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Abstract. The window mechanism was introduced by Chatterjee et al. [18] to strengthen classical
game objectives with time bounds. It permits to synthesize system controllers that exhibit acceptable
behaviors within a configurable time frame, all along their infinite execution, in contrast to the tradi-
tional objectives that only require correctness of behaviors in the limit. The window concept has proved
its interest in a variety of two-player zero-sum games, thanks to the ability to reason about such time
bounds in system specifications, but also the increased tractability that it usually yields.
In this work, we extend the window framework to stochastic environments by considering the fundamen-
tal threshold probability problem in Markov decision processes for window objectives. That is, given such
an objective, we want to synthesize strategies that guarantee satisfying runs with a given probability.
We solve this problem for the usual variants of window objectives, where either the time frame is set
as a parameter, or we ask if such a time frame exists. We develop a generic approach for window-based
objectives and instantiate it for the classical mean-payoff and parity objectives, already considered in
games. Our work paves the way to a wide use of the window mechanism in stochastic models.

1 Introduction

Game-based models for controller synthesis. Two-player zero-sum games [30,37] and Markov decision
processes (MDPs) [28,4,38] are two popular frameworks to model decision making in adversarial and uncertain
environments respectively. In the former, a system controller and its environment compete antagonistically,
and synthesis aims at building strategies for the controller that ensure a specified behavior against all
possible strategies of the environment. In the latter, the system is faced with a given stochastic model of its
environment, and the focus is on satisfying a given level of expected performance, or a specified behavior with
a sufficient probability. Classical objectives studied in both settings notably include parity, a canonical way
of encoding ω-regular specifications, and mean-payoff, which evaluates the average payoff per transition in
the limit of an infinite run in a weighted graph.

Window objectives in games. The traditional parity and mean-payoff objectives share two shortcomings.
First, they both reason about infinite runs in their limit. While this elegant abstraction yields interesting
theoretical properties and makes for robust interpretation, it is often beneficial in practical applications to be
able to specify a parameterized time frame in which an acceptable behavior should be witnessed. Second, both
parity and mean-payoff games belong to UP ∩ coUP [36,29], but despite recent breakthroughs [17,23], they
are still not known to be in P. Furthermore, the latest results [22,27] indicate that all existing algorithmic
approaches share inherent limitations that prevent inclusion in P.

Window objectives address the time frame issue as follows. In their fixed variant, they consider a window
of size bounded by λ ∈ N0 (given as a parameter) sliding over an infinite run and declare this run to be
winning if, in all positions, the window is such that the (mean-payoff or parity) objective is locally satisfied.
In their bounded variant, the window size is not fixed a priori, but a run is winning if there exists a bound
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λ for which the condition holds. Window objectives have been considered both in direct versions, where the
window property must hold from the start of the run, and prefix-independent versions, where it must hold
from some point on. Window games were initially studied for mean-payoff [18] and parity [15]. They have
since seen diverse extensions and applications: e.g., [5,3,12,16,34,40].

Window objectives in MDPs. Our goal is to lift the theory of window games to the stochastic context.
With that in mind, we consider the canonical threshold probability problem: given an MDP, a window objective
defining a set of acceptable runs E, and a probability threshold α, we want to decide if there exists a controller
strategy (also called policy) to achieve E with probability at least α. It is well-known that many problems in
MDPs can be reduced to threshold problems for appropriate objectives: e.g., maximizing the expectation of
a prefix-independent function boils down to maximizing the probability to reach the best end-components
for that function (see examples in [4,14,39]).
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Fig. 1. Simple Markov chain where parity is
surely satisfied but all window parity objectives
have probability zero.

Example. Before going further, let us consider an example.
Take the MDP depicted in Fig. 1(a): circles depict states and
dots depict actions, labeled by letters. Each action yields a
probability distribution over successor states: for example, ac-
tion b leads to s2 with probability 0.5 and s3 with the same
probability. This MDP is actually a Markov chain (MC) as
the controller has only one action available in each state: this
process is purely stochastic.

We consider the parity objective here: we associate an non-
negative integer priority with each state, and a run is winning
if the minimum one amongst those seen infinitely often is even.
Clearly, any run in this MC is winning: either it goes through s3 infinitely often and the minimum priority
is 0, or it does not, and the minimum priority seen infinitely often is 2. Hence the controller not only wins
almost-surely (with probability one), but even surely (on all runs).

Now, consider the window parity objective that informally asks for the minimum priority inside a window
of size bounded by λ to be even, with this window sliding all along the infinite run. Fix any λ ∈ N0. It is
clear that every time s1 is visited, there will be a fixed strictly positive probability ε > 0 of not seeing 0
before λ steps: this probability is 1/2λ−1. Let us call this seeing a bad window. Since we are in a bottom
strongly connected component of the MC, we will almost-surely visit s1 infinitely often [4]. Using classical
probability arguments (Borel-Cantelli), one can easily be convinced that the probability to see bad windows
infinitely often is one. Hence the probability to win the window parity objective is zero. This canonical
example illustrates the difference between traditional parity and window parity: the latter is more restrictive
as it asks for a strict bound on the time frame in which each odd priority should be answered by a smaller
even priority.

Note that in practice, such a behavior is often wished for. For example, consider a computer server having
to grant requests to clients. A classical parity objective can encode that requests should eventually be granted.
However, it is clear that in a desired controller, requests should not be placed on hold for an arbitrarily long
time. The existence of a finite bound on this holding time can be modeled with a bounded window parity
objective, while a specific bound can also be set as a parameter using a fixed window parity objective.

Our contributions. We study the threshold probability problem in MDPs for window objectives based on
parity and mean-payoff, two prominent formalisms in qualitative and quantitative (resp.) analysis of systems.
We consider the different variants of window objectives mentioned above: fixed vs. bounded, direct vs. prefix-
independent. A nice feature of our approach is that we provide a unified view of parity and mean-payoff
window objectives: our algorithm can actually be adapted for any window-based objective if an appropriate
black-box is provided for a restricted sub-problem. This has two advantages: (i) conceptually, our approach
permits a deeper understanding of the essence of the window mechanism, not biased by technicalities of
the specific underlying objective; (ii) our framework can easily be extended to other objectives for which a
window version could be defined. This point is of great practical interest too, as it opens the perspective of
a modular, generic software tool suite for window objectives.
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parity mean-payoff

complexity memory complexity memory

direct fixed window (DFW)

P-c.
polynomial

EXPTIME/PSPACE-h. pseudo-polynomial

fixed window (FW) P-c. polynomial

bounded window (BW) memoryless NP ∩ coNP memoryless

Table 1. Complexity of the threshold probability problem for window objectives in MDPs and memory requirements.
All memory bounds are tight and pure strategies always suffice. For mean-payoff, the PSPACE-hardness holds even
for acyclic MDPs, and the bounded case is as hard as mean-payoff games. All results are new.

We give an overview of our results in Table 1. For the sake of space, we use acronyms below: DFW for
direct fixed window, FW for (prefix-independent) fixed window, DBW for direct bounded window, and BW
for (prefix-independent) bounded window. Our main contributions are as follows.

1. We solve DFW MDPs through reductions to safety MDPs over well-chosen unfoldings. This results in
polynomial-time and pseudo-polynomial-time algorithms for the parity and mean-payoff variants respec-
tively (Thm. 9). We prove these complexities to be almost tight (Thm. 10), the most interesting case
being the PSPACE-hardness of DFW mean-payoff objectives, even in the case of acyclic MDPs.
We also show that no upper bound can be established on the window size needed to win in general
(Sect. 3.3), in stark contrast to the two-player games situation (Sect. 3.2).

2. We use similar reductions to prove that finite memory suffices in the prefix-independent case (Thm. 8).
Yet, in this case, we can do better than using the unfoldings to solve the problem. We start by studying
end-components (ECs), the crux for all prefix-independent objectives in MDPs: we show that ECs can
be classified based on their two-player zero-sum game interpretation (Sect. 5). Using the result on finite
memory, we prove that in ECs classified as goods, almost-sure satisfaction of window objectives can be
ensured, whereas it is impossible to satisfy them with non-zero probability in the other ECs (Lem. 18). We
also establish tight complexity bounds for this classification problem (Thm. 23). This EC classification
is – both conceptually and complexity-wise – the cornerstone to deal with general MDPs.

3. Our general algorithm is developed in Sect. 6: we prove P-completeness for all prefix-independent variants
but for the BW mean-payoff one (Thm. 25 and Thm. 26), where we show that the problem is in NP∩coNP
and as hard as mean-payoff games, a canonical “hard” problem for that complexity class.

4. For all variants, we prove tight memory bounds : see Thm. 9 and Thm. 10 for the direct fixed variants,
Thm. 25 and Thm. 26 for the prefix-independent fixed and bounded ones. In all cases, pure strategies
(i.e., without randomness) suffice.

5. We leave out DBW objectives from our analysis as we show they are not well-behaved. We illustrate
their behavior in Sect. 3.3 and discuss their pitfalls in Sect. 7.

Along the way, we develop several side results that help drawing a line between MDPs and games w.r.t. win-
dow objectives: e.g., whether or not a uniform bound exists in the bounded case (Sect. 3.3). As stated above,
our approach is also generic and may be easily extended to other window-based objectives.

Comments on our results. In the game setting, window objectives are all in polynomial time, except for
the BW mean-payoff variant, in NP ∩ coNP. Despite clear differences in behaviors, the situation is almost
the same here. The only outlier case is the DFW mean-payoff one, whose complexity rises significantly. As we
show in Thm. 10, the loss of prefix-independence permits to emulate shortest path problems on MDPs that
are famously hard to solve efficiently (e.g., [32,39,9,33]). In the almost-sure case, however, DFW mean-payoff
MDPs collapse to P (Rmk. 12).

In games, window objectives permit to avoid long-standing NP ∩ coNP complexity barriers for parity [15]
and mean-payoff [18]. Since both are known to be in P for the threshold probability problem in MDPs [21,39],
the main interest of window objectives resides in their modeling power. Still, they may turn out to be
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more efficient in practice too, as polynomial-time algorithms for parity and mean-payoff, based on linear
programming, are often forsaken in favor of exponential-time value or strategy iteration ones (e.g., [2]).

