration as the approach has been integrated with two
modelling tools, namely Papyrus and the UML2 Tools.

24



2.3. Approaches

• No intervention of the user is allowed during the computation of resolutions.

Extensibility features:

• The approach supports no solver extensibility as the Prolog engine that it uses is
fixed.

• The approach has resolution extensibility since new resolutions can be added by the
means of the generator functions.

• The approach has semi-automatic inconsistency rule extensibility because generator
functions need to be manually updated when new inconsistency rules dealing with
elements that are not covered by the existing functions are added.

2.3.2 Egyed’s Approach

a) Description of the approach

Egyed [35, 128, 161] proposes an approach for assisting designers in fixing inconsistencies
in UML models. In this approach, inconsistency rules are black boxes (Java programs)
whose behaviour is observed at runtime.

When an inconsistency rule is executed, it returns one rule instance for each identified
inconsistency. A rule instance references the model elements that have been visited during
the execution of a rule.

The main hypothesis of this approach is that any inconsistency can be fixed by chang-
ing only one of the references of the corresponding rule instance. The principle of the
approach is then to identify all possible changes and to provide to the user the ones that
solve the inconsistency.

b) Overall process

The overall process is illustrated by the following pseudo-code:

Input : A model m, a set of inconsistencies I and the last change c

Steps :

1. User selects an inconsistency i ∈ I

2. Approach filters out the rule instances that do not refer to elements that have been
changed by c

3. Approach uses the generator functions to list all possible changes that can be per-
formed on elements that have been changed by c

4. Approach filters out the changes that add new inconsistencies as well as the ones
that do not fix the selected inconsistency

5. User selects one of the remaining changes

25



Chapter 2. A Feature-Based Analysis of Design Model Inconsistency Resolution
Approaches

Output : A model m′ with a set of inconsistencies I ′ = I \ {i}

This approach takes as input a model, a change and a set of inconsistency rule in-
stances. Since only one inconsistency may be resolved at a time, the approach asks the
user to select one. The objective of the approach is, at this point, to propose changes to
the model that do not generate new inconsistencies and that fix the selected one.

Changes to any part of the model included in a rule instance can have an impact on the
consistency of the model. The approach then reduces the scope of this search by filtering
out the model elements that were not part of the change that caused the inconsistency.
The underlying assumption is that the last changed elements (just before the introduction
of the inconsistency) are the cause of the inconsistency. Then, only these model elements
have to be changed to solve the inconsistency.

As there may be an infinite set of changes that can be applied to a model element, the
approach considers only a finite subset of them. To face this issue, the so-called generator
functions are introduced. These functions generate a finite set of possible changes for any
given model element.

The last step identifies the impact of each candidate change to the consistency of the
system. The approach then performs the candidate changes and checks all the inconsis-
tency rules in order to keep only changes that do not introduce new inconsistencies. The
final candidate changes are then presented to the user who takes the final decision on
which of them should be executed.

c) Example

Regarding our example, three black boxes correspond to the three inconsistency rules R1,
R2 and R3. When they are executed, three rule instances are returned, which correspond
to I1, I2 and I3.

Let us consider that the rule instance corresponding to I1 at least references six parts
of the model: the message name play, the lifeline pointed by the message, the class of the
lifeline, and the 3 operations owned by this class. We also consider that the last change,
which introduced I1, targets the message name play.

In our example, the generator function corresponding to the name attribute of mes-
sages proposes only names that match the names of the operations owned by the message’s
target class. The generator function then proposes three changes, one for each of the three
operations of the Streamer class. The one that changes the name to stream does not
introduce new inconsistencies. It is then proposed to the user who can decide to apply it.

d) Key concepts

To apply Egyed’s approach one has to define inconsistency rules as black boxes imple-
mented in a programming language (only Java is currently supported). Moreover, gener-
ator functions have to be defined for all the model element kinds. It should be noted that
these two key concepts (black boxes and generator functions) are independent. Moreover
new inconsistency rules and new generator functions can be defined once the approach
has been deployed.

26



2.3. Approaches

e) Analysis of the approach

Egyed’s approach has the following features for our three comparison criteria:

Flexibility features:

• The coverage is single because the approach only fixes one inconsistency at a time.

• The approach is monotonic because all changes that introduce new inconsistencies
are excluded from the proposed solutions.

• The solution space is multiple, because many solutions for one given inconsistency
are presented to the user at the same time.

• There is no language independence, because the approach is based on UML.

Usability features:

• The approach allows the user to select the inconsistency he wants to fix. Selection
of a subpart of the model is not supported.

• The approach has tool integration because it has been integrated into the IBM
Rational Rose and Rational Software Modeler tools.

• The approach has no user intervention since the user cannot guide the computation
of the proposed resolutions.

Extensibility features:

• The approach has no solver extensibility because the solving algorithm is provided
by the approach and cannot be changed.

• The approach has resolution extensibility since new resolutions can be added by
means of the generator functions.

• The approach has semi-automatic inconsistency rule extensibility because resolu-
tions for new inconsistencies are computed automatically by means of the generator
functions, but if new inconsistency rules deal with elements that are not covered by
the existing generator funcions they need to be adapted manually.

2.3.3 Kleiner’s Approach

a) Description of the approach

Kleiner [70] proposes an approach that fixes inconsistencies using constraint solving. In
this approach, the user defines inconsistency rules using the OCL+ language, inspired by
OCL.

The approach then transforms a model, its meta-model and the OCL+ rules to an
instance of a constraint satisfaction problem (CSP) or a boolean satisfiability problem
(SAT). The approach uses an external solver to solve the CSP or SAT problem. The out-
put of the solver is translated back to an updated model, that is entirely inconsistency-free.
It should be noted that only changes that add elements to the model can be considered
by the solver. Existing model elements cannot be removed and properties cannot be
modified.

27



Chapter 2. A Feature-Based Analysis of Design Model Inconsistency Resolution
Approaches

b) Overall process

The process is illustrated by the following pseudo-code:

Input: A model m with a set of inconsistencies I.
Steps:

1. Approach translates the model and the inconsistency rules to the solver input format
(CSP or SAT)

2. Approach asks the solver to find a solution

3. Approach converts the solution to an updated model

4. User accepts the proposed model

Output: A model m′ with no inconsistencies.

c) Example

In our example, the three inconsistency rules have to be expressed in OCL+. SAT is then
chosen by the user. The model, its meta-model and the OCL+ rules are translated into a
SAT instance. Finally, the SAT solver is called in order to solve this SAT instance. The
solution is then converted to an updated model.

In our example, the updated model has a new operation, named play, in the class
Streamer to solve I1. To solve I2 it also has a new reflexive transition, named play, on
the state waiting. Finally, it has a new association from Streamer to Display to solve
I3. Those changes do not introduce any new inconsistency.

d) Key concepts

In order to apply Kleiner’s approach, the inconsistency rules need to be expressed in
OCL+. Moreover, in order to use the approach for a new kind of model, a new translator
needs to be provided that inputs models of this kind and outputs corresponding solver
constraints.

e) Analysis of the approach

Kleiner’s approach has the following features according to the three comparison criteria:

Flexibility features:

• The approach’s coverage is full as all inconsistencies are fixed in a step.

• The approach is monotonic as it does not introduce new inconsistencies.

• The approach returns one single solution.

• The approach is language independence, because it is based on the meta-metamodel
Eclipse Modeling Framework metamodel (Ecore)2. The approach can use all mod-
eling languages that have Ecore as meta-metamodel.

2http://wiki.eclipse.org/Ecore

28

http://wiki.eclipse.org/Ecore


2.3. Approaches

Usability features:

• The approach does not have any selection capability.

• There is no tool integration as the approach is not integrated in any CASE tool.

• There is no user intervention possible during the resolution process.

Extensibility features:

• The approach has solver extensibility because it is solver-independent and can use
any external solver to solve the CSP or SAT problem.

• The approach has no resolution extensibility because new resolutions cannot be
added.

• The approach has automatic inconsistency rule extensibility because new inconsis-
tencies are automatically handled by their fixing algorithm.

2.3.4 Mens’s Approach

a) Description of the approach

Mens [97, 98] proposes an incremental approach to model inconsistency resolution based
on graph transformation. On top of AGG, a general-purpose graph transformation tool,
an interactive prototype tool was developed to select and apply conflict resolution rules.
In this approach, models are represented as typed, attributed graphs, and the metamodel
is represented as a typed graph to which the model graphs need to conform.

Model inconsistencies are detected through simple graph transformation rules, con-
sisting of a left-hand side that is used to match the presence and/or absence of graph
patterns that correspond to the inconsistency, and a right-hand side that simply adds to
the graph a new Conflict node that is connected to the nodes of the graph that are the
source of the detected inconsistency.

Inconsistency resolution rules are expressed as graph transformation rules that modify
the structural patterns that are the source of the inconsistency. For the same type of
inconsistency, multiple alternative resolution rules may be specified. The left-hand side
of these rules contain the Conflict nodes added during the inconsistency detection phase.
The right-hand side removes these Conflict nodes and modifies the graph in such a way
that the inconsistency is no longer present.

b) Overall process

The approach follows an interactive and iterative inconsistency resolution process, as
illustrated below. The iterative process ends when the user is satisfied or when all incon-
sistencies have been resolved.

Input: A model m with a set of inconsistencies I.
Steps:

1. Approach applies all inconsistency detection rules to m to add Conflict nodes (each
corresponding to an inconsistency i ∈ I).

29



Chapter 2. A Feature-Based Analysis of Design Model Inconsistency Resolution
Approaches

2. User selects one of the Conflict nodes to fix i.

3. Approach proposes set of resolution rules to choose from to fix i.

4. User selects one of the resolution rules to apply, and provides additional input if
required by the resolution rule.

5. Approach applies the resolution rule that fixes i.

6. Go to step 1.

Output: A model m′ with a set of inconsistencies I ′ where I 6= I ′

c) Example

For the running example, three graph transformation rules would need to be written to
detect the inconsistencies specified by the rules R1, R2 and R3. Applying these rules on
the model will create 3 Conflict nodes that represent the inconsistencies I1, I2 and I3.
It is up to the user to select which one is to be resolved first. Let us imagine that the
user selects I1. Let us also imagine that two alternative resolutions are specified as graph
transformation rules: one that removes a message from the sequence diagram if there is
no corresponding operation in the class diagram, and one that adds a new operation (with
the same name as the message) in the class diagram. These two resolutions are presented
to the user, who decides to select one of the two. This resolution is then applied, removing
the inconsistency I1, and the updated model together with the remaining inconsistencies
I2 and I3 is presented again to the user.

d) Key concepts

To use Mens’s approach, one needs to define graph transformation rules for detecting the
inconsistencies, and several graph transformation rules to specify how each inconsistency
should be resolved. Multiple alternative resolutions rules can be defined for the same
inconsistency. In this case, during the inconsistency resolution process, the user might be
asked to select which inconsistency resolution to apply.

The novelty of the approach, compared to other approaches is the use of critical pair
analysis to formally analyze whether and how a resolution rule may potentially introduce
new inconsistencies. This is needed, since the approach does not guarantee that the
resolution of an inconsistency does not introduce new inconsistencies.

e) Analysis of the approach

Mens’s approach has the following features according to the three comparison criteria:

Flexibility features:

• The tool has either single coverage or full coverage, depending on how it is used. In
the first scenario of use, the user detects a particular type of model inconsistency,
and selects and applies one of the inconsistency resolution rules to resolve this
inconsistency. In the second scenario, the tool can non-deterministically apply all
detection rules and resolution rules. (In case of multiple matches of a given rule, or
multiple rules to choose from the tool will randomly pick one of them.)

30



2.3. Approaches

• The approach is non-monotonic since the resolution of an inconsistency may intro-
duce new inconsistencies.

• Every execution of the resolution approach will give rise to a one solution, but multi-
ple runs may provide multiple solutions because of the non-deterministic resolution
process.

• The approach is language independent since it is based on graphs and type graphs.
If a particular language needs to be supported, its metamodel needs to be expressed
as a type graph, and the models need to be translated into graphs.

Usability features:

• The approach allows the user to select only a subset of rules by ignoring or disabling
certain detection and/or resolution rules. Since the approach is interactive, each
inconsistency needs to be selected by the user in order to resolve it. The approach
does not allow the user to restrict to a subpart of the model.

• The approach is not integrated into any CASE tool. Since it is a research prototype,
the AGG graph transformation tool has been directly extended with a dedicated
user interface for selecting and applying resolution rules.

• User intervention is supported if the user follows the manual interactive scenario:
he interacts with the tool to select between different alternative resolution rules,
and to provide input parameters to particular resolution rules.

Extensibility features:

• The approach has no solver extensibility because the graph transformation engine
provided by AGG can not be changed.

• The approach has resolution extensibility, the existing detection and resolution rules
can be modified and new resolution rules can be added manually, by adding new
graph transformation rules to AGG’s graph grammar. This requires the user to
know the syntax and semantics of graph transformation and the metamodel.

• To generate resolutions to new inconsistency rules, new resolution rules need to be
added manually and explicitly.

2.3.5 Nentwich’s Approach

a) Description of the Approach

Nentwich [110] proposes a framework that detects and fixes inconsistencies within dis-
tributed XML documents. Inconsistency rules are specified thanks to a proprietary lan-
guage that is based on XPath.

The main component of the framework is the repair administrator. This component
is responsible for both detection and resolution. It downloads a set of XML documents
and checks them against a set of inconsistency rules. When it detects an inconsistency it
generates the set of actions that repairs it thanks to pre-defined logical mappings.

31



Chapter 2. A Feature-Based Analysis of Design Model Inconsistency Resolution
Approaches

b) Overall process

The overall process is illustrated below:

Input: A model m with a set of inconsistencies I.
Steps:

1. User selects an inconsistency i ∈ I

2. Approach identifies the logical rule r that detects i

3. Approach uses the logical mapping to map r and m in order to generate a set of
changes C ′ that fix i

4. User selects one of the proposed changes in C ′

Output: A model m′ with a set of inconsistencies I ′ where i /∈ I ′

This approach takes as input a model with inconsistencies. It computes the resolutions
thanks to pre-defined mappings that map inconsistency rules to repair actions. In order
to use these mappings, the approach has to identify which of the inconsistency rules
detect the inconsistencies. The repair actions are provided to the user, who takes the
final decision on which of them is going to be applied.

c) Example

In our example, the three inconsistency rules R1, R2 and R3 have been expressed with the
proprietary language. The repair administrator has downloaded the model (presented in
XMI) and has detected the three inconsistencies I1, I2 and I3.

Suppose that the user selects I1. The approach identifies that I1 has been detected
thanks to R1. It then uses the pre-defined mappings to generate the repair actions.
Suppose that the three following examples are proposed: (i) deleting the play message,
(ii) changing its name to match one of the operations in the class Streamer and (ii)
renaming some operation in the class Display to play. The user then has to select one
of them.

d) Key concepts

In order to apply Nentwich’s approach, one needs to define its inconsistency rules as
logical formulas following their proprietary XML-based representation. Repair actions
are computed automatically by a repair administrator tool.

e) Analysis of the approach

The following lines analyze the present approach according to our previously defined cri-
teria.

Flexibility features

• The coverage is single because the repair administrator only allows fixing one in-
consistency at a time.

32



2.3. Approaches

• The approach is non monotonic because every inconsistency is guaranteed to be fixed
by every fix proposed by the repair administrator. However, there is no guarantee
that the fix for one inconsistency is not going to add other inconsistencies.

• The resolution space is multiple, because the multiple fixes are computed and pre-
sented to the user who then chooses the one that is going to be applied to the
model.

• The approach has language independence because it works with any XML based
data format.

Usability features

• The approach allows the user to select the inconsistency he wants to fix and the set
of rules that are applicable. The approach cannot select a subpart of the model.

• The approach has tool integration because it has been integrated in one prototype
modeling tool.

• The approach has no user intervention because the user cannot guide the process
of finding new resolutions.

Extensibility features

• The approach has no solver extensibility because the solving algorithm can not be
changed

• The approach has no resolution extensibility because new resolutions cannot be
added.

• The approach has automatic inconsistency rule extensibility because new inconsis-
tencies are automatically handled by their fixing algorithm.

2.3.6 Van Der Straeten’s Approach (I)

a) Description of the approach

Van Der Straeten [152,154] proposes an approach to model inconsistency resolution rules
thanks to a dedicated query and rule language, named nRQL. This language is designed
to query knowledge bases expressed using Description Logics (DLs). DL is a family of
logic languages used in ontology engineering. Models are represented as sets of logic facts
that define model elements.

Model inconsistencies are detected by nRQL queries. Variables in these queries are
bound to model elements that satisfy the query expression. Model resolutions are ex-
pressed by nRQL rules. Their premise contains the query expressing a particular incon-
sistency rule. Their conclusion states how to resolve the corresponding inconsistencies.
A resolution consists of a sequence of statements, where each statement is responsible for
either adding or removing data to/from the model.

33



Chapter 2. A Feature-Based Analysis of Design Model Inconsistency Resolution
Approaches

b) Overall process

The overall process is illustrated below:

Input: A model m with a set of inconsistencies I.
Steps:

1. User selects an inconsistency i ∈ I to fix

2. Approach proposes a set of nRQL rules in order to choose from to fix i

3. User selects one of the rules and provides additional input required by the rule

4. Approach applies the rule that fixes i

5. User selects another inconsistency (step 1)

Output: A model m′ with a set of inconsitencies I ′ where I 6= I ′

This approach follows an interactive and iterative process. First, all model inconsis-
tencies are computed for the input model by applying the nRQL logic queries. Next, the
user can select any of the detected inconsistencies, and choose to apply one of the nRQL
rules dedicated to this inconsistency. It produces an updated model that becomes the new
input model for the resolution. The iterative process continues until the user is satisfied
or until all inconsistencies have been resolved.

c) Example

With our example, three logic queries are written to detect the inconsistencies specified
by the rules R1, R2 and R3. Using these queries on the model will find the inconsistencies
I1, I2 and I3. It is up to the user to select which one is to be resolved. Let us imagine
that the user selects I1. Let us imagine that two different logic resolution rules have a
premise that detect I1. One rule has a conclusion that removes the play message from
the sequence diagram. The other one adds a play operation to the class Streamer. These
two resolutions are presented to the user, who needs to select one of them. The chosen
resolution is then applied. The updated model together with the remaining inconsistencies
are presented again to the user.

d) Key concepts

To apply Van Der Straeten’s approach, inconsistency rules need to be expressed using
the nRQL language. Furthermore, one needs to implement inconsistency resolution rules.
These rules reference the inconsistencies that they resolve and provide statements that
change the model in order to resolve the inconsistency. Multiple rules can be defined for
the same inconsistency. In that case it is up to the user to select the rule to apply.

e) Analysis of the approach

The following lines analyze the present approach according to our previously defined cri-
teria.

Flexibility features:

34



2.3. Approaches

• The approach has full coverage, since resolutions are proposed to the user for all the
detected inconsistencies at a time.

• The approach is non monotonic because it is possible to introduce new inconsisten-
cies during resolution.

• The approach can return multiple solutions which are executed one at a time. Rules
can require user input and when multiple rules are applicable, the user must choose
the rule he wishes to apply.

• The approach is language independent as long as the models can be expressed in
the underlying logic.

Usability features:

• The user can select one or a set of detection and resolution rules and the user can
select a specific resolution to execute. Because the approach has full coverage, the
user cannot select one or several inconsistencies he wants to resolve. The approach
does not allow to select a part of the model under consideration.

• The approach has been integrated as a plugin in one modeling tool (Poseidon).

• User intervention is supported by the approach because the user needs to select a
particular resolution and it could be that the user needs to give input if necessary
to the execution of the corresponding resolution rule.

Extensibility features:

• The approach has no solver extensibility because the rule engine provided by RACER
can not be changed.

• The approach has resolution extensibility, the existing rules cannot be changed but
new ones can be added manually. However, in order to do that, the user needs to
know the rule language nRQL, the detection rules and the translated metamodel.

• To generate resolutions to new inconsistency rules, new resolution rules need to be
added manually and explicitly.

2.3.7 Van Der Straeten’s Approach (II)

a) Description of the approach

In Van Der Straeten [156] the usage of the model finder Kodkod is explored to resolve
inconsistencies. The inconsistency resolution process can be automated using Kodkod
without the need of manually writing any inconsistency resolution rule or resolution gen-
eration functions. Kodkod is a constraint solver. The logic accepted by Kodkod is a core
subset of the Alloy modelling language supporting first order quantifiers, connectives,
arbitrary-arity relations and transitive closure.

Models are expressed as Kodkod problems. A Kodkod problem consists of a universe
declaration, i.e., a set of atoms, a set of relation declarations and a formula. The universe
of a Kodkod problem representing a UML model contains an atom for each model element.
A relation in a Kodkod problem is declared through a relational variable name, its arity

35



Chapter 2. A Feature-Based Analysis of Design Model Inconsistency Resolution
Approaches

and bounds on its value. Kodkod requires the relational variables to be bound prior to
analysis. Every relational variable must be bound from above by a relational constant, a
fixed set of tuples drawn from the universe of atoms. Each relation must also be bound
from below by a relational constant, i.e., a lower bound containing the tuples that the
variables value must include in an instance of the formula. The union of all relations
lower bounds forms a problems partial instance. Each UML metaclass is expressed as a
unary relation. Its value is the set of model elements that represent its instances. The
UML meta-association ends and attributes are translated into the corresponding k-arity
relational variables. The values of these relational variables are tuples containing the UML
model elements involved in the corresponding UML meta-associations or meta-attributes.
In order to generate consistent models w.r.t. a consistency rule, the consistency rule is
specified as part of the Kodkod problems formula. Kodkods analysis will search for an
instance of the consistency within the provided model.

b) Overall process

The overall process is illustrated below:

Input: A model m with a set of inconsistencies I and the corresponding consistency
rules.
Steps:

1. User selects an inconsistency i ∈ I to fix and a place where to fix it,

2. Approach proposes a set of models in which i is resolved,

3. User selects one model

4. User selects another inconsistency (step 1)

Output: A model m′ with a set of inconsistencies I ′ where I 6= I ′

This approach can be used as an interactive and iterative process. The approach
assumes that model inconsistencies can be detected and that the model elements involved
in the inconsistency are known. The user can select an inconsistency and a model element
involved in the inconsistency. Based on this information, a Kodkod problem is generated
and analysis of this problem is done. As a result, a set of models in which the selected
inconsistency is resolved are generated and presented to the user. The user can select a
model and this model becomes the new input model for resolution. The iterative process
continues until the user is satisfied or until all inconsistencies have been resolved.

c) Example

The approach assumes that an inconsistency detection approach has detected the incon-
sistencies I1, I2 and I3. It is up to the user to select which one needs to be resolved. Let
us imagine that the user selects I1 and as a possible location for resolution the operation
play. After translation into Kodkod and the analysis, three different solutions will be
presented to the user, one model where the operation is stream, another where the oper-
ation is wait and one where the operation is connect. The user can select one of these
models. The updated model together with the remaining inconsistencies are presented
again to the user.

36



2.3. Approaches

d) Key concepts

To apply this approach, the model and the consistency rule need to be expressed as a
Kodkod problem. Furthermore, the user can also select the location, i.e., a model element
where the inconsistency can get resolved. No inconsistency resolution rules or generator
functions need to be implemented.

e) Analysis of the approach

The following lines analyze the present approach according to our previously defined
criteria.
Flexibility features:

• The approach has single coverage, since resolutions are proposed to the user only
for one inconsistency at a time. However, as specified in [156], the approach can be
extended easily to considering multiple inconsistencies.

• The approach is non monotonic because it is possible to introduce new inconsisten-
cies during resolution.

• The approach returns multiple solutions, i.e., multiple models are generated by
Kodkod.

• The approach is language independent as long as the models can be expressed as
Kodkod problems.

Usability features:

• The user needs to select one inconsistency he wants to resolve.

• The translation of the models is done automatically from within an Eclipse plugin.
However the selection of the models is not integrated in a modeling tool.

• During resolution, user intervention is not possible.

Extensibility features:

• The approach has solver extensibility, Kodkod can use different SAT solvers.

• The approach has no resolution extensibility because new resolutions cannot be
added.

• The approach has automatic inconsistency rules extensibility because new inconsis-
tencies are automatically handled by their fixing algorithm.

2.3.8 Xiong’s Approach

a) Description of the approach

Xiong [164] proposes an approach to automatically fix inconsistencies within models. In
this approach, inconsistency rules are written in a proprietary language, named Beanbag.

Beanbag rules have two semantics. One is dedicated to inconsistency detection whereas
the other one is dedicated to inconsistency resolution.

37



Chapter 2. A Feature-Based Analysis of Design Model Inconsistency Resolution
Approaches

Both semantics take as input a model and a change performed on it. Regarding incon-
sistency detection, the rule detects if the change introduces new inconsistency. Regarding
inconsistency resolution, the rule modifies the model with the objective to compensate
for the inconsistency, solving it.

Once an inconsistency is detected by a rule, the approach uses the resolution semantics
of the same rule in order to produce a resolution for the inconsistency.

b) Overall process

The overall process is illustrated below:

Input: A model m with a set of inconsistencies I and last changes C
Steps:

1. User selects an inconsistency i ∈ I

2. Approach identifies one Beanbag rule r whose detection semantics detects i

3. Approach uses the resolution semantics of r to generate changes C ′ that fix i from
m and C

4. User applies the proposed changes in C ′

Output: A model m′ with a set of inconsistencies I ′ where i /∈ I ′.

The approach does not make a clear separation between inconsistency detection and
inconsistency resolution. Each time the user wants to fix an inconsistency, the approach
identifies which of the Beanbag rules detects the inconsistency. Once the rule has been
identified, its resolution semantics is used in order to generate the changes. The user has
then to accept the proposed changes.

The approach does not guarantee that the resolution generated by one inconsistency
rule does not introduce new inconsistencies, detected by other rules. This is due to the
fact that each Beanbag rule, including its detection and resolution semantics, considers
only one inconsistency.

c) Example

Regarding our example, three Beanbag rules correspond to the inconsistency rules R1, R2

and R3.
Consider the fixing of inconsistency I1. Suppose that this inconsistency was introduced

by the user renaming a stream message in the sequence diagram into play. Once I1 has
been selected by the user, the approach identifies that it has been detected by R1. As a
consequence, the resolution semantics of R1 is used in order to fix I1. A possible resolution
semantics would be to replace the message’s name by the old name stream.

d) Key concepts

If one wants to apply this approach, one needs to (re)write the inconsistency rules as
Beanbag rules. Extra care needs to be taken in order to make sure that the resolution
semantics of these rules will produce the desired corrections. As the authors state in [164],
this is a trial-and-error process that should be executed by the metamodeler.

38



2.4. Summary of the Study

e) Analysis of the approach

Xiong’s approach has the following features according to our comparison criteria:

Flexibility features:

• The coverage is single because the approach only considers a single inconsistency at
each step.

• The approach is non monotonic, because resolutions to one rule may cause incon-
sistencies to others.

• The solution space explored by this approach produces only one solution for each
inconsistency.

• As far as we can derived from the information from the article, the approach has
no language independence because it is based on models described in a proprietary
language based on dictionary data structures.

Usability features:

• There is no selection support.

• There is no tool integration for this approach.

• There is no user intervention for this approach.

Extensibility features:

• The approach has no solver flexibility because the solver is provided by the language
runtime and cannot be changed.

• This approach allows the definition of new resolution rules only by manually chang-
ing its Beanbag code.

• The approach has semi-automatic inconsistency rules flexibility because inconsis-
tency rules are obligatorily defined when new inconsistency rules are defined, but
they user needs to manually make sure that its resolution semantics works as ex-
pected.

2.4 Summary of the Study

In this chapter we have carried out a feature-based analysis of design model inconsistency
resolution approaches. We used this feature-based approach to study eight recent and
representative resolution approaches. We focused on three criteria of interest: flexibility,
usability and extensibility. Tables 2.1, 2.2 and 2.3 summarise the study of all considered
approaches against the three main study criteria.

The features presented in this chapter were used to identify the strengths and weak-
nesses of each approach, but these features cannot be used to compare and classify the
approaches between them. Because each user can have particular needs, preferences, de-
sires and interests, an interesting feature for a user is not necessarily of interest for another

39



Chapter 2. A Feature-Based Analysis of Design Model Inconsistency Resolution
Approaches

user. For example, a user that only wants to resolve inconsistencies in UML models, may
not be interested in the language independence of certain approaches because he only
wants to resolve inconsistencies in one language (UML). Controlled user studies would be
needed to assess what approach is the most suitable in practice, for each particular need.
This study is out of the scope of this dissertation.

Even if a comparison between the approaches is not possible, the features can be used
to reveal common features between the approaches.

It can be seen in Table 2.1 that 5 out of 8 approaches have single coverage; that most of
the approaches (6 of 8) are non monotonic; that the approaches return multiple solutions
for 5 of 8 approaches and return one solution for 3 of 8 approaches; and that 6 out of 8
approaches are language independent.

It can be noticed in Table 2.2 that there is a lot of variation in the approaches w.r.t.
the selection feature. 3 approaches do not propose any selection to the user, 4 approaches
propose to the user the selection of the inconsistency, only 2 approaches propose the
selection of rules and none of the approaches proposes to the user the selection of a part
of the model. Notice also that only half of the analysed approaches are integrated into a
CASE tool and only two approaches allow user intervention.

It can be seen in Table 2.3 that only two approaches support multiple solvers; 5
out of 8 approaches are resolution extensible; and that there is no common pattern in
the approaches w.r.t. the support of automatic inconsistency rules. 3 approaches have
automatic inconsistency rule extensibility, 3 approaches have semi-automatic extensibility
and 2 approaches have manual extensibility.

