Meet Your Expectations With Guarantees: Beyond Worst-Case Synthesis in Quantitative Games

V. Bruyère (UMONS) E. Filiot (ULB)
M. Randour (UMONS-ULB) J.-F. Raskin (ULB)

IST Austria - 17.06.2014

The talk in two slides (1/2)

- Verification and synthesis:
 - > a reactive **system** to *control*,
 - > an interacting environment,
 - > a **specification** to *enforce*.
- Focus on *quantitative properties*.

- Verification and synthesis:
 - > a reactive **system** to *control*,
 - > an interacting environment,
 - > a **specification** to *enforce*.
- Focus on quantitative properties.
- Several ways to look at the interactions, and in particular, the nature of the environment.

The talk in two slides (2/2)

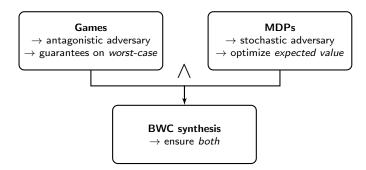
Games

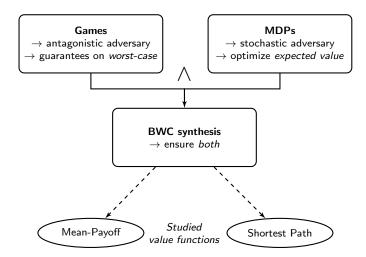
- \rightarrow antagonistic adversary
- → guarantees on worst-case

MDPs

- → stochastic adversary
- → optimize expected value

Shortest Path

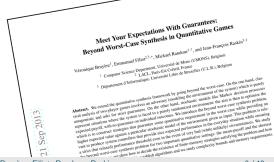




Advertisement

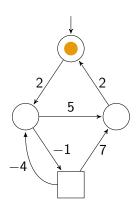
Context

Featured in STACS'14 [BFRR14]
Full paper available on arXiv: abs/1309.5439



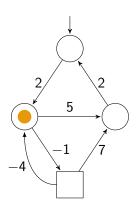
- 2 BWC Synthesis
- 3 Mean-Payoff
- 4 Shortest Path
- 5 Conclusion

- 1 Context
- 2 BWC Synthesis
- 3 Mean-Payof
- 4 Shortest Path
- 5 Conclusion



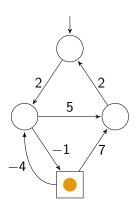
Context

- Graph $\mathcal{G} = (S, E, w)$ with $w: E \to \mathbb{Z}$
- Two-player game $G = (G, S_1, S_2)$
 - $\triangleright \mathcal{P}_1$ states $=\bigcirc$
 - $\triangleright \mathcal{P}_2 \text{ states} = \square$
- Plays have values
 - $ightharpoonup f: \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \mathsf{Prefs}_i(G) \to \mathcal{D}(S)$
 - \triangleright Finite memory \Rightarrow stochastic output Moore machine $\mathcal{M}(\lambda_i) = (\text{Mem}, m_0, \alpha_u, \alpha_n)$



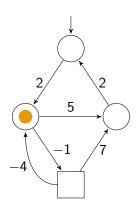
Context

- Graph $\mathcal{G} = (S, E, w)$ with $w: E \to \mathbb{Z}$
- Two-player game $G = (\mathcal{G}, S_1, S_2)$
 - $\triangleright \mathcal{P}_1$ states $=\bigcirc$
 - $\triangleright \mathcal{P}_2 \text{ states} = \square$
- Plays have values
 - \triangleright $f: \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \mathsf{Prefs}_i(G) \to \mathcal{D}(S)$
 - \triangleright Finite memory \Rightarrow stochastic output Moore machine $\mathcal{M}(\lambda_i) = (\text{Mem}, m_0, \alpha_u, \alpha_n)$



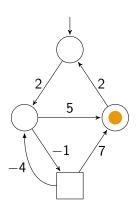
Context

- Graph $\mathcal{G} = (S, E, w)$ with $w: E \to \mathbb{Z}$
- Two-player game $G = (G, S_1, S_2)$
 - $\triangleright \mathcal{P}_1$ states $=\bigcirc$
 - $\triangleright \mathcal{P}_2 \text{ states} = \square$
- Plays have values
 - $ightharpoonup f: \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \mathsf{Prefs}_i(G) \to \mathcal{D}(S)$
 - \triangleright Finite memory ⇒ stochastic output Moore machine $\mathcal{M}(\lambda_i) = (\text{Mem}, m_0, \alpha_u, \alpha_n)$



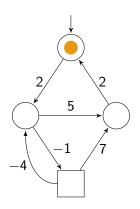
Context

- Graph $\mathcal{G} = (S, E, w)$ with $w: E \to \mathbb{Z}$
- Two-player game $G = (\mathcal{G}, S_1, S_2)$
 - $\triangleright \mathcal{P}_1$ states $=\bigcirc$
 - $\triangleright \mathcal{P}_2 \text{ states} = \square$
- Plays have values
 - $ightharpoonup f: \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \mathsf{Prefs}_i(G) \to \mathcal{D}(S)$
 - \triangleright Finite memory \Rightarrow stochastic output Moore machine $\mathcal{M}(\lambda_i) = (\text{Mem}, m_0, \alpha_u, \alpha_n)$



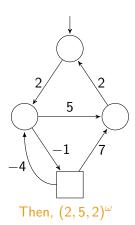
Context

- Graph $\mathcal{G} = (S, E, w)$ with $w: E \to \mathbb{Z}$
- Two-player game $G = (\mathcal{G}, S_1, S_2)$
 - $\triangleright \mathcal{P}_1$ states $=\bigcirc$
 - $\triangleright \mathcal{P}_2 \text{ states} = \square$
- Plays have values
 - $ightharpoonup f: \mathsf{Plays}(\mathcal{G}) o \mathbb{R} \cup \{-\infty, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \mathsf{Prefs}_i(G) \to \mathcal{D}(S)$
 - \triangleright Finite memory \Rightarrow stochastic output Moore machine $\mathcal{M}(\lambda_i) = (\text{Mem}, m_0, \alpha_u, \alpha_n)$