Related work. We already mentioned many related articles, hence we only briefly discuss some remaining
models here. Window parity games are strongly linked to the concept of finitary ω-regular games : see,
e.g., [20], or [15] for a complete list of references. The window mechanism can be used to ensure a certain
form of (local) guarantee over runs: different techniques have been considered in MDPs, notably variance-
based [11] or worst-case-based [14,7] methods.

Finally, let us mention the very recent work of Bordais et al. [8], which considers a seemingly related
question: the authors define a value function based on the window mean-payoff mechanism and consider
maximizing its expected value (which is different from the expected window size we discuss in Sect. 7). While
there are definite similarities in our works w.r.t. technical tools, the two approaches are quite different and
have their own strengths: we focus on deep understanding of the window mechanism through a generic
approach for the canonical threshold probability problem for all window-based objectives, here instantiated
as mean-payoff and parity; whereas Bordais et al. focus on a particular optimization problem for a function
relying on this mechanism.

In addition to having different philosophies, our divergent approaches yield interesting differences. We
mention three examples illustrating the conceptual gap. First, in [8], the studied function takes the same
value for direct and prefix-independent bounded window mean-payoff objectives, whereas we show in Sect. 3.3
that the classical definitions of window objectives induce a striking difference between both (in the MDP of
Ex. 2, the prefix-independent version is satisfied for window size one, whereas no uniform bound on all runs
can be defined for the direct case). Second, we are able to prove PSPACE-hardness for the DFW mean-payoff
case, whereas the best lower bound known for the related problem in [8] is PP. Lastly, let us recall that our
work also deals with window parity objectives while the function of [8] is strictly built on mean-payoff.

Our paper presents in full details, with additional proofs and examples, the contributions published in a
preceding conference version [13].

Outline. Sect. 2 defines the model and problem under study. In Sect. 3, we introduce window objectives,
discuss their status in games, and illustrate their behavior in MDPs. Sect. 4 is devoted to the fixed variants
and the aforementioned reductions. In Sect. 5, we analyze the case of ECs and develop the classification
procedure. We build on it in Sect. 6 to solve the general case. Finally, in Sect. 7, we discuss the limitations
of our work, as well as interesting extensions within arm’s reach (e.g., multi-objective threshold problem,
expected value problem).

2 Preliminaries

Probability distributions. Given a set S, let D(S) denote the set of rational probability distributions
over S. Given a distribution ι ∈ D(S), let Supp(ι) = {s ∈ S | ι(s) > 0} denote its support.

Markov decision processes. A finite Markov decision process (MDP) is a tuple M = (S,A, δ) where S
is a finite set of states, A is a finite set of actions and δ : S × A → D(S) is a partial function called the
probabilistic transition function. The set of actions that are available in a state s ∈ S (i.e., for which δ(s, a) is
defined) is denoted by A(s). We use δ(s, a, s′) as a shorthand for δ(s, a)(s′). We assume w.l.o.g. that MDPs
are deadlock-free: for all s ∈ S, A(s) 6= ∅. An MDP where for all s ∈ S, |A(s)| = 1 is a fully-stochastic
process called a Markov chain (MC).

A run ofM is an infinite sequence ρ = s0a0 . . . an−1sn . . . of states and actions such that δ(si, ai, si+1) > 0
for all i ≥ 0. The prefix up to the n-th state of ρ is the finite sequence ρ[0, n] = s0a0 . . . an−1sn. The suffix of
ρ starting from the n-th state of ρ is the run ρ[n,∞] = snansn+1an+1 . . . . Moreover, we denote by ρ[n] the
n-th state sn of ρ. Finite prefixes of runs of the form h = s0a0 . . . an−1sn are called histories. We sometimes
denote the last state of history h by Last(h). We resp. denote the sets of runs and histories of an MDP M
by Runs(M) and Hists(M).

End-components. Fix an MDP M = (S,A, δ). A sub-MDP of M is an MDP M′ = (S′, A′, δ′) with S′ ⊆ S,
∅ 6= A′(s) ⊆ A(s) for all s ∈ S′, Supp(δ(s, a)) ⊆ S′ for all s ∈ S′, a ∈ A′(s), δ′ = δ|S′×A′ . Such a sub-MDP
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M′ is an end-component (EC) of M if and only if the underlying graph of M′ is strongly connected, i.e.,
there is a run between any pair of states in S′. Given an EC M′ = (S′, A′, δ′) of M, we say that its sub-MDP
M′′ = (S′′, A′′, δ′′), S′′ ⊆ S′, A′′ ⊆ A′, is a sub-EC of M′ if M′′ is also an EC. We let EC(M) denote the
set of ECs of M, which may be of exponential size as ECs need not be disjoint.

The union of two ECs with non-empty intersection is itself an EC: hence we can define the maximal ECs
(MECs) of an MDP, i.e., the ECs that cannot be extended. We let MEC(M) denote the set of MECs of M,
of polynomial size (because MECs are pair-wise disjoints) and computable in polynomial time [19].

Strategies. A strategy σ is a function Hists(M) → D(A) such that for all h ∈ Hists(M) ending in s, we
have Supp(σ(h)) ⊆ A(s). The set of all strategies is Σ. A strategy is pure if all histories are mapped to Dirac
distributions, i.e., the support is a singleton. A strategy σ can be encoded by a Mealy machine (Q, σa, σu, ι)
where Q is a finite or infinite set of memory states, ι the initial distribution on Q, σa the next action function
σa : S × Q → D(A) where Supp(σa(s, q)) ⊆ A(s) for any s ∈ S and q ∈ Q, and σu the memory update
function σu : A× S ×Q → Q. We say that σ is finite-memory if |Q| < ∞, and K-memory if |Q| = K; it is
memoryless if K = 1, thus only depends on the last state of the history. We see such strategies as functions
s 7→ D(A(s)) for s ∈ S. A strategy is infinite-memory if Q is infinite. The entity choosing the strategy is
often called the controller.

Induced MC. An MDP M, a strategy σ encoded by (Q, σa, σu, ι), and a state s determine a Markov chain
Mσ

s defined on the state space S×Q as follows. The initial distribution is such that for any q ∈ Q, state (s, q)
has probability ι(q), and 0 for other states. For any pair of states (s, q) and (s′, q′), the probability of transition

(s, q)
a
−→ (s′, q′) is equal to σa(s, q)(a) · δ(s, a, s′) if q′ = σu(s, q, a), and to 0 otherwise. A run of Mσ

s is an

infinite sequence of the form (s0, q0)a0(s1, q1)a1 . . ., where each (si, qi)
ai−→ (si+1, qi+1) is a transition with

non-zero probability in Mσ
s , and s0 = s. When considering the probabilities of events in Mσ

s , we will often
consider sets of runs of M. Thus, given E ⊆ (SA)ω , we denote by Pσ

M,s[E] the probability of the runs of Mσ
s

whose projection5 to M is in E, i.e., the probability of event E when M is executed with initial state s and
strategy σ. Note that every measurable set (event) has a uniquely defined probability [43] (Carathéodory’s
extension theorem induces a unique probability measure on the Borel σ-algebra over cylinders of (SA)ω).
We may drop some subscripts of Pσ

M,s when the context is clear.

Bottom strongly-connected components.The counterparts of ECs in MCs are bottom strongly-connected
components (BSCCs). In our formalism, where an MC is simply an MDP M = (S,A, δ) with |A(s)| = 1 for
all s ∈ S, BSCCs are exactly the ECs of such an MDP M.

Sure and almost sure events. Let M = (S,A, δ), σ ∈ Σ, and E ⊆ (SA)ω be an event. We say that E is
sure, written Sσ

M,s[E], if and only if Runs(Mσ
s ) ⊆ E (again abusing our notation to consider projections on

(SA)ω); and that E is almost-sure, written ASσM,s[E], if and only if Pσ
M,s[E] = 1.

Almost-sure reachability of ECs. Given a run ρ = s0a0s1a1 . . . ∈ Runs(M), let

inf(ρ) = {s ∈ S | ∀ i ≥ 0, ∃ j > i, sj = s}

denote the set of states visited infinitely-often along ρ, and let

infAct(ρ) = {a ∈ A | ∀ i ≥ 0, ∃ j > i, aj = a}

similarly denote the actions taken infinitely-often along ρ.
Let limitSet(ρ) denote the pair (inf(ρ), infAct(ρ)). Note that this pair may induce a well-defined sub-MDP

M′ = (inf(ρ), infAct(ρ), δ|inf(ρ)×infAct(ρ)), but in general it needs not be the case. A folklore result in MDPs

(e.g., [4]) is the following: for any state s of MDP M, for any strategy σ ∈ Σ, we have that

ASσ
M,s[{ρ ∈ Runs(Mσ

s ) | limitSet(ρ) ∈ EC(M)}],

5 The projection of a run (s0, q0)a0(s1, q1)a1 . . . inM
σ
s to M is simply the run s0a0s1a1 . . . inM. For the sake of

readability, we make similar abuse of notation – identifying runs in the induced MC with their projections in the
MDP – throughout our paper.
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that is, under any strategy, the limit behavior of the MDP almost-surely coincides with an EC. This property
is a key tool in the analysis of MDPs with prefix-independent objectives, as it essentially says that we only
need to identify the “best” ECs and maximize the probability to reach them.

Decision problem. An objective for an MDP M = (S,A, δ) is a measurable set of runs E ⊆ (SA)ω . Given
an MDP M = (S,A, δ), an initial state s, a threshold α ∈ [0, 1] ∩Q, and such an objective E, the threshold
probability problem is to decide whether there exists a strategy σ ∈ Σ such that Pσ

M,s [E] ≥ α or not.
Furthermore, if it exists, we want to build such a strategy.

Weights and priorities. In this paper, we always assume an MDP M = (S,A, δ) with either (i) a weight
function w : A → Z of largest absolute weight W , or (ii) a priority function p : S → {0, 1, . . . , d}, with
d ≤ |S|+ 1 (w.l.o.g.). This choice is left implicit when the context is clear, to offer a unified view of mean-
payoff and parity variants of window objectives.

