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Side-coupled resonators with parity-time symmetry for broadband unidirectional invisibility
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We analyze the scattering properties of a parity-time (PT )-symmetric structure made of a waveguide and a
finite chain of side-coupled resonators. Typical one-dimensional PT structures exhibit unidirectional invisibility
(also called anisotropic transmission resonances), meaning unity transmission and zero reflection for incidence
from one direction. The side-coupled nature of our structure provides these features as well, but with different
characteristics than the traditional tight-binding chain. We explore these properties in detail with numerical
and analytical approaches for various chain lengths and geometries. As an interesting feature, we can achieve
a broadband unidirectional invisibility with only two resonators. Furthermore, we observe rich dispersions for
these anisotropic transmission resonances with four resonators, which can be carefully tuned.
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I. INTRODUCTION

Originating from the fundamental studies of parity-time
(PT )-symmetric Hamiltonians in quantum mechanics [1,2],
PT -symmetric photonic structures have now been investi-
gated for about a decade, as they combine gain and loss to
achieve particular properties [3–6]. In optics loss is usually an
unwanted feature that limits efficiency, but in the framework
of PT symmetry it becomes a key element.

The balance between gain and loss typically indicates
that the refractive index has to satisfy the symmetry relation
n(x) = n∗(−x), and in this context many optical devices have
been revisited, such as the traditional directional coupler
[7–12], switching devices [13,14], plasmonic structures [15],
Bragg reflectors [16–19], microring resonators and microdisks
[20–23], gratings [24–29], and others [30–39]. One of the most
salient properties of these structures is spontaneous symmetry
breaking at a certain loss and gain level, marking a clear
transition via a so-called exceptional point between two phases
with very different behavior.

We study the various effects of PT symmetry in a finite
chain of resonators next to a waveguide (see Fig. 1). Because
our geometry is side coupled, the behavior is very different
from typical tight-binding or Bragg cavity structures [24,27].
A different side-coupled structure has very recently been ex-
plored in aPT context for sensor applications [40]. Our system
can also be integrated on-chip, with independent control of
the coupling loss (as it is an open system) and the material
gain and loss. We use numerical and analytical calculations
with coupled-mode theory in a transfer- and scattering-matrix
approach to analyze in detail various geometries with multiple
cavities.

We particularly focus on another important behavior of
one-dimensional PT structures, the anisotropic transmission
resonances (ATRs) [41] or unidirectional invisibility [42,43].
This means that one obtains unity transmission and zero
reflection for incidence from one side, and a different reflection
from the other side. In addition, we address the stability of
these systems, as the presence of gain can readily make them
unstable. Moreover, study of the scattering matrix provides
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us detailed information on exceptional points and on lasing
states.

An important parameter for these coherently interacting
cavities is the length of the intermediate waveguide, which
can be tuned to change the phase and interference properties.
The spectrum of two side-coupled resonators (without gain or
loss) can exhibit a very narrow transmission peak [44,45]. We
will exploit this peak with PT symmetry to demonstrate both
very narrow and broadband ATRs.

For a chain of four resonators the possible configurations
are even more numerous, as we can choose between a
gain-gain-loss-loss or gain-loss-gain-loss profile, and we can
even symmetrically modify the resonance frequencies and
the amount of gain and loss, all the while remaining PT
symmetric. We show that these configurations give rise to
a unidirectional invisibility scheme with complex behavior as
a function of the frequencies: a rich, tunable dispersion with
multiple, crossing ATRs is obtained, offering possibilities for
“ATR engineering.”

We describe the two resonator structure in Sec. II and its
scattering properties in Sec. II A. We study the lasing states
and exceptional points in Sec. II B, and analyze the stability in
Sec. II C. We show the versatility of these systems with a four
resonator structure in Sec. III before concluding in Sec. IV.