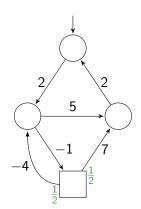


Context

- Graph $\mathcal{G} = (S, E, w)$ with $w: E \to \mathbb{Z}$
- Two-player game $G = (G, S_1, S_2)$
 - $\triangleright \mathcal{P}_1$ states $=\bigcirc$
 - $\triangleright \ \mathcal{P}_2 \ \mathsf{states} = \square$
- Plays have values
 - $ightharpoonup f: \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \mathsf{Prefs}_i(G) \to \mathcal{D}(S)$
 - \triangleright Finite memory ⇒ stochastic output Moore machine $\mathcal{M}(\lambda_i) = (\text{Mem}, m_0, \alpha_u, \alpha_n)$



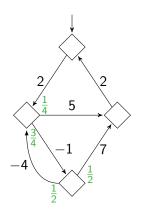
- Graph $\mathcal{G} = (S, E, w)$ with $w: E \to \mathbb{Z}$
- Two-player game $G = (\mathcal{G}, S_1, S_2)$
 - $\triangleright \mathcal{P}_1 \text{ states} = \bigcirc$
 - $\triangleright \mathcal{P}_2$ states $= \square$
- Plays have values
 - $ightharpoonup f: \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \mathsf{Prefs}_i(G) \to \mathcal{D}(S)$
 - \triangleright Finite memory \Rightarrow stochastic output Moore machine $\mathcal{M}(\lambda_i) = (\text{Mem}, m_0, \alpha_u, \alpha_n)$



0000

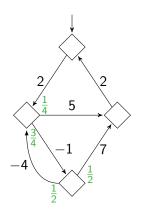
- MDP $P = (\mathcal{G}, S_1, S_{\Delta}, \Delta)$ with $\Delta \colon S_{\Delta} \to \mathcal{D}(S)$
 - $\triangleright \mathcal{P}_1 \text{ states} = \bigcirc$
 - \triangleright stochastic states = \square
- $\blacksquare \mathsf{MDP} = \mathsf{game} + \mathsf{strategy} \mathsf{ of } \mathcal{P}_2$
 - $\triangleright P = G[\lambda_2]$

Markov chains



- MC $M = (\mathcal{G}, \delta)$ with $\delta \colon S \to \mathcal{D}(S)$
- MC = MDP + strategy of \mathcal{P}_1 = game + both strategies
 - $\triangleright M = P[\lambda_1] = G[\lambda_1, \lambda_2]$

0000



- MC $M = (\mathcal{G}, \delta)$ with $\delta \colon S \to \mathcal{D}(S)$
- MC = MDP + strategy of \mathcal{P}_1 = game + both strategies

$$\triangleright M = P[\lambda_1] = G[\lambda_1, \lambda_2]$$

- lacksquare Event $\mathcal{A}\subseteq\mathsf{Plays}(\mathcal{G})$
 - ightharpoonup probability $\mathbb{P}^{M}_{s_{\text{init}}}(\mathcal{A})$
- Measurable f: Plays $(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$
 - \triangleright expected value $\mathbb{E}^{M}_{s_{\text{init}}}(f)$

Classical interpretations

- **System** trying to ensure a specification $= \mathcal{P}_1$
 - whatever the actions of its environment

Classical interpretations

- **System** trying to ensure a specification $= \mathcal{P}_1$
 - whatever the actions of its environment
- The environment can be seen as
- ▷ antagonistic
 - lacktriangle two-player game, worst-case threshold problem for $\mu\in\mathbb{Q}$
 - \exists ? $\lambda_1 \in \Lambda_1$, $\forall \lambda_2 \in \Lambda_2$, $\forall \pi \in \mathsf{Outs}_G(s_{\mathsf{init}}, \lambda_1, \lambda_2)$, $f(\pi) \geq \mu$

Classical interpretations

- **System** trying to ensure a specification $= \mathcal{P}_1$
 - whatever the actions of its environment
- The environment can be seen as
 - antagonistic
 - lacktriangle two-player game, worst-case threshold problem for $\mu \in \mathbb{Q}$
 - \exists ? $\lambda_1 \in \Lambda_1$, $\forall \lambda_2 \in \Lambda_2$, $\forall \pi \in \mathsf{Outs}_G(s_{\mathsf{init}}, \lambda_1, \lambda_2)$, $f(\pi) \geq \mu$
 - - MDP, expected value threshold problem for $\nu \in \mathbb{Q}$
 - \blacksquare \exists ? $\lambda_1 \in \Lambda_1$, $\mathbb{E}_{s_{\text{init}}}^{P[\lambda_1]}(f) \geq \nu$

- 1 Context
- 2 BWC Synthesis
- 3 Mean-Payoff
- 4 Shortest Path
- 5 Conclusion

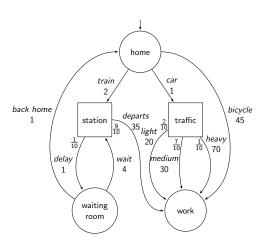
Shortest Path

What if you want both?

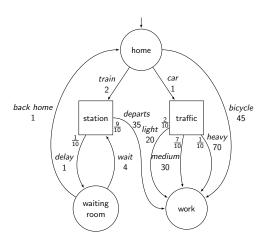
In practice, we want both

- 1 nice expected performance in the everyday situation,
- 2 strict (but relaxed) performance guarantees even in the event of very bad circumstances.