40



2.4. Summary of the Study

C
on

si
d
er

ed
fe

at
u
re

s

A
p
p
ro

ac
h

C
ov

er
ag

e
M

on
ot

on
ic

it
y

R
es

ol
u
ti

on
sp

ac
e

L
an

gu
ag

e
In

d
ep

en
d
en

ce

A
lm

ei
d
a

d
a

S
il
va

m
u
lt

ip
le

n
o

m
u
lt

ip
le

ye
s

E
gy

ed
si

n
gl

e
ye

s
m

u
lt

ip
le

n
o

K
le

in
er

fu
ll

ye
s

on
e

ye
s

M
en

s
si

n
gl

e
or

fu
ll

n
o

on
e

ye
s

N
en

tw
ic

h
si

n
gl

e
n
o

m
u
lt

ip
le

ye
s

V
an

D
er

S
tr

ae
te

n
I

fu
ll

n
o

m
u
lt

ip
le

ye
s

V
an

D
er

S
tr

ae
te

n
II

si
n
gl

e
n
o

m
u
lt

ip
le

ye
s

X
io

n
g

si
n
gl

e
n
o

on
e

n
o

T
a
b
le

2
.1

–
S

u
m

m
ar

y
of

m
o
d

el
in

co
n

si
st

en
cy

re
so

lu
ti

on
ap

p
ro

ac
h

es
fo

r
th

e
F

le
xi

bi
li

ty
cr

it
er

io
n

41



Chapter 2. A Feature-Based Analysis of Design Model Inconsistency Resolution
Approaches

Considered features

Approach Selection Tool integration User intervention

Almeida da Silva no yes no
Egyed inconsistency yes no
Kleiner no no no
Mens inconsistency, rule no yes
Nentwich inconsistency, rule yes no
Van Der Straeten I rule yes yes
Van Der Straeten II inconsistency no no
Xiong no no no

Table 2.2 – Summary of model inconsistency resolution approaches for the Usability crite-
rion

2.5 Discussion

Several approaches have been proposed to resolve model inconsistencies. We will review
the different approaches, highlighting their weaknesses. We will propose a new approach
avoiding these weaknesses.

In Mens [97,98] and in Van Der Straeten I [99,135,154] the authors specify resolution
rules manually, which is an error-prone process. Automatic generation of inconsistency
resolution actions aims to resolve this problem. Nentwich [109, 110] achieve this by gen-
erating resolution actions automatically from the inconsistency rules. The execution of
these actions, however, only resolves one inconsistency at a time. As recognised by the au-
thors, this causes problems when inconsistencies and their resolutions are interdependent.
Mens et al. [97] propose a formal approach based on graph transformation to analyse
these interdependencies.

Kleiner [70] proposes an approach that fixes inconsistencies using constraint solving.
They propose a new language, named OCL+, to express inconsistency rules. Their ap-
proach can use any solver (such as SAT or CSP) in order to identify how to change the
inconsistent model in order to make it compliant with all the constraints. The approach
proposes only one resolution to the inconsistent model. The resolution proposed by this
approach cannot remove existing model elements and properties cannot be modified.

Xiong [164] define a language to specify inconsistency rules and the possibilities to re-
solve the inconsistencies. This requires inconsistency rules to be annotated with resolution
information. Almeida da Silva [2] propose an approach to generate resolution plans for
inconsistent models, by extending inconsistency detection rules with information about
the causes of the inconsistency, and by using manually written functions that generate
resolution actions. In both approaches inconsistency detection rules are polluted with
resolution information.

Instead of explicitly defining or generating resolution rules, a set of models satisfying a
set of consistency rules can be generated and presented to the user. Egyed [33,35,128,161]
define such an approach for resolving inconsistencies in UML models. Given an inconsis-
tency and using choice generation functions, their approach generates possible resolution
choices, i.e., possible consistent models. The choice generation functions depend on the
modeling language, i.e., they take into account the syntax of the modeling language, but
they only consider the impact of one consistency rule at a time. Furthermore these choice

42



2.5. Discussion

Considered features

Approach Solver Resolution Automation

Almeida da Silva no yes semi-automatic
Egyed no yes semi-automatic
Kleiner yes no automatic
Mens no yes manual
Nentwich no no automatic
Van Der Straeten I no yes manual
Van Der Straeten II yes no automatic
Xiong no yes semi-automatic

Table 2.3 – Summary of model inconsistency resolution approaches for the Extensibility
criterion

generation functions need to be implemented manually.
In Van Der Straeten II [156] we use Kodkod, a SAT-based constraint solver using rela-

tional logic, for generating consistent models automatically. While the approach guaran-
tees correctness and completeness (within the considered lower and upper bounds of the
relations defined in the problem), a major limitation is its poor performance and lack of
scalability.

The approach that we will propose in Chapter 4 intends to overcome the aforemen-
tioned shortcomings by automatically generating multiple inconsistency resolutions for
resolving multiple inconsistencies at the same time in a scalable way.

43





3
Introduction to Automated Planning

As aforementioned, in Chapter 1, automated techniques to resolve model-driven inconsis-
tencies are essential. We propose to use the artificial intelligence technique of automated
planning for this purpose. In this chapter we introduce automated planning, and present
and formally define classical planning. A classical planning is composed of a represen-
tation language and an algorithm. We describe them and introduce the most common
representation languages and algorithms. We conclude this chapter by presenting some
classical planning implementations.



Chapter 3. Introduction to Automated Planning

3.1 Introduction

Planning is the human capability of reasoning before acting. It is an explicit and deliberate
process that chooses and organizes actions by anticipating their effects. This is a complex
intellectual capability because the world changes continuously and we have a limited vision
of it [51,65].

Automated planning is an Artificial Intelligence branch that studies and puts into
practice this explicit and deliberate process in a computational way. The principal moti-
vation of automated planning is the study and design of autonomous intelligent machines.
Automated Planning emerged in the late fifties (1950s) from converging investigations
into state-space search, theorem proving, and control theory to answer the needs of do-
mains like robotics and scheduling. The STRIPS1 [43] planner was developed in 1971 to
control the behavior of the autonomous robot SHAKEY, the first general purpose robot
developed by the Artificial Intelligence laboratory at the Stanford Research Institute (Fig-
ure 3.1). STRIPS is considered as the first major planning system. Since the introduction
of STRIPS, an automated planning approach is defined as a program that generates a
plan, i.e., a sequence of actions that lead from an initial state to a state meeting a specific
predefined goal [51, 65,129].

Figure 3.1 – SHAKEY: The first general purpose robot.
Source and Copyright – Artificial Intelligence laboratory at the Stanford Research Insti-
tute.

There is a wide range of domains in which planning can be applied. For example:
path and motion planning, perception planning and information gathering, navigation
planning, manipulation planning, communication planning, social and economic planning,
urban planning, family planning, financial planning [51].

To deal with these diverse forms of planning, we can use either domain-specific or
domain-independent planners. Domain-specific planners use a specific representation and
techniques adapted to the problem. In contrast, domain-independent planners are generic
planners that take as input the problem specifications and the knowledge about their
domain [51]. For many applications, domain-specific planners are crucial because they

1STRIPS stands for STanford Research Institute Problem Solver.

46



3.2. Classical Planning

exploit the problem and domain specifications for efficiency reasons. Domain-independent
planners on the other hand, can be used in many domains and for many problems.

Automated planning has been used with success in different and demanding applica-
tion domains, such as: game AI, robotics, the Hubble space telescope, The Deep Space
1 [8, 23, 66, 69, 107]. The research in automated planning has been active and maturing
in artificial intelligence research since the late fifties, and many papers on automated
planning are published in artificial intelligence journals and dedicated conferences (e.g.
International Conference on Artificial Intelligence Planning and Scheduling (ICAPS)2).

3.2 Classical Planning

Classical Planning is an automated planning variant that aims to find a sequence of
actions that reaches a desired state in a Finite, Static, Deterministic, Implicit time and
Fully observable world. This means that the world has a finite set of states, the world
stays in the same state until a new action is executed and the execution of an action
is instantaneous and brings the world into a single other state. There is also complete
knowledge about the current state of the world.

Each classical planning approach consists of: a representation language used to de-
scribe the problem domain and the specific problem; an algorithm describing the mecha-
nism to solve the problem; and a sequence of generated plans produced as output.

Other variants of automated planning relax the world’s assumptions in order to act in
real world problems. For example: Temporal Planning [42, 88] aims to address problems
where the Implicit time assumption is not true anymore, that means when the actions’
effects may not be instantaneous; Planning Under Uncertainty [28, 160] aims to resolve
problems in a nondeterministic and partially observable world, that means that the plan-
ner has an incomplete knowledge of the current state and that the actions’ effects may be
stochastic.

In this dissertation we are only interested in problem of classical planning, because the
inconsistency resolution in design models fulfills the classical planning assumptions. Also,
most of the state-of-the-art in automated planning is focused on classical planning. This
interest sparked off well formalized and defined problems with algorithms and techniques
that scale-up reasonably well [65].

3.3 Formal Definition of Classical Planning

Let Π be a finite set of all possible logic predicates, and S be a finite set of states such
that ∀s ∈ S : s ⊆ Π.

The problem of classical planning can be formally defined [65] as a tuple CP =
(PD, SP,ALG). The problem domain PD is expressed as a set of possible actions A
and the specific problem is defined as a tuple SP = (s0, dg) :

• s0 ∈ S is the initial state;

• A is a finite set of actions. Each action a ∈ A is a function a : S → S : s→ s′ with
s′ 6= s;

2Since 2003, the International Conference on Automated Planning and Scheduling (ICAPS) is the
merger of International Conference on Artificial Intelligence Planning Systems (AIPS) and European
Conference on Planning (ECP).

47



Chapter 3. Introduction to Automated Planning

• ALG : S → A : si → ai is the algorithm that chooses the action to be applied in
the state si;

• dg ⊆ Π is a partially specified state that describes the desired goal.

Using this definition, finding a solution for the classical planning problem CP consists
in generating a sequence of actions Plan = (a1, a2, ..., an) corresponding to a sequence of
states (s1, ..., sn) obtained from the initial state s0 by iteratively applying each action ai
to state si−1 until sn where dg ⊆ sn, meaning that the desired goal dg is satisfied.

The optimal plan is the one that minimizes the expression
∑n

i=1 c(si−1, ai) [65] where
c : S ×A→ N is a function representing the cost c(s, a) of applying the actions a ∈ A in
the state s ∈ S.

3.4 The Representation Language

The representation language is used to describe the syntax and semantics of classical
planning. This language must support the description of the planning domain and the
specific problem.

We will use blocks-world in the following part, an example of automated planning
borrowed from [129,162]. It consists of a set of blocks on a table and a robot arm used to
move the blocks. The robot arm can pick up one block at a time and stack it on top of
another block or drop it on the table. The figure 3.2 illustrates a blocks world problem
with 3 blocks (A,B,C). The initial state is the blocks A and B on the table and the block
C on top of the block A. The desired goal is the block A on top of the other two blocks.
The problem is to find a sequence of actions to be performed by the robot arm to go from
the initial state to the desired goal.

Start State Goal State

B A
C

A
B
C

Figure 3.2 – Blocks-world problem.
Source: Russell and Norvig [129]

3.4.1 States

Automated planning decomposes the world into logic predicates and represents a state as
a conjunction of ground3, functionless4, non-negated predicates. Classical planning has
a closed world assumption meaning that any predicate not mentioned is assumed to be
false. In the blocks-world example the logic predicates used are: On(C,A) and Clear(C).

3A ground predicate is a predicate without variables.
4A functionless predicate is a predicate that cannot be nested.

48



3.4. The Representation Language

On(C,A) indicates that the block C is on top of the block A. Clear(C) indicates that
there is no block on top of the block C. An example of predicates that cannot be used
in a state is: On(b, x) because it is not ground5; On(On(C,A), B) because it is not
functionless; and ¬On(B,C) because it is a negation.

3.4.2 Problem Domain

The problem domain (e.g., blocks-world) is expressed as a set of possible actions (e.g., to
move a block). A possible action specifies a valid way to go from one state to another.
The action is composed of a precondition and an effect6. The precondition specifies the
conditions that must hold in order for the action to be applicable. The effect specifies the
changes to be made to the current state. Negated predicates in the effects list represent
predicates that are removed from the state. For example, here are the actions to move a
block in a blocks-world domain:

Action : Move(b, x, y)
Precondition : On(b, x) ∧ Clear(b) ∧ Clear(y) ∧ Block(b) ∧ Block(y)
Effect : On(b, y) ∧ Clear(x) ∧ ¬ On(b, x) ∧ ¬ Clear(y)

Action : MoveToTable(b, x)
Precondition : On(b, x) ∧ Clear(b) ∧ Block(b)
Effect : On(b, Table) ∧ Clear(x) ∧ ¬ On(b, x)

The action Move(b, x, y) moves a block b from the top of x (which can be either a block
or a table) to the top of a block y. This action can be executed only if all preconditions
are satisfied:

• Clear(b): there is no other block on top of block b;

• On(b, x): block b is on top of x (block or table);

• Clear(y): there is no other block on top of the destination block y;

• Block(b) ∧Block(y): the object to move b and the destination place y are blocks.

The action’s effects are :

• ¬On(b, x): the block b is not anymore on top of x, therefore On(b, x) should be
removed from the state representation;

• On(b, y): the block b is now on top of the block y;

• ¬Clear(y): the top of the block y is occupied now by the block b, meaning that it
is not clear anymore, therefore Clear(y) should be removed from the state repre-
sentation;

• Clear(x): the top of x is not occupied anymore by the block b, meaning that it is
clear now.

The preconditions and effect are quite similar for the action MoveToTable(b, x).

5A literal starting with lowercase is considered as a variable. In this example b and x are variables.
6The effect is also sometimes called postcondition

49



Chapter 3. Introduction to Automated Planning

3.4.3 Specific Problem

The specific problem is expressed by an initial state and a desired goal. The initial
state is a special state that represents the current state of the world (e.g., the current
configuration of the blocks-world). For example, here are the predicates corresponding to
the initial state of the blocks-word problem showed in Figure 3.2:

On(A, Table) ∧ On(B, Table) ∧ On(C,A) ∧
Block(A) ∧ Block(B) ∧ Block(C) ∧
Clear(B) ∧ Clear(C)

The desired goal is a partially specified state that describes the world that we would like
to obtain (e.g, the desired configuration in blocks-world). It is a conjunction of predicates;
it differs from a normal state in that the predicates could be negative or non-ground. The
desired goal is a pattern that can be matched to a state to find a goal. A desired goal
for the blocks-world problem can be for example : On(A, x) ∧On(x, y) ∧Block(y). This
desired goal is to have the block A in top of two other blocks. Two goal states that match
the desired goal are :

On(A,B) ∧ On(B,C) ∧ On(C, Table) ∧
Block(A) ∧ Block(B) ∧ Block(C) ∧
Clear(A)

On(A,C) ∧ On(C,B) ∧ On(B, Table) ∧
Block(A) ∧ Block(B) ∧ Block(C) ∧
Clear(A)

3.4.4 Languages

Fikes et al [43] developed, in 1971, a formal planner approach called STRIPS. Its rep-
resentation language has been more influential than its algorithmic approach [129]. In
1989, Pednault [119] developed a more advanced and expressive language called Action
Description Language(ADL)7. ADL has an improved expressiveness compared to STRIPS.
In particular, ADL applies the open-world principle: unspecified predicates are considered
as unknown instead of being assumed false. ADL also allows to use negative predicates
and disjunctions, whereas STRIPS only allows positive predicates and conjunctions. In
recent years, a standard Planning Domain Definition Language (PDDL) [89] has been
developed for the International Planning Competition (IPC)8 of the International Con-
ference on Artificial Intelligence Planning and Scheduling (ICAPS). This language is used
in the competition to compare the benchmarks of different planning approaches [129].

PDDL evolved to cover the needs of the new IPC competitions9 :

• PDDL 1.2 [89] (IPC-1998 and IPC-2000) is the original definition of PDDL. It con-
tains STRIPS and ADL functionalities and implements the use of typed variables;

• PDDL 2.1 [46] (IPC-2002) extends the original PDDL to add numeric variables and
durative actions;

7Not to be confused with Architecture Description Language.
8http://ipc.icaps-conference.org/
9http://ipc.informatik.uni-freiburg.de/PddlResources

50

http://ipc.icaps-conference.org/
http://ipc.informatik.uni-freiburg.de/PddlResources


3.5. The Algorithms

• PDDL 2.2 [31] (IPC-2004) extends the previous version by adding derived predicates
and timed initial predicates;

• PDDL 3.0 [50] (IPC-2006) extends the expressivity of the previous language by
adding state trajectory, goal and state trajectory preferences;

• PDDL 3.1 (IPC-2008 and IPC-2011) is the most recent version of PDDL; it intro-
duces functional STRIPS [48].

Even if PDDL covers all the previously described functionalities, the majority of plan-
ners only implement the STRIPS subset [65].

3.5 The Algorithms

Two main approaches exist to solve classical planning problems [65]: (1) generating a
search space and looking for a solution plan in this space; (2) translating the planning
problem into a problem that can be solved by a different approach.

3.5.1 Search for Planning

Search algorithms systematically generate and explore a search space looking for a solution
path. These algorithms are characterized by the following features:

a) The search space

The search space can be either a state space, a plan space, or a planning graph.

• A node in a state space corresponds to a state and an arc corresponds to the exe-
cution of an action. Figure 3.3a shows the state space for the blocks-world problem
(Figure 3.2). For readability purposes, the actions name where omitted in the arcs.
The arcs are bidirectional because there are actions that can undone the effect of
another actions (e.g., the action that moves the block C from the block A to the
block B (Move(C,A,B)) can be undone with the action that moves the block C
from the block B to the block A (Move(C,B,A))).

• In a plan space the nodes are partially specified plans and the arcs correspond to
plan refinement operations. Figure 3.3b illustrates a plan space for another block-
world problem. The construction of a plan space begins with an empty plan con-
taining a Start action with the initial state as an effect (On(B,D) ∧ On(D,C) ∧
On(C, Table)∧On(A, Table)) and a Finish action with the desired goal as a precon-
dition (On(A,B) ∧ On(C,D)). Then, a node’s predecessor is generated by picking
an open precondition (i.e., one predicate of the precondition that is not achieved)
and an action to achieve it (e.g., the precondition On(A,B) is achieved with the
action Move(A, Table, B)). The construction of the plan finishes when there are no
more open precondition. That is when all the actions’ preconditions are achieved
by another action or by the Start action. Heuristics can influence the decision of
what action is going to be chosen from the set of possible actions. An advantage of
this search space is the possibility to make a partial-order plan. A partial-order plan
is a plan that can place two actions into a plan without specifying which one comes
first. For example, the action Move(A, Table, B) and the action Move(C, Table,D)

51



Chapter 3. Introduction to Automated Planning

do not have a predefined order and can be executed in parallel or in any possible or-
der, but the Action MoveToTable(D,C) and Move(C, Table,D) have a predefined
order and this order must be respected.

• A planning graph consists of an oriented graph composed of a sequence of layers that
correspond to time steps in the plan. It allows to represent the reachable states after
executing a certain number of actions. There are two kinds of layers: (i) Action
layer Ai, the set of actions whose preconditions hold in the previous state layer,
and (ii) State layer Si is composed by the union of the predicates of the previous
state layer and the predicates of the effects added by the actions of the previous
action layer. The first state layer S0 is the initial state of the problem. Figure 3.3c
shows a simple example of a planning graph. The empty squares in the action layer
represent the fact that we don’t do any change to that specific predicate, and the
gray lines represent the conflicts between actions or predicates.

b) The search direction

Depending on how the search space is traversed, we can distinguish between forward
search, backward search and bidirectional search. The forward search starts from the
initial node and goes to the goal nodes; the backward search starts from the goal node
and goes back to the initial node; and the bidirectional search executes both searches
(forward and backward) until they meet in the middle. The forward search in a state
space is known as progression planning and the backward search in a state space as
regression planning.

c) The search algorithms

Any search algorithm can be used to find a solution path in a defined search space. An
uninformed search strategy [29, 63] systematically traverses the whole search space until
finding the solution path (e.g., depth-first search (DFS) [144] and breadth-first search
(BFS) [104]). This strategy is not recommended, because the search space in automated
planning problems is often extremely large [65]. An informed (heuristic) search strat-
egy [82,111,136] is more suitable for large planning problems because the search algorithm
can choose the most promising node, therefore improving the efficiency and scalability of
the algorithm. For doing this, a heuristic function h(n) estimates the minimal distance
from a node n to the goal. Examples of informed search strategies are: A∗ search [58],
iterative deepening A∗ (IDA∗) [72,73] and recursive best-first search (RBFS) [74,75]. The
performance of a heuristic search depends on the quality of the heuristic function.

d) The heuristic function

The heuristic function h(n) is the minimal estimation of the cost to reach a solution
from the node n. The heuristic function can be derived by defining a relaxed problem
which is easier to solve. For example, considering the following travel problem, we would
like to travel from Mons to Paris in the shortest possible way. Instead of calculating the
actual highway distance, a possible relaxation is to calculate the straight-line distance (the
Manhattan distance) from Mons to Paris. The most common relaxations in automated
planning are [129] :

52



3.5. The Algorithms

C
B A

C
B A

A
B C

B
A C

A
B C

B
A C

A B C

B
A
C

B
C
A

C
A
B

A
B
C

C
B
A

A
C
B

Initial State

Goal States

(a) A state space

MoveToTable(B,D)

Move(C,Table,D)

Move(A,Table,B)

Clear(C)
Clear(D)

Clear(A)
Clear(B)

FinishOn(A,B)
On(C,D)

B
C
D

A

Start
On(B,D)
On(D,C)
On(C,Table)
On(A,Table)

C

B

A
D

MoveToTable(D,C)Clear(D)

(b) A plan space

S0

On(A,Table) 

On(B,A) 

Clear(B) 

MoveToTable(B,A)

 On(A,Table) 

 On(B,A) 

 Clear(B) 

 Clear(A) 

 On(B,Table) 

A0 S1

MoveToTable(B,A)

A0

 On(A,Table) 

 On(B,A) 

 Clear(B) 

 Clear(A) 

 On(B,Table) 

S2

Move(A,Table,B)  On(A,B) 

B
A

A
B

(c) A planning graph

Figure 3.3 – Search spaces for blocks-world problems

53



Chapter 3. Introduction to Automated Planning

Ignore the preconditions : This relaxation ignores all preconditions of actions. Every
action becomes applicable in every state. As a consequence, a single predicate of
the desired goal can be achieved in one step.

Ignore the delete effect : This relaxation ignores the delete effect of actions (i.e., the
negated predicates in the effect). No action will undo the effect made by another
action, the solution path of the relaxed problem is a straight and monotonic progress
toward the goal. To use this heuristic, the goal and the precondition of the actions
need to be composed only by positive predicates.

Subgoal independence : The assumption behind this relaxation is that the sum of the
costs of resolving each predicate of the desired goal independently is approximatively
the same as the total cost of resolving the complete desired goal.

To have an optimal search algorithm, the heuristic function must be admissible. An
admissible heuristic is one that does not overestimate the actual minimal cost of the path.
Generally, the heuristic functions implemented in classical planning are non-admissible.
In classical planning, the existing admissible heuristics are poorly informed and the ap-
plication of optimal search algorithms is too expensive in terms of computation time [65].

3.5.2 Planning Solved by a Different Approach

Another strategy to solve classical planning problems is translating the planning problem
into a problem that can be solved by a different approach. The most common approaches
are :

SAT-planning In this approach all the potential solution plans of a certain length n
are translated to a boolean formula. Consequently each assignment of truth values
satisfying the boolean formula, represents a valid plan for the planning problem.
Given that this approach finds the plans of the given length n, it can be used to
find optimal solutions in terms of length of the plan by systematically increasing
the value of n [67].

CSP-planning The constraint satisfaction problem (CSP) compilation encodes the po-
tential solution plans of a certain length as CSP problems. Each assignment of
values making the resulting CSP problem satisfiable, represents a valid plan for the
planning problem. As opposed to the SAT compilation, the CSP compilation is
more compact and it can cover planning problems with numeric variables [149].

Planning as model checking In this approach the initial state and the desired goals
are formalized (in temporal logic) as requirements about the desired behavior for
the plans. The planning problem is solved by searching through the possible plans
whether a plan satisfying the requirements exists [21].

3.6 The Implementations

In this section we will present the implementations that influenced significantly the re-
search in automated planning [65]:

54



3.7. Automated Planning and Software Engineering

STRIPS uses a simple regression planner (backward search in a state-space) [43]. Its
representation language was very influential in the creation of future representation
languages, such as ADL and PDDL. STRIPS is also considered as the first major
planning system.

UCPOP (Universal, Conditional Partial-Order Planning) is a sound and complete algo-
rithm developed for the ADL language [120]. It is based on backward searching in
a plan space. This algorithm allows to use conditional effects and universal quan-
tification within the logical conditions and the states. This algorithm is sound, in
the sense that all strategies generated by the algorithm are correct solutions for the
problem, and complete, in the sense that it always finds a solution for the problem
if there is one.

SATPLAN (Planning as satisfiability) [67] translates a planning graph with a deter-
mined length into a conjunctive normal form (CNF) formula and solves it with
a SAT solver. If no solution is found, the algorithm increases the length of the
planning-graph and starts again.

GRAPHPLAN [12] is an algorithm based on a planning graph search space. It alter-
nates between a solution extraction step (that looks whether a plan can be found
starting at the end and searching backwards) and a graph expansion step (that adds
the actions for the current level and the state predicates for the next level).

FF (Fast-Forward Planning System) is a progression planner (forward search in a state-
space) [61, 62]. It is considered by Russell and Norvig [129] as the most successful
state-space searcher. It was awarded for its outstanding performance at the AIPS
2000 planning competition and top performer at the AIPS 2002 planning competi-
tion. FF uses a heuristic function derived from the relaxation of ignore the delete
effect. The number of actions in the solution of the relaxed problem is used as input
to a heuristic algorithm enforced hill-climbing (EHC).

SHOP (Simple Hierarchical Ordered Planner) [108] is a type of Hierarchical Task Net-
work (HTN) planning [131,132,145]. The particularity of this kind of planner is that
it decomposes the tasks into subtasks until a task can be performed by a planning
action. The planner needs, as input, the information about how the tasks can be
decomposed. A task can have more than one possible decomposition. In that case,
SHOP performs a forward search to choose which decomposition to apply.

3.7 Automated Planning and Software Engineering

Few other authors use automatic planning to solve different kinds of software engineering
problems. For example, Javier Pérez [121] applies, in his PhD thesis, automated planning
in order to correct design smells in Java. The author uses JSHOP2 [108] and HTN
planning to compute the refactoring strategies needed to automatically correct the design
smells. Sirin et al. [138,163] use the SHOP2 planner to address the problem of automated
composition of web services. Automated planning is also used by Memon et al. [91]
to automatically generate test cases for graphical user interfaces (GUIs). They use the
Interference Progression Planner (IPP) [71] to generate plans representing the testing
sequences of GUI interactions.

55





4
Automated Planning

for Inconsistency Resolution

As mentioned in Chapter 1, resolving model inconsistencies is one of the main challenges
in model-driven software engineering (MDE). In this dissertation, we propose to use au-
tomated planning techniques, presented in Chapter 3, for this purpose. In this chapter,
we explain how automated planning can be used for resolving model inconsistencies. We
present two different planning approaches: FF and Badger. We study their feasibility
in the domain of model inconsistency resolution and make a small scalability study. We
conclude this chapter with a discussion about the strengths and limitations of these ap-
proaches.

The work presented in this chapter was previously published in:

(i) “Resolving Model Inconsistencies with Automated Planning”, presented in 3rd Work-
shop on Living with Inconsistencies in Software Development, 2010, co-authored
with Tom Mens (University of Mons, Belgium) and Ragnhild Van Der Straeten
(Vrije Universiteit Brussel, Belgium) [122].

(ii) “Automated Planning for Resolving Model Inconsistencies - A Scalability Study”,
presented in MoDELS workshop on Models and Evolution, 2010, co-authored with
Tom Mens (University of Mons, Belgium) and Ragnhild Van Der Straeten (Vrije
Universiteit Brussel, Belgium) [124].

(iii) “Comparing Automated Planning Approaches for Model Inconsistency Resolution”,
Technical Report, University of Mons, 2011, co-authored with Tom Mens (Univer-
sity of Mons, Belgium) and Ragnhild Van Der Straeten (Vrije Universiteit Brussel,
Belgium) [123].

(iv) “Badger: A regression planner to resolve design model inconsistencies.” in Euro-
pean Conference Modelling Foundations and Applications (ECMFA), 2012, Winner
of the ECMFA 2012 Best Foundation Paper Award, co-authored with Tom Mens
(University of Mons, Belgium) and Ragnhild Van Der Straeten (Vrije Universiteit
Brussel, Belgium) [125].



Chapter 4. Automated Planning for Inconsistency Resolution

4.1 Running Example

There is a wide variety of software modeling languages, domain-independent as well as
domain-specific. As a consequence, there are many different types of, often interrelated,
models that can suffer from many kinds of inconsistencies, such as structural and be-
havioural inconsistencies.

For our experiments, in this chapter and in the following ones, the Unified Modeling
Language (UML) is used to express design models because it is the de-facto general-
purpose modelling language [117]. Its visual notation consists of a set of different diagram
types, such as class diagrams, sequence diagrams and statecharts, each expressing certain
aspects of a software system. These diagrams are interrelated and inconsistencies in and
between them can arise easily.

For our running example, we focus on one type of model, namely class diagrams, and on
structural model inconsistencies. Figure 4.1 illustrates a simple class diagram containing
two inconsistencies of type “Inherited Cyclic Composition” (ICC) and two of type “Cyclic
Inheritance” (CI) [151]. An ICC inconsistency occurs when a composition relationship and
an inheritance chain form a cycle that would produce an infinite containment of objects
upon instantiation. A first inconsistency ICC1 of this type appears in the inheritance
chain Vehicle ← Boat ← Amphibious Vehicle. The second inconsistency ICC2 occurs
in the inheritance chain Vehicle ← Car ← Amphibious Vehicle. Both inconsistencies
share the composition relationship between Vehicle and Amphibious Vehicle.

Vehicle

Bicycle CarMotorcycle BoatAircraft

Amphibious 
Vehicle 1..*

Helicopter Airplane

Figure 4.1 – Class diagram with 4 inconsistencies, inspired by [151].

A CI inconsistency arises when an inheritance chain forms a cycle. A first inconsis-
tency CI1 can be observed in the inheritance cycle involving the classes Vehicle, Boat
and Amphibious Vehicle. The second inconsistency CI2 occurs in the inheritance cycle
involving the classes Vehicle, Car and Amphibious Vehicle.

All four inconsistencies share two of the three classes that compose their respective
inheritance chains: Vehicle and Amphibious Vehicle. Due to this overlap, the same
resolution action can resolve more than one inconsistency. For example, removing the
composition relationship between Vehicle and Amphibious Vehicle solves the two in-
consistencies ICC1 and ICC2. Removing the inheritance relationship between Boat and
Amphibious Vehicle solves the two inconsistencies ICC1 and CI1. This clearly illus-

58



4.2. Planning for Inconsistency Resolution

trates that, in order to resolve model inconsistencies in an optimal way, it is important
to consider all inconsistencies simultaneously.

Figure 4.2 illustrates two different solutions in which the four inconsistencies (ICC1,
ICC2, CI1 and C2) are not present any more. The first solution (top part of Figure 4.2)
is obtained after the application of the two following actions: removing the general-
ization relationship between Vehicle and Amphibious Vehicle (resolving C1 and C2);
and changing the multiplicity of the association from 1..* to 0..* (resolving ICC1 and
ICC2). The second solution (bottom part of Figure 4.2) is obtained after the application
of the two following actions: removing the generalization relationship between Vehicle

and Boat (resolving ICC1 and CI1); and removing the generalization relationship between
Vehicle and Car (resolving ICC2 and CI2).

