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Certain Conjunctive Query Answering in First-Order Logic

JEF WIJSEN, Université de Mons

Primary key violations provide a natural means for modeling uncertainty in the relational data model. A
repair (or possible world) of a database is then obtained by selecting a maximal number of tuples without
ever selecting two distinct tuples that have the same primary key value. For a Boolean query q, the problem
CERTAINTY(q) takes as input a database db and asks whether q evaluates to true on every repair of db.
We are interested in determining queries q for which CERTAINTY(q) is first-order expressible (and hence in
the low complexity class AC0). For queries q in the class of conjunctive queries without self-join, we provide
a necessary syntactic condition for first-order expressibility of CERTAINTY(q). For acyclic queries (in the
sense of Beeri et al. [1983]), this necessary condition is also a sufficient condition. So we obtain a decision
procedure for first-order expressibility of CERTAINTY(q) when q is acyclic and without self-join. We also show
that if CERTAINTY(q) is first-order expressible, its first-order definition, commonly called certain first-order
rewriting, can be constructed in a rather straightforward way.
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1. INTRODUCTION

Uncertainty is inherent in many database applications and can be modeled in the
relational data model by means of relations that violate their primary key constraint.
Such uncertainty is not necessarily a bad thing. In planning databases, for example,
primary key violations can represent different alternatives. In the conference planning
database of Figure 1, where primary keys are underlined, the exact town of VLDB
2016 is still uncertain (it can be Milan or Naples). On the other hand, even though we
do not know the exact town, we can say that VLDB will be held in Italy. Uncertainty
also arises as an inconvenient but inescapable consequence of data integration and
data exchange. The relation T in Figure 1 combines data from two different sources,
each providing a different country for the city of Ferrara. Existing chase-based data
exchange frameworks [Fagin et al. 2005] provide no solution in this case, because the
chase will fail when it tries to identify Italy and Greece.
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9:2 J. Wijsen

R Conf Year Town
VLDB 2016 Milan
VLDB 2016 Naples

T Town Country
Milan Italy
Naples Italy
Ferrara Italy
Ferrara Greece

Fig. 1. Conference planning database.

Uncertainty by primary key violations gives rise to (exponentially many) “possible
worlds,” which we will call repairs: every repair is obtained by selecting a maximal
number of tuples from each relation without ever selecting two distinct tuples that
agree on their primary key. A Boolean query is then certain if it evaluates to true
on every repair. Our example database has four repairs, each satisfying the Boolean
conjunctive query:

q1 = ∃x∃y
(
R(‘VLDB’, x, y) ∧ T(y, ‘Italy’)

)
,

stating that VLDB will be organized in Italy in some year.
In this article, we are interested in determining the certainty of Boolean queries by

means of a technique known as certain first-order rewriting. To see that q1 is true in
every repair, there is actually no need to evaluate q1 on all repairs. It suffices to check
that the following first-order sentence ϕ1 evaluates to true on the original database.

ϕ1 = ∃x∃y
(

R(‘VLDB’, x, y)

∧∀y
(

R(‘VLDB’, x, y) →
(
T(y, ‘Italy’)

∧∀z
(
T(y, z) → z = ‘Italy’

))))

Formally, a certain first-order rewriting for a Boolean query q is a first-order sentence
ϕ such that for every database db, q evaluates to true on every repair of db if and only
if ϕ evaluates to true on db.

The interest of first-order rewriting is evident: to know whether q is true in every
repair, it suffices to execute ϕ once on the original database. Since ϕ is first-order,
it can be encoded in SQL and executed in polynomial-time data complexity using
standard database technology. An alternative (but equivalent) way for defining first-
order rewriting makes use of the following set, where q is any Boolean query:

CERTAINTY(q) = {db | q evaluates to true on every repair of database db}.
Saying that q has a certain first-order rewriting is then equivalent to saying that the
set CERTAINTY(q) is first-order expressible.