Complexity. When studying the complexity of decision problems, we make the classical assumptions of
the field: we consider the model size |M| to be polynomial in |S| and the binary encoding of weights and
probabilities (e.g., V = log2 W , with W the largest absolute weight), whereas we consider the largest priority
d, as well as the upcoming window size λ, to be encoded in unary. When a problem is polynomial in W , we
say that it is pseudo-polynomial: it would be polynomial if weights would be given in unary.

Mean-payoff and parity objectives. We consider window objectives based on mean-payoff and parity
objectives. Let us discuss those classical objectives.

The first one is a quantitative objective, for which we consider weighted MDPs. Let ρ ∈ Runs(M) be a run

of such an MDP. The mean-payoff of prefix ρ[0, n] is MP(ρ[0, n]) = 1
n

∑n−1
i=0 w(ai), for n > 0. This is naturally

extended to runs by considering the limit behavior. The mean-payoff of ρ is MP(ρ) = lim infn→∞ MP(ρ[0, n]).
Given a threshold ν ∈ Q, the mean-payoff objective accepts all runs whose mean-payoff is above the threshold,
i.e., MeanPayoff(ν) = {ρ ∈ Runs(M) | MP(ρ) ≥ ν}. The corresponding threshold probability problem is in P

using linear programming, and pure memoryless strategies suffice (see, e.g., [39]). Note that ν can be taken
equal to zero w.l.o.g., and the mean-payoff function can be equivalently (in the classical one-dimension
setting) defined using lim sup.

The second objective, parity, is a qualitative one, for which we consider MDPs with a priority function.
The parity objective requires that the smallest priority seen infinitely often along a run be even, i.e., Parity =
{ρ ∈ Runs(M) | mins∈inf(ρ) p(s) = 0 (mod 2)}. Again, the corresponding threshold probability problem is in
P and pure memoryless strategies suffice [21].

3 Window objectives

3.1 Definitions

Good windows. Given a weighted MDP M and λ > 0, we define the good window mean-payoff objective

GWmp(λ) =
{
ρ ∈ Runs(M) | ∃ l < λ, MP

(
ρ[0, l + 1]

)
≥ 0

}

requiring the existence of a window of size bounded by λ and starting at the first position of the run, over
which the mean-payoff is at least equal to zero (w.l.o.g.).

Similarly, given an MDP M with priority function p, we define the good window parity objective,

GWpar(λ) =
{
ρ ∈ Runs(M) | ∃ l < λ,

(
p(ρ[l]) mod 2 = 0 ∧ ∀ k < l, p(ρ[l]) < p(ρ[k])

)}

requiring the existence of a window of size bounded by λ and starting at the first position of the run, for
which the last priority is even and is the smallest within the window.

To preserve our generic approach, we use subscripts mp and par for mean-payoff and parity variants
respectively. So, given Ω = {mp, par} and a run ρ ∈ Runs(M), we say that an Ω-window is closed in at most
λ steps from ρ[i] if ρ[i,∞] is in GWΩ(λ). If a window is not yet closed, we call it open.
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Fixed variants. Given λ > 0, we define the direct fixed window objective

DFWΩ(λ) = {ρ ∈ Runs(M) | ∀ j ≥ 0, ρ[j,∞] ∈ GWΩ(λ)}

asking for all Ω-windows to be closed within λ steps along the run.
We also define the fixed window objective

FWΩ(λ) = {ρ ∈ Runs(M) | ∃ i ≥ 0, ρ[i,∞] ∈ DFWΩ(λ)}

that is the prefix-independent version of the previous one: it requires it to be eventually satisfied.

Bounded variant. Finally, we define the bounded window objective

BWΩ = {ρ ∈ Runs(M) | ∃λ > 0, ρ ∈ FWΩ(λ)}

requiring the existence of a bound λ for which the fixed window objective is satisfied. Note that this bound
need not be uniform along all runs in general. A direct variant may also be defined, but turns out to be
ill-suited in the stochastic context: we illustrate it in Sect. 3.3 and discuss its pitfalls in Sect. 7. Hence we
focus on the prefix-independent version in the following.

3.2 Overview in games.

Window mean-payoff and window parity objectives were considered in two-player zero-sum games [18,15].
The game setting is equivalent to deciding if there exists a controller strategy in an MDP such that the
corresponding objective is surely satisfied, i.e., by all consistent runs. We quickly summarize the main results
here. In both cases, window objectives establish conservative approximations of the classical ones, with
improved complexity.

For mean-payoff [18], (direct and prefix-independent) fixed window objectives can be solved in poly-
nomial time, both in the model and the window size. Memory is in general needed for both players, but
polynomial memory suffices. Bounded versions belong to NP ∩ coNP and are as hard as mean-payoff games.
Memoryless strategies suffice for the controller but not for its opponent (infinite memory is needed for the
prefix-independent case, polynomial memory suffices in the direct case). Interestingly, if the controller can
win the bounded window objective, then a uniform bound exists, i.e., there exists a window size λ suffi-
ciently large such that the bounded version coincides with the fixed one. Recall that this is not granted by
definition. We will see that in MDPs, this does not hold (Ex. 2). This uniform bound in games is however
pseudo-polynomial.

For parity [15], similar results are obtained. The crucial difference is the uniform bound on λ, which also
exists but in this case is equal to the number of states of the game. Thanks to that, all variants of window
parity objectives belong to P. The memory requirements are the same as for window mean-payoff.

3.3 Illustration

Example 1. We first go back to the example of Sect. 1, depicted in Fig. 1. Let M be this MDP. Fix run
ρ = (s1 a s2 b s3 c)

ω. We have that ρ 6∈ FWpar(λ = 2) – a fortiori, ρ 6∈ DFWpar(λ = 2) – as the window that
opens in s1 is not closed after two steps (because s1 has odd priority 1, and 2 is not smaller than 1 so does
not suffice to answer it). If we now set λ = 3, we see that this window closes on time, as 0 is encountered
within three steps. As all other windows are immediately closed, we have ρ ∈ DFWpar(λ = 3) – a fortiori,
ρ ∈ FWpar(λ = 3) and ρ ∈ BWpar.

Regarding the probability of these objectives, however, we have already argued that, for all λ > 0,
PM,s1 [FWpar(λ)] = 0, whereas PM,s1 [Parity] = 1 since s3 is almost-surely visited infinitely often but any time
bound is almost-surely exceeded infinitely often too. Observe that BWpar =

⋃
λ>0 FWpar(λ), hence we also

have that PM,s1 [BWpar] = 0 (by countable additivity).
Similar reasoning holds for window mean-payoff objectives, by taking the weight function w = {a 7→ −1,

b 7→ 0, c 7→ 1}. ⊳
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Fig. 2. On this MC, there is no uniform bound
over all runs, in contrast to the game setting.

With the next example, we illustrate one of the main differ-
ences between games and MDPs w.r.t. window objectives. As
discussed in Sect. 3.2, in two-player zero-sum games, both for
parity and mean-payoff, there exists a uniform bound on the
window size λ such that the fixed variants coincide with the
bounded ones. We show that this property does not carry over
to MDPs.

Example 2. Consider the MC M depicted in Fig. 2. It is clear that for any λ > 0, there is probability 1/2λ−1

that objective DFWpar(λ) is not satisfied. Hence, for all λ > 0, PM,s[DFWpar(λ)] < 1.
Now let DBWpar be the direct bounded window objective evoked in Sect. 3.1 and defined as DBWpar =⋃

λ>0 DFWpar(λ). We claim that PM,s[DBWpar] = 1. Indeed, any run ending in t belongs to DBWpar, as it
belongs to DFWpar(λ) for λ equal to the length of the prefix up to t. Since t is almost-surely reached (as it
is the only BSCC of the MC), we conclude that DBWpar is indeed satisfied almost-surely.

Essentially, the difference stems from the fairness of probabilities. In a game, the opponent would control
the successor choice after action a and always go back to s, resulting in objective DBWpar being lost. However,
in this MC, s is almost-surely left eventually, but we cannot guarantee when: hence there exists a window
bound for each run, but there is no uniform bound over all runs.

This simple MC also illustrates the classical difference between sure and almost-sure satisfaction: while
we have ASM,s[FWpar(λ = 1)], we do not have S

M,s[FWpar(λ = 1)], because of run ρ = (s a)ω.
Again the same reasoning holds for mean-payoff variants, for example with w = {a 7→ −1, b 7→ 1}. ⊳

We leave out the direct bounded objective DBWΩ from now on. We will come back to it in Sect. 7
and motivate why this objective is not well-behaved. Hence, in the following, we focus on direct and prefix-
independent fixed window objectives and prefix-independent bounded ones.

4 Fixed case: better safe than sorry

We start with the fixed variants of window objectives. Our main goal here is to establish that pure finite-
memory strategies suffice in all cases. As a by-product, we also obtain algorithms to solve the corresponding
decision problems. Still, for the prefix-independent variants, we will obtain better complexities using the
upcoming generic approach (Sect. 6).

Our main tools are natural reductions from direct (resp. prefix-independent) window problems on MDPs
to safety (resp. co-Büchi) problems on unfoldings based on the window size λ (i.e., larger arenas incorporating
information on open windows). We use identical unfoldings for both direct and prefix-independent objectives,
in order to obtain a unified proof. In both cases, the set of states to avoid in the unfolding corresponds to
leaving a window open for λ steps.

4.1 Reductions

Mean-payoff. Let M = (S,A, δ) be an MDP with weight function w (of maximal absolute weight W ), and
λ > 0 be the window size. We define the unfolding MDP Mλ = (S̃, A, δ̃) as follows:

– S̃ = S × {0, . . . , λ} × {−λ ·W, . . . , 0}.
– δ̃ : S̃ ×A → D(S̃) is defined as follows for all a in A:

δ̃ ((s, l, z), a) (t, l + 1, z + w(a)) = ν if
(
δ(s, a)(t) = ν

)
∧

(
l < λ

)
∧

(
z + w(a) < 0

)
,

δ̃ ((s, l, z), a) (t, 0, 0) = ν if
(
δ(s, a)(t) = ν

)
∧

[(
z + w(a) ≥ 0

)
∨
((

l = λ
)
∧

(
z < 0

))]
.