Vehicle

Bicycle CarMotorcycle BoatAircraft

Amphibious 
VehicleHelicopter Airplane

0..*

Vehicle

Bicycle CarMotorcycle BoatAircraft

Amphibious 
VehicleHelicopter Airplane

1..*

Figure 4.2 – Class diagram without the 4 inconsistencies founded in Figure 4.1.

Note that, in this chapter, we use as running example a very simplified metamodel
with a small model and only two types of inconsistencies. In Chapter 6, we will use bigger
metamodels, with much bigger models and a large amount of inconsistencty types.

4.2 Planning for Inconsistency Resolution

We have chosen to use automated planning for inconsistency resolution because the so-
lutions proposed by automated planning are discovered and optimised in complex search
spaces. Automated planning promise to resolve multiples inconsistencies together in an
optimal way (using a minimal number of actions). Automated planning is also a non-
intrusive technique, i.e., without the need to change the original problem. In addition, It
allows us to generate completely automatic solutions, without the need of user interven-

59



Chapter 4. Automated Planning for Inconsistency Resolution

tion and without the need of adding more hand-coded information to the problem (e.g.,
resolution rules, generator functions, inconsistency causes).

Using the example of Figure 4.1, we illustrate how to resolve inconsistencies with
automated planning. We require as input: an initial state (the inconsistent model),
a set of possible actions (that change the model) and a desired goal (the absence of
model inconsistencies). Planning requires logic conditions as input, so the whole model
environment (i.e., model, meta-model, detection rules) is translated into a conjunction of
logic predicates.

The logic predicates used to represent the class diagrams are shown below. A predicate
is represented by its name (starting with an uppercase letter) and the arguments that
composed it. The arguments are enclosed in parentheses and separated by commas.
Logic variables start with a lowercase letter. Literals start with an uppercase letter (e.g.,
Parent(Tom,Mathieu)). The logic predicates used to represent the class diagram are
referred to by a unique id.

Class(id, name)
Generalisation(id, label, child class, parent class)
Association End(id, class, role, upper mult, lower mult, composite)
Association(id, name, ass end 1, ass end 2)

Initial State. The initial state is expressed as a conjunction of predicates, and repre-
sents the current world. In our case, the initial state will be the inconsistent model. The
initial state can be represented either by using the complete model, or by using a partial
model, i.e., a model that contains only those elements that are involved in one or more
inconsistencies. Using the partial model as initial state, we may not be able to resolve
all inconsistencies, or to propose all existing resolutions to the user, which may lead her
to resolve the inconsistencies in an undesirable way. But as it is composed only by the
elements involved in the inconsistencies, the initial state will be smaller and this could be
an advantage for the resolution approach performance.

Below is an example of a partial model containing only the elements that are involved
in the inconsistencies, shown in the shaded part of Figure 4.1.

Class(C1, V ehicle) ∧ Class(C5, Boat) ∧ Class(C6, Car) ∧
Class(C9, Amphibious V ehicle) ∧ Generalisation(G4, Label4, C5, C1) ∧
Generalisation(G5, Label5, C6, C1) ∧ Generalisation(G8, Label8, C9, C5) ∧
Generalisation(G9, Label9, C9, C6) ∧ Generalisation(G10, Label10, C1, C9) ∧
Association End(AE1, C9, Role1, Star, One,No) ∧
Association End(AE2, C1, Role2, One,One, Y es) ∧
Association(A1, ASS1, AE1, AE2)

Set of Actions. The set of actions contains the actions that can be performed to
change the model. Each action is represented in terms of a precondition that must hold
before the execution and an effect due to the execution of the action. In our approach,
inspired by Blanc et al. [10], the set of actions corresponds to the elementary operations
(basically: create, modify and delete) of the different types of model elements that can
be derived from the metamodel. These elementary operations, combined with the logic
predicates of the metamodel, allow us to compute the list of all possible actions. As
an example, the specification of modify Association Name action whose purpose is to

60



4.2. Planning for Inconsistency Resolution

modify the association name is given below. The precondition of the action specifies that
the association must exist. The effect of the action specifies the changes to the current
state. In this case, the association with the old name is removed and the association with
the new name is introduced to the current state.

Action : modify Association Name(id, name, ass end 1, ass end 2, new name)
Precondition : Association(id, name, ass end 1, ass end 2)
Effect : Association(id, new name, ass end 1, ass end 2) ∧

¬ Association(id, name, ass end 1, ass end 2)

Be aware that precondition checking stands for different concepts in Automated Plan-
ning and in Software Engineering. In Automated Planning preconditions are formulated
as the set of predicates that have to be present in the current state in order to apply the
actions. Additional conditions can also be included in the action specification (e.g., to
check a variable type, or to validate certain properties or relationships of the variables
involved). How these conditions (from now on we will refer to them as validation) are
defined depends on each particular planner’s algorithms and validation implementations
(cf. Section 4.4 and 4.5). In our example, a validation is needed to verify that the variable
new name is correctly initialised as a text and that it is different from the old name.

Desired Goal. The desired goal is a partially specified state, represented as a conjunc-
tion of predicates using logic quantification. It specifies the objective that we want to
reach, namely the absence of model inconsistencies. To express this objective, we can
use two alternatives: (1) the negation of the inconsistencies; or (2) the negation of the
inconsistency rules. An inconsistency rule is a conjunction of logic predicates representing
a pattern that, if matched in the model, detects inconsistencies.

Below we give an example of the “Inherited Cyclic Composition” rule. Note that
Generalisation+(x, y) is the transitive relationship of Generalisation( , , x, y).

Generalisation+(a, b) ∧
Association(a1, ass1, ae1, ae2) ∧
Association End(ae1, a, role1, upper1, lower,Yes) ∧
Association End(ae2, b, role2, upper2,One, composite)

The inconsistency between V ehicle (C1) and AmphibiousV ehicle (C9) that matches
this rule is given below.

Generalisation+(C1, C9) ∧
Association(A1, ASS1, AE1, AE2) ∧
Association End(AE1, C9, Role1, Star, One,No) ∧
Association End(AE2, C1, Role2, One,One, Y es)

Using the negation of the inconsistencies as desired goal is only possible if the incon-
sistencies have already been detected previously. Using the negation of the inconsistency
rules has the advantage that it can be used to detect and resolve inconsistencies at the
same time, but suffers from scalability problems (see further). In both alternatives, logic
negation is used to express the absence of inconsistencies in the resulting model. This
implies that we need a planning implementation that allows the use of disjunction and
negative predicates in the goal.

61



Chapter 4. Automated Planning for Inconsistency Resolution

Plan. A plan is a sequence of actions that transforms the initial model into a model that
satisfies the desired goal (i.e., a consistent model). A plan is generated automatically by
the planning algorithm, without relying on any domain-specific information. Moreover,
the generated resolution plan does not lead to ill-formed models (i.e., models that do not
conform to their metamodel’s structure) as long as the metamodel structure is given as a
part of the problem specification. But a resolution plan can lead to inconsistent models,
relative to other kinds of constraints (e.g., OCL constraints). A complete resolution plan
that contains only two actions and solves the four inconsistencies of the running example
is given below:

delete Generalisation :
Generalisation(G10, Label10, C1, C9)

modify Association End Lower Multiplicity :
from : Association End(AE1, C9, Role1, Star, One,No)
to : Association End(AE1, C9, Role1, Star, Zero,No)

The first action removes the generalisation between Amphibious V ehicle and V ehicle,
removing both cyclic inheritance inconsistencies. The second action modifies the lower
multiplicity of the association between Amphibious V ehicle and V ehicle from 1 to 0. This
action removes both inherited cyclic composition inconsistencies. The model resulting
after the execution of the plan is the one in the top part of Figure 4.2.

4.3 Experimental Setup

As the aim of this dissertation is to use Automated Planning to resolve design model
inconsistencies, we will select existing implementations and algorithms that fulfill our
requirements and we will perform a series of experiments to determine their feasibility and
scalability in the inconsistency resolution domain. Note that the aim is not to compare
all existing planning implementations and algorithms but to find one that fulfills our
requirements.

Our first experiment will consist of assessing whether the use of the selected automated
planning approach is at all feasible in the domain of inconsistency resolution. We will
start by exploring the impact of different ways to provide input to the planner.

The initial state can be specified by giving a complete model or a partial model, the
latter restricts the search space by containing only those elements that are involved in
the inconsistencies (shaded part of Figure 4.1). The desired goal can either contain a
negation of the inconsistency rules or a negation of the inconsistencies themselves. In
order to assess which of the above four choices is feasible, we will compare the timing
results of each considered possibility.

To verify how the automated planning approaches perform on larger models, we will
conduct three more experiments in which we will artificially increase the size of the ex-
ample class diagram of Section 4.2 in order to assess how this affects the time needed to
generate a resolution plan.

First, we will artificially augment the size of the motivating example of Figure 4.1 by
gradually adding a number of isolated classes to the complete model (from 1 class to 20
classes). Since these classes are unrelated to the inconsistencies that the algorithm needs
to resolve, they will never be part of the partial model and the algorithm will still be able
to find the same resolution plan in the same time if the partial model is used as initial

62



4.3. Experimental Setup

state. However, the time taken to generate a plan using the complete model as initial
state increases as the model size increases.

Secondly, we will study the timing results for models of increasing size using the partial
model as initial state. The motivating example of Figure 4.1 contains an inheritance chain
of classes that is shared by all the inconsistencies. To assess the effect of an increase of
the size of the partial model on the time needed to compute a resolution plan, we will
artificially augment the size of the model by increasing the length of this inheritance chain.
We will do this gradually, by adding between one and eight intermediate superclasses, and
computing the timing results for each partial model.

Finally, we will verify whether the number of inconsistencies to be resolved affects the
timing results. To achieve this, we will restrict the desired goal to generate resolution plans
that resolve only 2 or 3 inconsistencies, without affecting the partial model of Figure 4.1.
We will not do this for 1 inconsistency only, as it would reduce the size of the partial model,
making the results incomparable with what we will find for 2 or 3 inconsistencies. Note
that all the resolution plans generated by the automated planning approaches presented
in this dissertation resolve the inconsistencies. But the user can still prefer a resolution
plan over another to resolve the inconsistencies. Assessing the quality of these resolution
plans as perceived by the user will be discussed in Chapter 8.

In order to remove noise, each experiment will be conducted 10 times and the average
time will be computed1. All experiments will be carried out on a 64-bit Apple MacBook
with 2.4 GHz Intel Core 2 Duo processor and 4GB RAM, 2.9GB of which will be available
for the experiment.

We will perform a regression analysis to compare the growth of the time results with
5 different parametric regression models: a linear model (y = a x+ b), a quadratic model
(y = a x2+b x+c), an exponential model (y = b ea x), a logarithmic model (y = a lnx−b)
and a power model (y = b xa). The goodness of fit of each type of model will be verified
using the coefficients of determination: the R square (R2) and the adjusted R square
(R̄2) [146]. Its value is always between 0 and 1, and a value close to 1 corresponds to a
good fit. The difference between the R2 and the R̄2 is that the latter takes into account
the number of parameters of the model, and is more accurate when we try to compare
the goodness of fit of models with different numbers of parameters like it is in our case
(the quadratic model has 3 parameters and the other models only have 2 parameters).
The formula to compute the R2 is :

R2 =

∑
i

(fi − ȳ)2∑
i

(yi − ȳ)2

where fi are the regression model values, yi are the observed values and ȳ is the mean of
the observed values:

ȳ =
1

n

n∑
i

yi

The formula to compute the R̄2 is:

R̄2 = 1− (1−R2)
n− 1

n− p− 1

1In hindsight, it would have been more appropied to use the minimal time instead of the average time
since the noise generated by external factors will never be negative.

63



Chapter 4. Automated Planning for Inconsistency Resolution

where n is the sample size and p the number of parameters in the model.

4.4 Fast-Forward Planning System

Many implementations exist of classical planning. In this dissertation, we first use the
heuristic state-space progression planner called FF (for “Fast-Forward Planning Sys-
tem” [61, 62]) for our experiments. It is considered by Russell and Norvig [129] as the
most successful state-space searcher, and was awarded for outstanding performance at
the AIPS 2000 planning competition and top performer at the AIPS 2002 planning com-
petition. FF has been chosen not only because of its performance, but also because it
uses PDDL2 language with full ADL3 subset support, including positive and negative
predicates, conjunction and disjunction, negation, typing, and logic quantification in the
desired goal. This is crucial to our approach, as explained in the previous section. FF
is the only readily available planner we have found that properly deals with negation.
Therefore, we have selected FF for our first experiments.

4.4.1 Representation Language

The syntax of PDDL is Lisp-like. Each logic predicate is a tuple represented between
parentheses. The tuple starts with the name of the predicate (starting with an uppercase
letter), followed by literals or by variables. The first time that a variable is defined, it is
followed by its domain specific type (separated by a “–”). All objects and variables in
PDDL have some type. Note that PDDL doesn’t provide built-in support for primitive
data types. Therefore, we needed to define String, Boolean and Cardinal as user-defined
types. Cardinal represents a positive integer (including infinity).

The logic predicates used to represent our class diagram are given below using PDDL
syntax. Logic variables start with the “?” character. Literals start with lowercase letters.
More information about the PDDL syntax can be found in [49].

(Class ?id - class_id ?name - String)

(Generalisation ?id - g_id ?label - String

?child_class - class_id ?parent_class - class_id)

(Association_End ?id - ae_id ?class - class_id ?role - String

?upper_mult - Cardinal ?lower_mult - Cardinal

?composite - Boolean)

(Association ?id - a_id ?name - String ?ass_end_1 - ae_id

?ass_end_2 - ae_id)

Initial State. A partial model corresponding to the model in Figure 4.1 is given below.

(Class c1 Vehicle)

(Class c5 Boat)

(Class c6 Car)

(Class c9 Amphibious_Vehicle)

(Generalisation g4 label4 c5 c1)

(Generalisation g5 label5 c6 c1)

(Generalisation g8 label8 c9 c5)

(Generalisation g9 label9 c9 c6)

2PDDS stands for Planning Domain Definition Language, cf. Section 3.4.4.
3ADL stands for Action Description Language, cf. Section 3.4.4.

64



4.4. Fast-Forward Planning System

(Generalisation g10 label10 c1 c9)

(Association_End ae1 c9 role1 star one no)

(Association_End ae2 c1 role2 one one yes)

(Association a1 ass1 ae1 ae2)

Set of Actions. The actions in PDDL are composed of 4 parts, each preceded by a
keyword: (i) :action describes the name of the action; (ii) :parameters describes the
parameters of the action (i.e, the variables that are going to be used in the action); (iii)
:precondition lists the preconditions predicates that must exist in the state to apply the
action; and (iv) :effect gives the predicates to be added and removed from the current
action.

As an example, the specification of modify Association Name action whose purpose
is to modify the association name is given below in PDDL syntax.

(:action modify_Association_Name

:parameters (?id - id ?name - String ?ass_end_1 - ae_id

?ass_end_2 - ae_id ?new_name - String)

:precondition (Association ?id ?name ?ass_end_1 ?ass_end_2)

:effect (when (not (= ?name ?new_name))

(and (not (Association ?id ?name ?ass_end_1 ?ass_end_2))

(Association ?id ?new_name ?ass_end_1 ?ass_end_2)))

)

In PDDL, the validation of the action is found as the first part of the effect. For
example, the validation (when (not (= ?name ?new name)) permits to apply the effect
only if the new name is different from the old name.

Desired Goal. The “Inherited Cyclic Composition” (ICC) inconsistency rule using the
PDDL syntax is given below. Observe that it only specifies an inheritance chain involving
three classes. PDDL syntax does not allow to express transitive closure to make the rule
more generic, which is an important practical limitation of PDDL syntax.

(exists (?a - class_id ?b - class_id ?c - class_id)

(and

(exists (?g - g_id ?Label - g_label)

(Generalisation ?g ?Label ?c ?a))

(exists (?g - g_id ?Label - g_label)

(Generalisation ?g ?Label ?b ?c))

(exists (?ae - ae_id ?role - ae_role

?upper - upper_cardinal ?lower - lower_cardinal)

(Association_End ?ae ?a ?role ?upper ?lower yes))

(exists (?ae - ae_id ?role - ae_role

?upper - upper_cardinal ?composite - boolean)

(Association_End ?ae ?b ?role ?upper one_l ?composite))

))

One of the two inconsistencies (ICC1 of Section 4.1) that match the rule is given
below.

(and

(exists (?g - g_id ?Label - g_label) (Generalisation ?g ?Label c5 c1))

(exists (?g - g_id ?Label - g_label) (Generalisation ?g ?Label c9 c5))

(exists (?ae - ae_id ?role - ae_role ?upper - upper_cardinal ?lower - lower_cardinal)

65



Chapter 4. Automated Planning for Inconsistency Resolution

(Association_End ?ae c1 ?role ?upper ?lower yes))

(exists (?ae - ae_id ?role - ae_role ?upper - upper_cardinal ?composite - boolean)

(Association_End ?ae c9 ?role ?upper one_l ?composite))

)

Plan. A complete resolution plan that solves the four inconsistencies of the motivating
example is given below4.

delete_Generalisation :

(Generalisation g10 label10 c1 c9)

modify_Association_End_Lower_Multiplicity :

from: (Association_End ae1 c9 role1 star one no)

to: (Association_End ae1 c9 role1 star zero no)

4.4.2 Algorithm

Fast-Forward (FF) is a forward-chaining heuristic state-space planner implemented in C.
The planning algorithm of FF uses an heuristic function derived from the relaxation of
“ignore the delete effect” (cf. Section 3.5.1). This relaxation ignores the delete effect of
actions (i.e., the negated predicates in the effect). No action will undo the effect made
by another action, the solution path of the relaxed problem is a straight and monotonic
progress toward the goal. The number of actions in the solution of the relaxed problem
is used as input to the heuristic algorithm enforced hill-climbing (EHC) [61, 62]. EHC
is a variation of a breadth-first search which is interrupted each time a successor node
s′ of node s satisfies h(s′) < h(s) retaking up the breadth-first search again from s′. In
case EHC search fails, FF performs a best-first search. Moreover, the relaxed plans are
used to prune the search space. Usually, the relaxed plan contains only the actions really
useful in a state, which permits to restrict the successors of any state to those produced
by members of the respective relaxed solution.

4.4.3 Experimental Results

We start our experiments by verifying the feasibility of using FF. We explore the impact
of different ways to provide input to the planner, as explained in the experimental setup
in Section 4.3. We specify the initial state by giving a complete model or a partial model
containing only those elements that are involved in the inconsistencies (shaded part of
Figure 4.1). The desired goal can either contain a negation of the inconsistency detection
rules or a negation of the inconsistencies. Table 4.1 summarises the timing results for
each combination of choices.

Based on these experiments, we observe that using the negation of the inconsistency
rules as desired goal always fails because of memory problems. This is due to the fact
that the generated state space becomes too large. The experiments in which the negation
of the inconsistencies was used as a desired goal, generated a correct resolution plan.
Moreover, the experiment in which a partial model was used as initial state significantly
outperformed the experiment where a complete model was used. In both experiments,
the resolution plans are the same:

delete_Generalisation :

(Generalisation g10 label10 c1 c9)

4The syntax of the generated plan does not respect the PDDL syntax for sake of readability.

66



4.4. Fast-Forward Planning System

Table 4.1 – Timing results using FF. Time is expressed in seconds and the standard devi-
ation is mentioned after the ± sign.

Experiment Initial state: Desired goal: Average time
number Model Negation of for FF

(in seconds)
1 complete inconsistency rules out of memory
2 partial inconsistency rules out of memory
3 complete inconsistencies 14.84± 0.09
4 partial inconsistencies 0.268± 0.004

modify_Association_End_Lower_Multiplicity :

from: (Association_End ae1 c9 role1 star one no)

to: (Association_End ae1 c9 role1 star zero no)

We will now artificially increase the size of the example class diagram of Section 4.2
in order to assess how this affects the time needed to generate a resolution plan.

Adding isolated classes to the model. We reran experiment 3 of Table 4.1, while
artificially augmenting the size of the model by gradually adding a number of isolated
classes. Figure 4.3a illustrates the timing results if we use the complete model as initial
state. It takes only 15 seconds for our initial example, but it takes more than 5 hours for
the model with 20 more added classes. A regression analysis reveals a quadratic polynomial
growth with adjusted coefficient of determination R̄2 = 0.978, indicating a very good fit
of the regression model. Two other candidate regression models we verified had a lower
goodness of fit: 0.977 for an exponential model and 0.874 for a power curve. These results
show that FF using a complete model as initial state does not scale up to large models.

In the following experiments, we will only present the results when using a partial
model as initial state, since we concluded previously that the use of FF with a complete
model does not scale up.

Increasing the inheritance chain of the partial model. We reran experiment 4
of Table 4.1 for models of increasing size. As the introduction of isolated classes does
not affect the partial model used as initial state, the timing results remain constant,
irrespective of how many isolated classes are added. To assess the effect of an increase
of the size of the partial model on the time needed to compute a resolution plan, we
artificially augmented the size of the model by gradually increasing the length of the
inheritance chains involved in the inconsistencies of Figure 4.1.

Figure 4.3b shows the timing results of carrying out this experiment. The figure shows
a strong increase in time to compute the resolution plan as the size of the partial model
increases. A regression analysis reveals an exponential growth (with adjusted coefficient
of determination R̄2 = 0.992) in the time needed to find a resolution plan. Two other
regression models we verified had a lower goodness of fit: 0.929 for a power curve and
0.920 for a quadratic polynomial model.

Size of the goal. We verified whether the number of inconsistencies to be resolved
affected the timing results. We restricted the desired goal to generate resolution plans

67



Chapter 4. Automated Planning for Inconsistency Resolution

0"

5000"

10000"

15000"

20000"

0" 2" 4" 6" 8" 10" 12" 14" 16" 18" 20"

(a) Using the complete model as initial state. The x-axis represents the number
of isolated classes added to the initial model.

0"

100"

200"

300"

400"

500"

0" 1" 2" 3" 4" 5" 6" 7" 8"

(b) Adding intermediate superclasses to the partial model. The x-axis represents
the number of intermediate superclasses added to the initial model.

0"

100"

200"

300"

400"

500"

0" 1" 2" 3" 4" 5" 6" 7" 8"

FF"4"inconsistencies"

FF"3"inconsistencies"

FF"2"inconsistencies"

(c) For different number of inconsistencies. The x-axis represents the number of
intermediate superclasses added to the initial model.

Figure 4.3 – FF - Scalability timing results (the y-axis represents the time in seconds).

68



4.5. Badger

that resolve only 2 or 3 inconsistencies, without affecting the partial model of Figure 4.1.
We did not do this for 1 inconsistency only, as it would reduce the size of the partial
model, making the results incomparable with what we found for 2 or 3 inconsistencies.

In all of these cases we found an exponential growth in time (Figure 4.3c). We obtained
a goodness of fit R̄2 = 0.988 for resolving 2 inconsistencies, and R̄2 = 0.989 for resolving
3 inconsistencies.

In Figures 4.3b and 4.3c we found the exponential regression model to have the best
fit. This was also confirmed by a visual analysis. If we would have more data points
(currently we only have 9 values) remains to be seen if the exponential regression model
continue to be the best fit.

4.4.4 Discussion

The exponential timing results obtained through the experiments described in the previous
section, indicate that using FF to resolve model inconsistencies is not at all usable in
practice. Using it to resolve inconsistencies one by one could perhaps be feasible because
the partial model and the desired goal will remain relatively small. This is not a good
solution, because it does not take full advantage of automated planning. In addition,
inconsistencies and their resolution actions are often interdependent. Therefore, resolving
the inconsistencies individually may be inappropriate. Another important limitation we
encountered is the expressiveness of the PDDL syntax. It does not offer important features
such as transitive closure, primitive types, numbers. A third limitation of FF is that it
only generates a single resolution plan. The resolution of several inconsistencies can give
rise to several different resolution plans, i.e., different sequences of resolution actions
leading to possibly different consistent models.

Several improvements to this approach can be envisioned. A first improvement is to
adapt the planning algorithm so that it generates several resolution plans among which the
model designer could choose. The scalability problem could be addressed by implementing
a domain-specific planner that can be optimized by making it more specific and more
performant for the specific problem we want to tackle. In addition, since we are not
constrained by the PDDL syntax, this would solve the problems of expressiveness we
encountered.

The timing results could be improved by using regression planning as opposed to
progression planning [129], as used by FF. Progression planning depends mainly on the
size of the initial state and does not exclude irrelevant actions. Regression planning works
only with relevant actions and depends mainly on the size of the desired goal. Because of
this, the search space will be significantly smaller.

4.5 Badger

After the experience with FF we can conclude that we do not only need a planner that
properly deals with negation but also a representation language that is more expressive
than PDDL. In addition the planner should generate more than one solution plan and
should be able to take full advantage of the domain knowledge, the domain specific repre-
sentation and the techniques adapted to the domain (i.e., a domain-specific planner). It
is for these reasons that we decided to implement our own planner based on an existing
algorithm.

69



Chapter 4. Automated Planning for Inconsistency Resolution

We present here a new planner called Badger 5, a regression planner that we im-
plemented to address the aforementioned limitations. We have chosen to implement a
regression planner, because it depends on the size of the desired goal and works only with
relevant actions. A relevant action is an action that contributes to the achievement of
the goal. The search space of a regression planner will be significantly smaller than the
one of a progression planner, as the latter depends mainly on the size of the initial state
and does not exclude irrelevant actions.

We implemented the planner algorithm in Prolog, since Prolog’s built-in backtracking
mechanism allows the planner to easily generate several resolution plans among which the
user can choose the most suitable one. The definition of the most suitable one is out of
the scope of this dissertation but will be discussed in Chapter 8.

4.5.1 Representation Language

The representation language used by Badger is based on Prolog logic facts and rules.
Prolog6 is a general purpose logic programming language. Prolog represents relations

by means of clauses written as the implication of a head from a body (in prolog syntax
head:- body in logic syntax: head ← body). Prolog is based on Horn clauses. A Horn
clause is a clause that has at most one positive literal. A Horn clause can be written in
an implication form as u← (p ∧ q ∧ . . . ∧ t). That means that Prolog can only have one
predicate in the head. If the body is composed by at least one predicate it is called a rule
in Prolog. The conjunction between predicates in the body of the rule is represented by a
“,” and the disjunction is represented by a “;”. Clauses with empty body are called facts,
and they are always true [24].

The logic predicates used to represent our class diagram are given below using Prolog
facts. Logic variables start with an uppercase letter. Logic literals start with a lowercase
letter.

class(Id, Name).

generalisation(Id, Label, Child_class, Parent_class).

association_end(Id, Class, Role, UpperMult, LowerMult, Composite).

association(Id, Name, Ass_end_1, Ass_end_2).

Initial State. The initial state is represented as a list of positive facts that represents
the input model. This list represents a logic conjunction. Below is an example of a partial
model containing only the elements that are involved in the inconsistencies, shown in the
shaded part of Figure 4.1.

[class(c1, vehicle),

class(c5, boat),

class(c6, car),

class(c9, amphibious_vehicle),

generalisation(g4, label4, c5, c1),

generalisation(g5, label5, c6, c1),

generalisation(g8, label8, c9, c5),

generalisation(g9, label9, c9, c6),

generalisation(g10, label10, c1, c9),

association_end(ae1, c9, dst, star, one, no),

5The name Badger comes from the honey badger, an animal that is able to run backwards.
6The name Prolog comes from the abbreviation of the french phrase: “PROgrammation en LOGique”

that means logic programming.

70



4.5. Badger

association_end(ae2, c1, src, one, one, yes),

association(a1, ass1, ae1, ae2)]

Set of Actions. The logic rules below specify the possible action modify Association Name.
The precondition (the pre rule) states that the association must exist before it can be
changed. The validation (the can rule) is used to verify that the new name is correctly
typed and that is different from the old name. The effect (the adds and deletes rules)
expresses the facts to be respectively added and deleted from the current state to change
the name of an association.

pre(modify_Association_Name(Id, Name, NewName),

[association(Id, Name, Ass_end_1, Ass_end_2)]).

can(modify_Association_Name(Id, Name, NewName)):-

string(NewName),

NewName \== Name.

adds(modify_name_Association(Id, _Name, NewName),

[association(Id, NewName, Ass_end_1, Ass_end_2)]).

deletes(modify_name_Association(Id, Name, _NewName),

[association(Id, Name, Ass_end_1, Ass_end_2)]).

Desired Goal. The desired goal is represented as a list of positive or negative facts. The
negative facts start with n(X). A disjunction is represented as a list of facts preceded by
an “or”: or[X, Y ]. This can be read as X or Y . Below we give an example of the “Inherited
Cyclic Composition” (ICC) detection rule. It specifies an inheritance chain involving only
three classes because the planner syntax does not allow to express transitive closure to
make the rule more generic. The planner representation language will be changed in
Chapter 5 to allow transitive relationships.

[generalisation(G1, Label1, C, A),

generalisation(G2, Label2, B, C),

association(A1, Name, AE1, AE2),

association_end(AE1, B, Role1, Upper1, one, Composite1),

association_end(AE2, A, Role2, Upper2, Lower2, yes)]

One of two inconsistencies (ICC1 cf. Section 4.1) that match this detection rule is
given below.

[generalisation(g4, label4, c5, c1),

generalisation(g8, label8, c9, c5),

association(a1, ass1, ae1, ae2),

association_end(ae1, c9, role1, star, one, no),

association_end(ae2, c1, role2, one, one, yes)]

Plan. Four complete resolution plans that contain only two actions and that each solve
the four inconsistencies of the motivating example are given below:

Resolution plan 1 :

1. delete_Generalisation(g5, label5, c6, c1)

2. delete_Generalisation(g4, label4, c5, c1)

71



Chapter 4. Automated Planning for Inconsistency Resolution

Resolution plan 2 :

1. delete_Generalisation(g4, label4, c5, c1)

2. delete_Generalisation(g5, label5, c6, c1)

Resolution plan 3 :

1. delete_Generalisation(g10, label10, c1, c9)

2. modify_lower_Association_End(ae1, 1, 0)

Resolution plan 4 :

1. modify_lower_Association_End(ae1, 1, 0)

2. delete_Generalisation(g10, label10, c1, c9)

To limit the number of plans presented, in the next section, we will explain that
Badger avoids presenting those plans that contains the same actions in a different order
(equivalent plans). For instance, Badger will only present to the user the resolution plans
1 and 3.