II. TWO CAVITIES

The first structure is constituted of two resonators coupled
next to a waveguide (see Fig. 1). We assume that the resonators
and waveguide are single mode in the studied frequency region.
Furthermore, the resonators are placed sufficiently far from
each other so interaction occurs only through the waveguide.
Then, the fields in a single unit cell can be described by
coupled-mode theory [46]:

dan

dt
=

(
jω0 − 1

τc

± γ

)
an + dfn + dbn+1, (1)

fn+1 = ejφfn + dan, (2)

bn = ejφbn+1 + dan (3)

with an the complex mode amplitude of the cavity, whereas
fn and fn+1 (bn and bn+1) denote the forward (backward)
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FIG. 1. Geometry of the two resonator structure. a1 and a2 are
the mode amplitudes of each resonator. fi (bi) denotes the forward
(backward) waveguide mode amplitude. The dashed lines separate
the two unit cells of the system.

waveguide mode amplitudes, and n = 1,2. The coupling time
to the waveguide is τc, and the resonance frequency of the
cavities is ω0. Here d = jejφ/2/

√
τc, where φ depends on

the length of the intermediate waveguide and plays a major
role in the phase and interference characteristics. Finally, when
γ > 0 it defines the amount of gain (+γ ) or loss (−γ ) present
in the nth resonator, and vice versa when γ < 0. We mean here
inherent gain or loss of the resonator via, e.g., external pumping
of a gain medium, or material absorption. For a two resonator
structure PT symmetry requires that one cavity supports gain
and the other loss. The amplitudes are normalized so that |an|2
is equal to the total power in the resonator n, and |fn|2 (|bn|2) is
the power in the forward (backward) mode of the waveguide at
position n. As we mainly work in the continuous-wave regime,
the temporal dependence of the solution is ejωt and we can
replace the time derivative d/dt by jω with ω the excitation
frequency and j the imaginary unit. In this side-coupling
scheme, without gain or loss, there is a strong reflection on
resonance. Note that these equations are equivalent to a model
of a ring resonator next to two waveguides [47].

A. Reflection and transmission

We first examine the asymmetric reflection properties. A
direct transfer-matrix approach is employed, which is much
more resource efficient than a time domain one, but is
insensitive to the stability (stability is studied in Sec. II C).
The transfer matrix for one cavity can be written as(

bn

fn

)
=

(
ejφ − d2

j (ω0−ω)±γ
−d2e−jφ

j (ω0−ω)±γ

d2e−jφ

j (ω0−ω)±γ
e−jφ + d2e2jφ

j (ω0−ω)±γ

)(
bn+1

fn+1

)

= M±

(
bn+1

fn+1

)
. (4)

The transfer matrix for the entire system Mtot is obtained by
multiplication. As our scattering system is PT symmetric, we
can use the formalism of [41] and define the total transfer
matrix as a function of three real parameters (B and the phase
and amplitude of A) via

Mtot = M−M+ =
(

A∗ jB

−jC A

)
(5)

with C given by C = (|A|2 − 1)/B and M− (M+) denotes the
transfer matrix for the cavity with loss (gain). Finally, we can
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FIG. 2. Transmission of the two resonator structure as a function
of the detuning (ω − ω0)τc with three different values of φ, (a) for
γ τc = 0 and (b) for γ τc = 1.

obtain the scattering matrix from the total transfer matrix:

S = 1

A

(
jB 1

1 jC

)
=

(
rL tc

tc rR

)
, (6)

with rL and rR the left and right reflection coefficient and tc
the transmission coefficient. This matrix is PT symmetric for
our particular system [Eq. (4) and on], meaning that S satisfies
the symmetry relation (PT )S(ω∗)(PT ) = S−1(ω) with P =
(0 1
1 0) and T the complex conjugation operator. From S we

can extract all the information, such as the reflection with input
from the left side RL = |rL|2, the reflection from the right side
RR = |rR|2, and the transmission T = |tc|2. The transmission
is the same regardless of the input side because of reciprocity.