– Once an initial state sinit ∈ S is fixed in M, the associated initial state in Mλ is s̃init = (sinit, 0, 0) ∈ S̃.
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Note that Mλ is unweighted: it keeps track in each of its states of the current state of M, the size of
the current open window as well as the current sum of weights in the window: these two values are reset
whenever a window is closed (left-hand side of the disjunction) or stays open for λ steps (right hand-side).
A key underlying property used here is the so-called inductive property of windows [18,15].

Property 3 (Inductive property of windows). Consider a run ρ = s0a0s1a1 . . . in an MDP. Fix a window
starting in position i ≥ 0. Let j be the position in which this window gets closed, assuming it does. Then,
all windows in positions from i to j also close in j.

The validity of this property is easy to check by contradiction (if it was not the case, then the window in i
would close before j). This property is fundamental in our reduction: without it we would have to keep track
of all open windows in parallel, which would result in a blow-up exponential in λ.

In the upcoming reductions, the set of states to avoid will be B = {(s, l, z) | (l = λ) ∧ (z < 0)}. By
construction of Mλ, it exactly corresponds to windows staying open for λ steps.

Parity. Let M = (S,A, δ) be an MDP with priority function p, and λ > 0 be the window size. We define
the unfolding MDP Mλ = (S̃, A, δ̃) as follows:

– S̃ = S × {0, . . . , λ} × {0, 1, . . . , d}.
– δ̃ : S̃ ×A → D(S̃) is defined as follows for all a in A:

δ̃ ((s, l, c), a) (t, l + 1,min(c, p(t))) = ν if
(
δ(s, a)(t) = ν

)
∧

(
l < λ− 1

)
∧

(
c mod 2 = 1

)
,

δ̃ ((s, l, c), a) (t, 0, p(t)) = ν if
(
δ(s, a)(t) = ν

)
∧

(
l = λ− 1

)
∧

(
c mod 2 = 1

)
,

δ̃ ((s, l, c), a) (t, 0, p(t)) = ν if
(
δ(s, a)(t) = ν

)
∧

(
c mod 2 = 0

)
.

– Once an initial state sinit ∈ S is fixed in M, the associated one in Mλ is s̃init = (sinit, 0, p(sinit)) ∈ S̃.

This unfolding keeps track in each of its states of the current state of the original MDP, the size of the current
window and the minimum priority in the window: again, these two values are reset whenever a window is
closed or stays open for λ steps.

In this case, the set of states to avoid will be B = {(s, l, c) | (l = λ − 1) ∧ (c mod 2 = 1)}, with an
equivalent interpretation.

Remark 4. There is a slight asymmetry in the use of indices for the current window size in the two construc-
tions: that is due to mean-payoff using weights on actions (two states being needed for one action) and parity
using priorities on states.

Objectives. We treat mean-payoff and parity versions in a unified way from now on. As stated before, the
set B represents in both cases windows being open for λ steps and should be avoided: at all times for direct
variants, eventually for prefix-independent ones. We define the following objectives over the unfoldings:

Reach(Mλ) = (S̃A)∗BA(S̃A)ω , Safety(Mλ) = (S̃A)ω \ Reach(Mλ),

Buchi(Mλ) = ((S̃A)∗BA)ω, coBuchi(Mλ) = (S̃A)ω \ Buchi(Mλ).

Our ultimate goal is to prove that the safety and co-Büchi objectives in Mλ are probability-wise equivalent
to the direct fixed window and fixed window ones in M, modulo a well-defined mapping between histories,
runs and strategies. This will induce the correctness of our reduction.

Mapping. Fix an initial state sinit in M and let s̃init be its corresponding initial state in Mλ. Let
Hists(M, sinit) denote the histories of M starting in sinit. We start by defining a bijective mapping πMλ

,
and its inverse πM, between histories of Hists(M, sinit) and Hists(Mλ, s̃init). We use πMλ

: Hists(M, sinit) →
Hists(Mλ, s̃init) for the M-to-Mλ direction, and πM : Hists(Mλ, s̃init) → Hists(M, sinit) for the opposite one.
We define πMλ

inductively as follows.

– πMλ
(sinit) = s̃init.
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– Let h ∈ Hists(M, sinit), h̃ = πMλ
(h), a ∈ A, s ∈ S. Then, πMλ

(h · a · s) = h̃ · a · s̃, where s̃ is obtained
from Last(h̃), a and s following the unfolding construction.

We define πM as its inverse, i.e., the function projecting histories of Hists(Mλ, s̃init) to (SA)∗S. We naturally
extend these mappings to runs based on this inductive construction.

Now, we also extend these mappings to strategies. Let σ be a strategy in M. We define its twin strategy
σ̃ = πMλ

(σ) in Mλ as follows: for all h̃ ∈ Hists(Mλ, s̃init), σ̃(h̃) = σ(πM(h̃)). Note that this strategy is
well-defined as M and Mλ share the same actions and πM is a proper function over Hists(Mλ, s̃init) (i.e.,
each history h̃ has an image in Hists(M, sinit)). Similarly, given a strategy σ̃ in Mλ, we build a twin strategy
σ = πM(σ̃) using πMλ

. Hence we also have a bijection over strategies.
We say that two objects (histories, runs, strategies) are π-corresponding if they are the image of one

another through mappings πM and πMλ
.

Probability-wise equivalence. For any any history h, we denote by Cyl(h) the cylinder set spanned by it,
i.e., the set of all runs prolonging h. Cylinder sets are the building blocks of probability measures in MCs,
as all measurable sets belong to the σ-algebra built upon them [4]. We show that our mappings preserve
probabilities of cylinder sets.

Lemma 5. Let M, Mλ, πM and πMλ
be defined as above. Fix any couple of π-corresponding strategies (σ, σ̃)

for M and Mλ respectively. Then, for any couple of π-corresponding histories (h, h̃) in Hists(M, sinit) ×
Hists(Mλ, s̃init), we have that

Pσ
M,sinit

[Cyl(h)] = Pσ̃
Mλ,s̃init

[Cyl(h̃)]. (1)

Proof. We fix M, Mλ, πM, πMλ
, and a couple of π-corresponding strategies (σ, σ̃). We prove the equality

by induction on histories. The base case, for h = sinit and h̃ = s̃init, is trivial, as we have

Pσ
M,sinit

[Cyl(h)] = Pσ
M,sinit

[Runs(M, sinit)] = 1 = Pσ̃
Mλ,s̃init

[Runs(Mλ, s̃init)] = Pσ̃
Mλ,s̃init

[Cyl(h̃)].

Now, assume Eq. (1) true for a couple of π-corresponding histories (h, h̃). Consider any one-step extension
of these histories, say (h · a · s, h̃ · a · s̃) for a ∈ A, s ∈ S and h̃ · a · s̃ = πMλ

(h · a · s). We need to prove that
Eq. (1) still holds for this pair of histories. Let us expand the equality to prove as follows:

Pσ
M,sinit

[Cyl(h · a · s)] = Pσ̃
Mλ,s̃init

[Cyl(h̃ · a · s̃)]

⇐⇒ Pσ
M,sinit

[h] · σ(h)(a) · δ(Last(h), a, s) = Pσ̃
Mλ,s̃init

[h̃] · σ̃(h̃)(a) · δ̃(Last(h̃), a, s̃).

Now, observe that σ(h)(a) = σ̃(h̃)(a) since σ and σ̃ are π-corresponding strategies and h and h̃ are π-
corresponding histories. Furthermore, δ(Last(h), a, s) = δ̃(Last(h̃), a, s̃) by construction of the unfolding. Now
since Pσ

M,sinit
[h] = Pσ̃

Mλ,s̃init
[h̃] holds by induction hypothesis, we are done. ⊓⊔

Since the previous lemma holds for all cylinders, we may extend the result to any event (see, e.g., [4] for
the construction of the σ-algebra and related questions).

Corollary 6. Let M, Mλ, πM and πMλ
be defined as above. Fix any couple of π-corresponding strategies

(σ, σ̃) for M and Mλ respectively. Then, for any couple of π-corresponding measurable objectives (E, Ẽ) ⊆
Runs(M, sinit)× Runs(Mλ, s̃init), we have that

Pσ
M,sinit

[E] = Pσ̃
Mλ,s̃init

[Ẽ].

Correctness of the reductions. We may now establish our reductions.

Lemma 7. Let M = (S,A, δ) be an MDP, λ > 0 be the window size, Ω ∈ {mp, par}, Mλ = (S̃, A, δ̃) be the
unfolding of M defined as above for variant Ω, s ∈ S be a state of M, and s̃ ∈ S̃ be its π-corresponding
state in Mλ. The following assertions hold.
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1. For any strategy σ in M, there exists a strategy σ̃ in Mλ such that

Pσ̃
Mλ,s̃

[Safety(Mλ)] = Pσ
M,s[DFWΩ(λ)] ∧ Pσ̃

Mλ,s̃
[coBuchi(Mλ)] = Pσ

M,s[FWΩ(λ)].

2. For any strategy σ̃ in Mλ, there exists a strategy σ in M such that

Pσ
M,s[DFWΩ(λ)] = Pσ̃

Mλ,s̃
[Safety(Mλ)] ∧ Pσ

M,s[FWΩ(λ)] = Pσ̃
Mλ,s̃

[coBuchi(Mλ)].

Moreover, such strategies can be obtained through mappings πM and πMλ
.

Proof. To prove it, it suffices to see that Safety(Mλ) (resp. coBuchi(Mλ)) is π-corresponding with DFWΩ(λ)
(resp. FWΩ(λ)) and invoke Cor. 6. As noted earlier, this correspondence is trivial by construction of the
unfoldings. Consider the safety case: a run ρ̃ in Mλ belongs to Safety(Mλ) if and only if all the windows
along ρ = πM(ρ̃) close within λ steps. Similarly, a run ρ̃ in Mλ belongs to coBuchi(Mλ) if and only if it
visits B finitely often, hence if and only if ρ = πM(ρ̃) contains a finite number of windows left open for λ
steps. ⊓⊔

Intuitively, to obtain a strategy σ in M from a strategy σ̃ in the unfolding Mλ, we have to integrate in
the memory of σ the additional information encoded in S̃: hence the memory required by σ is the one used
by σ̃ with a blow-up polynomial in |S̃|.