4.5.2 Algorithm

The algorithm used by Badger is based on the algorithm7 explained in Bratko [13, p. 432].
Badger uses a best-first search algorithm to iteratively generate a state space and search
for a solution in that state space by expanding the most promising node. To do this, the
algorithm needs 3 functions: a successor function, an evaluation function and a solution
function.

The successor function generates the child nodes of a particular node, and is used to
generate the state space. It strongly depends on the problem to be solved. The evaluation
function f evaluates the child nodes to find the most promising one. It is defined as the
sum of an heuristic function h and a cost function g: f(n) = h(n)+g(n) where h(n) is the
minimal estimation of the cost to reach a solution from the node n, and g(n) is the actual
cost of the path to reach n. The solution function checks if a particular node is one of the
solutions. These 3 functions are independent of the search algorithm, which means that
we can use different best-first search algorithms (e.g., A∗ search [58], iterative deepening
A∗ (IDA∗) [72, 73], memory-bounded A*, recursive best-first search (RBFS) [74,75]).

The heuristic function used by Badger is a known planner heuristic that ignores the
preconditions. Every action becomes applicable in every state, and a single fact of the
desired goal can be achieved in one step. Remember that the desired goal is a conjunc-
tion/disjunction of logic facts that represents one or more negations of inconsistencies.
This implies that the heuristic can be defined as the number of unsatisfied facts in the
desired goal.

The solution function used by Badger checks if there is no more unsatisfied fact in
the desired goal. In this case, Badger returns the plan if it is not equivalent to an already
generated plan (cf. the plan example in Section 4.5.1). If the user wants, she can ask,
using the Prolog backtracking mechanism, for the next plan.

The cost function used by Badger is the user-specified cost of applying each action.
These costs affect the order in which the plans are generated. The user can, for example,
give more importance to actions that add and modify model elements than to actions

7Bratko named the algorithm: state-space definition for means-ends planning based on goal regression

72



4.5. Badger

Search Algorithm
(RBFS)

Successor functionEvaluation function
f(n) = h(n) + g(n) Solution function

Initial state
(Specific problem)

Set of possible actions
(The problem domain)

Desired goal
(Specific problem)

Heuristic 
function

h(n)

Cost 
function

g(n)

problem domain and specific problem

The algorithm
composition

input data

Figure 4.4 – A block diagram representing the functions which compose Badger.

that delete model elements. For the upcoming experiments we use the same cost for each
action, implying that the shortest plans are the first generated plans (cf. Chapter 7).

The successor function is the most complex one and is at the heart of the planning
algorithm. It proceeds as follows:

(i) select a logic expression from the desired goal and generate a literal that satisfies
this logic expression;

(ii) analyse the effect (the eff rule) of each action to find one that achieves this literal;

(iii) validate (the can rule) if the selected action can be executed;

(iv) protect the already satisfied literals by checking if the execution of the selected action
does not undo a previously satisfied literal;

(v) regress the desired goal through actions by adding the preconditions of the action
(the pre rule) as new logic expressions in the desired goal and by removing the
satisfied logic expression from the desired goal.

Figure 4.4 represents the functions which compose Badger. These functions can be
adapted to improve/change Badger:

• any best-first search algorithm can be used as search algorithm. We have chosen to
use the recursive best-first search (RBFS) because it only keeps the current search
path and the sibling nodes along this path, making its space complexity linear in
the depth of the search tree O(bd) where d is the maximum search depth and b is
the branching factor. The worst time complexity of RBFS is O(b2d−1).

73



Chapter 4. Automated Planning for Inconsistency Resolution

• the successor function can be changed to improve Badger for inconsistency resolution
(cf. Chapter 5);

• the evaluation function can be changed to adapt the way Badger presents the res-
olution plans to the users, by changing the order in which the resolution plans are
generated (cf. Chapter 7);

• and the solution function can be changed if the user wants to stop Badger before
it resolves all the inconsistencies. For example, the user may want to stop Badger
after a certain number of actions, after a certain number of seconds or minutes,
after a certain number of inconsistency solved, etc. In this dissertation, we aim at
resolving all the given inconsistencies and to study the scalability of the approach.
For this reason, we will use always the same solution function, one that only stops
Badger after resolving all the given inconsistencies, independent of the time or of
the number of actions.

4.5.3 Experimental Results

Our first experiment consists of assessing whether the use of Badger is at all feasible.
We start by exploring the impact of different ways to provide input to the planner, as
explained in the experimental setup in Section 4.3. The initial state can be specified
by giving a complete model or a partial model containing only those elements that are
involved in the inconsistencies (shaded part of Figure 4.1). The desired goal can either
contain a negation of the inconsistency detection rules or a negation of the inconsistencies.

Table 4.2 – Comparison of timing results using both planners (FF and Badger). Time is
expressed in seconds and the standard deviation over 10 different runs is mentioned after
the ± sign.

Experiment Initial state: Desired goal: Average time Average time
number Model Negation of for FF for Badger

(in seconds) (in seconds)
1 complete inconsistency rules out of memory N/A
2 partial inconsistency rules out of memory N/A
3 complete inconsistencies 14.84± 0.09 0.181± 0.003
4 partial inconsistencies 0.268± 0.004 0.051± 0.003

Table 4.2 summarises the timing results for the generation of a single resolution plan
for each combination of choices using FF and Badger on the class diagram of Figure 4.1.
The negation of the inconsistency rule cannot be used as desired goal in Badger because
this planner requires all the goals to be completely instantiated, while the negation of
inconsistency rules is based on variables in the goal. Therefore, the remaining experiments
only use the negation of inconsistencies as desired goal.

To verify how Badger performs on larger models, we conducted a series of experiments
as explained in the experimental setup in Section 4.3, in which we artificially increased
the size of the example class diagram of Section 4.2 in order to assess how this affects
the time needed to generate a resolution plan. Even if Badger is capable of generating

74



4.5. Badger

multiple plans, in the upcoming experiments we only generate a single resolution plan to
be able to compare Badger with FF.

Adding isolated classes to the model. First, we reran experiment 3 of Table 4.2,
while artificially augmenting the size of the model by gradually adding a number of isolated
classes. FF took more than 5 hours for 20 added isolated classes. When repeating the
same experiment with Badger, we observe that it outperforms FF with several orders of
magnitude (Figure 4.6). For 20 added isolated classes, Badger takes 1.21 seconds.

0.1$

1$

10$

100$

1000$

10000$

100000$

0$ 2$ 4$ 6$ 8$ 10$ 12$ 14$ 16$ 18$ 20$

Figure 4.5 – Timing results for FF (blue circles) and Badger (red triangles) using a complete
model (experiment 3 of Table 4.2). The y-axis represents the time in seconds on a logarithmic
scale. The x-axis represents the number of isolated classes added to the initial model.

We performed a regression analysis to compare the growth with 5 different models: a
linear model, a quadratic model, an exponential model, a logarithmic model and a power
curve. Based on the results of this regression analysis, shown in Table 4.3, we found
that the results of FF grow more rapidly (the quadratic and exponential model offer the
best fit) than Badger: still the quadratic and exponential model are the best fit but the
parameter a is very small, implying that the growth remains very slow, and close to linear,
as can be confirmed by a good R̄2 value for the linear model.

Increasing the inheritance chain to the partial model. We also reran experiment
4 of Table 4.2 for models of increasing size. As the introduction of isolated classes does
not affect the partial model used as initial state, the timing results remain constant,
irrespective of how many isolated classes are added. To assess the effect of an increase
of the size of the partial model on the time needed to compute a resolution plan, we
artificially augmented the size of the model by gradually increasing the length of the
inheritance chains involved in the inconsistencies of Figure 4.1. Figure 4.6 shows the
timing results obtained with Badger and FF, after adding between 1 and 8 intermediate
superclasses.

For this experiment, regression analysis reveals that the exponential model is the best
one for FF, whereas for Badger the quadratic model is better (though the exponential
is also still very good). This was also confirmed by a visual analysis. If we would have
more data points (currently we only have 9 values) remains to be seen if these models
continue to be the best fit. Table 4.4 gives the detailed results of R̄2 values of all analysed
regression models.

75



Chapter 4. Automated Planning for Inconsistency Resolution

Table 4.3 – Comparison of regression models on timing results of Figure 4.5. R̄2 values
higher than 0.95 are indicated in boldface.

Regression model R̄2 value for FF R̄2 value for Badger

linear: 0.743 0.972
y = a x + b (a = 790, 4) (a = 0.0493)
exponential: 0.977 0.993
y = b ea x (a = 0.3698) (a = 0.0939)

power: 0.874 0.898
y = b xa (a = 2.563) (a = 0.6531)

quadratic polynomial: 0.978 0.999
y = a x2 + b x + c (a = 80.84) (a = 0.0015)

logarithmic: 0.410 0.730
y = a lnx− b (a = 4494) (a = 0.3163)

Conclusion Exponential or Very slow growth,
quadratic growth very close to linear

0.01$

0.1$

1$

10$

100$

1000$

0$ 1$ 2$ 3$ 4$ 5$ 6$ 7$ 8$

Figure 4.6 – Timing results for adding intermediate superclasses to the partial model
using FF (blue circles) and regression Badger (red triangles). The y-axis represents the
time in seconds on a logarithmic scale. The x-axis represents the number of intermediate
superclasses added to the initial model.

76



4.5. Badger

Table 4.4 – Comparison of regression models on timing results of Figure 4.6. R̄2 values
higher than 0.95 are indicated in boldface.

Regression model R̄2 value for FF R̄2 value for Badger

linear: 0.579 0.941
y = a x + b (a = 22.443) (a = 0.0701)
exponential: 0.992 0.988
y = b ea x (a = 0.1239) (a = 0.3168)

power: 0.929 0.945
y = b xa (a = 0.1233) (a = 1.0849)

quadratic polynomial: 0.920 0.998
y = a x2 + b x + c (a = 6.995) (a = 0.0074)

logarithmic: 0.269 0.710
y = a lnx− b (a = 63.538) (a = 0.2206)

Conclusion Exponential Quadratic
growth (or exponential)

growth

Size of the goal. We verified whether the number of inconsistencies to be resolved
affected the timing results. We restricted the desired goal to generate resolution plans
that resolve only 2 or 3 inconsistencies, without affecting the partial model of Figure 4.1.
As we can see in Figure 4.7, a reduction of the goal that does not affect the size of the
partial model does not have a significant impact on the performance. The growth rate
and timing results are still similar to what we found in Figure 4.6.

0.01$

0.1$

1$

10$

100$

1000$

0$ 1$ 2$ 3$ 4$ 5$ 6$ 7$ 8$

Badger$4$inconsistencies$

Badger$3$inconsistencies$

Badger$2$inconsistencies$

FF$4$inconsistencies$

FF$3$inconsistencies$

FF$2$inconsistencies$

Figure 4.7 – Timing results for progression planning (blue circles) and regression planning
(red triangles) for a different number of inconsistencies to be resolved on a partial model.
The y-axis represents the time in seconds on a logarithmic scale. The x-axis represents the
number of intermediate superclasses added to the initial model.

77



Chapter 4. Automated Planning for Inconsistency Resolution

4.6 Discussion

From all these experiments, we can observe that the type of planner used significantly
affects the timing results. The plans generated by both planners were the same in all
the performed experiments; even if the representation languages were different in both
planners, the initial states, the set of actions and the desired goals were the same, and
both planners searched for the shortest plan. While FF does the job, it suffers from
scalability and has very poor timing results.

The underlying reason is that FF is optimized for a range of problems in which the
search tree is typically narrow and deep, and in which negation is seldomly needed (i.e.,
typical planning problems like the blocks world problem, the transport problem and the
elevators problem8). For the purpose of model inconsistencies, we require negation in the
desired goal, and we need to deal with search trees that are wide (there are many actions
to consider at each step) and shallow (in the worst case the total number of actions in
the resolution plan will be proportional to the number of inconsistencies that need to be
resolved).

Badger performs significantly better for this type of problem because Badger restricts
the search space by excluding many irrelevant actions. Moreover, since we implemented a
regression planner ourselves in Prolog, we can still optimise it further to take into account
specificities about the problem domain.

The number of actions proposed to resolve an inconsistency involving the modification
of a reference in the desired goal depends on the size of the initial state (i.e., it depends
on the number of model elements). This negatively affects the performance of both algo-
rithms (Badger and FF) and the number of generated resolution plans (cf. Section 5.1).

The representation language that we have used for specifying models was metamodel
dependent: for each metamodel element (e.g., class), a Prolog predicate was defined,
model elements were represented as facts using this predicate (e.g., class(c1, vehicle)),
and a specific set of actions was defined (e.g., modify Class Name(Id, Name, NewName)).

The representation language represents the desired goal using only the disjunction or
conjunction of positive and negative predicates. The problem with this representation
language is that it cannot represent all inconsistencies, e.g., when the inconsistencies
use other operators like greater than and less than. A specific example would be the
inconsistency rule checking that the lower multiplicity in an association must be greater
than or equal to 0; or the inconsistency rule checking that the higher multiplicity in an
association must be greater than the lower multiplicity.

8http://www.plg.inf.uc3m.es/ipc2011-deterministic/DomainsSequential

78

http://www.plg.inf.uc3m.es/ipc2011-deterministic/DomainsSequential


5
Badger Improvements for Inconsistency

Resolution

In the previous chapter we have seen that even if Badger seems to be promising for
inconsistency resolution, some important improvements still need to be done. We explain
in this chapter the improvements that we have implemented specifically for inconsistency
resolution. We start by presenting the notion of temporary model elements, an abstraction
of a set of concrete model elements that allows to reduce the state space search. We
also present a metamodel-independent way to represent models. Thanks to this new
representation, we can resolve inconsistencies in any kind of structural model. We also
introduce new logic operators to describe the desired goal. This improves the number of
inconsistency types that Badger can describe. We conclude this chapter with a discussion
about the improvements done to Badger.

The work presented in this chapter was previously published in “Badger: A regres-
sion planner to resolve design model inconsistencies.” in European Conference Modelling
Foundations and Applications (ECMFA), 2012, Winner of the ECMFA 2012 Best Foun-
dation Paper Award, co-authored with Tom Mens (University of Mons, Belgium) and
Ragnhild Van Der Straeten (Vrije Universiteit Brussel, Belgium) [125].



Chapter 5. Badger Improvements for Inconsistency Resolution

In this chapter, we explain the improvements that we have implemented specifically
for inconsistency resolution. The grey part of Figure 5.1 represents the functions that
we are going to study and modify, in this chapter, to improve Badger for inconsistency
resolution. In Section 5.1 we will change the set of actions to include the notion of
temporary element. In Section 5.2 we will change the representation language used in
the initial state to be metamodel-independent. The set of actions will be also changed
to correspond to this new representation. In Section 5.3 we will change the successor
function to allows some new logic operators in the desired goal.

Search Algorithm
(RBFS)

Successor functionEvaluation function
f(n) = h(n) + g(n) Solution function

Initial state
(Specific problem)

Set of possible actions
(The problem domain)

Desired goal
(Specific problem)

Heuristic 
function

h(n)

Cost 
function

g(n)

problem domain and specific problem

The algorithm
composition

input data

Figure 5.1 – A block diagram representing the functions which compose Badger. The grey
part represents the successor function that will be changed in this chapter.

5.1 Temporary Model Elements

As concluded in Section 4.6, the number of actions proposed to resolve a model incon-
sistency involving the modification of a reference in the desired goal depends on the size
of the initial state (i.e., it depends on the number of model elements). This negatively
affects the performance of the algorithm and the number of generated resolution plans.

For example, in Figure 5.2, an inconsistency can be observed in the inheritance cycle
involving the classes Car and Sports Car. Badger proposes 22 different solutions1 to
resolve this inconsistency:

1. removing the generalization g1;

2. changing the generalization g1 so that Car becomes a subclass of Seat;

1Note that not all proposed solutions are useful from the point of view of the user, since it depends on
the “meaning” of the classes used in the model. For example, conceptually it does not make any sense
for a Car to be a subclass of Seat (or of Engine, or Doors, etc.).

80



5.1. Temporary Model Elements

+ turnRight():void
+ turnLeft():void

- model: string
- manufactor:string

Car

+ UseNitro():void

Sports Car

g1

g2

Engine

Doors

SunRoof

Glass
Horn

Battery

Suspension
Axle

+ getDiameter():float

- pressure:float

Wheel
0..1 4

Seat

Figure 5.2 – Cyclic Inheritance Examples

3. changing the generalization g1 so that Car becomes a subclass of Engine;

4. changing the generalization g1 so that Car becomes a subclass of Doors;

...

11. changing the generalization g1 so that Car becomes a subclass of Axle;

12. removing the generalization g2;

13. changing the generalization g2 so that Sport Car becomes a subclass of Seat;

14. changing the generalization g2 so that Sport Car becomes a subclass of Engine;

15. changing the generalization g2 so that Sport Car becomes a subclass of Doors;

...

22. changing the generalization g2 so that Sport Car becomes a subclass of Axle.

In this example, the number of solutions depends on the number of classes in the class
diagram. To avoid generating many resolution plans, each referring to a concrete model
element (i.e., one of the many classes in a class diagram), we introduced the notion of
temporary model element as an abstraction of such a set of concrete model elements. A
temporary model element is represented as a tuple (+other,X,Y) where X is the model
element type (e.g., class) and Y is the set of model elements of this type that cannot
be used as part of the proposed resolution. Once the resolution plan is generated, the
user can replace the temporary model element by a concrete model element that does not
belong to Y, to avoid re-introducing the same inconsistency.

With this notion of temporary model element, Badger will only propose 4 different
solutions:

1. removing the generalization g1;

2. changing the generalization g1 so that Car becomes a subclass of (+other,class,[‘Sports

Car’]);

3. removing the generalization g2;

4. changing the generalization g2 so that Sport Car becomes a subclass of (+other,class,[‘Car’]).

81



Chapter 5. Badger Improvements for Inconsistency Resolution

0	  

2000	  

4000	  

6000	  

8000	  

10000	  

12000	  

0	   5000	   10000	   15000	   20000	   25000	   30000	   35000	   40000	   45000	   50000	  

(a) Without the notion of temporary model element.

1	  

6	  

11	  

16	  

21	  

26	  

31	  

0	   5000	   10000	   15000	   20000	   25000	   30000	   35000	   40000	   45000	   50000	  

(b) With the notion of temporary model element.

Figure 5.3 – Timing results for resolving one inconsistency with and without the notion
of temporary model element. The y-axis represents the time in milliseconds. The x-axis
represents the number of isolated classes added to the initial model.

This improves the scalability of Badger, as it proposes only 1 action changing the
reference between Car and Sports Car instead of 10 actions. This also improves the
readability of the solutions. It is easier for a user to read that he needs to change a
reference to another class than reading a list of solutions in which each solution says that
he can change a reference to a precise class. On the other hand, it will require some
additional work from the user after the resolution plan has been selected, since the user
will need to indicate a concrete model element to replace the temporary model element.

We can illustrate this scalability improvement with a small experiment. We artificially
augmented the size of the example of Figure 5.2 by adding an increasing number of isolated
classes to the complete model (from 0 to 50000 classes in steps of 100). We compare the
time taken by Badger to generate one resolution plan without the notion of temporary
model element and with the notion of temporary model element for all these models.

These experiments were carried on a Power Mac with 2.80GHz Intel Xeon Quad-
Core processor and 4Gb RAM. We used the 32-bit version of SWI-Prolog 6.0.2, running
on the 32-bit version of Ubuntu 11.04 operating system. All timing results obtained
were averaged over 10 different runs to account for performance variations2. Figure 5.3
illustrates the timing results without the notion of temporary model element (Figure 5.3a)
and with the notion of temporary model element (Figure 5.3b).

Linear Polynomial Quadratic Exponential Logarithmic Power
y = a x + b y = a x2 + b x + c y = b ea x y = a lnx− b y = b xa

Without the notion
of temporary model
element

0.999 0.999 0.726 0.690 0.990

With the notion
of temporary model
element

0.990 0.991 0.936 0.644 0.813

Table 5.1 – R̄2 values of four different parametric regression models used to fit the timing
results.

We fitted four different types of parametric regression models with two parameters

2In hindsight, it would have been more appropied to use the minimal time instead of the average time
since the noise generated by external factors will never be negative.

82



5.2. Metamodel Independence

to the data: a linear model, a logarithmic model, a power model and an exponential
model. The goodness of fit of each model was verified using the adjusted coefficient of
determination R̄2. Table 5.1 shows the obtained R̄2 values. In order to easily distinguish
the best regression models, values higher than 0.90 are indicated in italics, while values
higher than 0.95 are indicated in boldface.

By analyzing the Table 5.1, we observe that the linear and the polynomial quadratic
models are the best fit in both cases (whithout and with the notion of temporary model
element). In both cases the polynomial models have a growth very close to linear because
the a parameter is very close to 0, (a = 0.00000020314 and a = 0.0000000129 respectively).
This explains the excellent results for the linear regression models. A visual interpretation
also confirms that the linear models are the best match in both cases.

The time in both cases increases linearly as the size of the model increases but with a
very different growth: when Badger does not use the temporary model elements the slope
of the linear model (a = 0.24683) is 411 times bigger than the slope of the linear model
when Badger uses the temporary model elements (a = 0.00058). This experiment clearly
shows the scalability improvement of the use of temporary model elements.

As discussed in Chapter 4, using partial models as initial state has big performance
advantages due to the very small size of the partial model comparing to the complete
model. However, when using the partial model as initial state, Badger may not be able
to resolve all inconsistencies, or to propose all existing resolutions to the user, which may
lead her to resolve the inconsistencies in an undesirable way. This is due to the lack of
information in the partial model.

Now, with the notion of temporary model element, Badger is less sensible to the initial
state size and allows us to work with the complete model without loosing performance as
it is going to be the case for the rest of the experiments in this dissertation.

5.2 Metamodel Independence

As explained in Chapter 1, metamodel independence is crucial to any approach to rep-
resent and manipulate different types of models in a uniform way. For specifying models
in Badger, we used in Chapter 4 a representation language that was metamodel depen-
dent. For each metamodel element (e.g., class), a Prolog predicate was defined, model
elements were represented as facts using this predicate (e.g., class(c1, vehicle)), and
a specific set of actions was defined (e.g., modify Class Name(Id, Name, NewName)).

In this section we will explain how we changed the representation language of Badger
to make it metamodel independent. We will also illustrate the advantage of a metamodel
independent tool by using Badger to resolve problems in a language different from the
modeling language UML. To do this we will show how we have used Badger to propose
plans to resolve code smells in a Java program. In Chapters 6 and 7 we have also taken
advantage of this new representation to resolve model inconsistencies in different models
with different subsets of the UML metamodel without changing the internal representa-
tion.

5.2.1 Achieving Metamodel Independence

We changed the way Badger represents models to make it metamodel independent, based
on the representation proposed by Praxis [10]. Praxis is a language that represents models
and model changes as sequences of elementary model operations.

83



Chapter 5. Badger Improvements for Inconsistency Resolution

Elementary model operation Description

create(me,mc,r,a) create a model element me instance of the meta-
class mc.
e.g., create(c1,class,1,‘Jorge’).

addProperty(me,p,value,r,a) add a value to the property p of the model element
me.
e.g., addProperty(c1,name,‘Vehicle’,1,‘Jorge’).

addReference(me1,re,me2,r,a) create a reference re between two model elements
me1 and me2.
e.g., addReference(g10,general,c9,2,‘Tom’).

delNode(me, mc,r,a) delete the model element me instance of the meta-
class mc.
e.g., delNode(ae3,property,2,‘Tom’).

remProperty(me,p,value,r,a) remove a value from the property p from the
model element me.
e.g., remProperty(c1,name,‘Vehicles’,3,‘Jorge’).

remReference(me1,re,me2,r,a) remove the reference re between the two model
elements me1 and me2.
e.g., remReference(g10,specific,c4,3,‘Jorge’).

Table 5.2 – List of elementary model operations and examples of their use for representing
class diagrams. The given elementary model operations are performed by the author a in a
revision r.

Table 5.2 lists all elementary model operations that can be used to construct models.
For example, the partial model of the class diagram model of Figure 4.1 can be represented
as follows in Praxis:

1 create(c1,class,1,‘Jorge’).

2 addProperty(c1,name,‘Vehicles’,1,‘Jorge’).

3 create(c5,class,1,‘Jorge’).

4 addProperty(c5,name,‘Boat’,1,‘Jorge’).

5 create(c6,class,1,‘Jorge’).

6 addProperty(c6,name,‘Car’,1,‘Jorge’).

7 create(c9,class,1,‘Jorge’).

8 addProperty(c9,name,‘Amphibious Vehicle’,1,‘Jorge’).

9 create(g4,generalization,1,‘Jorge’).

10 addReference(g4,general,c1,1,‘Jorge’).

11 addReference(g4,specific,c5,1,‘Jorge’).

12 create(g5,generalization,1,‘Jorge’).

13 addReference(g5,general,c1,1,‘Jorge’).

14 addReference(g5,specific,c6,1,‘Jorge’).

15 create(g8,generalization,1,‘Jorge’).

16 addReference(g8,general,c5,1,‘Jorge’).

17 addReference(g8,specific,c9,1,‘Jorge’).

18 create(g9,generalization,1,‘Jorge’).

19 addReference(g9,general,c6,1,‘Jorge’).

20 addReference(g9,specific,c9,1,‘Jorge’).

21 create(g10,generalization,1,‘Jorge’).

22 addReference(g10,general,c9,1,‘Jorge’).

23 addReference(g10,specific,c1,1,‘Jorge’).

24 create(ae1,property,1,‘Jorge’).

25 addProperty(ae1,name,‘src’,1,‘Jorge’).

26 addProperty(ae1,upper,1,1,‘Jorge’).

27 addProperty(ae1,lower,1,1,‘Jorge’).

28 addProperty(ae1,iscomposite,‘false’,1,‘Jorge’).

29 addReference(ae1,type,c1,1,‘Jorge’).

30 create(ae2,property,1,‘Jorge’).

31 addProperty(ae2,name,‘dst’,1,‘Jorge’).

32 addProperty(ae2,upper,‘*’,1,‘Jorge’).

33 addProperty(ae2,lower,1,1,‘Jorge’).

34 addProperty(ae2,iscomposite,‘true’,1,‘Jorge’).

35 addReference(ae2,type,c9,1,‘Jorge’).

36 create(assocID,association,1,‘Jorge’).

37 addProperty(assocID,name,‘assocname’,1,‘Jorge’).

38 addReference(assocID,member,ae1,1,‘Jorge’).

39 addReference(assocID,member,ae2,1,‘Jorge’).

40 remProperty(c1,name,‘Vehicles’,2,‘Tom’).

41 addProperty(c1,name,‘Vehicle’,2,‘Tom’).

Note that the modification made by Tom and corresponding to revision 2 consists of
the two last operations, at lines 40 and 41. This modification changes the name of the
class c1 from Vehicles to Vehicle.

As shown in Table 5.2, the elementary model operations are metamodel independent,
i.e., they can be used for any kind of structural metamodel. The second parameter of each

84



5.2. Metamodel Independence

model operation refers to an element of the metamodel: a meta-class (mc) or a meta-class
property (p) or a relationship between meta-classes (re) (e.g., class, ownedattribute,
parameter, ownedoperation, name, visibility, general, ownedend). The two last
parameters refers to the author a that performed the elementary model operation in a
revision r.

Besides making the approach metamodel independent, using Praxis for representing
models has several more advantages. First, the set of actions is now also metamodel
independent. Instead of having rules to create, modify and delete the model elements (e.g.,
modify Class Name(Id, Name, NewName)), we now have rules to add, set and remove the
elementary model operations (e.g., setProperty(Id,Property,Value)). As an example,
the logic rules below specify respectively the precondition (the pre rule), validation (the
can rule) and effect (the eff rule) of the action setProperty.

pre(setProperty(Id,MME,Property,OldValue,NewValue),

[lastAddProperty(Id,Property,OldValue)]).

can(setProperty(Id,MME,Property,OldValue,NewValue)) :-

mme_property(MME,Property,Type),

call(Type,NewValue),

NewValue \== OldValue.

eff(setProperty(Id,Property,OldValue,NewValue),

[remProperty(Id,Property,OldValue),

addProperty(Id,Property,NewValue)]).

In this case the precondition (the pre rule) states that the old property must exist
before it can be changed. The validation (the can rule) is used to verify that the new value
is correctly typed and different from the old value. This validation is verified by using
a metamodel that imposes constraints on the model. The effect (the eff rule) expresses
the two Praxis model operations changing the value of a property.

Note, in the example above, the use of the ‘last’ prefix in the model operation
lastAddProperty. This prefix is used to point to the operations in the model that
are not followed by other operations canceling their effects. This prefix is used to know
the current state of the model. For example, in our model, the last operation that assigns
a name to the class c1 is the operation addProperty(c1,name,‘Vehicle’,2,‘Tom’) in
line 41. Contrariwise the operation addProperty(c1,name,‘Vehicles’,1,‘Jorge’) in
line 2 that assigns a name to the class c1 is not considered as a last operation because
it is followed by the operation remProperty(c1,name,‘Vehicles’,2,‘Tom’) in line 40
that cancels the previous operation. For more details, see Blanc et al. [10].

The metamodel needed to validate the set of actions (for the class diagram of Fig-
ure 4.1), is expressed below as a set of logic facts in Prolog: rule mme represents the
metamodel elements; mme property represents the properties of the specified metamodel
element, the kind of value that is used (e.g., text, boolean, int), the default value and
if the property is optional or not; mme references represents the relationships between
two metamodel elements, the name of this relationship, the multiplicities and if it is a
composite relationship.

mme(class).

mme(generalization).

mme(property).

mme(association).

85



Chapter 5. Badger Improvements for Inconsistency Resolution

mme_property(class,name,text,‘a class’,‘false’).

mme_property(property,name,text,‘src’,‘false’).

mme_property(property,upper,int,0,‘false’).

mme_property(property,lower,int,0,‘false’).

mme_property(property,iscomposite,boolean,‘false’,‘false’).

mme_property(association,name,text,‘assoc’,‘false’).

mm_references(generalization,1,1,general,class,0,‘*’,‘false’).

mm_references(generalization,1,‘*’,specific,class,0,‘*’,‘false’).

mm_references(property,1,1,type,class,0,‘*’,‘false’).

mm_references(association,2,‘*’,member,property,1,1,‘true’).

The second advantage of using Praxis is that the operation-based representation of
models basically uses the same format as the generated resolution plans. As such, applying
a resolution plan to a model becomes trivial.