We calculate the transmission for a loss-gain structure as a
function of the normalized frequency detuning (ω − ω0)τc (see
Fig. 2). We observe the typical spectrum of two side-coupled
resonators for three different phases φ with the normalized
gain and loss factor γ τc = 0 [without gain or loss, Fig. 2(a)].
The transmission reaches zero (and reflection reaches unity)
at the resonance frequency ω0. In addition, due to the cavity
interaction, there is a narrow transmission peak (reaching T =
1) for small values of φ in the high reflection band. This peak
becomes narrower and closer to ω = ω0 as φ tends to zero. As
we will see, the ATRs of these structures will directly originate
from the extension of this particular peak for γ τc �= 0.

When γ τc is equal to 1 [Fig. 2(b)], the zero transmission
zone around ω0 tends to disappear. However, information about
the ATRs necessitates the examination of the left and right
side reflection, as they are no longer the same for γ τc �= 0.
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FIG. 3. Reflection (top row) and transmission (bottom row) for the two resonator structure (loss-gain) as a function of γ τc and detuning
(ω − ω0)τc, and saturated to two for clarity. (a), (d) For φ = 0.1π , (b), (e) for 0.2π , and (c), (f) for π/2. γ τc > 0 (< 0) is for left (right)
incidence. The green dashed lines represent the ATRs. The vertical black dotted lines represent the stability limit. The red stars indicate the
lasing states and the magenta elliptical curves represent the exceptional points (Sec. II B).

Therefore we analyze the left and right reflection R together
with the transmission T as a function of the detuning and γ τc

for a loss-gain structure (Fig. 3). In these figures, left and right
incidence corresponds to γ τc > 0 and < 0, respectively (the
right and left halves of the graphs).

The range 0 < φ � π/2 already presents all behaviors.
The vertical black dotted lines indicate the maximum γ τc

for stability, which is discussed in Sec. II C. Note that the
transmission remains symmetric, and the graphs for γ τc > 0
and < 0 are the same. However, the asymmetry between the
left and right reflection is present for every value of φ. The
ATRs arise when the reflection from a specific side reaches
zero [dark blue zones in Figs. 3(a)–3(c), indicated with green
dashed lines].

Interestingly, for fixed γ τc, the sharpness of the zero
reflection minimum is narrower as φ decreases. Thus, the
frequency range of the ATRs is wider when φ increases,
and becomes very broadband for φ = π/2 [see Fig. 3(c)],
which will be limited in practice by effects such as waveguide
and material dispersion. This behavior is in line with the
transmission resonances observed for γ τc = 0 [Fig. 2(a)].
Note also that R and T are symmetric around ω = ω0 for
the special case of φ = π/2.

ATRs arise when T = 1 [41], so with |tc|2 = |1/A|2 = 1
we find an analytical condition for ATRs in this system:

(ω − ω0)τc = (1 − τcγ ) tan φ, (7)

which is the equation of a straight line (green dashed lines in
Fig. 3). This line is anchored at the point ω = ω0 and γ τc = 1
and has a slope of −τc tan φ. Therefore with φ = π/2 the
slope indeed becomes infinite and we observe the broadband
ATR of Fig. 3(c).

As T is symmetric around γ τc = 0, one finds another line
where T = 1, symmetric to the previously indicated ATR lines
(dashed green lines). This line indicates the ATRs if we had
chosen a gain-loss structure, instead of loss-gain, so this is
not a “different” ATR. In that case, R should be mirrored in
Fig. 3.

Finally, we also observe that there tends to be more
reflection when incidence is from the gain side than from the
loss side, as indeed the yellow zones are larger on the left of
Figs. 3(a)–3(c).

We conclude that the two resonator system already presents
a fairly complex behavior of asymmetric scattering properties,
deriving from the passive transmission resonances. The geom-
etry can achieve both very narrow and broadband ATRs just
by varying the length of the intermediate waveguide.