Example: going to work

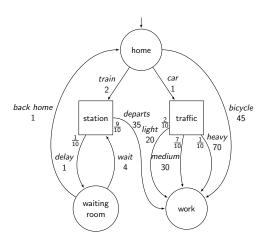


- □ Goal: minimize our expected
 time to reach "work"
- ▶ But, important meeting in one hour! Requires strict guarantees on the worst-case reaching time.



- Optimal expectation strategy: take the car.
 - $\mathbb{E} = 33$, WC = 71 > 60.
- Optimal worst-case strategy: bicycle.
 - $\mathbb{E} = WC = 45 < 60$.

Example: going to work



- Optimal expectation strategy: take the car.
 - $\mathbb{E} = 33$, WC = 71 > 60.
- Optimal worst-case strategy: bicycle.
 - $\mathbb{E} = WC = 45 < 60$.
- Sample BWC strategy: try train up to 3 delays then switch to bicycle.
 - $\mathbb{E} \approx 37.56$, WC = 59 < 60.
 - Optimal E under WC constraint
 - Uses finite memory

Beyond worst-case synthesis

Formal definition

Context

Given a game $G = (G, S_1, S_2)$, with G = (S, E, w) its underlying graph, an initial state $s_{\text{init}} \in S$, a finite-memory stochastic model $\lambda_2^{\text{stoch}} \in \Lambda_2^F$ of the adversary, represented by a stochastic Moore machine, a measurable value function $f: \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$, and two rational thresholds $\mu, \nu \in \mathbb{Q}$, the beyond worst-case (BWC) problem asks to decide if \mathcal{P}_1 has a finite-memory strategy $\lambda_1 \in \Lambda_1^F$ such that

$$\begin{cases}
\forall \lambda_2 \in \Lambda_2, \forall \pi \in \mathsf{Outs}_G(\mathsf{s}_{\mathsf{init}}, \lambda_1, \lambda_2), f(\pi) > \mu \\
\mathbb{E}^{G[\lambda_1, \lambda_2^{\mathsf{stoch}}]}_{\mathsf{s}_{\mathsf{nit}}}(f) > \nu
\end{cases} \tag{1}$$

and the BWC synthesis problem asks to synthesize such a strategy if one exists.

Beyond worst-case synthesis

Formal definition

Given a game $G=(\mathcal{G},S_1,S_2)$, with $\mathcal{G}=(S,E,w)$ its underlying graph, an initial state $s_{\text{init}}\in S$, a finite-memory stochastic model $\lambda_2^{\text{stoch}}\in \Lambda_2^F$ of the adversary, represented by a stochastic Moore machine, a measurable value function $f: \text{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$, and two rational thresholds $\mu, \nu \in \mathbb{Q}$, the *beyond worst-case (BWC) problem* asks to decide if \mathcal{P}_1 has a finite-memory strategy $\lambda_1 \in \Lambda_1^F$ such that

$$\begin{cases}
\forall \lambda_2 \in \Lambda_2, \forall \pi \in \mathsf{Outs}_G(\mathsf{s}_{\mathsf{init}}, \lambda_1, \lambda_2), f(\pi) > \mu \\
\mathbb{E}^{G[\lambda_1, \lambda_2^{\mathsf{stoch}}]}_{\mathsf{s}_{\mathsf{init}}}(f) > \nu
\end{cases} \tag{1}$$

and the BWC synthesis problem asks to synthesize such a strategy if one exists.

Notice the highlighted parts!

Related work

Common philosophy: avoiding outlier outcomes

- 1 Our strategies are strongly risk averse
 - > avoid risk at all costs and optimize among safe strategies

Related work

Common philosophy: avoiding outlier outcomes

- 1 Our strategies are strongly risk averse
 - > avoid risk at all costs and optimize among safe strategies
- Other notions of risk ensure low probability of risked behavior [WL99, FKR95]

Shortest Path

Related work

Common philosophy: avoiding outlier outcomes

- 1 Our strategies are strongly risk averse
 - > avoid risk at all costs and optimize among safe strategies
- 2 Other notions of risk ensure low probability of risked behavior [WL99, FKR95]
 - without worst-case guarantee
 - without good expectation
- 3 Trade-off between expectation and variance [BCFK13, MT11]
 - > statistical measure of the stability of the performance
 - no strict guarantee on individual outcomes

- 1 Context
- 2 BWC Synthesis
- 3 Mean-Payoff
- 4 Shortest Path
- 5 Conclusion

Mean-payoff value function

- Sample play $\pi = 2, -1, -4, 5, (2, 2, 5)^{\omega}$
 - \triangleright MP(π) = 3

- Sample play $\pi = 2, -1, -4, 5, (2, 2, 5)^{\omega}$
 - \triangleright MP(π) = 3

	worst-case	expected value	BWC
complexity	$NP \cap coNP$	Р	$NP \cap coNP$
memory	memoryless	memoryless	pseudo-polynomial

- ▷ Additional modeling power for free!

Philosophy of the algorithm

- ▷ Classical worst-case and expected value results and algorithms as nuts and bolts
- > Screw them together in an adequate way

- Classical worst-case and expected value results and algorithms as nuts and bolts
- > Screw them together in an adequate way

Three key ideas

- To characterize the expected value, look at end-components (ECs)
- **2** Winning ECs vs. losing ECs: the latter must be avoided to preserve the worst-case requirement!
- 3 Inside a WEC, we have an interesting way to play...