4.2 Memory requirements and complexity

Upper bounds. Thanks to the reductions established in Lem. 7, along with the fact that pure memoryless
strategies suffice for safety and co-Büchi objectives in MDPs [4], we obtain the following result.

Theorem 8. Pure finite-memory strategies suffice for the threshold probability problem for all fixed window
objectives. That is, given MDP M = (S,A, δ), initial state s ∈ S, window size λ > 0, Ω ∈ {mp, par}, objective
E ∈ {DFWΩ(λ),FWΩ(λ)} and threshold probability α ∈ [0, 1] ∩Q, if there exists a strategy σ ∈ Σ such that
Pσ
M,s[E] ≥ α, then there exists a pure finite-memory strategy σ′ such that Pσ′

M,s[E] ≥ α.

These reductions also yield algorithms for the threshold probability problem in the fixed window case.
We only use them for the direct variants, as the generic approach we develop in Sect. 6 proves to be more
efficient for the prefix-independent one, for two reasons: first, we may restrict the co-Büchi-like analysis
to end-components; second, we use a more tractable analysis than the co-Büchi unfolding for mean-payoff.
However, the reduction established for prefix-independent variants is not without interest: it yields sufficiency
of finite-memory strategies, which is a key ingredient to establish our generic approach (used in Lem. 18).

Theorem 9. The threshold probability problem is

(a) in P for direct fixed window parity objectives, and pure polynomial-memory optimal strategies can be
constructed in polynomial time.

(b) in EXPTIME for direct fixed window mean-payoff objectives, and pure pseudo-polynomial-memory optimal
strategies can be constructed in pseudo-polynomial time.

Proof. The algorithm is simple: given M = (S,A, δ) and λ > 0, build Mλ and solve the corresponding safety
problem. This can be done in polynomial time in |Mλ| and pure memoryless strategies suffice over Mλ [4].

For parity, the unfolding is of size polynomial in |M|, the number of priorities d and the window size λ.
Since both d (anyway bounded by O(|S|)) and λ are assumed to be given in unary, it yields the result.

For mean-payoff, the unfolding is of size polynomial in |M|, the largest absolute weight W and the
window size λ. Since weights are assumed to be encoded in binary, we only have a pseudo-polynomial-time
algorithm. ⊓⊔

Lower bounds. We complement the results of Thm. 9 with almost-matching lower bounds, showing that
our approach is close to optimal, complexity-wise.

11



Theorem 10. The threshold probability problem is

(a) P-hard for direct fixed window parity objectives, and polynomial-memory strategies are in general neces-
sary;

(b) PSPACE-hard for direct fixed window mean-payoff objectives (even for acyclic MDPs), and pseudo-
polynomial-memory strategies are in general necessary.

Proof. Item (a). We establish P-hardness for direct fixed window parity objectives through a reduction from
two-player reachability games, which are known to be P-complete [6,35]. Let G = (V = V1⊎V2, E) be a game
graph, where states in V1 (resp. V2) belong to player 1 (resp. player 2), and E ⊆ V ×V is the set of transitions.
Without loss of generality, we assume this graph to be strictly alternating, i.e., E ⊆ V1 × V2 ⊎ V2 × V1, and
without deadlock. The reachability objective Reach(T ) for T ⊆ V accepts all plays that eventually visit the
set T . Again w.l.o.g., we assume that T ⊆ V1. Given an initial state vinit ∈ V1 and target set T ⊆ V1, deciding
if player 1 has a winning strategy ensuring that T is visited whatever the strategy of player 2 is P-hard. We
reduce this question to a threshold probability problem for a direct fixed window parity objective as follows.
From G, we build the MDP M = (S,A, δ) such that S = V1, A = V2 and δ is constructed in the following
manner:

– for all v1 ∈ V1 \ T , v′1 ∈ V1, v2 ∈ V2, (v1, v2, v
′
1) ∈ Supp(δ) iff (v1, v2) ∈ E and (v2, v

′
1) ∈ E;

– probabilities are taken uniform, i.e., δ(v1, v2, v
′
1) =

(
1

|Supp(δ(v1, v2))|

)
;

– states in T are made absorbing, i.e., they only allow an action a such that δ(v, a, v) = 1 for any v ∈ T .

We add a priority function p : S → {0, 1} that assigns 1 to all states in S except states that correspond to
states in T ⊆ V1: those states get priority 0. Let us fix objective DFWpar(λ = |V1|). We claim that player 1
has a winning strategy from vinit in the reachability game G if and only if the controller has a strategy
almost-surely satisfying objective DFWpar(λ = |V1|) from vinit in the MDP M. Observe that this reduction
is polynomial, as both M and λ are polynomial in the size of G and the number of priorities is fixed. It
remains to check its correctness.

Consider what happens in M. The only way to close the window that will open in vinit is to reach T , and
we ought to close it to obtain a satisfying run as we consider the direct objective. Furthermore, once T is
reached, the run is necessarily winning as we stay in T forever and always see priority 0. We also know that
if T can be reached, λ steps suffice to do so, as memoryless strategies suffice in the game G (note that we do
not count actions here). Lifting a winning strategy from G to M is thus trivial: we mimic a memoryless one
w.l.o.g. and reach T surely in M within λ steps, ensuring the objective.

Hence, only the other direction remains: given a strategy σ such that ASσ
M,vinit

[DFWpar(λ)], we need to
construct a winning strategy in G. This may seem more difficult as we need to go from an almost-surely
winning strategy to a surely winning one: something which is not possible in general. Yet, we show that σ is
actually surely winning for DFWpar(λ). By contradiction, assume it is not the case, i.e., that there exists a
consistent run ρ such that ρ 6∈ DFWpar(λ): then, a finite prefix ρ[0, n] can be extracted, such that a window
remains open for λ steps along it. Now, since we consider a direct objective, the cylinder spanned by this
prefix only contains losing runs, and since ρ[0, n] is finite, it has a strictly positive probability. Hence σ is
not almost-surely winning and we have our contradiction. This proves that σ is actually surely-winning, and
it is then trivial to mimic it in G to obtain a winning strategy for player 1. This shows that the reduction
from reachability games to the threshold probability problem for direct fixed window parity objectives holds,
thus that the latter is P-hard.

Regarding memory, the proof established for direct fixed window parity games in [15] carries over easily to
our setting by replacing the states of the opponent by stochastic actions, in the natural way. Hence the lower
bound is trivial to establish. Yet, we illustrate the need for memory in Ex. 13 to help the reader understand
the phenomenon.

Item (b). Consider the PSPACE-hardness of the mean-payoff variant. We proceed via a reduction from
the threshold probability problem for shortest path objectives [32,39]. This problem is as follows. Let M =
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(S,A, δ) be an MDP with weight function w : A → N0 (we use strictly positive weights w.l.o.g.). We fix a
target set T ⊆ S and define the truncated sum up to T as the function TST : Runs(M) → N ∪ {∞} given by

TST (ρ) =

{∑n−1
i=0 w(ai) if ρ[n] ∈ T ∧ ∀ 0 ≤ j < n, ρ[j] 6∈ T,

∞ if ∀ j ≥ 0, ρ[j] 6∈ T.

Given an upper bound ℓ ∈ N, the shortest path objective is ShortestPath(ℓ) = {ρ ∈ Runs(M) | TST (ρ) ≤ ℓ}.
Deciding if there exists a strategy σ such that Pσ

M,s[ShortestPath(ℓ)] ≥ α, given s ∈ S and α ∈ [0, 1] ∩Q, is
known to be PSPACE-hard, even for acyclic MDPs [32]. The target set T is assumed to be made of absorbing
states (i.e., with self-loops): the acyclicity is to be interpreted over the rest of the underlying graph. We
establish a reduction from this problem, in the acyclic case, to a threshold probability problem for a direct
fixed window mean-payoff objective, maintaining the acyclicity of the underlying graph (except in target
states, again).

Given the original MDP M, we only modify the weight function to obtain MDP M′. We define w′ from
w, the target T and the bound ℓ as follows:

– for all (s, a, s′) ∈ Supp(δ), s′ 6∈ T , w′(a) = −w(a);
– for all (s, a, t) ∈ Supp(δ), s 6∈ T , t ∈ T , w′(a) = −w(a) + ℓ;
– for all (t, a, t) ∈ Supp(δ), t ∈ T , w′(a) = 0.

Intuitively, we take the opposite of all weights; add the bound when entering the target; and make the target
cost-free. We then define the objective DFWmp(λ = |S|) and claim that there exists a strategy σ in M to

ensure Pσ
M,s[ShortestPath(ℓ)] ≥ α if and only if there exists a strategy σ′ in M′ to ensure Pσ′

M′,s[DFWmp(λ)] ≥
α.

Proving it is fairly easy. Observe that, by construction, the sum of weights over a prefix in M′ that is
not yet in T is strictly negative, and the opposite of the sum over the same prefix in the original MDP M.
Due to the addition of ℓ on entering T , we have that any run ρ′ ∈ Runs(M′) sees all its windows closed if
and only if the very same run ρ ∈ Runs(M) is such that TST (ρ) ≤ ℓ in M. Now, using the acyclicity of
the underlying graph, we know that if a run reaches T , it does so in at most λ steps. We thus conclude
that ρ′ ∈ DFWmp(λ) in M′ if and only if ρ ∈ ShortestPath(ℓ) in M. It is then trivial to derive the desired
result and establish the correctness of the reduction: this concludes our proof of PSPACE-hardness for the
threshold probability problem for direct fixed window mean-payoff objectives.

Finally, the need for pseudo-polynomial memory is also obtained through this reduction. Indeed, there is
a chain of reductions from subset-sum games [42,26] to our setting, via the shortest path problem presented
above [32]. Subset-sum games require pseudo-polynomial-memory strategies, and it carries over to our setting.