We remark that the model neglects some effects that can
influence the results for specific applications and intensities.
First, dispersion will ultimately limit the broadband ATRs
to a finite range of frequencies. For waveguide dispersion
the geometry and materials could offer degrees of freedom
to optimize the available range, for example, with photonic
crystal waveguide engineering. Material dispersion will also
impact the ATR range, certainly via the finite window of
active materials. We also note that the complex permittivity
of the materials will follow the Kramers-Kronig relations,
which can distort the characteristics. Second, gain saturation
and charge-carrier dynamics in the gain material will limit
the maximal γ τc that can be reached in practice. Third, the
large intensities around the lasing states will break the linear
approximation, and may lead to new carrier and nonlinear
effects, temporal instabilities [48], switching behavior, and
so on. The latter phenomena are expected mainly around the
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stability threshold, so below the gain values for the discussed
ATRs.

B. Lasing states and exceptional points

Another interesting feature of active structures is the lasing
states that can arise from the presence of gain. These states
can be derived from the scattering matrix [Eq. (6)], as T , RL,
and RR become infinite when A = 0, leading to

(ω − ω0)τc = −j (1 + e−jφ

√
e2jφτ 2

c γ 2 + 1). (8)

Lasing states require a purely real frequency. Therefore the
left side of this equation has to be purely real, so the lasing
states exist only when the imaginary part of the right side
is equal to zero, which we indicate with red stars in Fig. 3.
Within the numerical accuracy these points are at the stability
limit (vertical black dotted lines in Fig. 3, discussed in detail
in Sec. II C). The two cavity structure has two lasing states,
but they are exactly at the same detuning and gain and loss,
which is understandable as T is reciprocal, so there is left-right
symmetry in Figs. 3(d)–3(f).

Furthermore, as the S matrix respects PT symmetry, there
is a broken and an unbroken PT phase. In the unbroken phase
each S-matrix eigenstate is mapped back to itself under the
PT operation, whereas in the broken phase they are mapped
to each other. At the boundary, called the exceptional points,
the two eigenstates merge. To identify these phases one can
examine the eigenvalues of S [41], which have unity module
only in the unbroken phase. Alternatively, one can use the
quantity (RL + RR)/2 − T , which is below (above) unity in
the unbroken (broken) phase, respectively. When this quantity
is equal to one, it describes the boundary between the two
phases, shown as the magenta elliptical lines in Fig. 3. We
observe that the lasing states only appear in the broken phase
(inside the magenta lines) in accordance with [49].

Thus, as in other PT devices, the two side-coupled res-
onator structure presents lasing states and a broken PT phase.
In our model the particular states are fairly straightforward to
determine analytically.

C. Stability

The main advantage of this structure concerns the ver-
satility of the scattering properties. However, a stationary
transfer-matrix formalism fails to take into account a possible
instability of the system, which is common in the presence
of gain [50]. Therefore, we analyze the stability range, via the
matrix H that describes the system without external excitation:

d

dt

(
a1

a2

)
= H

(
a1

a2

)
(9)

with

H =
(

jω0 − 1/τc − γ d2

d2 jω0 − 1/τc + γ

)
(10)

where the first resonator supports loss and the second supports
gain (γ > 0 here). Unlike the S matrix, H is neither Hermitian
nor PT symmetric due to the coupling with the waveguide.
The energy contained in the resonators and the intermediate
waveguide flows out of the system. The eigenvalues λ of H
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FIG. 4. Real (left column) and imaginary (right column) part of
the eigenvalues λ1,2 as a function of γ τc for (a), (b) φ = 0.2π , (c), (d)
0.4π , and (e), (f) π/2. The black horizontal line in the left column
marks Re(λ) = 0, the instability threshold.

describe the evolution of the collective eigenstates:

λ1,2 =
(

jω0 − 1

τc

)
±

√
γ 2 + e2jφ

τ 2
c

. (11)

The imaginary part of these eigenvalues represents the eigen-
frequency of the modes. The real part represents the time
evolution of the total power inside the two cavity system.