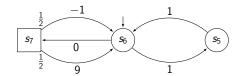
- ▷ Classical worst-case and expected value results and algorithms as nuts and bolts
- > Screw them together in an adequate way

Three key ideas

- To characterize the expected value, look at end-components (ECs)
- **2** Winning ECs vs. losing ECs: the latter must be avoided to preserve the worst-case requirement!
- Inside a WEC, we have an interesting way to play...
- ⇒ Let's focus on an ideal case

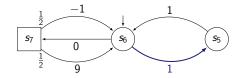
Shortest Path

Inside a WEC



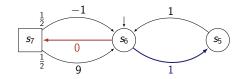
Shortest Path

Context



Game interpretation

- \triangleright Worst-case threshold is $\mu = 0$
- **All** states are winning: memoryless optimal worst-case strategy $\lambda_1^{wc} \in \Lambda_1^{PM}(G)$, ensuring $\mu^* = 1 > 0$



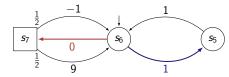
Game interpretation

- ightharpoonup Worst-case threshold is $\mu=0$
- ▶ **All** states are winning: memoryless optimal worst-case strategy $\lambda_1^{wc} \in \Lambda_1^{PM}(G)$, ensuring $\mu^* = 1 > 0$

MDP interpretation

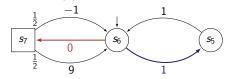
▶ Memoryless optimal expected value strategy $\lambda_1^e \in \Lambda_1^{PM}(P)$ achieves $\nu^* = 2$

A cornerstone of our approach



BWC problem: what kind of thresholds $(\mu=0,\nu)$ can we achieve?

A cornerstone of our approach



BWC problem: what kind of thresholds $(\mu = 0, \nu)$ can we achieve?

Key result

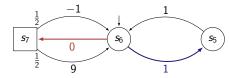
Context

For all $\varepsilon > 0$, there exists a finite-memory strategy of \mathcal{P}_1 that satisfies the BWC problem for the thresholds pair $(0, \nu^* - \varepsilon)$.

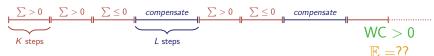
▶ We can be arbitrarily close to the optimal expectation while ensuring the worst-case

Shortest Path

Context

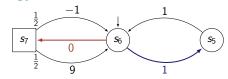


Outcomes of the form



Combined strategy

Context



Outcomes of the form

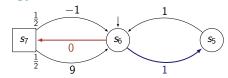
What we want

$$K, L \to \infty$$

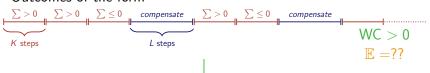
 $\mathbb{E} = \nu^* = 2$

Combined strategy

Context



Outcomes of the form



What we want

$$K, L \to \infty$$

$$L = linear(K)$$
 $\mathbb{P}(\longleftarrow) \to 0 \text{ exp. fast! [Tra09, GO02]}$

$$\mathbb{E} = \nu^* = 2$$

The ideal case: wrap-up

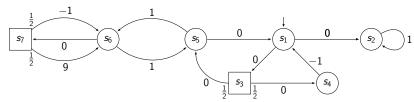
Context

The combined strategy works in any subgame such that

- **11** it constitutes an EC in the MDP.
- 2 all states are worst-case winning in the subgame.

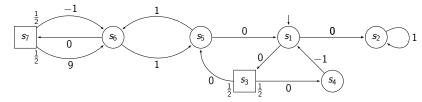
Such winning ECs (WECs) are the crux of BWC strategies in arbitrary games.

But to explain that, let's first zoom out and consider the big picture.

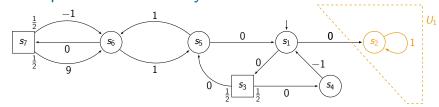


Arbitrary game, with ideal case as a subgame. We assume all states are worst-case winning.

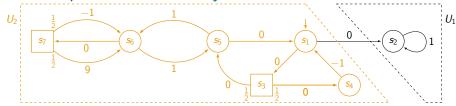
- \triangleright Some preprocessing can be done and in the remaining game, \mathcal{P}_1 has a **memoryless WC winning strategy** from all states



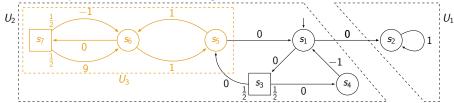
- (i) $(U, E \cap (U \times U))$ is strongly connected,
- (ii) $\forall s \in U \cap S_{\Delta}$, $Supp(\Delta(s)) \subseteq U$, i.e., in stochastic states, all outgoing edges stay in U.



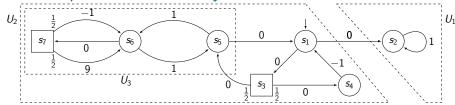
- (i) $(U, E \cap (U \times U))$ is strongly connected,
- (ii) $\forall s \in U \cap S_{\Delta}$, $Supp(\Delta(s)) \subseteq U$, i.e., in stochastic states, all outgoing edges stay in U.
 - \triangleright ECs: $\mathcal{E} = \{ \frac{U_1}{U_1} \}$



- (i) $(U, E \cap (U \times U))$ is strongly connected,
- (ii) $\forall s \in U \cap S_{\Delta}$, Supp $(\Delta(s)) \subseteq U$, i.e., in stochastic states, all outgoing edges stay in U.
 - \triangleright ECs: $\mathcal{E} = \{U_1, \frac{U_2}{U_2}\}$

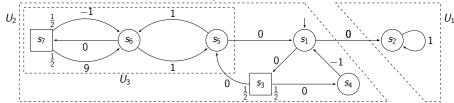


- (i) $(U, E \cap (U \times U))$ is strongly connected,
- (ii) $\forall s \in U \cap S_{\Delta}$, $Supp(\Delta(s)) \subseteq U$, i.e., in stochastic states, all outgoing edges stay in U.
 - \triangleright ECs: $\mathcal{E} = \{U_1, U_2, \frac{U_3}{U_3}\}$