The third advantage is that Praxis comes with a suite of Eclipse plugins: (i) a plugin
to reason about ECore and XMI models; (ii) a plugin to reason about the structure of
Java and C programs3; (iii) a plugin to extract the revisions history of SVN, Git and
Mercurial versioning systems3; (iv) a peer-to-peer model editing framework [105]; (v) a
plugin to generate class diagram models of varying sizes [106] and (vi) an incremental
inconsistency detection tool [10].

The model generator will allow us to assess the scalability of our approach, by enabling
the generation of useful models of arbitrary large size to be used for our experiments (cf.,
Chapter 6). As we use the inconsistencies in the desired goal we will only be able to
resolve inconsistencies that have already been identified previously. For this detection we
can rely on the inconsistency detection approach proposed by Blanc et al. [10].

5.2.2 Example of Metamodel Independence : Resolving Code
Smells in Java

To illustrate the metamodel independence of Badger, we illustrate how we have used it
to resolve three different code smells in a Java program.

Kent Beck4 defines a code smell5 as a “hint that something has gone wrong somewhere
in your code”. A more practical definition is that a code smell is a pattern that, if detected
in the code source, can reveal design problems. A code smell is not an “error” in the
source code, it is not going to cause bugs or failures to the program (at least not at the
moment, perhaps it can, somewhere in the future). But a code smell can warn about poor
quality source code or about design problems that make the system harder to understand,
maintain and evolve [6, 121].

Some examples of code smells are: a method with a too large number of parameters
(Long Parameter List [6, p. 78]); a subclass that does not use some of the methods and
fields inherited from its superclass (Refused Bequest [6, p. 87]); a code structure that is
found in more than one place (Duplicate code [6, p. 76]); and a Test Case without tests.
A more complete list of examples can be found in Table 5.3.

3http://code.google.com/p/harmony/wiki/VPraxis
4See http://c2.com/cgi/wiki?CodeSmell
5Some authors use the term bad smells in code [6] while other authors use the term antipatterns [17],

design defects (défauts de conceptions) [147], disharmonies [80], design flaws [148] or design smells [87,
121].

86

http://code.google.com/p/harmony/wiki/VPraxis
http://c2.com/cgi/wiki?CodeSmell


5.2. Metamodel Independence

For this experiment we chose the Java program FindBugs6. FindBugs is an open
source program that uses static analysis to identify different types of code smells in Java
programs.

We used the Praxis plugin to export the Java program structure into the Praxis
elementary model operations. Figure 5.4 illustrates an example of the input and output
of the plugin to translate the structure of Java to Praxis elementary model operations.
Figure 5.4 represents a small Java program with 3 classes and the right part represents
the exported Praxis code. The metamodel of the structure of Java used by Praxis is the
one presented in Figure 5.5.

class Vehicle {
private Person driver;

Person getDriver() {
return driver;

}
}

abstract class Car extends Vehicle {
@Override abstract Person getDriver();

}

Vehicle.java

Car.java

public class Person {}

Person.java create(c1,class,1,'Mathieu').
addProperty(c1,name,'Person',1,'Mathieu').
addProperty(c1,abstract,false,1,'Mathieu').

create(c2,class,1,'Mathieu').
addProperty(c2,name,'Vehicle',1,'Mathieu').
addProperty(c2,abstract,false,1,'Mathieu').
create(f1,field,1,'Mathieu').
addProperty(f1,name,driver,1,'Mathieu').
addProperty(f1,visibility,private,1,'Mathieu').
addReference(f1,type,c1,1,'Mathieu').
addReference(c2,fields,f1,1,'Mathieu').
create(m1,method,1,'Mathieu').
addProperty(m1,name,'getDriver',1,'Mathieu').
addProperty(m1,abstract,false,1,'Mathieu').
addReference(m1,type,c1,1,'Mathieu').
addReference(c2,methods,m1,1,'Mathieu').

create(c3,class,1,'Mathieu').
addProperty(c3,name,'Car',1,'Mathieu').
addProperty(c3,abstract,true,1,'Mathieu').
addReference(c3,extends,c1,1,'Mathieu').
create(m2,method,1,'Mathieu').
addProperty(m2,name,'getDriver',1,'Mathieu').
addProperty(m2,abstract,true,1,'Mathieu').
addProperty(m2,annotation,'Override',1,'Mathieu').
addReference(m2,type,c1,1,'Mathieu').
addReference(m2,overrides,m1,1,'Mathieu').
addReference(c3,methods,m2,1,'Mathieu').

▶

Figure 5.4 – Example of the input and output of the Java to Praxis plugin

Table 5.3 shows the list of code smells detected in FindBugs using the Praxis detection
plugin. Note that in addition to this list, other tools may define and detect other code
smells. From this list we chose to resolve one code smell from 3 different types : BS4,
BS8 and BS11. Note that only the structure of the Java programs is exported into Praxis
elementary model operations and not the code itself. This restricts us to solve only
code smells that affect the structure of the program. For example, a duplicated code is
impossible for us to detect and solve, because the code itself its not represented in Praxis.

a) Abstract method overrides a concrete implementation

The first code smell to be resolved using Badger is one of the type BS4 : “Abstract method
overrides a concrete implementation”. This code smell arises in FindBugs when the
abstract method sawOpcode belonging to the class bcel.OpcodeStackDetector7 overrides
the concrete method sawOpcode belonging to the class visitclass.DismantleBytecode.
The extends chain between both classes is composed of 3 classes:

6http://findbugs.sourceforge.net/
7All the classes involved in the three code smells that we will resolve using Badger lie in the package

edu.umd.cs.findbugs

87

http://findbugs.sourceforge.net/


Chapter 5. Badger Improvements for Inconsistency Resolution

name:Text
visibility:VisibilityKind
abstract:Boolean
final:Boolean
deprecated:Boolean

Class

name:Text
visibility:VisibilityKind
final:Boolean
static:Boolean
deprecated:Boolean
annotation:annotationKind

Field

name:Text
constructor:Boolean
visibility:VisibilityKind
final:Boolean
static:Boolean
abstract:Boolean
deprecated:Boolean
annotation:annotationKind

method

name:Text
visibility:VisibilityKind
final:Boolean
deprecated:Boolean

Interface

public
private
protected
package

«enumeration»
VisibilityKind

fields
methods

extends

im
pl
em

en
ts

type

type

type

type

field_write

accesses

calls

parameters

parameters

overrides

exceptions

catches

fields methods

implements

* 1

1 *

* 0..1

*

*

0..1*

0..1

*

0..1 *

0..1

*

* ** *

* *
* *

*

*

0..1

*

* *

* *

1 1

* *

**

Override
SuppressWarnings
Nonnull
CheckForNull
Deprecated
SwingThread
DottedClassName
CheckReturnValue
AnalysisFeature
Type.
Nullable
SlashedClassName
SpecialKind
DischargesObligation
Before
Test
After
NonNull

«enumeration»
annotationKind

Figure 5.5 – Metamodel of the structure of Java used by Praxis.

Id Description Detected
code smells

BS1 TestCase has no tests 1
BS2 TestCase defines setUp that doesn’t call super.setUp() 13
BS3 Method uses Properties.put instead of Properties.setProperty 1
BS4 Abstract method overrides a concrete implementation 1
BS5 Use of class without a hashCode() method in a hashed data

structure
102

BS6 Class relies on internal API classes 1
BS7 Method creates local variable-based synchronized collection 24
BS8 Class defines field that masks a superclass field 34
BS9 Method doesn’t override method in superclass due to wrong

package for parameter
1

BS10 Constructor makes call to non-final method 437
BS11 Unwritten field 2213

Table 5.3 – List of code smells detected in the Java program FindBugs.

88



5.2. Metamodel Independence

the class bcel.OpcodeStackDetector that extends the class BytecodeScanningDetector
and the latter extends the class visitclass.DismantleBytecode (see top of Figure 5.6).
To resolve this code smell Badger proposes the following 8 resolution plans :

1. change the name of the method sawOpcode of the class OpcodeStackDetector;

2. delete the extends reference between bcel.OpcodeStackDetector and BytecodeScanningDetector;

3. delete the extends reference between BytecodeScanningDetector and visitclass.DismantleBytecode;

4. change the name of the method sawOpcode of the class DismantleBytecode;

5. change the method sawOpcode from concrete to abstract (in the class DismantleBytecode);

6. change the method sawOpcode from abstract to concrete (in the class OpcodeStackDetector);

7. delete the method sawOpcode of the class OpcodeStackDetector. This plan has 50 more actions.
These 50 actions are to delete all the references from and to this method. No reference should be
left if one of the objects that are part of the reference is deleted. These actions have not been
written for the sake of readability;

8. delete the method sawOpcode of the class DismantleBytecode. This planner have also 55 more
actions. These 55 actions are to delete all the references from and to this method. No reference
should be left if one of the objects that are part of the reference is deleted. These actions have not
been written for the sake of readability.

Figure 5.6 graphically shows the code smell and the 8 resolution plans proposed by
Badger. The green annotation << add >> represents the objects, properties or references
to be added; the blue annotation << modify >> represents the modifications to be made
to a property or a reference; and the red annotation << delete >> represents the objects,
properties or references to be deleted.

b) Class defines field that masks a superclass field

The second code smell to be resolved is one of the code smell BS8 detected : “Class defines
field that masks a superclass field”. This code smell arises from the field serialVersionUID

from the class gui2.FilterMatcher and the field serialVersionUID from the class
StackedFilterMatcher. The latter one extends the class gui2.FilterMatcher (see top
of Figure 5.7). To resolve this code smell Badger proposes the following 5 resolutions
plans:

1. change the name of the field serialVersionUID of the class StackedFilterMatcher;

2. delete the extends reference between both classes;

3. change the name of the field serialVersionUID of the class FilterMatcher;

4. delete the field serialVersionUID of the class StackedFilterMatcher and delete the reference
between the class and the field;

5. delete the field serialVersionUID of the class FilterMatcher and delete the reference between
the class and the field.

Figure 5.7 graphically shows the code smell and the 5 resolution plans proposed by
Badger.

89



Chapter 5. Badger Improvements for Inconsistency Resolution

<< delete >>
extends

(1)

bcel.OpcodeStackDetector :: Class
sawOpcode :: Method

abstract = true

BytecodeScanningDetector :: Class

visitclass.DismantleBytecode :: Class
sawOpcode :: Method

abstract = false

extends

extends

methods

methods

bcel.OpcodeStackDetector :: Class
sawOpcode :: Method

abstract = true

BytecodeScanningDetector :: Class

visitclass.DismantleBytecode :: Class

<< modify >>
newName :: Method

abstract = false

extends

extends

methods

methods

(3)

bcel.OpcodeStackDetector :: Class
sawOpcode :: Method

abstract = true

BytecodeScanningDetector :: Class

visitclass.DismantleBytecode :: Class
sawOpcode :: Method

abstract = false

extends

methods

methods

(5)

bcel.OpcodeStackDetector :: Class
sawOpcode :: Method

abstract = true

BytecodeScanningDetector :: Class

visitclass.DismantleBytecode :: Class
sawOpcode :: Method

<< modify >> abstract = true

extends

extends

methods

methods

(7)

bcel.OpcodeStackDetector :: Class
<< delete >>

sawOpcode :: Method

abstract = true

BytecodeScanningDetector :: Class

visitclass.DismantleBytecode :: Class
sawOpcode :: Method

abstract = false

extends

extends

methods

<< delete >>
methods

(2)

bcel.OpcodeStackDetector :: Class
sawOpcode :: Method

abstract = true

BytecodeScanningDetector :: Class

visitclass.DismantleBytecode :: Class
sawOpcode :: Method

abstract = false

extends

<< delete >>
extends

methods

methods

(4)

bcel.OpcodeStackDetector :: Class
<< modify >>

newName :: Method

abstract = true

BytecodeScanningDetector :: Class

visitclass.DismantleBytecode :: Class
sawOpcode :: Method

abstract = false

extends

extends

methods

methods

(6)

bcel.OpcodeStackDetector :: Class
sawOpcode :: Method

<< modify >> abstract = false

BytecodeScanningDetector :: Class

visitclass.DismantleBytecode :: Class
sawOpcode :: Method

abstract = false

extends

extends

methods

methods

(8)

bcel.OpcodeStackDetector :: Class
sawOpcode :: Method

abstract = true

BytecodeScanningDetector :: Class

visitclass.DismantleBytecode :: Class
<< delete >>

sawOpcode :: Method

abstract = false

extends

extends

<< delete >>
methods

methods

Figure 5.6 – The code smell: “abstract method overrides a concrete implementation” and
the proposed resolution plans

90



5.2. Metamodel Independence

(1)

gui2.StackedFilterMatcher :: Class serialVersionUID :: Field

gui2.FilterMatcher :: Class serialVersionUID :: Field

extends

fields

fields

gui2.StackedFilterMatcher :: Class << modify >>
newName :: Field

gui2.FilterMatcher :: Class serialVersionUID :: Field

extends

fields

fields

(2)

gui2.StackedFilterMatcher :: Class serialVersionUID :: Field

gui2.FilterMatcher :: Class serialVersionUID :: Field

<< delete >> 
extends

fields

fields

(3)

gui2.StackedFilterMatcher :: Class serialVersionUID :: Field

gui2.FilterMatcher :: Class << modify >>
newName :: Field

extends

fields

fields

(4)

gui2.StackedFilterMatcher :: Class << delete >>
serialVersionUID :: Field

gui2.FilterMatcher :: Class serialVersionUID :: Field

extends

fields

 << delete >>
fields

(5)

gui2.StackedFilterMatcher :: Class serialVersionUID :: Field

gui2.FilterMatcher :: Class << delete >>
serialVersionUID :: Field

extends

<< delete >>
fields

fields

Figure 5.7 – The code smell: “class defines field that masks a superclass field” and the
proposed resolution plans

91



Chapter 5. Badger Improvements for Inconsistency Resolution

c) Unwritten field

The last code smell to be resolved is one of the type BS11: “Unwritten field”. This code
smell arises from the field FINDBUGS JAR from the class anttask.AbstractFindBugsTask
that has not been written by any method (see top of Figure 5.8). The 2 resolutions plans
proposed by Badger to resolve the code smell are :

1. add a reference field writer from any method to the field FINDBUGS JAR;

2. delete the field and delete the reference fields from the class to the field.

Figure 5.8 illustrates the code smell and the 2 resolution plans proposed by Badger.

(1)

anttask.AbstractFindBugsTask :: Class FINDBUGS_JAR :: Fieldfields

(2)

<< add >>
field_writer

anttask.AbstractFindBugsTask :: Class FINDBUGS_JAR :: Fieldfields

(+other, methode, [] ) :: Methode

anttask.AbstractFindBugsTask :: Class << delete >>
FINDBUGS_JAR :: Field

<< delete >>
fields

Figure 5.8 – The code smell: “Unwritten field” and the proposed resolution plans.

This experiment with Java, in which we resolve 3 code smells, aims to demonstrate
that, thanks to Praxis, Badger is completely metamodel independent. Nevertheless it
should be noticed that Badger does not take behavior preservation into account. Even if
all the generated plans resolve the 3 code smells, some of the plans change the behavior
of the Java program. Normally, when you try to resolve code smells you do not want to
change the behavior of the program. For this reason, it is common to apply refactorings
to resolve code smells. Refactorings restructure the program code, resolving the code
smells, preserving the behavior of the program. A planner algorithm was used by Javier
Pérez [121] to compute, from refactoring strategies, the refactoring plans needed to auto-
matically correct code smells. More information about code smells and the strategies to
resolve them can be found in his PhD thesis [121].

5.3 Logic Operators

To represent a desired goal in Badger, we only used the disjunction and the conjunction
of positive and negative literals (cf., Chapter 4). The problem with this representation
is that it cannot represent all inconsistencies, e.g., when they use other operators like
greater than and less than (e.g., the lower multiplicity in an association must be greater
than or equal to 0; the higher multiplicity in an association must be greater than the
lower multiplicity).

We improved the representation language by adding new logic operators: universal
quantification, existential quantification, value comparison, property comparison, count-
ing and transitive navigability. Table 5.4 and Table 5.5 present all logic operators that
are allowed to specify the desired goal, inspired by the list of common constructs found

92



5.3. Logic Operators

in inconsistency rules [34, 110, 151]. These logic operators will be used for the rest of the
experiments in this dissertation. For example, the inconsistencies I1, I3, I4, I5, I6, I8 and
I10 from the Table 6.1 would be impossible to represent without these logic operators.

Badger does the strict minimum to accomplish this goal. For example, if the user
wants to solve the inconsistency “the lower multiplicity must be greater than 0”, Badger
will propose 1 as solution to avoid an infinite number of possibilities. In the case of two
inconsistencies, Badger will also do the strict minimum. For example, in the inconsisten-
cies “the upper multiplicity must be greater than 1” and “the upper multiplicity must
be greater than the lower multiplicity”, when the lower multiplicity is 3, the upper mul-
tiplicity proposed by Badger is 4, as this solution accomplishes both requirements. The
same is done with the text values. Badger generates a predefined text (e.g., “Text1”) that
needs to be changed afterwards by the user. This is also done to avoid an infinite number
of possibilities.

Let us illustrate by means of a concrete example how Badger resolves inconsistencies
in presence of the logic operators of Table 5.4 and Table 5.5. Suppose we have a cyclic
inheritance inconsistency between 3 classes (a, b, and c) as shown in Figure 5.9.

b

c

a

Figure 5.9 – Small class diagram containing a cyclic inheritance inconsistency

The desired goal of this problem is the negation of the inconsistency found in Fig-
ure 5.9. This negation can be expressed using our logic operators as: [not(nav(a,superClass,a))]
and Badger will try to reach this desired goal by executing the following steps:

i. Selecting a logic expression from the desired goal. In our case we only have one:

not(nav(a,superClass,a))

Starting from this expression, Badger generates a list of literals that satisfy this
operator:

[not(lastAddReference(a,superClass,b)),

not(lastAddReference(b,superClass,c)),

not(lastAddReference(c,superClass,a))]

From this list Badger chooses one literal, for example:

not(lastAddReference(a,superClass,b))

93



Chapter 5. Badger Improvements for Inconsistency Resolution

ii. Analyse the effect of each action to find an action that achieves the literal chosen in
step (i). For example, the action deleteReference(a,MME1,superClass,b,MME2)

can achieve the literal not(lastAddReference(a,superClass,b)).

iii. Validate if the action (deleteReference(a,MME1,superClass,b,MME2)) can be ex-
ecuted. To achieve this, Badger queries the model to know if
lastAddReference(a,superClass,b) is present in the model and also to identify
what kind of metamodel element a and b conform to. In our example, this is MME1

= class and MME2 = class.

iv. In order to protect the previously satisfied literals, Badger tests if the selected
actions undo one of these literals. In our example, there are no previously satisfied
literals, so no protection is needed.

v. Regress the desired goal through the action deleteReference by adding the pre-
conditions of the action to the goal. Badger interrogates the metamodel to know if
deleting the reference does not break any metamodel constraint. If a constraint is
broken, Badger will generate the literals needed as preconditions. In our example
there are no preconditions to add, because deleting the reference does not break any
constraint. Hence, the desired goal stays the same:

[not(nav(a,superClass,a))]

Badger will now remove all satisfied logic expressions from the desired goal. In our
example, as the literal lastAddReference(a,superClass,b) is not present any
more in the model, the logic expression not(nav(a,superClass,a)) is satisfied
and the new goal is an empty goal [ ].

Once the empty goal has been reached, Badger concludes that a goal state is found.
The resolution plan will therefore be: deleteReference(a,class,superClass,b,class)

If the user ask for the next resolution plan, Badger will rely on the Prolog’s backtrack-
ing mechanism to choose a different action in step ii or a different literal in step i. In this
way, all possible resolution plans will be generated.

5.4 Discussion

In this chapter we have presented some important improvements implemented specifically
for inconsistency resolution in Badger.

We introduced the notion of temporary model elements, an abstraction of a set of
concrete model elements that allows to reduce the state space search. This improves
the scalability of Badger, as it reduces the state space search, and the readability of the
solutions, as it reduces the number of generated plans. On the other hand, the intervention
of the user is from now on mandatory, since she will need to indicate a concrete model
element to replace the temporary model element.

We presented a metamodel-independent way to represent models using the represen-
tation language Praxis. Praxis represents a model as a sequence of elementary model
operations. Thanks to this new representation, we can resolve inconsistencies in any kind
of structural model. We illustrated the advantage of a metamodel independent tool by
using Badger to propose plans to resolve code smells in a Java program.

94



5.4. Discussion

Atoms
Name
Praxis Syntax lastCreate(id,mme)

primitive lastAddProperty(id,property,value)

lastAddReference(id1,reference,id2)

Semantics The semantics of the Praxis primitives is defined
by their semantics given by the Praxis language
(e.g., lastCreate(id,mme) is true if there is a
create(id,mme,r,a) in the sequence of model opera-
tions that is not deleted later in the sequence)

Example lastAddProperty(c1, name,‘Vehicle’)

Universal Syntax forall(P(x1, ..., xk, y1, ..., yp), Q(y1, ..., yp, z1, ..., zm))
quantification where P and Q are Praxis primitives

Semantics ∀x1...∀xk∀y1...∀yp(P (x1, ..., xk, y1, ..., yp)⇒
∃z1...∃zmQ(y1, ..., yp, z1, ..., zm))

Example forall(lastCreate(Y,class),

lastAddProperty(Y,name,Z))

Existential Syntax exists(P(x1, ..., xk)) where P is a Praxis primitive
quantification Semantics ∃x1∃x2...∃xk(P (x1, ..., xk))

Example exists(lastCreate(X,class))

Value Syntax compare(P(x), >, v) where P is a Praxis primitive of
comparison kind lastAddProperty, x is a variable that represents

the third parameter of P and v ∈ N
Semantics Let n be the unique value such that the model M satis-

fies P (n). The truth value of compare(P(x), >, v) is the
truth value of n > v

Example compare(lastAddProperty(ae1,lower mult,X),>,0)
Property Syntax compare(P(x), >, Q(y)) where P and Q are Praxis

comparison primitives of kind lastAddProperty, x and y are vari-
ables that represent the third parameter of P and Q

Semantics Let n and m be the unique values such that the
model M satisfies P (n) and Q(m). The truth value of
compare(P(x), >, Q(y)) is the truth value of n > m

Example compare(lastAddProperty(ae1,upper mult,X),>,
lastAddProperty(ae1,lower mult,Y))

Counting Syntax count(P(x), >, v) where P is a Praxis primitive, x is a
variable and v ∈ N

Semantics |{a|M |= P (a)}| > v where M is the model
Example count(lastAddReference(assID, member, X), >, 2)

Transitive Syntax nav(From, Kind, To) where From and To are model
Navigability elements and Kind is a binary relation between model

elements.
Semantics nav(From, Kind, To) is true if (From, To) is in the

transitive closure of Kind.
Example nav(c1,generalization,c9)

Table 5.4 – Logic Operators - Atoms. Although the operators value comparison, property
comparison and counting are only shown with the > function, the other comparison functions
can be used as well : <, ≥, ≤, =, 6=

95



Chapter 5. Badger Improvements for Inconsistency Resolution

Boolean Combinations
Name

Negative Syntax not(L) where L is an Atom
literal Semantics not P

Example not(lastAddProperty(ae2,iscomposite,‘true’))

Conjunction Syntax [L1, L2, ..., Lk] where L1, L2, ..., Lk are Atoms or Boolean
Combinations

Semantics L1 and L2 and ... and Lk

Example [lastAddProperty(c1,name,‘Vehicle’),

lastAddProperty(c2,name,‘Aircraft’)]

Disjunction Syntax or[L1, L2, ..., Lk] where L1, L2, ..., Lk are Atoms or
Boolean Combinations

Semantics L1 or L2 or ... or Lk

Example or [lastAddProperty(c1,name,‘Vehicle’),

lastAddProperty(c1,name,‘Aircraft’)]

Table 5.5 – Logic Operators - Boolean Combinations.

We also presented the new logic operators added to the representation language to
increase the number of inconsistency types that Badger can describe.

96



6
Scalability

We assess the scalability of Badger in this chapter. For this purpose we use generated
UML models, reverse engineering models and a toy example model. We gradually increase
during our experiments the size of the model, the number of inconsistencies to resolve,
and the number of generated plans. We conclude this chapter with a summary of the
scalability analysis results.

The work presented in this chapter was previously published in: “Badger: A regres-
sion planner to resolve design model inconsistencies.” in European Conference Modelling
Foundations and Applications (ECMFA), 2012, Winner of the ECMFA 2012 Best Foun-
dation Paper Award, co-authored with Tom Mens (University of Mons, Belgium) and
Ragnhild Van Der Straeten (Vrije Universiteit Brussel, Belgium) [125].



Chapter 6. Scalability

6.1 Experimental Setup

Due to the unavailability of a sufficiently large sample of realistic UML models, we evaluate
the scalability of Badger on generated UML models, as well as on UML models obtained
by reverse engineering Java programs, and on a classical toy example. We consider for our
experiments 13 structural model inconsistency types, listed in Table 6.1. They are based
on the well-formedness constraints of the UML 2.3 metamodel expressed in OCL [10,
35, 117, 154, 164]). Each entry in Table 6.1 consists of an id followed by the metamodel
element on which the constraint is specified in the UML Superstructure document [117].
Next, a short description of the inconsistency type is given, followed by the page number
of the UML Superstructure document where the inconsistency type can be found.

All experiments reported in this chapter were carried on a Power Mac with 2.80GHz
Intel Xeon Quad-Core processor and 4Gb of RAM. We used the 32-bit version of SWI-
Prolog 6.0.2, running on the Ubuntu 11.04 operating system. All timing results obtained
were averaged over 10 different runs to account for performance variations1.

6.2 Generated Models

Due to the unavailability of a sufficiently large sample of realistic UML models, we use an
existing model generator that was proposed, mathematically grounded and validated in
Mougenot et al. [106]. The model generator implements a value generator for the model
element’s properties (i.e. names, literal values, visibility kinds, direction kinds) in order
to produce valid models. It also implements two generators, for generalizations and for
references, which randomly choose valid targets in the generated elements.

In order to generate inconsistent models, we modified the generators for properties,
generalizations and references. For example, we customised generators to authorise lower
bounder multiplicities smaller than 0 (I5), to authorise lower bounder multiplicities bigger
than the upper bounder multiplicities (I6) and to authorise not-binary association being
aggregations (I1).

This model generator enables us to study the impact of the size of the models on the
approach. It also enables us to apply our approach to a large set of models with a wide
range of different sizes. The model generator creates class diagrams based on the UML
metamodel shown in Figure 6.1.

We used the model generator to create 941 models with model sizes ranging from 21
to 10849 model elements (i.e., elements obtained using the Praxis elementary operation
create). Obviously, the generated models also contain references (from 21 to 11504) and
properties (from 40 to 22903), obtained by using the elementary operations addProperty
and addReference, respectively.

6.2.1 First Experiment

In a first experiment, we ran Badger on all generated models and computed the timing re-
sults for generating a single resolution plan. We analysed the relation between the number
of model elements and the time (in milliseconds) needed to resolve only one inconsistency
of a particular type. In order to compare the timing results for different inconsistency

1In hindsight, it would have been more appropied to use the minimal time instead of the average time
since the noise generated by external factors will never be negative.

98



6.2. Generated Models

id metamodel
element

description of the inconsistency type (see [117])

I1 Association Only binary associations can be aggregations (p. 39)
I2 Element Elements that must be owned must have an owner

(p. 65)
I3 Named

Element
If a NamedElement is not owned by a Namespace,
it does not have a visibility (p. 101)

I4 Multiplicity
Element

A multiplicity must define at least one valid cardi-
nality that is greater than zero. (p. 97)

I5 Multiplicity
Element

The lower bound must be a non-negative integer lit-
eral (p. 97)

I6 Multiplicity
Element

The upper bound must be greater than or equal to
the lower bound (p. 97)

I7 Classifier The general classifiers are the classifiers referenced
by the generalization relationships (p. 54)

I8 Classifier Generalization hierarchies must be directed and
acyclic. A classifier can not be both a transitively
general and transitively specific classifier of the same
classifier (p. 54)

I9 Classifier A classifier may only specialize classifiers of a valid
type (p. 54)

I10 Property A multiplicity on an aggregate end of a composite
aggregation must not have an upper bound greater
than 1 (p. 127)

I11 Property Only a navigable property can be marked as read-
Only (p. 128)

I12 Property The value of isComposite is true only if aggregation
is composite (p. 128)

I13 Operation An operation can have at most one return parameter
(p. 107)

Table 6.1 – List of considered structural model inconsistency types.

name:Text
visibility:VisibilityKind

Package

name:Text

Association
name:Text
visibility:VisibilityKind
upper:Number
lower:Number
isreadonly:Boolean
aggregation:AggregationKind
iscomposite:Boolean

Property

name:Text
visibility:VisibilityKind

Class

name:Text
visibility:VisibilityKind

Operation
name:Text
visibility:VisibilityKind
direction:ParameterDirectionKind

Parameter

Generalization

packagedelementpackagedelement

packagedelement

ownedoperation

ownedattribute

ownedparameter

ownedend

navigableownedend type

generalization

general

* *

*

0..1 0..1

1 *

*

*

1

2..*0..1

0..1 * 0..1*

*1..*

1 *

0..1

0..1
public
private
protected
package

«enumeration»
VisibilityKind

in
inout
out
return

«enumeration»
ParameterDirectionKind

none
shared
composite

«enumeration»
AggregationKind

Figure 6.1 – Simplified fragment of the UML metamodel for class diagrams.

99



Chapter 6. Scalability

types, we repeated the experiment for each of the 13 considered inconsistency types shown
in Table 6.1.

0	  

5	  

10	  

15	  

20	  

25	  

30	  

35	  

40	  

45	  

50	  

0	   2000	   4000	   6000	   8000	   10000	  

I1	   I2	  
I3	   I4	  
I5	   I6	  
I7	   I8	  
I9	   I10	  
I11	   I12	  
I13	  

Figure 6.2 – Comparison of execution time (y-axis, expressed in milliseconds) per model
size (x-axis, expressed as number of model elements) for resolving a single inconsistency in
941 different models. Different colours and symbols represent different inconsistency types.

The results of the experiment are visualised in Figure 6.2. The time needed to resolve
inconsistencies of a particular inconsistency type mainly depends on the size of the model
and on the number of logic literals in the desired goal. For example, I13 requires 4 literals
and takes on average 4.2 times longer than I5 that only uses 1 literal.

We fitted five different types of parametric regression models: a linear model, a loga-
rithmic model, a quadratic polynomial model, a power model and an exponential model.
The goodness of fit of each type of model was verified using the adjusted coefficient of
determination R̄2. Its value is always between 0 and 1, and a value close to 1 corresponds
to a good fit. Table 6.2 shows the obtained R̄2 values. In order to easily distinguish the
best regression models, values higher than 0.90 are indicated in italics, while values higher
than 0.95 are indicated in boldface. In addition, per inconsistency type the regression
models with the highest R̄2 value are marked with (*).