We plot λ as a function of γ τc (Fig. 4) for three values of
φ. Without gain or loss (γ τc = 0), the two eigenvalues have a
negative real part [see Figs. 4(a), 4(c), and 4(e)], which means
that the total power present in the cavities is flowing out of the
system through the waveguide.

Remark that even though we are not describing a pure PT -
symmetric structure here, we observe similar curve shapes,
especially for φ = π/2 [Figs. 4(e) and 4(f)]. The imaginary
parts of the eigenvalues merge together, whereas the two real
parts split beyond a particular point, which thus looks like an
exceptional point (at γ τc = 1). As φ decreases, this behavior
looks less and less like “perfect” PT , which is compara-
ble to a directional PT coupler with unequal waveguides
[Figs. 4(a)–4(d)].

For stability, we focus on the real part of the eigenvalues.
When one is positive, it shows us that the power inside the
cavities grows exponentially with time. When γ τc increases,
one of the modes always reaches a point where its real part
becomes positive [e.g., at γ τc ≈ 0.7 in Fig. 4(a)], leading to
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FIG. 5. (a) Left reflection and (b) transmission as a function of
the detuning and γ τc for a loss-gain structure. The parameters are
the same as in Fig. 2. These values are calculated with time domain
simulations and are saturated to two for clarity. The black lines mark
when one of the eigenvalues begins to have a positive real part [around
γ τc ≈ 0.7 in Fig. 4(a)].

unstable behavior that ultimately will become nonlinear and
requires other modeling approaches.

We check the previous with time domain simulations of
R and T as a function of the detuning (ω − ω0)τc and γ τc

(see Fig. 5). The boundary between the stable and the unstable
regime is well described by the zero of the real part of the
eigenvalue (vertical black lines in Fig. 5), and corresponds
with an exponential growth in the time domain results. Thus,
for each configuration we can define a maximum limit for γ τc

beyond which the system is unstable, defining a valid range of
gain and loss.

III. FOUR CAVITIES

We further show the versatility of these systems with a
four resonator geometry. We skip the three resonator system
as it offers less degrees of freedom and behaviors. We use the
same formalism as in the previous section. In principle most
results can be analytically derived, but the equations become
unwieldly, so calculations are more convenient.

The transmission T of a four resonator structure without
loss and gain for four values of φ is shown in Fig. 6.
Typically there are three peaks with T = 1 (and R = 0) for
four resonators. For φ = 0.1π the three peaks are relatively
close to each other around ω0 = ω. When φ increases the
three peaks move to the right, and the rightmost peak (number
3) tends to infinite detuning when φ reaches π/4. Beyond this
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FIG. 6. Transmission of the four resonator structure as a function
of the detuning (ω − ω0)τc for γ τc = 0 with four different values
of φ. The three numbers indicate the three peaks with T = 1 for
φ = 0.1π .

value of φ peak 3 appears from minus infinity and continues
moving to the right. Finally, when φ reaches π/2, peak 2
also moves to infinite detuning. This pattern continues as
φ increases. As previously the ATRs of the PT -symmetric
system will originate from the behaviors of these three peaks.

We calculate the reflection and transmission with a loss-
gain-loss-gain profile for three phases (Fig. 7). We observe
two kinds of ATRs. There is a straight line ATR where the
reflection is zero [slanted green line in Figs. 7(a)–7(c)], but
for only one incidence direction. This line originates from the
second peak with T = 1 in Fig. 6 and can be compared to the
ATR line of the two resonator structure [green dashed line in
Figs. 3(a)–3(c)]. This ATR becomes very broadband [Fig. 7(c)]
when peak 2 goes to infinite detuning.