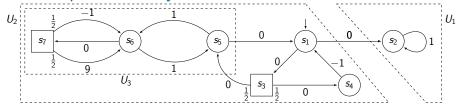


- (i) $(U, E \cap (U \times U))$ is strongly connected,
- (ii) $\forall s \in U \cap S_{\Delta}$, Supp $(\Delta(s)) \subseteq U$, i.e., in stochastic states, all outgoing edges stay in U.
 - \triangleright ECs: $\mathcal{E} = \{U_1, U_2, U_3, \{s_5, s_6\}, \{s_6, s_7\}, \{s_1, s_3, s_4, s_5\}\}$

End-components: what they are



- (i) $(U, E \cap (U \times U))$ is strongly connected,
- (ii) $\forall s \in U \cap S_{\Delta}$, Supp $(\Delta(s)) \subseteq U$, i.e., in stochastic states, all outgoing edges stay in U.
 - \triangleright ECs: $\mathcal{E} = \{U_1, U_2, U_3, \{s_5, s_6\}, \{s_6, s_7\}, \{s_1, s_3, s_4, s_5\}\}$



Lemma (Long-run appearance of ECs [CY95, dA97])

Let $\lambda_1 \in \Lambda_1(P)$ be an **arbitrary strategy** of \mathcal{P}_1 . Then, we have that

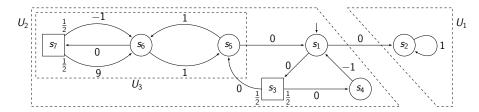
$$\mathbb{P}^{P[\lambda_1]}_{s_{\mathsf{init}}}\left(\{\pi\in\mathsf{Outs}_{P[\lambda_1]}(s_{\mathsf{init}})\mid\mathsf{Inf}(\pi)\in\mathcal{E}\}\right)=1.$$

- ▷ By prefix-independence, only long-run behavior matters
- \triangleright The expectation on $P[\lambda_1]$ depends uniquely on ECs

- Expected value requirement: reach ECs with the highest achievable expectations and stay in them
 - The optimal expected value is the same everywhere inside the EC [FV97], cf. ideal case

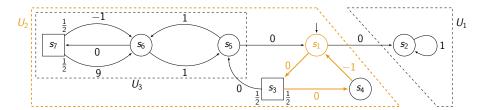
How to satisfy the BWC problem?

- Expected value requirement: reach ECs with the highest achievable expectations and stay in them
 - The optimal expected value is the same everywhere inside the EC [FV97], cf. ideal case
- Worst-case requirement: some ECs may need to be eventually avoided because risky!
 - ▶ The "ideal cases" are ECs but not all ECs are ideal cases...
 - Need to classify the ECs



 $\lor U \in \mathcal{W}$, the winning ECs, if \mathcal{P}_1 can win in $G \downharpoonright U$, from all states:

 $\exists \, \lambda_1 \in \Lambda_1(G \downharpoonright U), \, \forall \, \lambda_2 \in \Lambda_2(G \downharpoonright U), \, \forall \, s \in U, \, \forall \, \pi \in \mathsf{Outs}_{(G \downharpoonright U)}(s, \lambda_1, \lambda_2), \, \mathsf{MP}(\pi) > 0$



 $\forall U \in \mathcal{W}$, the winning ECs, if \mathcal{P}_1 can win in $G \mid U$, from all states:

$$\exists \lambda_1 \in \Lambda_1(G \mid U), \forall \lambda_2 \in \Lambda_2(G \mid U), \forall s \in U, \forall \pi \in \mathsf{Outs}_{(G \mid U)}(s, \lambda_1, \lambda_2), \mathsf{MP}(\pi) > 0$$

$$\triangleright \ \mathcal{W} = \{U_1, U_3, \{s_5, s_6\}\}$$

 \triangleright U_2 **losing**: from state s_1 , \mathcal{P}_2 can force the outcome $\pi = (s_1 s_3 s_4)^{\omega}$ of $\mathsf{MP}(\pi) = -1/3 < 0$

Lemma (Long-run appearance of winning ECs)

Let $\lambda_1^f \in \Lambda_1^F$ be a **finite-memory** strategy of \mathcal{P}_1 that **satisfies** the BWC problem for thresholds $(0, \nu) \in \mathbb{Q}^2$. Then, we have that

$$\mathbb{P}_{s_{\mathsf{init}}}^{P[\lambda_1^f]}\left(\left\{\pi\in\mathsf{Outs}_{P[\lambda_1^f]}(s_{\mathsf{init}})\mid\mathsf{Inf}(\pi)\in\mathcal{W}\right\}\right)=1.$$

Lemma (Long-run appearance of winning ECs)

Let $\lambda_1^f \in \Lambda_1^F$ be a **finite-memory** strategy of \mathcal{P}_1 that **satisfies** the BWC problem for thresholds $(0, \nu) \in \mathbb{Q}^2$. Then, we have that

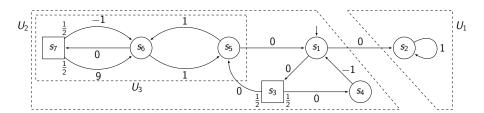
$$\mathbb{P}_{s_{\mathsf{init}}}^{P[\lambda_1^f]}\left(\left\{\pi\in\mathsf{Outs}_{P[\lambda_1^f]}(s_{\mathsf{init}})\mid\mathsf{Inf}(\pi)\in\mathcal{W}\right\}\right)=1.$$

A good finite-memory strategy for the BWC problem should
 maximize the expected value achievable through winning ECs

- Deciding if an EC is winning or not is in $NP \cap coNP$ (worst-case threshold problem)
- $|\mathcal{E}| \le 2^{|\mathcal{S}|} \rightsquigarrow \text{ exponential } \# \text{ of ECs}$