By analysing Table 6.2 we observe that the logarithmic regression models provide the
worst results. In contrast to the four other considered types of regression models, its R̄2

values are always lower than 0.8. For these reasons, we exclude this type of regression
model from the remainder of the analysis of our results. Based on the R̄2 values, the
linear and the polynomial quadratic models are the best in all cases (with an R̄2 > 0.99
for all quadratic models). The polynomial models have a growth very close to linear with
parameters a close to 0. This can explain the excellent results for the linear model (with
an R̄2 > 0.98 for all linear models). A visual interpretation also confirms that the linear
models are a very good match. The exponential and power models are also good fits, with
R̄2 values that are always close to or above 0.9.

6.2.2 Second Experiment

In a second experiment, we studied how the generation of resolution plans with Badger
scales up when resolving multiple inconsistencies of different types together. For each

100



6.2. Generated Models

Linear Log Polynomial Quadratic Power Exponential
y = a + b x y = a + b ln(x) y = a x2 + b x + c y = a xb y = a eb x

I1 0.994 0.763 0.999 (*) 0.921 0.964
I2 0.992 0.744 0.997 (*) 0.921 0.953
I3 0.994 0.721 0.999 (*) 0.911 0.948
I4 0.996 0.760 0.998 (*) 0.933 0.963
I5 0.990 0.736 0.998 (*) 0.917 0.961
I6 0.989 0.740 0.998 (*) 0.909 0.970
I7 0.991 0.740 0.997 (*) 0.906 0.964
I8 0.984 0.701 0.993 (*) 0.874 0.963
I9 0.991 0.740 0.997 (*) 0.906 0.964
I10 0.992 0.755 0.999 (*) 0.925 0.961
I11 0.994 0.745 0.999 (*) 0.933 0.942
I12 0.992 0.738 0.999 (*) 0.890 0.976
I13 0.994 0.740 0.999 (*) 0.915 0.953

Table 6.2 – R̄2 values of five different parametric regression models used to fit the timing
results of Figure 6.2.

considered model, we resolved together one inconsistency of each of the 13 inconsistency
types. Because not all models have at least one inconsistency of inconsistency type I8, dur-
ing our analysis we distinguished between models containing 12 inconsistencies (excluding
I8) and models containing 13 inconsistencies.

100	  

150	  

200	  

250	  

300	  

0	   2000	   4000	   6000	   8000	   10000	  

12	  inconsistencies	  
13	  Inconsistencies	  

Figure 6.3 – Time comparison (y-axis, in milliseconds) per model size (x-axis, in number
of model elements) for resolving multiple inconsistencies of different types in 941 different
models.

Figure 6.3 presents the results of this experiment. The resolution time only increases
slightly as the model size increases. None of the fitted regression models provide an R̄2

value higher than 0.25. As expected, the execution time is lower for 12 inconsistencies
(mean = 170.91, median = 167.59) than for 13 inconsistencies (mean = 215.22, median
= 211.48). Another factor that determines the execution time is the number of actions

101



Chapter 6. Scalability

100 

150 

200 

250 

300 

12 incons.          
9 actions 

12 incons.         
10 actions 

12 incons.         
11 actions 

13 incons.         
10 actions 

13 incons.                 
11 actions 

13 incons.        
12 actions 

Figure 6.4 – Boxplots showing effect of number of actions on execution time (y-axis, in
milliseconds).

in the resolution plan. Resolving 12 inconsistencies, requires between 8 and 11 actions
(median = 10), while for 13 inconsistencies needs between 9 and 12 actions (median = 11).
In addition, the resolution time increases as the number of actions increases, as shown in
the box plots of Figure 6.4.

6.2.3 Third Experiment

In a third experiment, we studied how the generation of a resolution plan with Badger
scales up if we want to resolve multiple inconsistencies of the same type together. To test
this, we generated a very large model containing more than 10,000 elements and a large
number of inconsistencies of each type. We excluded inconsistency type I8 because the
generated model does not contain enough inconsistencies of this type. For each of the
remaining 12 inconsistency types we computed the time required to resolve an increasing
number of inconsistencies (ranging from a single one to 70). Figure 6.5 visualizes the
results.

As in Subsection 6.2.1, we fitted five types of parametric regression models: a linear
model, a logarithmic model, a polynomial quadratic model, a power model and an expo-
nential model. Table 6.3 shows the obtained R̄2 values. In order to easily distinguish the
best regression models, values higher than 0.90 are indicated in italics, while values higher
than 0.95 are indicated in boldface. In addition, per inconsistency type the regression
models with the highest R̄2 value are marked with (*).

By analysing Table 6.3 we observe that the R̄2 was very high for 3 types of regression
models (polynomial quadratic, power and exponential). This can visually be confirmed
by the rapid increase of execution time as the number of inconsistencies increases. The
quadratic models had the best fit, with an adjusted R2 > 0.98 in all cases, followed by
the exponential models (> 0.93 in all cases, and > 0.95 in 7 out of 12 cases).

The different growth rates observed in Figure 6.5 reflect the complexity of the incon-
sistency type to be resolved. For example, the inconsistency types whose resolution only
requires the change of property values (e.g., I5 and I6) take less time than those that need
changes to references between model elements (e.g., I9 and I7), because of the additional

102



6.2. Generated Models

0	  

20	  

40	  

60	  

80	  

100	  

0	   10	   20	   30	   40	   50	   60	   70	  

I1	   I2	  

I3	   I4	  

I5	   I6	  

I7	   I9	  

I10	   I11	  

I12	   I13	  

Figure 6.5 – Execution time (y-axis, in seconds) per number of inconsistencies of the same
type (x-axis) for resolving multiple inconsistencies in a very large model. Different colours
and symbols represent different inconsistency types.

Linear Log Polynomial Quadratic Power Exponential
y = a + b x y = a + b ln(x) y = a x2 + b x + c y = a xb y = a eb x

I1 0.809 0.449 0.991 (*) 0.930 0.943
I2 0.799 0.439 0.989 (*) 0.916 0.957
I3 0.782 0.422 0.986 (*) 0.915 0.955
I4 0.789 0.429 0.987 (*) 0.889 0.972
I5 0.789 0.429 0.987 (*) 0.889 0.972
I6 0.779 0.419 0.986 (*) 0.926 0.947
I7 0.779 0.420 0.985 (*) 0.941 0.936
I9 0.780 0.420 0.985 (*) 0.942 0.934
I10 0.786 0.426 0.987 (*) 0.926 0.949
I11 0.792 0.432 0.988 (*) 0.922 0.953
I12 0.782 0.422 0.986 (*) 0.915 0.955
I13 0.801 0.445 0.981 (*) 0.907 0.952

Table 6.3 – R̄2 values of five different parametric regression models used to fit the timing
results of Figure 6.5.

103



Chapter 6. Scalability

multiplicity constraints required for the latter.

6.3 Reverse Engineered Models and a Toy Example

As previously mentioned, due to lack of access to sufficiently large and realistic UML
models, we also obtained UML models by reverse engineering five Java open source soft-
ware systems (Chipchat2, UMLet3, SweetRules4, CleanSheets5 and ThinWire6). These
five models were previously used to evaluate a different model inconsistency resolution
approach by Van Der Straeten et al. [156]. The reverse engineering was done through
Together 2006 Release 2 for Eclipse7 resulting in class diagrams and sequence diagrams.

In this section we will also use a classical toy example model. This model was created
by Anne Keller [68] based on Briand et al. [14] and describes an automated teller machine
(ATM). It was first introduced by Russell Bjork8 and was previously used by different
authors [7, 15, 135, 137]. The ATM model is composed by a class diagram, sequence
diagrams and use case diagrams.

The metamodel used by these models is a subset of the UML metamodel composed
of 3 diagram types (class diagram, sequence diagram and use case diagram); 44 meta-
classes; 156 meta-class properties; and 564 meta-model relationships. This metamodel is
significantly bigger than the one used in the previous section (Figure 6.1).

Table 6.4 shows the model sizes expressed in the number of model elements and in the
number of classes for the 6 models that we will use for the experiments in this section.
Each model mi was consistent, i.e., none of the 13 inconsistencies were detected. To carry
out our experiments, we manually added one inconsistency of each type to each of the 6
models.

id Kind Name Version Model Elements Classes
m1 Toy Example ATM 1002 18
m2 Reverse Engineered Chipchat 1.0 beta 2 2113 14
m3 Reverse Engineered UMLet 9beta 4897 184
m4 Reverse Engineered SweetRules 2.0 6345 186
m5 Reverse Engineered CleanSheets 1.4b 7392 254
m6 Reverse Engineered ThinWire 1.2 8571 231

Table 6.4 – Reverse engineered models and a toy example

6.3.1 First Experiment

In a first experiment, we have run Badger on all six models and computed the timing re-
sults for generating a single resolution plan. We analysed the relation between the number
of model elements and the time (in milliseconds) needed to resolve only one inconsistency

2http://chipchat.sourceforge.net/
3http://www.umlet.com/
4http://sweetrules.projects.semwebcentral.org/
5http://sourceforge.net/projects/csheets/
6http://thinwire.sourceforge.net/
7Together 2006 is an integrated modeling environment with support for reverse engineering of source

code, see http://techpubs.borland.com/together/tec2006/en/readme.html
8http://www.math-cs.gordon.edu/courses/cs211/ATMExample/

104

http://chipchat.sourceforge.net/
http://www.umlet.com/
http://sweetrules.projects.semwebcentral.org/
http://sourceforge.net/projects/csheets/
http://thinwire.sourceforge.net/
http://techpubs.borland.com/together/tec2006/en/readme.html
http://www.math-cs.gordon.edu/courses/cs211/ATMExample/


6.3. Reverse Engineered Models and a Toy Example

of a particular type. In order to compare the timing results for different inconsistency
types, we repeated the experiment for each of the 13 considered inconsistency types of
Table 6.1.

0	  

20	  

40	  

60	  

80	  

100	  

120	  

140	  

160	  

180	  

200	  

1000	   2000	   3000	   4000	   5000	   6000	   7000	   8000	  

I1	   I2	  

I3	   I4	  

I5	   I6	  

I7	   I8	  

I9	   I10	  

I11	   I12	  

I13	  

Figure 6.6 – Comparison of execution time (y-axis, expressed in milliseconds) per model
size (x-axis, expressed as number of model elements) for resolving a single inconsistency in
the 6 models. Different colours and symbols represent different inconsistency types.

The results of the experiment are visualised in Figure 6.6. Due to a lack of data points
(only 6), it is impossible to determine a trend, neither visually or by fitting the resolution
time to parametric regression models. Nevertheless, we calculated, for each model, the
time for resolving one inconsistency type relative to the other inconsistencies types of that
model. We observed that the relative resolution time is different per inconsistency type
and it is quite similar across models (see Figure 6.7). As previously said, the time needed
to resolve inconsistencies of a particular inconsistency type mainly depends on the size of
the model and on the number of logic literals in the desired goal.

6.3.2 Second Experiment

In a second experiment, we studied how the generation of multiple resolution plans with
Badger scales up when resolving multiple inconsistencies of different types together. To
test this, for each considered model, we resolved together one inconsistency of each of the
13 inconsistency types, and we generated gradually from a single resolution plan to 100
resolution plans. Figure 6.8 presents the results of this experiment.

We fitted five types of parametric regression models: linear, logarithmic, polynomial
quadratic, power and exponential. Table 6.5 shows the obtained R̄2 values. In order
to easily distinguish the best regression models, values higher than 0.90 are indicated
in italics, while values higher than 0.95 are indicated in boldface. In addition, per
inconsistency type the regression models with the highest R̄2 value are marked with (*).

By analysing Table 6.5 we observe that the R̄2 was very high for the 3 types of models
(polynomial quadratic models, exponential models and linear models). This can visually
be confirmed by the rapid increase of execution time as the number of generated plans
increases. The quadratic regression models had the best fit, with an adjusted R2 > 0.999
in all cases, followed by the exponential regression models (> 0.95 in all cases).

105



Chapter 6. Scalability

0%	  

10%	  

20%	  

30%	  

40%	  

50%	  

60%	  

70%	  

80%	  

90%	  

100%	  

m1	   m2	   m3	   m4	   m5	   m6	  

I13	  

I12	  

I11	  

I10	  

I9	  

I8	  

I7	  

I6	  

I5	  

I4	  

I3	  

I2	  

I1	  

Figure 6.7 – Comparison of the relative execution time (y-axis, expressed in percentage) per
model (x-axis, the model id) for resolving a single inconsistency in the 6 models. Different
colours and symbols represent different inconsistency types.

0	  

500	  

1000	  

1500	  

2000	  

2500	  

0	   10	   20	   30	   40	   50	   60	   70	   80	   90	   100	  

m1	  

m2	  

m3	  

m4	  

m5	  

m6	  

Figure 6.8 – Execution time (y-axis, expressed in milliseconds) per number of generated
plans (x-axis) for 13 inconsistencies (one inconsistency per inconsistency type) in the 6
models. Different colours and symbols represent different models.

106



6.4. Summary of the scalability analysis

Linear Log Polynomial Quadratic Power Exponential
y = a + b x y = a + b ln(x) y = a x2 + b x + c y = a xb y = a eb x

m1 0.942 0.606 1.000 (*) 0.769 0.997
y = 0.1306x2 + 0.5238x+ 237.56

m2 0.943 0.608 1.000 (*) 0.745 0.995
y = 0.1303x2 + 0.6485x+ 343.65

m3 0.942 0.607 1.000 (*) 0.700 0.985
y = 0.1336x2 + 0.5433x+ 733.82

m4 0.941 0.605 1.000 (*) 0.701 0.986
y = 0.1301x2 + 0.4202x+ 664.68

m5 0.941 0.605 1.000 (*) 0.695 0.984
y = 0.131x2 + 0.427x+ 728.76

m6 0.941 0.605 1.000 (*) 0.681 0.979
y = 0.1298x2 + 0.482x+ 944.51

Table 6.5 – R̄2 values of five different parametric regression models used to fit the timing
results of Figure 6.8.

The chart in Figure 6.8 may mislead us to think that the 6 models have an almost
identical growth, while this is not the case. This is due to the similar value of the param-
eters a of the quadratic polynomial models (approximatively 0.13). But the parameters
b are distinctively different. Remember that two quadratic polynomials have the same
growth if they are parallel, and to be parallel they need to have the same parameters a
and b.

6.4 Summary of the scalability analysis

We have evaluated the scalability of Badger by performing 3 experiments on 941 auto-
matically generated UML class diagram models of various sizes and by running as well 2
experiments on UML models obtained by reverse engineering five Java programs and on
a classical toy example. We used a set of 13 structural inconsistency types based on OCL
constraints found in the UML metamodel specification. To stress-test Badger, we have
increased one parameter at a time: the size of the model, the number of inconsistencies
to resolve and the number of generated plans.

Our approach for resolving inconsistencies scales up to models containing more than
10000 model elements. The execution time appears to be linear or quadratic when the size
of the model increases, polynomial quadratic when the number of inconsistencies to resolve
increases, and polynomial quadratic when the number of generated plans increases. The
execution time also increases as the number of actions in the resolution plan increases.

The aim of this chapter was not only to stress-test Badger, but also to demonstrate
that Badger is capable of resolving different inconsistency types in different models of
varying sizes.

107





7
Evaluation Function Analysis

As explained in Chapter 4, Badger uses a recursive best-first search (RBFS) to explore the
state space by expanding the most promising node. RBFS evaluates the most promising
node by using an evaluation function, which is defined as the sum of an heuristic function
and a cost function: f(n) = h(n) + g(n).

In this chapter we analyse and discuss the solutions and possibilities we have explored
to allow Badger to adapt the way it presents the inconsistency resolution plans to the
users, by changing the order in which the resolution plans are generated. Firstly we
present and discuss the heuristic function. We evaluate and illustrate by means of exam-
ples how changes in the cost function impact the order in which the resolution plans are
generated. We conclude this chapter by a discussion about the possibilities of Badger to
present the resolution plans to the user.



Chapter 7. Evaluation Function Analysis

In this chapter, we analyse and discuss the solutions and possibilities we have explored
to adapt the way in which Badger presents the resolution plans to the users, by changing
the order in which the resolution plans are generated. The grey part of Figure 7.1 high-
lights the parts of the algorithm that we are going to study in this chapter: the evaluation
function. In Section 7.1 we will briefly present and discuss the heuristic function. In Sec-
tion 7.2 we will evaluate how the cost function impacts the order in which the resolution
plans are generated.

Search Algorithm
(RBFS)

Successor functionEvaluation function
f(n) = h(n) + g(n) Solution function

Initial state
(Specific problem)

Set of possible actions
(The problem domain)

Desired goal
(Specific problem)

Heuristic 
function

h(n)

Cost 
function

g(n)

problem domain and specific problem

The algorithm
composition

input data

Figure 7.1 – A block diagram representing the functions which compose Badger. The grey
part represents the evaluation function that will be changed in this chapter.

7.1 The heuristic function

The heuristic function h(n) is the minimal estimation of the cost to reach a solution from
the node n. It can be derived by defining a relaxed problem that is easier to solve.

Among the different readily-available heuristics, the one used by Badger is a well-
known planner heuristic that ignores the preconditions. It fulfils the objectives of this
thesis, because it produces good results in inconsistency resolution as shown in Chap-
ter 6. Although it is possible to change and explore other planner heuristics in Badger,
developing such new heuristics takes a lot of effort and trial and error and is therefore out
of the scope of this dissertation. Nevertheless, in case someone would like to explore a new
heuristic, we can provide some recommendations. As we have explained in Chapter 3, the
heuristic functions implemented in classical planning are typically non-admissible. Those
heuristics that are admissible are poorly informed and the application of optimal search
algorithms is too expensive in terms of computation time. Therefore, we recommend to
use an heuristic based on the common relaxations in automated planning (e.g., ignore the
delete effect, subgoal independence) [65].

110



7.2. The cost function

7.2 The cost function

The cost function g(n) used by Badger defines the user-specified cost of applying each
action. This cost affects the order in which the plans are generated.

In all experiments that we have conducted in previous chapters, Badger used the same
cost for each action, implying that the generated plans are ordered in terms of the number
of actions they contain: the shortest plans are generated first. When multiple plans have
the same cost, the order in which they are generated depends on the order in which the
set of possible actions and the model elements are indexed by Prolog.

We will show in Section 7.2.1 that, contrary to what one might expect, these shortest
plans are not necessarily those plans that delete model elements. We will also counter
another common misconception that one of the possible plans is a plan that deletes all
model elements.

In Section 7.2.2 we will illustrate by means of examples how the user can change the
cost function to affect the order in which the resolution plans are generated. This allows
users to adapt the way in which Badger presents the resolution plans.

7.2.1 Two common questions about the plans generated by Bad-
ger

In this section we will try to answer two common questions about the plans generated by
Badger: (i) is the plan with delete actions always the shortest plan ?; and (ii) is deleting
all model elements a possible plan ?

Let us begin with question (i). Plans that delete model elements do not necessarily
contain less actions because Badger takes into account the metamodel to avoid ill-formed
models. And taking into account these metamodel constraints implies using additional
actions. For example, a relationship can only exist between two existing model elements.
That means that, before deleting a model element, Badger needs to take care of all the
relationships involved with this model element. In fact, only deleting a reference with
zeros as lower multiplicities in the metamodel or deleting an optional property takes only
one action. In all other cases, the constraints of the metamodel force Badger to involve
additional actions.

 

 

Car
0 .. 2

 

 

Wheel

4

Car :: Class Wheel :: Classupper = 2
lower = 0
iscomposite = true

src :: Property

upper = 4
lower = 4
iscomposite = false

dst :: Porperty

ass :: Associationownedend ownedendtype type

concrete syntax

abstract syntax

Figure 7.2 – Concrete and abstract syntax of a small class diagram with an inconsistency
of type I10 (cf. Table 6.1).

To illustrate the above, Figure 7.2 shows the concrete and abstract syntax of a small
model with two classes and an association between them. The model contains an incon-
sistency of type “A multiplicity on an aggregate end of a composite aggregation must not
have an upper bound greater than 1.” (I10 of Table 6.1). This inconsistency arises because

111



Chapter 7. Evaluation Function Analysis

the upper bound of the aggregated end (0..2) in the composite association between Car

and Wheel is greater than 1.

Car :: Class Wheel :: Classupper = 2
lower = 0
<< modify >> iscomposite = false

src :: Property

upper = 4
lower = 4
iscomposite = false

dst :: Porperty

ass :: Associationownedend ownedendtype type

Car :: Class Wheel :: Classupper = 2
lower = 0
iscomposite = true

<< delete >>
src :: Property

upper = 4
lower = 4
iscomposite = false

<< delete >>
dst :: Porperty

<< delete >>
ass :: Association

<< delete >>
ownedend

<< delete >>
ownedend

<< delete >>
type

<< delete >>
type

plan 1
(1 action needed)

plan 2
(1 action needed)

plan 4
(7 actions needed)

Car :: Class Wheel :: Classupper = 2
lower = 0
iscomposite = true

<< delete >>
src :: Property

upper = 4
lower = 4
iscomposite = false

dst :: Porperty

ass :: Association ownedend
<< delete >>

type type

(+other, Property, [ src ] ) :: Porperty

<< modify >>
ownedend

Car :: Class Wheel :: Class<< modify >> upper = 1
lower = 0
iscomposite = false

src :: Property

upper = 4
lower = 4
iscomposite = false

dst :: Porperty

ass :: Associationownedend ownedendtype type

plan 3
(3 actions needed)

Figure 7.3 – The 4 resolution plans proposed by Badger to solve the inconsistency found
in Figure 7.2.

Figure 7.3 graphically shows the 4 resolution plans proposed by Badger. Note that
plan 4 deleting the association is the last one that is generated as it contains more actions
than the other ones (7 actions). To delete the association’s end src, we must first deal with
its two references (type and ownedend). The type reference can simply be deleted while
the ownedend reference can be modified to point to a different association end (plan 3) or
deleted. If the ownedend reference is deleted, the association must also be deleted because
the metamodel specifies that an association has minimum two association ends. Deleting
the association implies deleting the other association end, because when a composite
is deleted, all of its parts must be deleted with it (remember that an Association is
composed by its Association Ends). After 7 actions, the association is finally correctly
removed to result in a well-formed model.

Let us now address the second question : is deleting all model elements a possible
plan ? This question comes from the assumption that we want to remove some specific
inconsistencies and empty plans do not have any inconsistencies, so an empty plan seems
to be a solution.

The answer is no, in most cases. The reasoning is as follows. Badger generates plans
using only relevant actions and stops when the inconsistencies are solved. A relevant
action is an action that contributes to the resolution of the inconsistency. Badger uses a
solution function to check if all given inconsistencies are solved (cf. Chapter 4). Badger
only performs the actions needed to remove the given inconsistencies. This means that
the only way for Badger to delete all the model elements is when all the model elements

112



7.2. The cost function

are part of one or more inconsistencies and removing all the model elements is mandatory
to solve the inconsistencies. For example, an inheritance cycle in a class diagram can
be solved by removing only one generalization. Therefore, Badger will never propose to
delete all the generalizations to take care of the inconsistency since the removal of one
generalization suffices.

7.2.2 Changing the cost function

In this section, we illustrate the effect of the order in which Badger generates plans when
the cost function is changed to give higher priority to certain resolution plans.

Changing the order in which the resolution plans are presented to the user is not a
novel idea, Küster and Ryndina [79] introduce the concept of side-effect expressions to
determine whether or not a resolution introduces a new inconsistency. They attach a cost
to each inconsistency type to compare alternative resolutions for the same inconsistencies.

The cost function of Badger takes as parameter the kind of action as well as the
elementary model operation that is going to be changed by the action (cf. Section 5.2).
The following information can be used to define or modify the cost function and change
the order in which Badger generates the resolution plans: (i) the kind of action; (ii) the
model element on which the elementary model operation is performed; (iii) the element
of the metamodel; (iv) the author that performed the elementary model operation; and
(v) the revision in which it has been performed.

Hitherto, Badger used the same cost for each action, which lead to the generation of
shortest plans first. If the user wants to adapt the order in which Badger generates the
plans, she can change the cost function to give priority to one kind of plan or to another.
To do this, she can use the previously listed information to define the cost function. For
instance, she can assign different costs to the different kinds of actions to give different
priorities to them. In this section, we illustrate several examples in which we change
the cost function to give priorities (a) to certain kinds of actions; (b) to certain parts
of the metamodel; (c) to certain model elements; (d) to certain authors; and (e) to a
combination of the kind of action and the kind of metamodel.

a) Kind of action priorities

In this example, we illustrate the effect of the order in which Badger generates plans when
the cost function is changed to give higher priority to certain kind of actions. To illustrate
this, we use a simple class with an inconsistency of type: “an operation can have at most
one return parameter” (I13 of Table 6.1). Figure 7.4 shows the concrete and the abstract
syntax of the class. The inconsistency arises when the operation getDiameter() has two
return parameters (one float and one integer).

Badger proposes the following 10 plans, generated and presented by increasing order
of actions, to resolve this inconsistency.

1. modify the reference ownedparameter between the operation getDiameter and the parameter p1
to make the parameter belong to a different operation;

2. modify the reference ownedparameter between the operation getDiameter and the parameter p2
to make the parameter belong to a different operation;

3. modify the property direction of the parameter p1 from return to in;

4. modify the property direction of the parameter p1 from return to inout;

5. modify the property direction of the parameter p1 from return to out;

113



Chapter 7. Evaluation Function Analysis

+ getDiameter():float,integer

 

Wheel

Wheel :: Class getDiameter :: Operation

 direction = return

p1 :: Parameter

 direction = return

p2 :: Parameter

Float :: Class

Integer :: Class

ownedoperation

ownedparameter

ownedparameter

type

type

concrete syntax

abstract syntax

Figure 7.4 – Concrete and abstract syntax of a class with an inconsistency of type I13 (cf.
Table 6.1).

6. modify the property direction of the parameter p2 from return to in;

7. modify the property direction of the parameter p2 from return to inout;

8. modify the property direction of the parameter p2 from return to out;

9. delete the parameter p1 and delete also the references: ownedparameter between the parameter
p1 and the operation getDiameter, and the reference type between the parameter p1 and the
class Float;

10. delete the parameter p2 and delete also the references: ownedparameter between the parameter
p2 and the operation getDiameter, and the reference type between the parameter p2 and the
class Integer.

To assign a higher priority to certain kind of actions, the user needs to change the cost
function and Badger will generate the resolution plans with this new cost function. We
illustrate this by means of three scenarios: (1) the user gives higher priority to the plans
with delete actions; (2) the user gives higher priority to the plans with delete actions
and lower priority to the plans with actions that modify the references; and (3) the user
gives higher priority to the plans with delete actions and she does not want the plans
with actions that modify the references. Table 7.1 shows the order in which the plans are
generated depending on the chosen cost function.

In scenario (1), the user changes the cost of the delete actions (delete model element,
delete reference and delete property) to be smaller than the rest of the action costs (1
for the delete actions and 5 for the rest). This gives a higher priority to the plans with
delete actions, so these plans will be generated first. Using this new cost function, Badger
generates the same plans but in a different order, the two first plans are now plans 9 and
10 (see column 2 of Table 7.1). Each one of these two plans deletes one of the parameters:
p1 and p2, respectively.

In scenario (2), the user changes the cost of the actions that modify the references to
be higher than the rest of the action costs, and the cost of delete actions to be the lowest
(10 for the actions that modify the references, 1 for the delete actions and 5 for the rest).
This moves the plans using actions that modify references to the last positions while the
plans with delete actions will come first. Using these new costs, Badger generates the

114



7.2. The cost function

Default settings:
Shortest plans first

Scenario (1): Highest
priority to plans with
delete actions

Scenario (2): Highest
priority to plans with
delete actions and low-
est priority to plans
with actions that mod-
ify references

Scenario (3): High-
est priority to plans
with delete actions and
never generate plans
with actions that mod-
ify references

1 9 9 9
2 10 10 10
3 1 3 3
4 2 4 4
5 3 5 5
6 4 6 6
7 5 7 7
8 6 8 8
9 7 1
10 8 2

Table 7.1 – Order in which the resolution plans for resolving the inconsistencies in Fig-
ure 7.4, are generated depending on the chosen cost function with kind of actions priority.

plans in a new order in which plans 1 and 2 are the last generated plans and plans 9 and
10 are the first.

In scenario (3), the user changes the cost of the actions that modify the references
to infinite (∞ for the actions that modify the references, 1 for the delete actions and
5 for the rest). An infinite cost in Prolog is represented by the cost function returning
fail. This prohibits the generation of plans that use these actions. Using this new cost
function, Badger generates only 8 plans, leaving out plans 1 and 2 that involve modifying
references.

b) Metamodel Priority

In this example, we illustrate the effect of the order in which Badger generates plans when
the cost function is changed to give higher priority to certain parts of the metamodel. To
illustrate this we use a simple model composed of a class diagram and a sequence diagram.
This model has an inconsistency of type: “each message in a sequence diagram needs to
have a corresponding operation that needs to be owned by the message receiver’s class”
(rule R1 in Chapter 1). Figure 7.5 shows the concrete syntax of this model and the
abstract syntax of the inconsistent part of the model. The inconsistency arises when the
message play used in the sequence diagram is not defined by an operation in the class
Streamer.

Badger proposes the following 8 plans, generated and presented by increasing order of
actions, to resolve this inconsistency.

1. modify the reference sentTo between the message play and the lifeline st: Streamer so that
the message is sent to a different lifeline;

2. modify the property name of the message play from play to stream;

3. modify the property name of the operation stream from stream to play;

4. modify the property name of the message play from play to wait;

5. modify the property name of the operation wait from wait to play;

115



Chapter 7. Evaluation Function Analysis

 

 

User

+ select():void
+ stop():void
+ play():void
+ draw():void

 

Display

+ stream():void
+ wait():void
+ connect():void

 

Streamer

u: User d: Display st: Streamer

1 : select
2 : connect

3 : play

4 : draw

* 1
1

1

st: Streamer :: Lifeline Streamer :: ClassinstanceOf

stream :: Operation

wait :: Operation

connect :: Operation

ownedoperation

ownedoperation

ownedoperation

order = 2

play :: Message sentTod: Display :: Lifeline sentBy

concrete syntax

abstract syntax

Figure 7.5 – Concrete and abstract syntax of a small class diagram and sequence diagram
with an inconsistency of type “each message in a sequence diagram needs to have a cor-
responding operation that needs to be owned by the message receiver’s class” (rule R1 in
Chapter 1).