⊓⊔

Remark 11. Throughout this paper, we assume the window size λ to be given in unary, or equivalently, to
be polynomial in the description of the MDP (as for practical purposes, having exponential window sizes
would somewhat defeat the purpose of time bounds in specifications). It is thus interesting to note that the
hardness results we established in Thm. 10 do hold under this assumption: the complexity essentially comes
from the weight structure, as in other counting-like problems in MDPs [32,39,14].

Remark 12. As noted in the proof of Thm. 10, almost-surely winning coincides with surely winning for the
direct fixed window objectives. Therefore, the threshold probability problem for DFWmp(λ) collapses to P if
α = 1 [18].

Example 13. Consider the direct fixed window parity objective in the MDP depicted in Fig. 3, inspired by [15].
For the sake of readability, we did not write all details in the figure: all actions have uniform probability
distributions over their successors, and all unlabeled states have priority d = 6. This example can easily be
generalized to any even d ≥ 0. Observe that the MDP has size |S| = 2 + d

2 · (d2 + 1), hence polynomial in d.

Fix the objective DFWpar(λ = d
2 + 2). We claim that the controller may achieve it almost-surely (even

surely) with a strategy using memory of size d
2 . Indeed, each time action a results in taking the path of
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Fig. 3. This MDP with d = 6 priorities admits an almost-surely (even surely) winning strategy for DFWpar(λ = d

2
+2):

the controller must answer to the path with priority 5 (resp. 3, 1) by choosing b (resp. c, d). This requiresO( d
2
) memory

states.

priority (d− 1) (resp. (d− 3), . . . , 1), the only possibility for the controller is to choose the path with priority
(d−2) (resp. (d−4), . . . , 0), otherwise a window stays open for λ steps. Doing this ensures that the objective
is satisfied surely.

Now, if the controller uses less than d
2 memory, he has to answer to two different odd priorities with

the same choice of action in s8, which results in a window staying open for λ steps with strictly positive
probability. Hence, there is no almost-sure winning strategy with such limited memory: polynomial-memory
strategies are needed in this example. ⊳

5 The case of end-components

We have already solved the case of direct fixed window objectives: it remains to consider prefix-independent
fixed and bounded variants. As seen in Sect. 2, the analysis of MDPs with prefix-independent objectives
crucially relies on end-components (ECs). Indeed, they are almost-surely reached in the long run.

In this section, we study what happens in ECs: how to play optimally and what can be achieved. In
Sect. 6, we will use this knowledge as the cornerstone of our algorithm for general MDPs. The main result
here is a strong link between ECs and two-player games : intuitively, either the probability to win a window
objective in an EC is zero, or it is one and there exists a sub-EC where the controller can actually win surely,
i.e., as in a two-player game played on this sub-EC.

Safe ECs. We start by defining the notion of λ-safety, that will characterize such sub-ECs.

Definition 14 (λ-safety). Let M be an MDP, Ω ∈ {mp, par}, λ > 0, and C = (SC , AC , δC) ∈ EC(M), we
say that C is λ-safeΩ if there exists a strategy σ ∈ Σ in C such that, from all s ∈ SC, S

σ
C,s[DFWΩ(λ)].

Classifying an EC as λ-safeΩ or not boils down to interpreting it as a two-player game (the duality
between MDPs and games is further explored in [14,7]). In this setting, the uncertainty becomes adversarial:
when there is some uncertainty about the outcome of an action, we do not consider probabilities but we let
the opponent decide the outcome of the action. On entering a state s of the MDP after some history, the
controller chooses an action a following its strategy and the opponent then chooses a successor state s′ such
that s′ ∈ Supp(δ(s, a)) without taking into account the exact values of probabilities. In such a view, the
opponent tries to prevent the controller from achieving its objective. A winning strategy for the controller in
the game interpretation is a strategy that ensures the objective regardless of its opponent’s strategy. An EC
is thus said to be λ-safeΩ if and only if its two-player interpretation admits a winning strategy for DFWΩ(λ).

Remark 15. Throughout this paper, all the strategies we consider are uniform in the game-theoretic sense.
That is, if an objective is achievable from a set of states, we do not need to have a different strategy for each
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starting state, and we may instead use the very same strategy from all starting states. This uniformity is
not needed in our approach but we have for free for both the classical MDP strategies (reachability, Büchi,
etc) [4] and the two-player window games [18,15]. We use it for the sake of readability, as it permits to have
one strategy per EC instead of one per state of the EC for example. Hence all our statements are written
with that in mind.

Proposition 16. Let M be an MDP, Ω ∈ {mp, par}, λ > 0, and C = (SC , AC , δC) ∈ EC(M) be λ-safeΩ .

Then, there exists a pure polynomial-memory strategy σΩ,λ,C
safe in C such that S

σ
Ω,λ,C

safe

C,s [DFWΩ(λ)] for all s ∈ SC.

Proof. Straightforward by definition of λ-safety and pure polynomial-memory strategies being sufficient in
two-player zero-sum direct fixed window games, both for mean-payoff [18] and parity [15] variants.

Good ECs. As sketched above, the existence of sub-ECs that are λ-safe is crucial in order to satisfy any
window objective in an EC. We thus introduce the notion of good ECs.

Definition 17. Let M be an MDP, Ω ∈ {mp, par}, and C ∈ EC(M), we say that

– C is λ-goodΩ , for λ > 0, if it contains a sub-EC C′ which is λ-safeΩ .
– C is BW-goodΩ if it contains a sub-EC C′ which is λ-safeΩ for some λ > 0.

By definition, any BW-goodΩ EC is also λ-goodΩ for an appropriate λ > 0. Yet, we use a different terminology
as in the BW case, we do not fix λ a priori: this will be important complexity-wise.

We now establish that goodΩ ECs are exactly the ones where window objectives can be satisfied with
non-zero probability, and actually, with probability one.

Lemma 18 (Zero-one law). Let M be an MDP, Ω ∈ {mp, par} and C = (SC , AC , δC) ∈ EC(M). The
following assertions hold.

(a) For all λ > 0,

(i) either C is λ-goodΩ and there exists a strategy σ in C such that ASσC,s[FWΩ(λ)] for all s ∈ SC,
(ii) or for all s ∈ SC, for all strategy σ in C, Pσ

C,s[FWΩ(λ)] = 0.

(b) (i) Either C is BW-goodΩ and there exists a strategy σ in C such that ASσC,s[BWΩ] for all s ∈ SC,
(ii) or for all s ∈ SC, for all strategy σ in C, Pσ

C,s[BWΩ] = 0.

Proof. We begin with the fixed variant (a). Case (i). Fix λ > 0 and assume there exists a sub-EC C′ with

state space SC′ that is λ-safeΩ. By Prop. 16, there exists a strategy σΩ,λ,C′

safe in C′ such that S
σ
Ω,λ,C′

safe

C′,s [DFWΩ(λ)]
for all s ∈ SC′ . Now, since C is an EC, there exists a (pure memoryless) strategy σreach in C that ensures
eventually reaching C′ almost-surely from any state s ∈ SC [4]. Hence, the desired strategy σ can be defined

as follows: play according to σreach until C′ is reached, then switch to σΩ,λ,C′

safe forever. It is straightforward to
check that σ almost-surely satisfies FWΩ(λ) from anywhere in C, thanks to prefix-independence. Note that
it does not ensure it surely in general, as σreach does not guarantee to reach C′ surely either.

Case (ii). Now assume that such a λ-safeΩ sub-EC does not exist. Recall that finite-memory strategies
suffice for FWΩ(λ) objectives by Thm. 8, hence we can restrict our study to such strategies without loss of
generality. Fix any finite-memory strategy σ in C and state s ∈ SC . The induced MC Mσ

s is finite, hence
runs almost-surely end up in a BSCC [4]. Let B be any BSCC of Mσ

s reached with positive probability. Since
there exists no λ-safeΩ sub-EC in C, there must exist a run ρ̂ in B such that ρ̂ 6∈ DFWΩ(λ) – otherwise, σ

would be witness that the EC obtained by projecting B over SC is λ-safeΩ. From ρ̂, we extract a history ĥ
ending with a window open for λ steps (it exists otherwise ρ̂ would be in DFWΩ(λ)). This history is finite: it
has a probability lower-bounded by some ε > 0 to happen whenever its starting state is visited. Now, since
all states in B are almost-surely visited infinitely often, we conclude that this history also happens infinitely
often with probability one. Therefore, the probability to win the prefix-independent objective FWΩ(λ) when
reaching B is zero. Since this holds for any BSCC induced by σ, we obtain the claim.
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Let us continue with the bounded case (b). Case (i) is trivial thanks to (a)(i) and FWΩ(λ) ⊆ BWΩ . Now
consider case (ii). By (a)(ii), we have that Pσ

C,s[FWΩ(λ)] = 0 for all s ∈ SC , λ > 0 and σ in C. Observe that
by definition, we have

BWΩ =
⋃

λ>0

FWΩ(λ).

Fix any strategy σ in C and s ∈ SC . By countable additivity of probability measures, we have that

Pσ
C,s[BWΩ] ≤

∑

λ>0

Pσ
C,s[FWΩ(λ)].

Since the right term is equal to zero, we obtain the claim. ⊓⊔

Remark 19. An interesting consequence of Lem. 18 is the existence of uniform bounds on λ in ECs, in
contrast to the general MDP case, as seen in Sect. 3.3. This is indeed natural, as we established that winning
with positive probability within an EC coincides with winning surely in a sub-EC; sub-EC that can be seen
as a two-player zero-sum game where uniform bounds are granted by [18,15].

By Lem. 18, we know that interesting strategies exist in goodΩ ECs. Let us describe them.

Proposition 20. Let M be an MDP, Ω ∈ {mp, par}, and C = (SC , AC , δC) ∈ EC(M).

– If C is λ-goodΩ , for some λ > 0, there exists a pure polynomial-memory strategy σΩ,λ,C
good such that

AS
σ
Ω,λ,C

good

C,s [FWΩ(λ)] for all s ∈ SC.