Winning ECs: computation

- \triangleright Deciding if an EC is winning or not is in NP \cap coNP (worst-case threshold problem)
- $|\mathcal{E}| \le 2^{|\mathcal{S}|} \leadsto \text{exponential } \# \text{ of ECs}$
- \triangleright Considering the maximal ECs **does not** suffice! See $U_3 \subset U_2$



- \triangleright Deciding if an EC is winning or not is in NP \cap coNP (worst-case threshold problem)
- $|\mathcal{E}| \le 2^{|S|} \rightsquigarrow \text{ exponential } \# \text{ of ECs}$
- ightharpoonup Considering the maximal ECs **does not** suffice! See $U_3 \subset U_2$

But,

- ightharpoonup possible to define a recursive algorithm computing the **maximal winning ECs**, such that $|\mathcal{U}_{w}| \leq |S|$, in NP \cap coNP.
- - max. EC decomp. of sub-MDPs (each in $\mathcal{O}(|S|^2)$ [CH12]),
 - worst-case threshold problem (NP \cap coNP).
- Critical complexity gain for the algorithm solving the BWC problem!

A natural way towards WECs

So we know we should only use WECs and we know how to play ε -optimally inside a WEC. What remains to settle?

A natural way towards WECs

So we know we should only use WECs and we know how to play ε -optimally inside a WEC. What remains to settle?

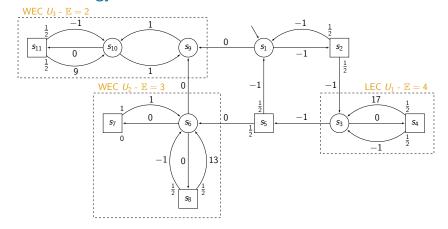
▷ Determine which WECs to reach and how!

A natural way towards WECs

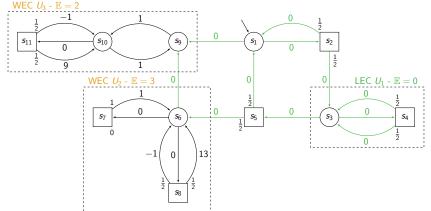
So we know we should only use WECs and we know how to play ε -optimally inside a WEC. What remains to settle?

- Determine which WECs to reach and how!
- ▷ Key idea: define a global strategy that will go towards the highest valued WECs and avoid LECs

Global strategy via modified MDP



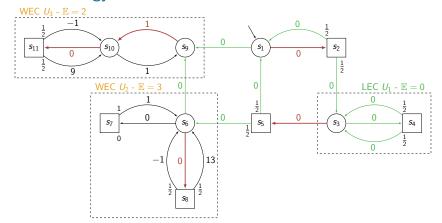
Global strategy via modified MDP



1 Modify weights:

$$\forall e = (s_1, s_2) \in E, \ w'(e) := egin{cases} w(e) \ \text{if} \ \exists \ U \in \mathcal{U}_{\scriptscriptstyle{W}} \ \text{s.t.} \ \{s_1, s_2\} \subseteq U, \ 0 \ \text{otherwise}. \end{cases}$$

Shortest Path



- Memoryless optimal expectation strategy λ_1^e on P'
 - the probability to be in a good WEC (here, U_2) after N steps tends to one when $N \to \infty$

 $\lambda_1^{glb} \in \Lambda_1^{PF}(G)$:

- (a) Play $\lambda_1^e \in \Lambda_1^{PM}(G)$ for N steps.
- (b) Let $s \in S$ be the reached state.
 - (b.1) If $s \in U \in \mathcal{U}_{w}$, play corresponding $\lambda_{1}^{cmb} \in \Lambda_{1}^{PF}(G)$ forever.
 - (b.2) Else play $\lambda_1^{wc} \in \Lambda_1^{PM}(G)$ forever.
- $\triangleright \lambda_1^{wc}$ exists everywhere as WC losing states have been removed
- ▷ Parameter $N \in \mathbb{N}$ can be chosen so that overall expectation is arbitrarily close to optimal in P', or equivalently, optimal for BWC strategies in P
- \triangleright Our algorithm computes this optimal value ν^* and answers Y_{ES} iff $\nu^* > \nu \leadsto$ it is *correct* and *complete*

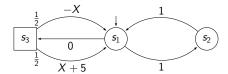
BWC MP problem: bounds

- Complexity
 - \triangleright problem in NP \cap coNP (P if MP games proved in P)

Complexity

Context

- \triangleright problem in NP \cap coNP (P if MP games proved in P)



Memory

- ▷ pseudo-polynomial upper bound via global strategy
- ▶ matching lower bound via family $(G(X))_{X \in \mathbb{N}_0}$ requiring polynomial memory in W = X + 5 to satisfy the BWC problem for thresholds $(0, \nu \in]1, 5/4[)$
 - \sim need to use (s_1, s_3) infinitely often for $\mathbb E$ but need pseudo-poly. memory to counteract -X for the WC requirement

Shortest Path

- 1 Context
- 2 BWC Synthesis
- 3 Mean-Payoff
- 4 Shortest Path
- 5 Conclusion

Shortest path

- Strictly positive integer weights, $w: E \to \mathbb{N}_0$
- $\blacksquare \mathcal{P}_1$ wants to minimize its total cost up to target

- Strictly positive integer weights, $w: E \to \mathbb{N}_0$
- \blacksquare \mathcal{P}_1 wants to minimize its total cost up to target
 - > inequalities are reversed

	worst-case	expected value	BWC
complexity	Р	Р	pseudo-poly. / NP-hard
memory	memoryless	memoryless	pseudo-poly.