116



7.2. The cost function

Default settings:
Shortest plans first

Scenario (1): Plans
with actions that mod-
ify the sequence dia-
gram first

Scenario (2): Plans
with actions that mod-
ify the class diagram
first

Scenario (3) Never
generates plans with
actions that modify
the class diagram

1 1 3 1
2 2 5 2
3 4 7 4
4 6 1 6
5 8 2 8
6 3 4
7 5 6
8 7 8

Table 7.2 – Order in which the resolution plans for resolving the inconsistencies in Fig-
ure 7.5, are generated depending on the chosen cost function with metamodel priority.

6. modify the property name of the message play from play to connect;

7. modify the property name of the operation connect from connect to play;

8. delete the message play and also delete the references: sentBy between the lifeline d: Display

and the message play and the reference sentTo between the message play and the lifeline
st:Streamer.

To assign a higher priority to certain parts of the metamodel, the user needs to change
the cost function and Badger will generate the resolution plans with this new cost function.
We illustrate this by means of three scenarios: (1) the user gives higher priority to the
sequence diagram; (2) the user gives higher priority to the class diagram; and (3) the user
does not want the plans that manipulate the class diagram. Table 7.2 shows the order in
which the plans are generated depending on the chosen cost function.

In scenario (1), the user changes the cost functions to give higher priority to the
sequence diagram. This is done by assigning a smaller cost (value 1) to the actions that
create, modify or delete an object belonging to the sequence diagram compared to the cost
of the rest of the actions (value 5). Using this new cost function, Badger generates the
same plans in a different order: the five plans generated first involve the manipulation of
an object belonging to the sequence diagram, while the three plans generated last involve
the manipulation of an object belonging to the class diagram (see column 2 of Table 7.2).

In scenario (2), the user changes the cost function to give higher priority to the class
diagram by assigning a smaller cost (value 1) to the actions that create, modify or delete
an object belonging to the class diagram compared to the rest of the action costs (value
5). The new order of generated plans is shown in column 3 of Table 7.2: the first three
plans that manipulate an object belonging to the class diagram.

In scenario (3), the user changes the cost function to avoid generating plans that
modify the class diagram. This is done by assigning an infinite cost (∞) to the actions
that create, modify or delete an object belonging to the class diagram. Using this new
cost function, Badger generates only 5 plans (see column 4 of Table 7.2) leaving out the
plans that modify the class diagram (plans 3, 5 and 7).

c) Model Priority

In this example, we will illustrate the effect of the order in which Badger generates plans
when the cost function is changed to give higher priority to certain model elements. For

117



Chapter 7. Evaluation Function Analysis

Default settings:
Shortest plans first

Scenario (1): Plans
that do not modify
or delete the message
play and its relation-
ships first

Scenario (2): Plans
that modify the op-
erations wait and
connect first

Scenario (3): Never
generate plans with
actions that modify
or delete the message
play and its relation-
ships

1 3 5 3
2 5 7 5
3 7 1 7
4 1 2
5 2 3
6 4 4
7 6 6
8 8 8

Table 7.3 – Using model priorities to change the order in which the resolution plans for
resolving the inconsistencies in Figure 7.5 are depending on the chosen cost function.

this we will use same model as the one that was used in the previous example (Figure 7.5).

To assign a higher priority to certain model elements, the user needs to change the
cost function and Badger will generate the resolution plans with this new cost function.
We illustrate this by means of three scenarios: (1) the user gives less priority to the plans
that modify or delete the message play; (2) the user gives higher priority to the plans
that modify or delete the operations wait and connect; and (3) the user does not want
the plans that modify or delete the message play. Table 7.3 shows the order in which the
plans are generated depending on the chosen cost function.

In scenario (1), the user changes the cost function to give a bigger cost to the actions
that modify or delete the message play or its relationships: sentBy and sentTo (5 for
these actions and 1 for the rest of actions). This is done to generate firstly all kinds of
plans that do not modify the message play (see column 2 of Table 7.3).

In scenario (2), the user changes the cost function to give more importance to the
plans that modify the operations wait and connect. This is done by assigning a small
value (1) to the actions that modify or delete the operations wait and connect than to
the other actions (5). The new order of plans starts by the plan that modify the name
wait into play and by the plan that modify the name of connect into play (see column
3 of Table 7.3).

In scenario (3), the user changes the cost function to never modify the play message
or its relationships: sentBy and sentTo. This is done by assigning an infinite cost (∞)
to the actions that modify or delete the message or its relationships. Using this new cost
function, Badger generates only 3 plans, see column 4 of Table 7.3, leaving out the plans
that modify the message or its relationships (plans 1, 2, 4, 6 and 8).

d) Author Priorities

In this example, we illustrate the effect of the order in which Badger generates plans when
the cost function is changed to give priority to certain authors.

As example we will use a simple class diagram with an inconsistency of type “General-
ization hierarchies must be directed and acyclic. A classifier cannot be both a transitively
general and transitively specific classifier of the same classifier” (I8 of Table 6.1). Fig-

118



7.2. The cost function

ure 7.6 shows the concrete and abstract syntax of this model. The inconsistency arises
because of an inheritance cycle between the classes Vehicle, Aircraft and Airplane.
Note that three authors participated in the creation of this class diagram: Tom, Jorge
and Mathieu. The modifications performed by Tom are visually expressed in black in Fig-
ure 7.6, the modifications performed by Jorge in orange and the modifications performed
by Mathieu in purple. Note also that the inconsistency was not introduced by one indi-
vidual person but by the combination of the work of Tom and Jorge. So, it corresponds
in fact to a structural syntactic merge conflict [92].

Aircraft

HelicopterAirplane

{author = Tom}
Aircraft :: Class

{author = Tom}
Airplane :: Class

{author = Tom}
superClass

{author = Mathieu}
superClass

{author = Mathieu}
Helicopter :: Class

{author = Jorge}
superClass

Vehicle

{author = Tom}
Vehicle :: Class

{author = Tom}
superClass

concrete syntax

abstract syntax

Figure 7.6 – Concrete and abstract syntax of a small class diagram with an inconsistency
of type I8 (cf. Table 6.1).

Badger proposes the following 3 plans, generated and presented by increasing order of
actions, to resolve this inconsistency:

1. delete the reference superClass (created by Tom) between the classes Vehicle and Aircraft;

2. delete the reference superClass (created by Jorge) between the classes Airplane and Vehicle;

3. delete the reference superClass (created by Tom) between the classes Aircraft and Airplane;

To assign a higher priority to certain authors, the user needs to change the cost function
and Badger will generate the resolution plans with this new cost function. To illustrate
this we create four scenarios: (1) the user gives higher priority to the plans that modify

119



Chapter 7. Evaluation Function Analysis

Default settings:
Shortest plans
first

Scenario (1):
Plans with
actions that
modify the part
of Jorge first

Scenario (2):
Only plans with
actions that
modify the part
of Jorge

Scenario (3):
Plans with
actions that
modify the part
of Mathieu first

Scenario (4):
Only plans with
actions that
modify the part
of Mathieu

1 2 2 1
2 1 2
3 3 3

Table 7.4 – Changing author priorities to change the order in which the resolution plans
for resolving the inconsistencies in Figure 7.6 are generated, depending on the chosen cost
function.

the part of the model created by Jorge; (2) the user only wants plans that modify the
part of the model created by Jorge; (3) the user gives higher priority to the plans that
modify the part of the model created by Mathieu; and (4) the user only wants plans that
modify the part of the model created by Mathieu. Table 7.4 shows the order in which the
plans are generated depending on the chosen cost function.

In scenario (1), the user changes the cost function to give higher priority to the plans
with actions that modify the part of the model created by Jorge. This is done by assigning
a smaller cost (value 1) to the actions that modify or delete a model element or reference
introduced by Jorge compared to the rest of action costs (value 5). Using this new cost
function, Badger generates the same plans but in a different order: the first generated
plan (plan 2) is the only one that involves a manipulation of a reference introduced by
Jorge (see column 2 of Table 7.4).

In scenario (2), the user changes the cost function to only generate plans that involve a
manipulation of model elements or references created by Jorge. This is done by assigning
an infinite cost (∞) to the actions that create, modify or delete a model element or
reference that has not been created by Jorge. Using this new cost function, Badger
generates only a single plan (plan 2) as it is the only plan that involves a manipulation
of a reference introduced by Jorge (see column 3 of Table 7.4).

In scenario (3), the user changes the cost function to give a higher priority to the
plans with actions that modify the part of the model created by Mathieu. This is done by
assigning a smaller cost to the actions that modify or delete a model element or reference
introduced by Mathieu. Using this new cost function, Badger generates the same plans
in the same order as with the default settings (see column 4 of Table 7.4). This is
because none of the plans has actions that modify or delete a model element belonging
to Mathieu, given the fact that the model elements belonging to Mathieu are not part of
the inconsistency.

In scenario (4), the user changes the cost function to only generate plans that involve
a manipulation of model elements or references created by Mathieu. This is done by
assigning an infinite cost (∞) to the actions that create, modify or delete a model element
or reference that has not been created by Mathieu. Using this new cost function, Badger
does not generate any plan (see column 5 of Table 7.4). This is because no plan has
actions that modify or delete a model element belonging to Mathieu. With this example
we observe that, when an infinite cost is used, Badger may not return any plan.

120



7.2. The cost function

e) Combining Priorities

In this example, we will illustrate how we can combine different kind of priorities to change
the effect of the order in which Badger generates plans. The cost function is changed to
give higher priority to certain kind of actions as well as to certain kind of metamodel
element.

As example we will use a simple class diagram with an inconsistency of type: “In-
herited Cyclic Composition” (ICC) [151]. Figure 7.7 shows the concrete and abstract
syntax of this model. An ICC inconsistency occurs when a composition relationship and
an inheritance chain form a cycle that would produce an infinite containment of ob-
jects upon instantiation. The inconsistency appears in the inheritance chain Vehicle ←
Car ← Amphibious Vehicle and in the composition relationship between Vehicle and
Amphibious Vehicle.

Vehicle

Car

Amphibious 
Vehicle 1..*

Vehicle :: Class Amphibious Vehicle :: Class

upper = 1
lower = 1
iscomposite = true

src :: Property

upper = star
lower = 1
iscomposite = false

dst :: Porperty

ass :: Associationownedend ownedend

type type

Car :: ClasssuperClass superClass

concrete syntax

abstract syntax

Figure 7.7 – Concrete and abstract syntax of a small class diagram with an inconsistency
of type “Inherited Cyclic Composition” (ICC) [151].

Badger proposes the following 9 plans, generated and presented by increasing order of
actions, to resolve this inconsistency.

1. delete the reference superClass between the classes Vehicle and Car ;

2. delete the reference superClass between the classes Car and Amphibious Vehicle;

3. modify the reference type between the class Vehicle and the property (association end) src so
the last one point to a different class;

121



Chapter 7. Evaluation Function Analysis

4. modify the reference type between the class Amphibious Vehicle and the property (association
end) dst so the last one point to a different class;

5. modify the iscompostie property of the property (association end) src from true to false;

6. modify the lower property of the property (association end) dst from 1 to 0;

7. delete the property src, also delete the reference between the property src and the class Vehicle,
and modify the reference between the property src and the association ass so the latter can own
a different property.

8. delete the property dst, also delete the reference between the property dst and the class Amphibious
Vehicle, and modify the reference between the property dst and the association ass so the latter
can own a different property.

9. delete the association ass, ass well as both properties src and dst and the references type and
ownedend.

To assign a higher priority to certain kind of actions as well as to certain kind of meta-
model element, the user needs to change the cost function and Badger will generate the
resolution plans with this new cost function. To illustrate this we create three scenarios:
(1) the user gives less priority to the plans that manipulate the superClass kind of ref-
erence; (2) the user gives less priority to the plans that manipulate the superClass kind
of reference and gives higher priority to all kind of actions except the one that modify the
references; and (3) the user gives priority to all kind of actions except the one that modify
the references and does not want to generate plans that manipulate the superClass kind
of references. Table 7.5 shows the order in which the plans are generated depending on
the chosen cost function.

In scenario (1), the user changes the cost function to assign a bigger cost to the
actions that manipulate superClass references (cost 10 for these actions and 1 for the
other actions). This is done to generate firstly all kinds of plans that do not modify or
delete any superClass reference. Using this new cost function Badger generates the same
plans but with a different order. The plans that delete the reference of kind superClass

(plans 1 and 2) are generated last (see column 2 of Table 7.5).
In scenario (2), the user changes the cost function to give a medium cost to the actions

that modify references (cost 5 for the actions that modify references, 10 for the actions
that manipulate superClass references and 1 for the rest of actions). This generates
firstly all kind of plans that do not modify references and that do not modify or delete
any superClass reference. Next the plans that modify references are generated and finally
the plans that modify or delete the superClass reference are generated.

In scenario (3), the user changes the cost function to give an infinite cost to the actions
that manipulate superClass references (∞ for the actions that manipulate superClass

references, 5 for the actions that modify references, and 1 for the rest of actions). Badger
will generates only 7 plans, see column 4 of Table 7.5, leaving out the plans that delete
the superClass references (plans 1 and 2).

7.3 Discussion

In this chapter we presented and discussed about the heuristic function. We also presented
the cost function and answered two common questions about the plans generated by
Badger. We illustrated by the mean of examples, how changing the cost function affects
the generated plans. There are different information that can be used by the user to

122



7.3. Discussion

Default Settings:
Shortest plans first

Scenario (1): Less
priority to plans
that manipulate the
superClass kind of
reference

Scenario (2): Less
priority to plans
that manipulate the
superClass kind of
reference and priority
to all kind of actions
except ones that
modify references

Scenario (3): Priority
to all kind of actions
except the ones that
modify references and
never generate plans
that manipulate the
superClass kind of
reference

1 3 5 5
2 4 6 6
3 5 9 9
4 6 3 3
5 7 4 4
6 8 7 7
7 9 8 8
8 1 1
9 2 2

Table 7.5 – Order in which the resolution plans are generated for resolving the inconsisten-
cies in Figure 7.7, depending on the chosen cost function with kind of actions and metamodel
priority.

change the cost function: action kind, metamodel, model element, author and revision.
The user can also combine these as it was illustrated in our last example.

In order to make the approach useful in practice, the resolution that the user actually
prefers should be one of the first generated resolution plans. We presented in this chapter
how to change the cost function to allow Badger to adapt the way it presents the resolution
plans to the users. We also illustrated how some kind of resolution plans can be omitted
by attaching an infinite weight to the cost function. However, controlled user studies are
still needed to assess what would be the most suitable cost function in practice, for each
particular need. This is left as future work.

123





8
Conclusions and Future Work

This chapter concludes the dissertation by summarising the contributions and obtained
results. It also discusses the limitations and presents the open research perspectives.



Chapter 8. Conclusions and Future Work

8.1 Contributions

In this dissertation we used automated planning, a logic-based approach originating from
artificial intelligence, for the purpose of automatically generating model inconsistency
resolutions. We are not aware of any other work having used this technique for this
purpose.

We started by a feature-based analysis of design model inconsistency resolution ap-
proaches based on three main criteria: flexibility, usability and extensibility. This study
allowed us to identify weaknesses in eight recent approaches and to take into account
these weaknesses to avoid them in the development of our own solution.

We presented two different planning approaches to generate resolution plans: Fast-
Forward Planning System (FF), an existing domain-independent heuristic state-space
progression planner; and Badger, a new domain-specific regression planner that we have
implemented in Prolog. We studied their feasibility in the domain of model inconsis-
tency resolution. While FF does the job, it suffers from scalability and has very poor
timing results. Badger has demonstrated good performance for inconsistency resolution,
is metamodel-independent and can generate multiple resolutions plans. In addition, the
planner algorithm of Badger can be adapted by taking full advantage of the domain
knowledge.

Badger requires as input a model and a set of inconsistencies. In contrast to other
inconsistency resolution approaches, the planner does not require the user to specify
resolution rules manually or to specify information about the causes of the inconsistency.
To specify models in a metamodel-independent way, and to be able to reuse an existing
model generator, we relied on the Praxis language [10].

We validated Badger on 941 automatically generated UML class diagram models of
various sizes (from 21 to 10849 model elements), as well as on UML models obtained
by reverse engineering five Java programs (from 2113 to 8571 model elements), and on a
classical toy example (1002 model elements). We used a set of 13 structural inconsistency
types based on OCL constraints found in the UML metamodel specification. We analysed
the scalability results of the approach obtained through several stress-tests and discussed
the limitations of our approach. Our empirical analysis revealed a strong linear relation-
ship between the model size and the execution time, a quadratic relationship between the
number of inconsistencies and the execution time and a quadratic relationship between
the number of generated plans and the execution time. We also observed an increase of
the execution time as the number of actions in the resolution plans increases. In addi-
tion, our approach scales up to models containing more than 10000 model elements. The
metamodel independence was validated by applying Badger to the problem of resolving
code smells in Java programs.

We conclude that it is feasible to use automated planning in a scalable way for design-
model inconsistency resolution. Nevertheless, improvements could still be made to this
approach and in addition, this dissertation opens up new research directions that can be
explored in more detail in the future.

8.2 Threats to Validity and Limitations

Our approach has only been stress-tested on a Java program and on UML models consist-
ing of class diagrams, sequence diagrams and use case diagrams. However, the fact that

126



8.2. Threats to Validity and Limitations

we rely on a metamodel independent representation (using sequences of Praxis elementary
model operations) makes it straightforward to apply it to other types of structural models
as well. We restricted ourselves to represent only structural aspects of models with Praxis.
We considered only a limited set of inconsistency types, but we have taken into account a
variety of logic operators and elementary model operations. It remains an open question
whether and how the approach can be generalised to non-structural inconsistencies (e.g.,
concrete syntax inconsistencies, behavioural inconsistencies).

Only the inconsistencies that can be expressed using the logic operators presented in
Tables 5.4 and 5.5 can be used in our approach. If one wants to express inconsistencies
using other operators, the approach needs to be changed in order to take into account
these new operators. Because the new operators can have an impact on the timing results
and on the performance of the approach, an equilibrium should be found between the
performance and the expressiveness.

Despite all the validations and testing we carried out, Badger may still contain some
bugs we are not aware of.

To carry out our experiments, we relied on an external model generator [106]. This
may cause a bias as the generated models may not look like “real” models. This bias
is limited since the model generator we used relies on the Boltzmann random sampling
method that generates, in a scalable way, uniform samplings of any given size. We also
carry out our experiments using reengineered models and a classical toy example, but
it remains an open question whether the approach can scale up into industrial (“real”)
models.

In order to make the approach useful in practice, the resolution that the user prefers
most should be one of the first generated resolution plans. The order in which resolution
plans are generated can be modified easily by modifying the cost function of the planner
algorithm, as shown in Chapter 7. In addition, entire resolution plans can be omitted by
attaching an infinite weight to certain actions. Assessing what would be the most suitable
parameters for the cost function in practice requires a controlled user study, which is left
as future work. In order to make the approach usable in practice, it should be integrated
into an integrated modeling environment (a CASE tool). It also should integrate an
intuitive visual interface allowing the user to easily adapt the cost function to her needs
without requiring any programming experience or knowledge of the underlying planning
algorithm.

Our approach does not take into account derived metamodel elements. For example,
the isComposite property can be derived from the AggregationKind property: if the
AggregationKind has as value composite the isComposite property takes as value true,
otherwise it takes as value false. Inconsistency definitions can refer to a derived metamodel
element or to an original metamodel element. When the resolution needs to change a
derived element, not only this element must be changed but also the element it is derived
from. When the resolution needs to change an original element, its derived element must
also be changed. To take into account the derived elements, the metamodel and the set
of actions of our approach need to be changed to perform not only changes to the target
element but also to its original element and to its derived elements.

Our approach works with the assumption that the inconsistency rules are correct, i.e.,
that no false positive inconsistencies are detected in the model. To resolve inconsistencies
in presence of false positives, the approach must be able to identify semi-automatically if
the detected inconsistency was produced because there is a real inconsistency in the model
(true positive) or whether it was produced because there is a problem in the detection

127



Chapter 8. Conclusions and Future Work

rule (false positive) (cf. Castro et. al. [20]).

8.3 Future Work

Our first priority in the near future is to address the current limitations of our approach.
In particular, controlled user studies are needed to study the quality of the resolution
plans as perceived by the user. An empirical classification of the inconsistency types by
their resolution time is also needed. This classification could be helpful to predict the
necessary time to resolve the detected inconsistencies. An empirical classification of the
inconsistency types by the logic operators used to specify the inconsistency types could
also be interesting.

It could be interesting to use automated planning in model refactoring, another model-
driven software engineering challenge. A model refactoring is a model transformation
that needs to preserve the behaviour of the model and model transformations. The
main challenge here is to find how to describe and preserve the behaviour in models.
Automated planning has already been used by Javier Pérez [121] in order to generate
refactoring strategies in source code (Java programs). This approach could be used in
model refactoring, but the planner domain knowledge, refactoring rules and refactoring
strategies, need to be added manually. The other way around, Badger could be adapted
to be used in model refactoring, but a way to describe and preserve behavioural of models
must be added.

In this dissertation, we used classical planning, an automated planning variant, for the
purpose of automatically generating model inconsistency resolution. In a future work we
would like to study if it is feasible to use planning under uncertainty [28,160], a different
variant of automated planning. Planning under uncertainty aims to resolve problems in
a nondeterministic and partially observable world, in which the planner has incomplete
knowledge of the current state. It remains an open question if planning under uncertainty
can be used to resolve inconsistencies in distributed models. Distributed models are used
in the context of collaborative work in industrial systems involving hundreds of developers
working on hundreds of models. In distributed models, the models are continuously edited
by developers who work asynchronously on their local copy, and commit from time to
time their work to the rest of the developers [105]. The planner, resolving inconsistencies
locally, must also take into account the possibility to share information (e.g., resolution
plans, model elements) with the other planners installed somewhere else.

Even if automated planning met our expectations, we would like to study other tech-
niques coming from the domain of artificial intelligence for the purpose of resolving mod-
eling inconsistencies in an automated way.

Logic-based approaches have been used for different but related purposes in inconsis-
tency resolution. Marcelloni and Akist [85,86] used fuzzy logic to cope with methodological
inconsistencies in design models. It remains to be seen whether this approach can be gen-
eralised to resolve any kind of model inconsistency. Castro et al. [20] used logic abduction
to detect and resolve inconsistencies in source code. We have started to carry out some
promising experiments to apply this approach to resolve inconsistencies in design models
appeared promising, but a full-fledged experimental study is necessary to assess whether
the approach actually scales up and works in practice.

Harman [57] advocates the use of search-based approaches in software engineering.
This includes a wide variety of different techniques and approaches such as metaheuristics
(e.g., variable neighborhood search [18,19]), local search algorithms, automated learning,

128



8.3. Future Work

genetic algorithms [129]. We believe that these techniques could be applied to the problem
of model inconsistency resolution, because it satisfies at least three important properties
that motivate the need for search-based software engineering: the presence of a large
search space, the need for algorithms with a low computational complexity, and the
absence of known optimal solutions. How these search-based approaches would compare to
our proposed automated planning approach and to existing model inconsistency resolution
approaches, remains an open question.

In order to assess the adequacy of all these different approaches to inconsistency reso-
lution, there is also an urgent need to define benchmarks allowing to compare them. Such
a benchmark should contain at least a set of shared case studies on which to evaluate
each approach; as well as a set of clearly identified criteria enabling the comparison of
approaches and their quality. These benchmarks would allow us to carry out an exper-
imental study of different approaches. Defining such benchmarks is a challenge of its
own because the existing model inconsistency resolution approaches that can be found
in research literature are quite diverse. They are implemented in different programming
languages and on different operating systems, and use different input formats, modeling
languages and metamodels for the modes, different input and output formats for incon-
sistencies and resolutions. The benchmark should also impose a fixed set of inconsistency
rules, which is quite difficult if the modeling languages or the metamodels are different,
that need to be resolved by each resolution approach. Analysing the resolution quality
of the different approaches would require a controlled user study. Indeed, in presence of
a wide variety of different resolution approaches, the only meaningful notion of quality
would be the quality as perceived by the user.

129





Bibliography

[1] Marcus Alanen and Ivan Porres. A metamodeling language supporting subset and
union properties. Software and System Modeling, 7(1):103–124, 2008.

[2] Marcos Aurélio Almeida da Silva, Alix Mougenot, Xavier Blanc, and Reda Ben-
draou. Towards automated inconsistency handling in design models. In Proceedings
of the 22st International Conference on Advanced Information Systems, CAISE’10,
volume 6051 of Lecture Notes in Computer Science, pages 348–362. Springer, June
2010.

[3] F. Baader, D. McGuinness, D. Nardi, and P.F. Patel-Schneider. The Description
Logic Handbook: Theory, Implementation and Applications. Cambridge University
Press, 2003.

[4] Robert Balzer. Tolerating inconsistency. In Proceedings of the International Con-
ference Software Engineering (ICSE), volume 1, pages 158–165. IEEE Computer
Society, 1991.

[5] Robert Balzer. “Tolerating Inconsistency” revisited. In Proceedings of the Interna-
tional Conference Software Engineering (ICSE), page 665. IEEE Computer Society,
May 2001.

[6] Kent Beck and Martin Fowler. Bad Smells in Code, chapter 3. Refactoring: Im-
proving the Design of Existing Code. Addison-Wesley, 1st edition, June 1999.

[7] Umesh Bellur and V. Vallieswaran. On OO design consistency in iterative develop-
ment. In Proceedings of the 3rd International Conference on Information Technol-
ogy: New Generations, pages 46–51. IEEE Computer Society, 2006.

[8] D. Bernard, E Gamble, N. Rouquette, B. Smith, Y. Tung, N. Muscettola, G. Do-
rias, B. Kanefsky, J. Kurien, W. Millar, P. Nayak, and K. Rajan. Remote Agent
Experiment DS1 Technology Validation Report. NASA Ames Research Center and
JPL, 1998.

[9] Jean Bézivin, Salim Bouzitouna, Marcos Didonet Del Fabro, Marie-Pierre Gervais,
Frédéric Jouault, Dimitrios S. Kolovos, Ivan Kurtev, and Richard F. Paige. A canon-
ical scheme for model composition. In Proceedings on Model Driven Architecture -
Foundations and Applications, Second European Conference (ECMDA-FA), pages
346–360, Bilbao, Spain, July 10-13 2006.



Bibliography

[10] Xavier Blanc, Alix Mougenot, Isabelle Mounier, and Tom Mens. Detecting model
inconsistency through operation-based model construction. In Robby, editor, Pro-
ceedings of the International Conference Software engineering (ICSE’08), volume 1,
pages 511–520, Leipzig, Germany, May 10-18 2008. ACM.

[11] Xavier Blanc, Alix Mougenot, Isabelle Mounier, and Tom Mens. Incremental detec-
tion of model inconsistencies based on model operations. In Pascal van Eck, Jaap
Gordijn, and Roel Wieringa, editors, Advanced Information Systems Engineering,
volume 5565 of Lecture Notes in Computer Science, pages 32–46. Springer Berlin /
Heidelberg, 2009.

[12] Avrim Blum and Merrick L. Furst. Fast planning through planning graph analysis.
In Proceedings of the 14th International Joint Conference on Artificial Intelligence
(IJCAI), pages 1636–1642, 1995.

[13] Ivan Bratko. Prolog programming for artificial intelligence. Addison-Wesley, 2001.

[14] L.C. Briand, Y. Labiche, and L. O’Sullivan. Impact Analysis and Change Manage-
ment of UML Models. Technical Report SCE-03-01, Carleton University, 2003.

[15] Lionel C. Briand, Yvan Labiche, L. O’Sullivan, and Michal M. Sówka. Automated
impact analysis of UML models. Journal of Systems and Software, 79(3):339–352,
2006.

[16] Frederick P. Brooks. The Mythical Man-Month: Essays on Software Engineering.
Addison-Wesley, 20th anniversary edition, 1995.

[17] William J. Brown, Raphael C. Malveau, Hays W. McCormick III, and Thomas J.
Mowbray. AntiPatterns: Refactoring Software, Architectures, and Projects in Cri-
sis. John Wiley and Sons, March 1998.

[18] Jason Brownlee. Variable neighbourhood search. Technical Report CA-TR-
20100206-1, The Clever Algorithms Project http://www.CleverAlgorithms.com,
February 2010.

[19] Gilles Caporossi and Pierre Hansen. Variable Neighborhood Search for Extremal
Graphs: 1. The AutoGraphiX System. Discrete Mathematics, 212(1-2):29–44, 2000.

[20] Sergio Castro, Johan Brichau, and Kim Mens. Diagnosis and semi-automatic cor-
rection of detected design inconsistencies in source code. In Proceedings of the
International Workshop on Smalltalk Technologies (IWST), pages 8–17, New York,
NY, USA, 2009. ACM.

[21] A. Cimatti, F. Giunchiglia, E. Giunchiglia, and P. Traverso. Planning via model
checking: A decision procedure for AR. In European Conference on Planning, 1997.

[22] Tony Clark, Andy Evans, and Stuart Kent. The metamodelling language calculus:
Foundation semantics for UML. In FASE, volume 2029 of Lecture Notes in Computer
Science, pages 17–31. Springer, April 2001.

[23] Aurélie Clodic, Maxime Ransan, Rachid Alami, and Vincent Montreuil. A manage-
ment of mutual belief for human-robot interaction. In Proceedings of the Interna-
tional Conference Systems, Man and Cybernetics. IEEE, 2007.

132



Bibliography

[24] Alain Colmerauer and Philippe Roussel. The birth of Prolog. In Thomas J. Bergin,
Jr. and Richard G. Gibson, Jr., editors, History of programming languages—II,
pages 331–367, New York, NY, USA, 1996. ACM.

[25] Krzysztof Czarnecki and Ulrich W. Eisenecker. Feature Modeling, chapter 5, pages
83–116. Generative Programming: Methods, Tools, and Applications. Addison-
Wesley, 2000.

[26] Krzysztof Czarnecki and Simon Helsen. Feature-based survey of model transforma-
tion approaches. IBM Systems Journal, 45(3):621–646, 2006.

[27] Gregory De Fombelle. Gestion incrémentale des propriétés de cohérence structurelle
dans l’ingénierie dirigée par les modèles. PhD thesis, Université Pierre et Marie
Curie, Paris, 2007.

[28] T. Dean, K. Basye, R. Chekaluk, S. Hyun, M. Lejter, and M. Randazza. Coping
with uncertainty in a control system for navigation and exploration. In Proceedings
of the 8th National Conference on Artificial Intelligence (AAAI), volume 2, pages
1010–1015, Boston, 1990. MIT Press.