– If C is BW-goodΩ , there exists a pure memoryless strategy σΩ,BW,C
good such that AS

σ
Ω,BW,C

good

C,s [BWΩ] for all
s ∈ SC.

Intuitively, such strategies first mimic a pure memoryless strategy reaching a safeΩ sub-EC almost-surely,
then switch to a strategy surely winning in this sub-EC, which is lifted from the game interpretation.

Proof. Consider the λ-goodΩ case. Strategy σΩ,λ,C
good is the one described in the proof of Lem. 18(a)(i): it

first plays as the pure memoryless strategy σreach then switches to strategy σΩ,λ,C′

safe from Prop. 16 when
the λ-safeΩ sub-EC C′ is reached. Hence it is pure and polynomial memory still suffices. The almost-sure
satisfaction of the objective was proved in Lem. 18.

Now, consider the BW-goodΩ case. Note that using our current knowledge, it is easy to build a pure
polynomial-memory strategy, but we want more: a pure memoryless one. For that, we use the following
reasoning. Strategy σΩ,BW,C

good will again first play as a pure memoryless strategy trying to reach a λ-safeΩ
sub-EC for some λ > 0 (we know one exists), then switch to a surely winning strategy inside this sub-EC.
Still, we do not really need to win for DFWΩ(λ), we only need to win for the bounded variant DBWΩ =⋃

λ>0 DFWΩ(λ). Results in two-player zero-sum games (which we are actually solving here when considering
surely winning strategies) guarantee that in this case, pure memoryless strategies suffice for the controller,
both for mean-payoff [18] and parity variants [15]. Since the switch is state-based (depending on whether we

are in the sub-EC or not), we can wrap both strategies in σΩ,BW,C
good and retain a pure memoryless strategy.

Again, the almost-sure satisfaction of the objective follows from Lem. 18. ⊓⊔

Classification. We may already sketch a general solution to the threshold probability problem based on
Lem. 18 and the well-known fact that ECs are almost-surely reached under any strategy: an optimal strategy
must maximize the probability to reach goodΩ ECs. It is therefore crucial to be able to identify such ECs
efficiently. However, an MDP may in general contain an exponential number of ECs. Fortunately, the next
lemma establishes that we do not have to test them all.

Lemma 21. Let M be an MDP and C ∈ EC(M). If C is λ-goodΩ (resp. BW-goodΩ), then it is also the case
of any super-EC C′ ∈ EC(M) containing C.
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Proof. Trivial by Def. 17. ⊓⊔

Corollary 22. Let M be an MDP and C ∈ MEC(M) be a maximal EC. If C is not λ-goodΩ (resp. BW-
goodΩ), then neither is any of its sub-EC C′ ∈ EC(M).

The interest of Cor. 22 is that the number of MECs is bounded by |S| for any MDP M = (S,A, δ)
because they are all disjoints. Furthermore, the MEC decomposition can be done efficiently (e.g., quadratic
time [19]). So, we know classifying MECs is sufficient and MECs can easily be identified in an MDP: it
remains to discuss how to classify a MEC as goodΩ or not.

Let M = (S,A, δ). Recall that a MEC C = (SC , AC , δC) ∈ MEC(M) is λ-goodΩ (resp. BW-goodΩ) if
and only if it contains a λ-safeΩ sub-EC. By definition of λ-safety, this is equivalent to having a non-empty
winning set for the controller in the two-player zero-sum game over C – naturally defined as explained above.
This winning set contains all states in SC from which the controller has a surely winning strategy. This
winning set, if non-empty, necessarily contains at least one sub-EC of C, as otherwise the opponent could
force the controller to leave it and win the game (by prefix-independence). Thus, testing if a MEC is goodΩ
boils down to solving its two-player game interpretation.

Theorem 23 (MEC classification). Let M be an MDP and C ∈ MEC(M). The following assertions hold.

(a) Deciding if C is λ-goodΩ , for λ > 0, is in P for Ω ∈ {mp, par}. Furthermore, a corresponding pure

polynomial-memory strategy σΩ,λ,C
good can be constructed in polynomial time.

(b) Deciding if C is BW-goodmp is in NP∩ coNP and a corresponding pure memoryless strategy σmp,BW,C
good can

be constructed in pseudo-polynomial time.

(c) Deciding if C is BW-goodpar is in P and a corresponding pure memoryless strategy σpar,BW,C
good can be

constructed in polynomial time.

Proof. All complexities are expressed w.r.t. the representation of C, as the larger MDP M is never used in the
process. Complexity results follow from game solving algorithms presented in [18] for mean-payoff6 and [15]
for parity. Note that for mean-payoff, the bound on λ for which the fixed and bounded variants coincide is
pseudo-polynomial, whereas for parity this bound is polynomial, hence the different results: the algorithm for
bounded window mean-payoff games actually bypasses this bound to obtain NP∩ coNP membership instead
of simply EXPTIME.

For constructing the strategy, we only need to plug the almost-sure-reachability strategy to the surely-
winning one, as presented in Prop. 20. Such a reachability strategy can easily be computed in polynomial
time [4], hence the complexity is dominated by the cost of computing the surely-winning one, as presented
in [18,15]. ⊓⊔

6 General MDPs

Algorithms.We now have all the ingredients to establish an algorithm for the threshold probability problem
in the general case. Intuitively, given an MDP M, an initial state s and a window objective FWΩ(λ) for
λ > 0 (resp. BWΩ), we first compute the MEC decomposition of M, then classify each MEC as λ-goodΩ
(resp. BW-goodΩ) or not, and finally compute an optimal strategy from s to reach the union of goodΩ
MECs: the probability of reaching such MECs is then exactly the maximum probability to satisfy the
window objective.

The fixed and bounded versions are presented in Fig. 4. Let M = (S,A, δ) be the MDP. The MEC
decomposition (Line 2) takes quadratic time [19] and yields at most |S| MECs. The classification depends
on the variant considered, as established in Thm. 23: it is in P for fixed variants and bounded window parity,
and in NP ∩ coNP for bounded window mean-payoff (with a pseudo-polynomial-time procedure). Finally,
sub-procedure MaxReachability(s, T ) computes the maximum probability to reach the set T from s. It is
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Algorithm 1 FixedWindow(M, s, Ω, λ)

Input: MDPM, state s, Ω ∈ {mp, par}, λ > 0
Output: Maximum probability of FWΩ(λ) from s

1 T ← ∅
2 for all C = (SC, AC, δC) ∈ MEC(M) do
3 if C is λ-goodΩ then

4 T ← T ⊎ SC

5 ν = MaxReachability(s, T )
6 return ν

Algorithm 2 BoundedWindow(M, s, Ω)

Input: MDPM, state s, Ω ∈ {mp, par}
Output: Maximum probability of BWΩ from s

1 T ← ∅
2 for all C = (SC, AC, δC) ∈ MEC(M) do
3 if C is BW-goodΩ then

4 T ← T ⊎ SC

5 ν = MaxReachability(s, T )
6 return ν

Fig. 4. Algorithms computing the maximum probability of fixed and bounded window objectives in general MDPs.

well-known that this can be done in polynomial time and that pure memoryless optimal strategies exist [4].
Therefore the overall complexity of the algorithm is dominated by the classification step.

Correctness. We first prove that these algorithms are sound and complete.

Lemma 24. Alg. 1 and Alg. 2 are correct: given an MDP M = (S,A, δ), an initial state s ∈ S, Ω ∈
{mp, par}, λ > 0, we have that

FixedWindow(M, s, Ω, λ) = max
σ∈Σ

Pσ
M,s[FWΩ(λ)],

BoundedWindow(M, s, Ω) = max
σ∈Σ

Pσ
M,s[BWΩ].

Proof. The proof is straightforward based on our previous results. First, recall that objectives FWΩ(λ) and
BWΩ are prefix-independent; that in MDPs, the limit-behavior under any strategy almost-surely coincides
with an EC (see Sect. 2); and that MECs are pair-wise disjoint. We thus have that

sup
σ∈Σ

Pσ
M,s[FWΩ(λ)] = sup

σ∈Σ

∑

C∈MEC(M)

Pσ
M,s[♦�C] · Pσ

C [FWΩ(λ)],

sup
σ∈Σ

Pσ
M,s[BWΩ ] = sup

σ∈Σ

∑

C∈MEC(M)

Pσ
M,s[♦�C] · Pσ

C [BWΩ],

where ♦�C uses the standard LTL notation as a shortcut for

{ρ = s0a0s1 . . . ∈ Runs(M) | ∃ i ≥ 0, ∀ j > i, sj ∈ SC}

with SC the set of states of C; and where we write PC without distinction on the entry point because the
supremum probability to win for a prefix-independent objective is identical in all states of a MEC (as the
controller may force reaching any state he wants almost-surely).

By Lem. 18, we know that supremum winning probabilities in ECs are zero-one laws: they are equal to
one in goodΩ ECs and to zero in all other ECs. Furthermore, when almost-sure satisfaction is achievable,
the corresponding strategy stays in the EC. Let us denote by LGECΩ(M, λ) and BWGECΩ(M) the sets of
λ-goodΩ and BW-goodΩ MECs of M respectively, and by L and B the disjoint union of the corresponding
state spaces. That is,

L =
⊎

C=(SC,AC,δC)∈LGECΩ(M,λ)

SC , B =
⊎

C=(SC,AC,δC)∈BWGECΩ(M)

SC .

6 The published version of [18] contains a slight bug in sub-procedure GoodWin that was corrected in subsequent
articles [16,15]. All results of [18] still hold modulo this correction.
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We have that

sup
σ∈Σ

Pσ
M,s[FWΩ(λ)] = sup

σ∈Σ

∑

C∈LGECΩ(M,λ)

Pσ
M,s[♦�C] = sup

σ∈Σ

Pσ
M,s [♦L] ,

sup
σ∈Σ

Pσ
M,s[BWΩ] = sup

σ∈Σ

∑

C∈BWGECΩ(M)

Pσ
M,s[♦�C] = sup

σ∈Σ

Pσ
M,s [♦B] .

Now, observe that the term on the right-hand side is exactly the probability computed by our algorithm
through the call to sub-procedure MaxReachability on Line 5: our algorithm is thus correct, as it computes
the supremum probability to achieve the corresponding window objective.