Additionally, there is an ATR where RR = RL = 0 and
T = 1, which originates from peaks 1 and 3 [nearly horizontal
green line in Fig. 7(a) and green ellipse in Figs. 7(b) and
7(c)]. This indicates a “doubly accidental” degeneracy [41]
where both reflections are equal to zero, so the structure is
transparent from both directions. This can appear due to extra
tuning parameters, but seems inherent in our geometry. The
latter type of ATR would actually better be described as an
“isotropic” transmission resonance. We can observe that the
ellipse becomes infinitely large [Fig. 7(a)] as peak 3 goes to
infinity (for φ = π/4), so we only observe a horizontal line
close to (ω − ω0)τc = 0.5.

The structure also exhibits two lasing states at the limit
of the stable range. There are two additional lasing states
but they lie deeper into the unstable part. The exceptional
point boundaries are also more complicated, with four zones
instead of two for the two resonator structure (magenta curves
in Fig. 7). As in Fig. 3, we observe that the reflection tends to
be stronger when the incidence is from the gain side (larger
yellow areas on the left side of R).

The degrees of liberty for this structure are numerous as we
are only limited by thePT -symmetry relation n(x) = n∗(−x).
For example, if we change the elements symmetrically, we
can vary the gain and loss profile (such as loss-loss-gain-gain
instead of loss-gain-loss-gain), the resonance frequencies of
the cavities (ω1 has to equal ω4, and ω2 has to equal ω3,
but the couples can differ), the amount of gain and loss in
the cavities, and the phase φ. We describe succinctly a few
examples (Fig. 8) where we observe rich possibilities for the
ATRs, the exceptional points, and the lasing states.

As a first example, we examine a loss-loss-gain-gain profile,
in contrast with the previous loss-gain-loss-gain design.
The reflection graph with ATRs and exceptional points is
qualitatively different [Fig. 8(a)], with, for example, two pairs
of lasing states, in contrast with the single pair in Fig. 7 [and
in particular with Fig. 7(c) for the same phase].

In the other examples we return to a loss-gain-loss-gain
profile, but we change the gain and loss values. In Fig. 8(b) with
a gain and loss sequence (−0.3γ,γ, − γ,0.3γ ), we observe an
interaction between the line and ellipse of ATRs of Fig. 7(b),
which looks similar to “anticrossing” behavior. In Fig. 8(c) the
structure has a gain and loss sequence (−0.01γ,γ, − γ,0.01γ )
leading to another qualitative change of the ATRs, specifically
the elliptical ATR of Fig. 7(c) becomes a parabola in Fig. 8(c).
Furthermore, the change of the exceptional points is even more
complicated.
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FIG. 7. Reflection (top row) and transmission (bottom row) for four resonators (loss-gain-loss-gain) as a function of γ τc and the detuning
(ω − ω0)τc, and saturated to two for clarity. (a), (d) For φ = π/4, for (b), (e) 0.4π , and for (c), (f) π/2. γ τc > 0 (< 0) is the reflection and
transmission for left (right) incidence. The black dotted lines represent the stability limit. The green lines show the ATRs, the red stars indicate
the laser states, and the magenta curves represent the limits of the broken-symmetry phase.

As another example we change the resonance frequencies,
while keepingPT symmetry. For Fig. 8(d) we use the frequen-
cies (ω0,ω0 − 1/τc,ω0 − 1/τc,ω0), but with the standard gain

and loss (−γ,γ, − γ,γ ). We observe a very flat and narrow
ATR, similar to the nearly horizontal ATR of Fig. 7(a). But
here the reflection is zero for only one incidence direction [the