- ⊳ [BT91, dA99]
- ▶ Problem inherently harder than worst-case and expectation.
- \triangleright NP-hardness by K^{th} largest subset problem [JK78, GJ79]

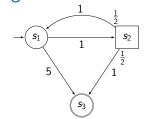
Useful observation

Context

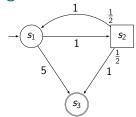
The set of all worst-case winning strategies for the shortest path can be represented through a finite game.

Sequential approach solving the BWC problem:

- 1 represent all WC winning strategies,
- 2 optimize the expected value within those strategies.

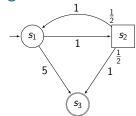


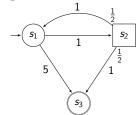
I Start from $G = (\mathcal{G}, S_1, S_2)$, $\mathcal{G} = (S, E, w)$, $T = \{s_3\}$, $\mathcal{M}(\lambda_2^{\mathsf{stoch}})$, $\mu = 8$, and $\nu \in \mathbb{Q}$

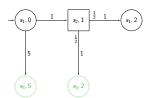


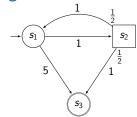
- **1** Start from $G = (G, S_1, S_2)$, G = (S, E, w), $T = \{s_3\}$, $\mathcal{M}(\lambda_2^{\mathsf{stoch}}), \ \mu = 8, \ \mathsf{and} \ \nu \in \mathbb{Q}$
- 2 Build G' by unfolding G, tracking the current sum up to the worst-case threshold μ , and integrating it in the states of \mathcal{G}' .

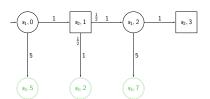
Pseudo-polynomial algorithm: sketch

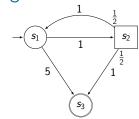


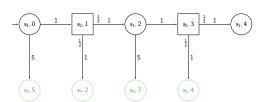


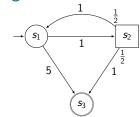


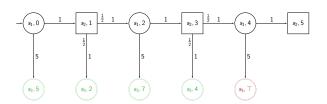


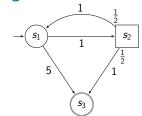


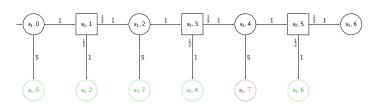


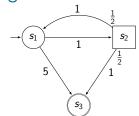


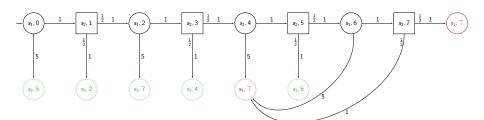




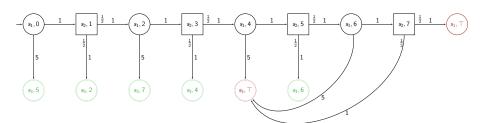




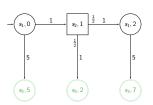




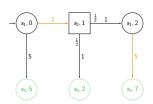
- 3 Compute R, the attractor of T with cost $< \mu = 8$
- Consider $G_{\mu} = G' \mid R$



- 3 Compute R, the attractor of T with cost $< \mu = 8$
- 4 Consider $G_{\mu} = G' \mid R$

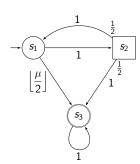


- **5** Consider $P = G_{\mu} \otimes \mathcal{M}(\lambda_2^{\mathsf{stoch}})$
- 6 Compute memoryless optimal expectation strategy
- 7 If $\nu^* < \nu$, answer YES, otherwise answer No



Here, $\nu^* = 9/2$

- □ Upper bound provided by synthesized strategy
- ightharpoonup Lower bound given by family of games $(G(\mu))_{\mu \in \{13+k\cdot 4|k\in \mathbb{N}\}}$ requiring memory linear in μ
 - \rightarrow play (s_1, s_2) exactly $\lfloor \frac{\mu}{4} \rfloor$ times and then switch to (s_1, s_3) to minimize expected value while ensuring the worst-case



Complexity lower bound: NP-hardness

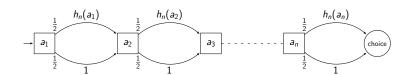
- Truly-polynomial algorithm very unlikely...
- \blacksquare Reduction from the K^{th} largest subset problem
 - commonly thought to be outside NP as natural certificates are larger than polynomial [JK78, GJ79]

- Truly-polynomial algorithm very unlikely...
- \blacksquare Reduction from the K^{th} largest subset problem
 - □ commonly thought to be outside NP as natural certificates are larger than polynomial [JK78, GJ79]

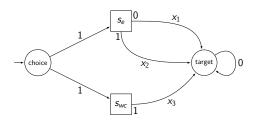
Kth largest subset problem

Given a finite set A, a size function $h \colon A \to \mathbb{N}_0$ assigning strictly positive integer values to elements of A, and two naturals $K, L \in \mathbb{N}$, decide if there exist K distinct subsets $C_i \subseteq A$, $1 \le i \le K$, such that $h(C_i) = \sum_{a \in C_i} h(a) \le L$ for all K subsets.

■ Build a game composed of two gadgets



- Stochastically generates paths representing subsets of A: an element is selected in the subset if the upper edge is taken when leaving the corresponding state
- > All subsets are equiprobable



- \triangleright $s_{\rm e}$ leads to lower expected values but may be dangerous for the worst-case requirement
- \triangleright s_{wc} is always safe but induces an higher expected cost

There exist (non-trivial) values for thresholds and weights s.t.

- (i) an optimal (i.e., minimizing the expectation while guaranteeing a given worst-case threshold) strategy for \mathcal{P}_1 consists in choosing state s_e only when the randomly generated subset $C \subseteq A$ satisfies $h(C) \leq L$;
- (ii) this strategy satisfies the BWC problem *if and only if* there exist *K* distinct subsets that verify this bound.