It remains to establish that this probability is actually a maximum probability, as claimed. Indeed,
there exists a strategy to achieve the probability ν returned by our algorithm. From s, we know that pure
memoryless optimal strategies exist to reach the computed set T (which coincides with L or B depending
on the considered variant), and inside T , there exist pure finite-memory optimal strategies for all goodΩ
MECs, as shown in Thm. 23. We can easily combine all these strategies in an optimal strategy for M, which
concludes our proof. ⊓⊔

Complexity. We wrap-up our results on prefix-independent window objectives in the following theorem.

Theorem 25. The threshold probability problem is

(a) in P for fixed window parity objectives and fixed window mean-payoff objectives, and pure polynomial-
memory optimal strategies can be constructed in polynomial time;

(b) in P for bounded window parity objectives, and pure memoryless optimal strategies can be constructed in
polynomial time;

(c) in NP ∩ coNP for bounded window mean-payoff objectives, and pure memoryless optimal strategies can
be constructed in pseudo-polynomial time.

Proof. The complexity results follow from the analysis we made before:

– the MEC decomposition (Line 2) takes quadratic time [19] and yields at most |S| MECs;
– classifying a MEC (Line 3) is in P for fixed variants and bounded window parity, and in NP ∩ coNP for

bounded window mean-payoff (Thm. 23);
– MaxReachability(s, T ) (Line 5) takes polynomial time [4].

Overall we have P-membership for all variants except bounded windowmean-payoff, where we are in PNP∩coNP,
which is equal to NP ∩ coNP [10].

Regarding optimal strategies, they are by-products of Alg. 1 and Alg. 2. Inside goodΩ MECs, we play the
strategy granted by Thm. 23, and outside, we simply play a pure memoryless optimal reachability strategy
obtained through sub-procedure MaxReachability(s, T ) [4]. ⊓⊔

Lower bounds. We complement the results of Thm. 25 with matching lower bounds, showing that our
approach is optimal complexity-wise.

Theorem 26. The threshold probability problem is

(a) P-hard for fixed window parity objectives and fixed window mean-payoff objectives, and polynomial-
memory strategies are in general necessary;

(b) P-hard for bounded window parity objectives;
(c) as hard as mean-payoff games for bounded window mean-payoff objectives.

Proof. Complexity-wise, the lower bounds follow from the results in two-player zero-sum window mean-
payoff [18] and window parity [15] games, coupled with the equivalence between the threshold probability
problem and solving a two-player game established in Sect. 5. Note that formally, this equivalence only
holds if the MDP is an EC, hence we have to make sure that the corresponding game problems retain their
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hardness when considered over arenas that correspond to ECs (i.e., when the underlying graph is strongly
connected). Fortunately, careful inspection of the related results in [18,15] shows that this is the case. Note
that mean-payoff games are widely considered as a canonical “hard” problem for the class NP ∩ coNP (see,
e.g., [18]).

Regarding strategies, the fixed case is the only one where memory is needed, as stated in Thm. 25. Again,
the necessity of polynomial memory is witnessed through the equivalence with two-player games in ECs,
proved in Sect. 5, along with results on fixed window mean-payoff and fixed window parity games [18,15].

⊓⊔

7 Limitations and perspectives

Recall that we summarized our results in Table 1, and compared them to the state of the art in Sect. 1. The
goal of this section is to discuss the limitations of our work and some extensions within arm’s reach.

Direct bounded window objectives. We left out a specific variant of window objectives that was consid-
ered in games [18,15]: the direct bounded variant, defined as DBWΩ =

⋃
λ>0 DFWΩ(λ) (see Sect. 3.3). This

variant is maybe not the most natural as it is not prefix-independent, yet allows to close the windows of a
run in an arbitrarily large – but bounded along the run – number of steps.

This variant gives rise to complex behaviors in MDPs, notably due to its interaction with the almost-sure
reachability of ECs. Let us illustrate it on an example.

Example 27. Consider the MDP in Fig. 5 and objective DBWmp. A window opens in the first step due to
action a. The only way to close it is to loop in s2 using action b up to the point where the running sum of
weights becomes non-negative. Note also that when it does, all windows are closed and the controller may
safely switch to s5. Now, observe that taking action b repeatedly induces a symmetric random walk [31].
Classical probability results ensure that a non-negative sum will be obtained almost-surely, but the number
of times b is played must remain unbounded (as for any bounded number, there exists a strictly positive
probability to obtain only −1’s for example). Therefore, in this example, there exists an infinite-memory
strategy σ such that ASσ

M,s1
[DBWmp], but no finite-memory strategy can do as good.

Now, if we modify the probabilities in b to δ(s2, b) = {s3 7→ 0.6, s4 7→ 0.4}, the random walk becomes
asymmetric, with a strictly positive chance to diverge toward −∞. While the best possible strategy is still
the one defined above, it only guarantees a probability strictly less than one to satisfy the objective. ⊳

s1 s2

c,−1 d, 1

s3 s4

a,−1

f, 0

b, 0

e, 0 s5
1 1

1 1

0.5 0.5

1

Fig. 5. There exists a strategy σ ensuring ASσ
M,s1

[DBWmp] but it requires infinite memory as it needs to use b up to
the point where the running sum becomes non-negative, then switch to e.

What do we observe? First, infinite-memory strategies are required, which is a problem for practical
applications. Second, even for qualitative questions (is the probability zero or one?), the actual probabilities
of the MDP must be considered, not only the existence of a transition. This is in stark contrast to most
problems in MDPs [4]: in that sense, the direct bounded window objective is not well-behaved. This is due
to the connection with random walks we just established. Imagine that we replace the gadget related to
action b by a much more complex EC: the corresponding random walk will be quite tedious to analyze. It
is well-known that complex random walks are difficult to tackle for verification and synthesis. For example,
even simple asymmetric random walks, like the one we sketched, are not decisive MCs, a large and robust
class of MCs where reachability questions can be answered [1].
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Markov chains. Our work focuses on the threshold probability problem for MDPs, and the corresponding
strategy synthesis problem. Better complexities could possibly be obtained in the case of MCs, where there
are no non-deterministic choices. To achieve this, a natural direction would be to focus on the classification
of ECs (Sect. 5), the bottleneck of our approach: for MCs, this classification would involve one-player window
games (for the opponent), whose precise complexity has yet to be explored and would certainly be lower
than for two-player games.

Note however that complexity classes in the MC case are unlikely to be much lower: all parity variants
are already in P, and the high complexity of the direct fixed window mean-payoff case would remain: a
construction similar to the PSPACE-hardness proof (Thm. 10) easily shows this problem to be PP-hard,
already for acyclic MCs (again using [32]). Let us recall that PP-hard problems are widely believed to be
outside NP, as otherwise the polynomial hierarchy would collapse to PNP by Toda’s theorem [41].

Expected value problem. Given an MDP M and an initial state s, we may be interested in synthesizing
a strategy σ that minimizes the expected window size for a fixed window objective (say FWΩ(λ) for the sake
of illustration), which we straightforwardly define as

Eσ
M,s,Ω(λ) =

∞∑

λ>0

λ · Pσ
M,s[FWΩ(λ) \ FWΩ(λ − 1)],

with FWΩ(0) = ∅. This meets the natural desire to build strategies that strive to maintain the best time
bounds possible in their local environment (e.g., EC of M). Note that this is totally different from the value
function used in [8].

For prefix-independent variants, we already have all the necessary machinery to solve this problem. First,
we refine the classification process to identify the best window size achievable in each MEC, if any. Indeed, if a
MEC is λ-good, it necessarily is for some λ between one and the upper bound derived from the game-theoretic
interpretation (Rmk. 19): we determine the smallest value of λ for each MEC via a binary search coupled with
the classification procedure. Second, using classical techniques (e.g., [39]), we contract each MEC to a single-
state EC, and give it a weight that represents the best window size we can ensure in it (hence this weight
may be infinite if a MEC is not BW-good). Finally, we construct a global strategy that favors reaching MECs
with the lowest weights, for example by synthesizing a strategy minimizing the classical mean-payoff value.
Note that if λ-good MECs cannot be reached almost-surely, the expected value will be infinite, as wanted.
Observe that such an approach maintains tractability, as we end up with a polynomial-time algorithm.

Direct variants would require more involved techniques, as the unfoldings developed in Sect. 4 are strongly
linked to the fixed window size λ, and cannot be that easily combined for different values of λ.

Multi-objective problems.Window games have also been considered in the multidimension setting, where
several weight (resp. priority) functions are given, and the objective is defined as the intersection of all one-
dimension objectives [18,15]. Again, our generic approach supports effortless extension to this setting.

In the direct case, the unfoldings of Sect. 4 can easily be generalized to multiple dimensions, as in [18,15].
For prefix-independent variants, the EC classification needs to be adapted to handle multidimension window
games, which we can solve using the techniques of [18,15]. Then, we also need to consider a multi-objective
reachability problem [39]. While almost all cases of multidimension window games are EXPTIME-complete,
note that the decidability of the bounded mean-payoff case is still open – it is however known to be non-
primitive recursive hard.

Tool support. Thanks to its low complexity and its adequacy w.r.t. applications, our window framework
lends itself well to tool development. We are currently building a tool suite for MDPs with window objectives
based on the main results of this paper along with the aforementioned extensions. Our aim is to provide a
dedicated extension of Storm, a cutting-edge probabilistic model checker [24].
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Naoki Kobayashi, and Bettina Speckmann, editors, Automata, Languages, and Programming - 42nd International
Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II, volume 9135 of Lecture Notes in
Computer Science, pages 234–246. Springer, 2015.

33. Arnd Hartmanns, Sebastian Junges, Joost-Pieter Katoen, and Tim Quatmann. Multi-cost bounded reachability
in MDP. In Dirk Beyer and Marieke Huisman, editors, Tools and Algorithms for the Construction and Analysis
of Systems - 24th International Conference, TACAS 2018, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part II,
volume 10806 of Lecture Notes in Computer Science, pages 320–339. Springer, 2018.
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