FIG. 8. Reflection for various four resonator structures as a function of γ τc and the detuning (ω − ω0)τc, and saturated to two for clarity.
(a) Loss-loss-gain-gain structure with resonance frequency sequence (ω0,ω0,ω0,ω0) and gain and loss sequence (−γ, − γ,γ,γ ). The other
structures are loss-gain-loss-gain with sequences (b) (ω0,ω0,ω0,ω0) and (−0.3γ,γ, − γ,0.3γ ), (c) (ω0,ω0,ω0,ω0) and (−0.01γ,γ, − γ,0.01γ ),
(d) (ω0,ω0 − 1/τc,ω0 − 1/τc,ω0) and (−γ,γ, − γ,γ ), (e) (ω0,ω0 − 1/τc,ω0 − 1/τc,ω0) and (−0.1γ,γ, − γ,0.1γ ), and (f) (ω0,ω0 + 2/τc,ω0 +
2/τc,ω0) and (−γ,0.5γ, − 0.5γ,γ ). Vertical black dotted lines are stability limits, green lines are ATRs, red stars are lasing states, and magenta
lines indicate exceptional points.

053854-6



SIDE-COUPLED RESONATORS WITH PARITY-TIME . . . PHYSICAL REVIEW A 94, 053854 (2016)

green curve is very slightly slanted in Fig. 8(d)], and we are
not in the doubly accidental degeneracy case of Fig. 7(a).

For the final examples we change both resonance frequency
and gain and loss sequences. For Fig. 7(e) we use the
frequencies (ω0,ω0 − 1/τc,ω0 − 1/τc,ω0) and the gain and
loss sequence (−0.1γ,γ, − γ,0.1γ ). We observe a similar
interaction between the ATR line and ellipse as in Fig. 8(b),
but mirrored as a function of detuning. In comparison, there
are also two more broken-symmetry zones. Finally, Fig. 8(f)
with (ω0,ω0 + 2/τc,ω0 + 2/τc,ω0) and (−γ,0.5γ, − 0.5γ,γ )
shows another behavior, and can barely be compared to
previous cases.

One observes that the number of possible configurations
and behaviors quickly grows with the number of cavities. Thus
a particular desired behavior can be targeted via the analytical
model for a relatively small number of cavities.

IV. CONCLUSION

We introduce a PT geometry consisting of side-coupled
cavities with interesting unidirectional characteristics. In these
systems we show that the bandwidth can be uniquely tuned
to be particularly broad or narrow, via a simple structural
parameter (the length of the waveguide between the cavities).
The unidirectional effect is one of the most salient features in
the PT field; it is strongly researched nowadays for potential
applications. The proposed design can be implemented on-chip
in various ways, for example, using photonic crystal cavities
or ring resonators.

With a compact, physical model we have analyzed in detail
the scattering characteristics of the one-dimensional structures
with side-coupled resonators. Because of side coupling the
behavior is very different from typical tight-binding or Bragg

defect structures. It is also an analytically tractable open system
with flexible control of cavity-waveguide coupling and the
intrinsic gain and loss.

The spectrum of two resonators (without gain or loss)
exhibits a very narrow transmission (R = 0) peak. With
added gain and loss the ATRs originate precisely from this
peak, which can be tuned by the length of the intermediate
waveguide, in order to demonstrate very narrow or broadband
ATRs. Moreover, the study of the scattering matrix provides
us detailed information on related important properties, such
as the lasing states, the exceptional points, and the stability of
the system.

Furthermore, the versatility of these systems is exhibited
with a chain of four resonators. The possible degrees of
freedom are numerous, as we can choose between a gain-
gain-loss-loss or gain-loss-gain-loss profile, and we can even
symmetrically modify the frequencies of the resonators and the
amount of gain and loss. Each of these configurations gives
rise to a unidirectional (or bidirectional) invisibility scheme
with complex behavior as a function of the frequencies: a
rich, tunable dispersion with multiple, crossing, or anticrossing
ATRs is obtained, offering possibilities for “ATR engineering.”

In future work one could also explore structures without
perfect PT geometry, with, e.g., gain and loss profiles that are
not left-right symmetric. These would often lead to imperfect
ATRs, however, with reflections that are not perfectly zero. We
do not explore these cases here, but they would significantly
expand the available parameter space.
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