- 2 BWC Synthesis
- 3 Mean-Payoff
- 4 Shortest Path
- 5 Conclusion

In a nutshell

- BWC framework combines worst-case and expected value requirements
 - > a natural wish in many practical applications
 - few existing theoretical support

- BWC framework combines worst-case and expected value requirements
 - > a natural wish in many practical applications
- Mean-payoff: additional modeling power for no complexity cost (decision-wise)
- Shortest path: harder than the worst-case, pseudo-polynomial with NP-hardness result

In a nutshell

- BWC framework combines worst-case and expected value requirements
 - > a natural wish in many practical applications
- Mean-payoff: additional modeling power for no complexity cost (decision-wise)
- Shortest path: harder than the worst-case, pseudo-polynomial with NP-hardness result
- In both cases, pseudo-polynomial memory is both sufficient and necessary
 - but strategies have natural representations based on states of the game and simple integer counters

Possible future works include

- study of other quantitative objectives,
- extension of our results to more general settings (multi-dimension [CDHR10, CRR12], decidable classes of games with imperfect information [DDG+10], etc),
- application of the BWC problem to various practical cases.

Beyond BWC synthesis?

Context

Possible future works include

- study of other quantitative objectives,
- extension of our results to more general settings (multi-dimension [CDHR10, CRR12], decidable classes of games with imperfect information [DDG+10], etc),
- application of the BWC problem to various practical cases.

Thanks!

Do not hesitate to discuss with us!

References I

T. Brázdil, K. Chatterjee, V. Forejt, and A. Kucera.

Trading performance for stability in Markov decision processes. In Proc. of LICS, pages 331–340. IEEE Computer Society, 2013.

V. Bruyère, E. Filiot, M. Randour, and J.-F. Raskin.

Meet your expectations with guarantees: beyond worst-case synthesis in quantitative games. In Proc. of STACS, LIPIcs 25, pages 199–213. Schloss Dagstuhl - LZI, 2014.

D.P. Bertsekas and J.N. Tsitsiklis.

An analysis of stochastic shortest path problems. Mathematics of Operations Research, 16:580–595, 1991.

K. Chatterjee, L. Doyen, T.A. Henzinger, and J.-F. Raskin.

Generalized mean-payoff and energy games.

In Proc. of FSTTCS, LIPIcs 8, pages 505–516. Schloss Dagstuhl - LZI, 2010.

K. Chatterjee, L. Doyen, M. Randour, and J.-F. Raskin.

Looking at mean-payoff and total-payoff through windows. In Proc. of ATVA, LNCS 8172, pages 118–132. Springer, 2013.

K. Chatterjee and M. Henzinger.

An $\mathcal{O}(n^2)$ time algorithm for alternating Büchi games. In Proc. of SODA, pages 1386–1399. SIAM, 2012.

K. Chatterjee, M. Randour, and J.-F. Raskin.

Strategy synthesis for multi-dimensional quantitative objectives. In Proc. of CONCUR, LNCS 7454, pages 115–131. Springer, 2012.

References II

C. Courcoubetis and M. Yannakakis.

The complexity of probabilistic verification. J. ACM, 42(4):857–907, 1995.

L. de Alfaro.

Formal verification of probabilistic systems.

PhD thesis, Stanford University, 1997.

L. de Alfaro.

Computing minimum and maximum reachability times in probabilistic systems. In Proc. of CONCUR, LNCS 1664, pages 66–81. Springer, 1999.

A. Degorre, L. Doyen, R. Gentilini, J.-F. Raskin, and S. Torunczyk.

Energy and mean-payoff games with imperfect information. In Proc. of CSL, LNCS 6247, pages 260–274. Springer, 2010.

A. Ehrenfeucht and J. Mycielski.

Positional strategies for mean payoff games. Int. Journal of Game Theory, 8(2):109–113, 1979.

J.A. Filar. D. Krass. and K.W. Ross.

Percentile performance criteria for limiting average Markov decision processes. Transactions on Automatic Control, pages 2–10, 1995.

J. Filar and K. Vrieze.

Competitive Markov decision processes.

Springer, 1997.

References III

M.R. Garey and D.S. Johnson.

Computers and intractability: a guide to the Theory of NP-Completeness.

P.W. Glynn and D. Ormoneit.

Hoeffding's inequality for uniformly ergodic Markov chains. Statistics & Probability Letters, 56(2):143–146, 2002.

T. Gawlitza and H. Seidl.

Games through nested fixpoints.

In Proc. of CAV, LNCS 5643, pages 291–305, Springer, 2009.

D.B. Johnson and S.D. Kashdan.

Lower bounds for selection in X + Y and other multisets. Journal of the ACM, 25(4):556-570, 1978.

M. Jurdziński.

Deciding the winner in parity games is in UP \cap co-UP. Inf. Process. Lett., 68(3):119–124, 1998.

T.M. Liggett and S.A. Lippman.

Stochastic games with perfect information and time average payoff. Siam Review, 11(4):604–607, 1969.

S Mannor and LN Tsitsiklis

Mean-variance optimization in Markov decision processes. In Proc. of ICML, pages 177–184. Omnipress, 2011.

References IV

M.L. Puterman.

Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1994.

M. Tracol.

Fast convergence to state-action frequency polytopes for MDPs. Oper. Res. Lett., 37(2):123–126, 2009.

C. Wu and Y. Lin.

Minimizing risk models in Markov decision processes with policies depending on target values. Journal of Mathematical Analysis and Applications, 231(1):47–67, 1999.

U. Zwick and M. Paterson.

The complexity of mean payoff games on graphs. Theoretical Computer Science, 158:343–359, 1996.