[29] Stuart E. Dreyfus. An appraisal of some shortest-path algorithms. Operations
Research, 17:395–412, 1969.

[30] S. Easterbrook, A. Finkelstein, J. Kramer, and B. Nuseibeh. Coordinating dis-
tributed ViewPoints: the Anatomy of a Consistency Check. Concurrent Engineer-
ing, 2(3):209, 1994.

[31] Stefan Edelkamp and Jörg Hoffmann. PDDL2.2: The Language for the Classical
Part of the 4th International Planning Competition. Technical Report 195, Albert-
Ludwigs-Universität Freiburg, Institut für Informatik, 2004.

[32] Alaxender Egyed. Instant consistency checking for UML. In Proceedings of the
International Conference Software Engineering (ICSE), pages 381–390. ACM Press,
2006.

[33] Alexander Egyed. Fixing inconsistencies in UML design models. In Proceedings of
the International Conference Software Engineering (ICSE), pages 292–301. IEEE
Computer Society, 2007.

[34] Alexander Egyed. Automatically detecting and tracking inconsistencies in software
design models. IEEE Transactions on Software Engineering, 37(2):188–204, 2011.

[35] Alexander Egyed, Emmanuel Letier, and Anthony Finkelstein. Generating and
evaluating choices for fixing inconsistencies in UML design models. In Proceedings
ACM/IEEE International Conference Automated Software Engineering (ASE ’08),
pages 99–108, New York, NY, USA, 2008. ACM.

[36] M. Elaasar and L. Brian. An overview of UML consistency management. Technical
Report SCE-04-18, August 2004.

[37] G. Engels, J.H. Hausmann, R. Heckel, and St. Sauer. Testing the consistency of
dynamic UML diagrams. In Proceedings of the International Conference Integrated
Design and Process Technology (IDPT), June 2002. Pasadena, CA, USA.

133



Bibliography

[38] G. Engels, R. Heckel, J.M. Küster, and L. Groenewegen. Consistency-Preserving
Model Evolution through Transformations. In J.-M. Jézéquel, H. Hussmann, and
S. Cook, editors, Proceedings of the International Conference Unified Modeling Lan-
guage (UML), pages 212–227. Springer, 2002.

[39] Jean-Marie Favre. Languages evolve too! changing the software time scale. In Pro-
ceedings of the International Workshop on Principles of Software Evolution (IW-
PSE), pages 33–44, Los Alamitos, CA, USA, 2005. IEEE Computer Society.

[40] Jean-Marie Favre, Jacky Estublier, and Mireille Blay-Fornarino. L’ingénierie dirigée
par les modèles. Hermes - Lavoisier, 2006.

[41] Norman E. Fenton and Shari Lawrence Pfleeger. Software metrics: a rigorous and
practical approach. PWS Publishing Company, 1998.

[42] R. E. Fikes, P. E. Hart, and N. J. Nilsson. Learning and executing generalized robot
plans. Artificial Intelligence, 3(4):251–288, 1972.

[43] Richard Fikes and Nils J. Nilsson. STRIPS: A new approach to the application
of theorem proving to problem solving. In Proceedings of the International Joint
Conference Artificial Intelligence, pages 608–620, 1971.

[44] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh. Inconsistency
handling in multiperspective specifications. In IEEE Transactions on Software En-
gineering, volume 20, pages 569–578. IEEE Computer Society Press, 1994.

[45] A. Finkelstein, G. Spanoudakis, and D. Till. Managing interference. In Foundations
of Software Engineering, pages 172–174. ACM, 1996.

[46] Maria Fox and Derek Long. PDDL2.1: An Extension to PDDL for Expressing
Temporal Planning Domains. Journal of Artificial Intelligence Research, 20:61–124,
2003.

[47] P. Fradet, D. Le Metayer, and M. Peiin. Consistency checking for multiple view
software architectures. In Proceedings Joint Conference ESEC/FSE’99, volume 41,
pages 410–428. Springer, September 1999.

[48] Héctor Geffner. Functional Strips: a more flexible language for planning and prob-
lem solving. Logic-based Artificial Intelligence, pages 188–209, 2000.

[49] Alfonso Gerevini and Derek Long. BNF description of PDDL 3.0.
http://zeus.ing.unibs.it/ipc-5/, October 2005.

[50] Alfonso Gerevini and Derek Long. Plan Constraints and Preferences in PDDL3.
Technical Report R. T. 2005-08-47, Dipartimento di Elettronica per l’Automazione,
Università degli Studi di Brescia, 2005.

[51] M. Ghallab, D.S. Nau, and P. Traverso. Automated Planning: theory and practice.
Morgan Kaufmann Publishers, 2004.

[52] Michael Goedicke, Torsten Meyer, and Gabriele Taentzer. Viewpoint-oriented soft-
ware development by distributed graph transformation: Towards a basis for living
with inconsistencies. In Proceedings of the International Symposium Requirements
Engineering, pages 92–99. IEEE Computer Society, 1999.

134



Bibliography

[53] Bas Graaf and Arie van Deursen. Model-driven consistency checking of behavioural
specifications. In Proceedings of the International Workshop on Model-based Method-
ologies for Pervasive and Embedded Software (MOMPES), pages 115–126. IEEE
Computer Society, 2007.

[54] John C. Grundy, John G. Hosking, and Warwick B. Mugridge. Inconsistency man-
agement for multiple-view software development environments. IEEE Transactions
on Software Engineering, 24(11):960–981, 1998.

[55] Hans-Jörg Kreowski and Sabine Kuske. Graph transformation units and modules.
Handbook of Graph Grammars and Computing by Graph Transformation, 2:607–638,
1999.

[56] David Harel and Bernhard Rumpe. Modeling languages: Syntax, semantics and
all that stuff, part i: The basic stuff. Technical report, Weizmann Science Press of
Israel, Jerusalem, Israel, 2000.

[57] Mark Harman. Search based software engineering. In Proceedings of the Interna-
tional Conference on Computational Science (ICCS), volume 3994/2006 of Lecture
Notes in Computer Science, pages 740–747. Springer Berlin / Heidelberg, 2006.
Workshop on Computational Science in Software Engineering (CSSE’06).

[58] P. E. Hart, N. J. Nilsson, and B. Raphale. A formal basis for the heuristic de-
termination of minimum cost paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968.

[59] J.H. Hausmann, R. Heckel, and S. Sauer. Extended Model Relations with Graph-
ical Consistency Conditions. In L. Kuzniarz, G. Reggio, J.L. Sourrouille, and
Z. Huzar, editors, Blekinge Institute of Technology, Research Report 2002:06. UML
2002 Workshop on Consistency Problems in UML-Based Software Development,
pages 61–74, 2002.

[60] A. Hessellund, K. Czarnecki, and A. Wasowski. Guided development with multiple
domain-specific languages. Lecture Notes in Computer Science, 4735:46, 2007.

[61] Jörg Hoffmann. FF: The Fast-Forward Planning System. The AI Magazine, 2001.

[62] Jörg Hoffmann and Bernhard Nebel. The FF Planning System: Fast plan generation
through heuristic search. Journal of Artificial Intelligence Research, 14:253–302,
2001.

[63] Ellis Horowitz and Sartaj Sahni. Fundamentals of computer algorithms. Computer
Science Press, 1978.

[64] Michaël Hoste, Jorge Pinna Puissant, and Tom Mens. Challenges in model-
driven software evolution in the 7th belgian-netherlands software evolution work-
shop (benevol) 2008 workshop. Technical Report CS-Report 08-30, Technische Uni-
versiteit Eindhoven, December 2008.

[65] Sergio Jiménez Celorrio. Planning and Learning under Uncertainty. PhD thesis,
Universidad Carlos III de Madrid, 2010.

135



Bibliography

[66] M.D. Johnston. Spike: AI scheduling for NASA’s hubble space telescope. In Sixth
Conference on Artificial Intelligence Applications, pages 184–190, 1990.

[67] H. A. Kautz and B. Selman. Planning as satisfiability. In European Conference on
Artificial Intelligence (ECAI’92), pages 359–363, 1992.

[68] Anne Keller. Analysis-based Resolution Support for Inconsistencies in UML Models.
PhD thesis, Universiteit Antwerpen, 2012.

[69] J.-P. Kelly, A. Botea, and S. Koenig. Offline planning with hierarchical task net-
works in video games. In Proceedings of the International Conference Artificial
Intelligence and Interactive Digital Entertainment, pages 60–65, 2008.

[70] Mathias Kleiner, Marcos Didonet Del Fabro, and Patrick Albert. Model search:
Formalizing and automating constraint solving in MDE platforms. In Proceedings
Modelling Foundations and Applications, 6th European Conference, ECMFA, pages
173–188, Paris, France, June 2010.

[71] Jana Koehler, Bernhard Nebel, Jörg Hoffmann, and Yannis Dimopoulos. Extending
planning graphs to an adl subset. In Sam Steel and Rachid Alami, editors, Recent
Advances in AI Planning, volume 1348 of Lecture Notes in Computer Science, pages
273–285. Springer Berlin / Heidelberg, 1997.

[72] R. E. Korf. Depth-first iterative-deepening an optimal admissible tree search. Ar-
tificial Intelligence, 27(1):97–109, 1985.

[73] R. E. Korf. Iterative-deepening A*: An optimal admissible tree search. In Proceed-
ings of the 9th International Joint Conference on Artificial Intelligence (IJCAI),
pages 1034–1036, 1985.

[74] R. E. Korf. Best-first search with limited memory. UCLA Computer Science Annual,
1991.

[75] R. E. Korf. Linear-space best-first search. Artificial Intelligence, 62(1):41–78, 1993.

[76] P. Kruchten. The 4+1 view model of architecture. IEEE Software, 12(6):42–50,
1995.

[77] Thomas Kühne. Matters of (meta-) modeling. Software and System Modeling,
5:369–385, 2006.

[78] J.M. Kuster and G. Engels. Consistency Management Within Model-Based
Object-Oriented Development of Components. Lecture Notes in Computer Science,
3188:157–176, 2004.

[79] J.M. Kuster and K. Ryndina. Improving Inconsistency Resolution with Side-Effect
Evaluation and Costs. Lecture Notes in Computer Science, 4735:136, 2007.

[80] Michele Lanza and Radu Marinescu. Object-Oriented Metrics in Practice - Us-
ing Software Metrics to Characterize, Evaluate, and Improve the Design of Object-
Oriented Systems. Springer, 2006.

136



Bibliography

[81] M. M. Lehman. Laws of software evolution revisited. In Proceedings of the European
Workshop on Software Process Technology (EWSPT), volume 1149 of Lecture Notes
in Computer Science, pages 108–124. Springer, 1996.

[82] S Lin. Computer solutions of the travelling salesman problem. Bell Systems Tech-
nical Journal, 44(10):2245–2269, 1965.

[83] WenQian Liu, Steve Easterbrook, and John Mylopoulos. Rule-based detection of
inconsistency in UML models. In Proceedings of the UML Workshop on Consistency
Problems in UML-based Software Development, pages 106–123. Blekinge Insitute of
Technology, 2002.

[84] H. Malgouyres and G. Motet. A UML model consistency verification approach based
on meta-modeling formalization. In Proceedings Symposium on Applied computing
(SAC ’06), pages 1804–1809, New York, NY, USA, 2006. ACM.

[85] Francesco Marcelloni and Mehmet Aksit. Leaving inconsistency using fuzzy logic.
Information and Software Technology, 43(12):725–741, 2001.

[86] Francesco Marcelloni and Mehmet Aksit. Fuzzy logic-based object-oriented methods
to reduce quantization error and contextual bias problems in software development.
Fuzzy Sets and Systems, 145(1):57–80, 2004. Computational Intelligence in Software
Engineering.

[87] Robert Cecil Martin. Agile Software Development: Principles, Patterns, and Prac-
tices. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2003.

[88] D. McDermott. Planning and acting. Cognitive Science, 2(2):71–109, 1978.

[89] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram,
Manuela Veloso, Daniel Weld, and David Wilkins. PDDL – The Planning Domain
Definition Language. Technical Report CVC TR-98-003, Yale Center for Computa-
tional Vision and Control, 1998.

[90] Stephen J. Mellor, Anthony N. Clark, and Takao Futagami. Guest editors’ intro-
duction: Model-driven development. IEEE Software, 20(5):14–18, 2003.

[91] A.M. Memon, M.E. Pollack, and M.L. Soffa. Hierarchical GUI test case generation
using automated planning. IEEE Transactions on Software Engineering, 27(2):144–
155, february 2001.

[92] T. Mens. A state-of-the-art survey on software merging. IEEE Transactions on
Software Engineering, 28(5):449–462, 2002.

[93] Tom Mens. On the use of graph transformations for model refactoring. In
R. Lämmel, J. Saraiva, and J. Visser, editors, Generative and transformational tech-
niques in software engineering, volume 4143 of Lecture Notes in Computer Science,
pages 219–257. Springer, 2006.

[94] Tom Mens, Gabriele Taentzer, and Dirk Mueller. Model-Driven Software Develop-
ment: Integrating Quality Assurance, chapter Model-Driven Software Refactoring.
IDEA Group Publishing, 2008.

137



Bibliography

[95] Tom Mens, Gabriele Taentzer, and Olga Runge. Analyzing refactoring dependen-
cies using graph transformation. Software and Systems Modeling, 6(3):269–285,
September 2007.

[96] Tom Mens, Dalila Tamzalit, Michaël Hoste, and Jorge Pinna Puissant. Amélioration
de la qualité de modèles: Une étude de deux approches complémentaires. Revue des
Sciences et Technologies de l’Information - Série Technique et Science Informatiques
- Numéro Spécial IDM, 29(4–5):571–599, 2010.

[97] Tom Mens and Ragnhild Van Der Straeten. Incremental resolution of model incon-
sistencies. In Proceedings of the Workshop on Algebraic Description Techniques
(WADT), volume 4409 of Lecture Notes in Computer Science, pages 111–126.
Springer, 2007.

[98] Tom Mens, Ragnhild Van Der Straeten, and Maja D’Hondt. Detecting and resolving
model inconsistencies using transformation dependency analysis. In Proceedings of
the Model Driven Engineering Languages and Systems, volume 4199 of Lecture Notes
in Computer Science, pages 200–214. Springer, October 2006.

[99] Tom Mens, Ragnhild Van Der Straeten, and Jocelyn Simmonds. A Framework for
Managing Consistency of Evolving UML Models, pages 1–31. Idea Group Publishing,
2005.

[100] Tom Mens, Michel Wermelinger, Stéphane Ducasse, Serge Demeyer, Robert
Hirschfeld, and Mehdi Jazayeri. Challenges in software evolution. In Proceedings of
the International Workshop on Principles of Software Evolution (IWPSE), 2005.

[101] Bertrand Meyer. Object-Oriented Software Construction, chapter 24: Using inheri-
tance well. Prentice Hall Upper Saddle River, NJ, 2nd edition, 1997.

[102] Naouel Moha, Vincent Mahé, Olivier Barais, and Jean-Marc Jézéquel. Generic
model refactorings. In Proceedings of the International Conference Model Driven
Engineering Languages and Systems (MoDELS), Lecture Notes in Computer Sci-
ence. Springer, 2009.

[103] Parastoo Mohagheghi and Vegard Dehlen. Where is the proof? - A review of expe-
riences from applying MDE in industry. In Ina Schieferdecker and Alan Hartman,
editors, ECMDA-FA, volume 5095 of Lecture Notes in Computer Science, pages
432–443, Berlin, Germany, June 2008. Springer.

[104] E. F. Moore. The shortest path through a maze. In Proceedings of an International
Symposium on the Theory of Switching, part II, pages 285–292. Hardvard University
Press, Cambridge, Massachisetts, 1959.

[105] Alix Mougenot, Xavier Blanc, and Marie-Pierre Gervais. D-praxis: A peer-to-peer
collaborative model editing framework. In Proceedings of the 9th IFIP WG 6.1
International Conference on Distributed Applications and Interoperable Systems,
DAIS ’09, pages 16–29. Springer-Verlag, 2009.

[106] Alix Mougenot, Alexis Darrasse, Xavier Blanc, and Michèle Soria. Uniform random
generation of huge metamodel instances. In Proceedings of the 5th European Con-
ference on Model Driven Architecture - Foundations and Applications, ECMDA-FA
’09, pages 130–145. Springer-Verlag, 2009.

138



Bibliography

[107] N. Muscettola, P. Nayak, B. Pell, and B. Williams. Remote agent: To boldly go
where no AI system has gone before. Artificial Intelligence, 103(1-2):5–47, 1998.

[108] D. Nau, T. Au, O. Ilghami, U. Kuter, W. Murdock, D. Wu, and F.Yaman. Shop:
An HTN planning system. Journal of Artificial Intelligence Research, 2003.

[109] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein. xlinkit: a consistency
checking and smart link generation service. ACM Transactions on Internet Tech-
nology (TOIT), 2(2):151–185, 2002.

[110] C. Nentwich, W. Emmerich, and A. Finkelstein. Consistency management with re-
pair actions. In Proceedings International Conference Software Engineering (ICSE),
pages 455–464, Washington, DC, USA, 2003. IEEE Computer Society.

[111] A. Newell and G. Ernst. The search for generality. In W. A. Kalenich, editor,
Information Processing 1965: Proceedings of IFIP Congress, volume 1, pages 17–
24, 1965.

[112] B. Nuseibeh, S. Easterbrook, and A. Russo. Leveraging Inconsistency in Software
Development. IEEE Computer, 33(4):24–29, April 2000.

[113] B. Nuseibeh, J. Kramer, and A. Finkelstein. A framework for expressing the rela-
tionships between multiple views in requirements specification. IEEE Transactions
on Software Engineering, 20(10):760–773, 1994.

[114] Bashar Nuseibeh, Steve Easterbrook, and Alessandra Russo. Leveraging inconsis-
tency in software development. IEEE Computer, 33(4):24–29, 2000.

[115] Object Management Group. Meta Object Facility (MOF) 2.0 Core Specification,
January 2006.

[116] Object Management Group. Unified Modeling Language: Infrastructure version
2.3. formal/2010-05-03, May 2010.

[117] Object Management Group. Unified modeling language: Super structure version
2.3. formal/2010-05-05, May 2010.

[118] David L. Parnas. Software aging. In Proceedings International Conference Software
Engineering (ICSE), pages 279–287. IEEE Computer Society Press, May 16-21 1994.
Sorento, Italy.

[119] Edwin P. D. Pednault. ADL: Exploring the middle ground between STRIPS and
the situation calculus. In Proceedings of the International Conference Principles of
Knowledge Representation and Reasoning, pages 324–332, 1989.

[120] J. Scott Penberthy and Daniel S. Weld. Ucpop: A sound, complete, partial order
planner for adl. In Proceedings of the 3rd International Conference on Principles of
Knowledge Representation and Reasoning (KR’92), pages 103–114, 1992.

[121] Javier Pérez. Refactoring Planning for Design Smell Correction in Object-Oriented
Software. PhD thesis, ETSII, University of Valladolid, July 2011.

139



Bibliography

[122] Jorge Pinna Puissant, Tom Mens, and Ragnhild Van Der Straeten. Resolving model
inconsistencies with automated planning. In Proceedings of the 3rd workshop on Liv-
ing with Inconsistencies in Software Development, CEUR Workshop Proceedings.
CEUR-WS.org, September 2010.

[123] Jorge Pinna Puissant, Tom Mens, and Ragnhild Van Der Straeten. Comparing au-
tomated planning approaches for model inconsistency resolution. Technical report,
University of Mons, April 2011.

[124] Jorge Pinna Puissant, Ragnhild Van Der Straeten, and Tom Mens. Automated
planning for resolving model inconsistencies – a scalability study. In MoDELS
workshop on Models and Evolution, October 2010.

[125] Jorge Pinna Puissant, Ragnhild Van Der Straeten, and Tom Mens. Badger: A
regression planner to resolve design model inconsistencies. In Proceedings Euro-
pean Conference Modelling Foundations and Applications (ECMFA), volume 7349
of Lecture Notes in Computer Science, pages 146–161. Springer, 2012.

[126] A. Pretschner and W. Prenninger. Computing refactorings of state machines. Soft-
ware and Systems Modeling, 6(4):381–399, 2007.

[127] Ulrike Ranger and Thorsten Herme. Ensuring consistency within distributed graph
transformation systems. In Proceedings of the International Conference Funda-
mental Aspects of Software Engineering (FASE), volume 4422 of Lecture Notes in
Computer Science, pages 368–382, 2007.

[128] Alexander Reder and Alexander Egyed. Model/analyzer: a tool for detecting, vi-
sualizing and fixing design errors in UML. In Proceedings of the IEEE/ACM Inter-
national Conference on Automated software engineering, ASE ’10, pages 347–348,
New York, NY, USA, 2010. ACM.

[129] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pren-
tice Hall, 3rd edition, 2010.

[130] M. Sabetzadeh, S. Nejati, S. Liaskos, S. Easterbrook, and M. Chechik. Consis-
tency Checking of Conceptual Models via Model Merging. In Proceedings Interna-
tional Conference Requirements Engineering, pages 221–230. IEEE Computer Soci-
ety, 2007.

[131] E. D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial Intelligence,
5(2):115–135, 1974.

[132] E. D. Sacerdoti. A structure for plans and behaviour. Technical Report 109, Elsevier
North-Holland, New York, 1977.

[133] Douglas C. Schmidt. Guest editor’s introduction: Model-driven engineering. IEEE
Computer, 39(2):25–31, 2006.

[134] Bran Selic. The pragmatics of model-driven development. IEEE Software, 20(5):19–
25, 2003.

140



Bibliography

[135] Jocelyn Simmonds, Ragnhild Van Der Straeten, Viviane Jonckers, and Tom Mens.
Maintaining consistency between UML models using description logic. Série l’objet
- logiciel, base de données, réseaux, 10(2-3):231–244, 2004.

[136] H.A. Simon and A. Newell. Heuristic problem solving: The next advance in opera-
tions research. Operations research, 6(1):1–10, 1958.

[137] Avik Sinha, Matthew Kaplan, Amit M. Paradkar, and Clay Williams. Requirements
modeling and validation using bi-layer use case descriptions. In Krzysztof Czarnecki,
Ileana Ober, Jean-Michel Bruel, Axel Uhl, and Markus Völter, editors, Proceedings
of the 11th International Conference on Model Driven Engineering Languages and
Systems, volume 5301 of Lecture Notes in Computer Science, pages 97–112. Springer,
2008.

[138] Evren Sirin, Bijan Parsia, Dan Wu, James A. Hendler, and Dana S. Nau. HTN plan-
ning for web service composition using SHOP2. Web Semantics: Science, Services
and Agents on the World Wide Web, 1(4):377–396, October 2004.

[139] Jean Louis Sourrouille and Guy Caplat. Constraint checking in UML modeling. In
Proceedings of the International Conference Software Engineering and Knowledge
Engineering (SEKE ’02), pages 217–224. ACM, 2002.

[140] G. Spanoudakis and A. Zisman. Inconsistency management in software engineer-
ing: Survey and open research issues. In Handbook of Software Engineering and
Knowledge Engineering, pages 329–380. World scientific, 2001.

[141] Prawee Sriplakich, Xavier Blanc, and Marie-Pierre Gervais. Supporting collabora-
tive development in an open MDA environment. In ICSM, pages 244–253. IEEE
Computer Society, September 2006.

[142] Thomas Stahl and Markus Völter. Model Driven Software Development: Technol-
ogy, Engineering, Management. John Wiley & Sons, 2006.

[143] H. Tardieu, A. Rochfeld, and R. Colletti. La méthode Merise: principes et outils.
Editions d’organisation, 1983.

[144] R. Tarjan. Depth-first search and linear graph algorithms. In Proceedings of the
12th Annual Symposium on Switching and Automata Theory, pages 114–121. IEEE
Computer Society, 1971.

[145] Austin Tate. Using Goal Structure to Direct Search in a Problem Solver. PhD thesis,
University of Edinburgh, 1975.

[146] Henri Theil. Economic forecasts and policy, volume 5 of Contributions to economic
analysis. North-Holland Pub. Co., 1958.

[147] Alban Tiberghien, Naouel Moha, Tom Mens, and Kim Mens. Répertoire des défauts
de conception. Technical Report 1303, University of Montreal, 2007.

[148] Adrian Trifu. Towards Automated Restructuring of Object Oriented Systems. PhD
thesis, Universität Karlsruhe (TH), Fakultät für Informatik, 2008.

141



Bibliography

[149] P. van Beek and X Chen. CPlan: A constraint programming approach to planning.
In Proceedings of the National Conference on Artificial Intelligence (AAAI), pages
585–590, 1999.

[150] Ragnhild Van Der Straeten. Using description logic in object-oriented software
development. In Proceedings of the International Workshop on Description Logics
(DL), 2002.

[151] Ragnhild Van Der Straeten. Inconsistency management in model-driven engineer-
ing: an approach using description logics. PhD thesis, Vrije Universiteit Brussel,
2005.

[152] Ragnhild Van Der Straeten and Maja D’Hondt. Model refactorings through rule-
based inconsistency resolution. In Hisham Haddad, editor, Proceedings of the 2006
ACM Symposium on Applied Computing (SAC), pages 1210–1217. ACM, 2006.

[153] Ragnhild Van Der Straeten, Tom Mens, and Viviane Jonckers. A formal approach
to model refactoring and model refinement. Software and Systems Modeling, 6:139–
162, June 2007.

[154] Ragnhild Van Der Straeten, Tom Mens, Jocelyn Simmonds, and Viviane Jonckers.
Using description logics to maintain consistency between UML models. In Proceed-
ings of the International Conference Unified Modeling Language (UML), volume
2863 of Lecture Notes in Computer Science, pages 326–340. Springer, 2003.

[155] Ragnhild Van Der Straeten, Tom Mens, and Stefan Van Baelen. Challenges in
model-driven software engineering. In Models in Software Engineering, volume 5421
of Lecture Notes in Computer Science, pages 35–47. Springer, 2009.

[156] Ragnhild Van Der Straeten, Jorge Pinna Puissant, and Tom Mens. Assessing the
kodkod model finder for resolving model inconsistencies. In Proceedings of the Euro-
pean Conference Modelling Foundations and Applications (ECMFA), volume 6698
of Lecture Notes in Computer Science, pages 69–84. Springer, 2011.

[157] Ragnhild Van Der Straeten, Jocelyn Simmonds, and Tom Mens. Detecting in-
consistencies between UML models using description logic. In Proceedings of the
International Workshop on Description Logics (DL), September 2003.

[158] Arie van Deursen, Eelco Visser, and Jos Warmer. Model-driven software evolution:
A research agenda. In Proceedings CSMR Workshop on Model-Driven Software
Evolution (MoDSE), 2007.

[159] Axel van Lamsweerde, Emmanual Letier, and Robert Darimont. Managing conflicts
in goal-driven requirements engineering. IEEE Transactions on Software Engineer-
ing, 24(11):908–926, 1998.

[160] S.A. Vere. Planning in time: Windows and durations for activities and goals. IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI), 5:246–267,
1983.

[161] Michael Vierhauser, Paul Grünbacher, Alexander Egyed, Rick Rabiser, and Wolf-
gang Heider. Flexible and scalable consistency checking on product line variability

142



Bibliography

models. In Proceedings of the IEEE/ACM International Conference on Automated
software engineering, ASE ’10, pages 63–72, New York, NY, USA, 2010. ACM.

[162] Terry Winograd. Procedures as a Representation for Data in a Computer Program
for Understanding Natural Language. PhD thesis, Massachusetts Institute of Tech-
nology, January 1971.

[163] Dan Wu, Evren Sirin, James A. Hendler, Dana S. Nau, and Bijan Parsia. Automatic
web services composition using SHOP2. In WWW (Posters), 2003.

[164] Yingfei Xiong, Zhenjiang Hu, Haiyan Zhao, Hui Song, Masato Takeichi, and Hong
Mei. Supporting automatic model inconsistency fixing. In Proceedings of the 7th
Joint Meeting of the European Software Engineering Conference and the ACM SIG-
SOFT Symposium on the Foundations of Software Engineering (ESEC/FSE), pages
315–324, New York, NY, USA, 2009. ACM.

[165] Chang Xu. Inconsistency detection and resolution for context-aware pervasive com-
puting. PhD thesis, Hong Kong University of Science and Technology (People’s
Republic of China), 2008. Adviser-Cheung, S.C.

[166] Jing Zhang, Yuehua Lin, and Jeff Gray. Generic and domain-specific model refac-
toring using a model transformation engine. In Volume II of Research and Practice
in Software Engineering, pages 199–218. Springer, 2005.

143


	Acknowledgment
	Abstract
	Résumé
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Model Inconsistency Management
	Model-Driven Software Engineering
	Model Evolution
	Challenges in Model-Driven Software Engineering

	Model Inconsistency Management
	Terminology and Example
	Categories of Model Inconsistencies
	Inconsistencies Management Activities
	Techniques and Formalisms
	Conclusion

	A Feature-Based Analysis of Design Model Inconsistency Resolution Approaches
	Introduction
	Study Criteria
	Selection of Criteria
	Feature Modeling
	Flexibility
	Usability
	Extensibility

	Approaches
	Almeida da Silva's Approach
	Egyed's Approach
	Kleiner's Approach
	Mens's Approach
	Nentwich's Approach
	Van Der Straeten's Approach (I)
	Van Der Straeten's Approach (II)
	Xiong's Approach

	Summary of the Study
	Discussion

	Introduction to Automated Planning
	Introduction
	Classical Planning
	Formal Definition of Classical Planning
	The Representation Language
	States
	Problem Domain
	Specific Problem
	Languages

	The Algorithms
	Search for Planning
	Planning Solved by a Different Approach

	The Implementations
	Automated Planning and Software Engineering

	Automated Planning for Inconsistency Resolution
	Running Example
	Planning for Inconsistency Resolution
	Experimental Setup
	Fast-Forward Planning System
	Representation Language
	Algorithm
	Experimental Results
	Discussion

	Badger
	Representation Language
	Algorithm
	Experimental Results

	Discussion

	Badger Improvements for Inconsistency Resolution
	Temporary Model Elements
	Metamodel Independence
	Achieving Metamodel Independence
	Example of Metamodel Independence : Resolving Code Smells in Java

	Logic Operators
	Discussion

	Scalability
	Experimental Setup
	Generated Models
	First Experiment
	Second Experiment
	Third Experiment

	Reverse Engineered Models and a Toy Example
	First Experiment
	Second Experiment

	Summary of the scalability analysis

	Evaluation Function Analysis
	The heuristic function
	The cost function
	Two common questions about the plans generated by Badger
	Changing the cost function

	Discussion

	Conclusions and Future Work
	Contributions
	Threats to Validity and Limitations
	Future Work

	Bibliography