We study the decidability of first-order expressibility of CERTAINTY(q) when q is a
conjunctive query without self-join (i.e., without repeated relation names). This issue is
not new. Fuxman and Miller [2005, 2007] were the first ones to focus on CERTAINTY(q)
for conjunctive queries q without self-join. Their work brings up the following two
interesting problems, where q ranges over the class of Boolean conjunctive queries
without self-join.

(1) Find a syntactic characterization (in terms of the syntax of q) of the frontier between
first-order expressible and not first-order expressible cases of CERTAINTY(q).

(2) Find a syntactic characterization of the frontier between tractable and intractable
cases of CERTAINTY(q).
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Some partial results are known. The problem CERTAINTY(q) is obviously in coNP
for first-order queries q, and it is known that CERTAINTY(q2) is coNP-complete for
q2 = ∃x∃y∃z(R(x, z) ∧ S(y, z)) [Chomicki and Marcinkowski 2005; Fuxman and Miller
2007]. Recently, Wijsen [2010b] pointed out that the two frontiers in (1) and (2) do
not coincide, by providing a query q such that CERTAINTY(q) is in P but not first-
order expressible. In this article, we present a significant breakthrough: we solve (1)
for queries q that are acyclic in the sense of Beeri et al. [1983]. Moreover, our proofs
are constructive: if CERTAINTY(q) is first-order expressible, then a certain first-order
rewriting for q can be effectively constructed.

The set of acyclic conjunctive queries without self-join is a large class of queries of
practical interest. We briefly discuss the remaining syntactic restrictions. First, the
restriction to queries without self-join is not uncommon in uncertain [Fuxman and
Miller 2007] and probabilistic databases [Dalvi and Suciu 2007]. Moreover, it is known
that self-joins quickly result in first-order inexpressibility [Wijsen 2009b]. Second,
the acyclicity restriction implies the existence of join trees, which are helpful in the
technical development. Not all our results, however, require acyclicity.

The article is organized as follows. Section 2 introduces the mathematical concepts
and terminology. Section 3 discusses related work. Section 4 introduces the construct of
attack graph, a novel tool for studying first-order (in)expressibility. Section 5 provides
a sufficient condition under which a conjunctive query q, without self-join, has no
certain first-order rewriting. The main contribution of this article concerns acyclic
conjunctive queries. It is shown in Section 6 that an acyclic conjunctive query has
a unique attack graph, even if it has multiple join trees. Sections 7 and 8 derive a
sufficient and necessary condition for first-order expressibility of CERTAINTY(q) when
q is acyclic and without self-join. Section 9 settles the complexity of determining first-
order expressibility of CERTAINTY(q). Section 10 concludes the article. The appendix
contains some technical helping lemmas and some proofs.

2. NOTATIONS AND TERMINOLOGY

We assume disjoint sets of variables and constants. Variables and constants are sym-
bols. If �x is a sequence of symbols, then vars(�x) is the set of variables that occur in �x.

Let U be a set of variables. A valuation over U is a total mapping θ from U to the
set of constants. Such valuation θ is often extended to be the identity on constants and
on variables not in U .

Key-equal atoms. Every relation name R has a fixed signature, which is a pair [n, k]
with n ≥ k ≥ 1: the integer n is the arity of the relation name and {1, 2, . . . , k} is the
primary key. The relation name R is all-key if n = k. If R is a relation name with
signature [n, k], then R(s1, . . . , sn) is an R-atom (or simply atom), where each si is a
constant or a variable (1 ≤ i ≤ n). Such atom is commonly written as R(�x, �y) where
the primary key value �x = s1, . . . , sk is underlined and �y = sk+1, . . . , sn. An atom is
ground if it contains no variables. Two ground atoms R1(�a1, �b1), R2(�a2, �b2) are key-equal
if R1 = R2 and �a1 = �a2.

Database and repair. A database schema is a finite set of relation names. All con-
structs that follow are defined relative to a fixed database schema.

A database is a finite set db of ground atoms using only the relation names of the
schema. Importantly, a database can contain distinct, key-equal atoms. Intuitively, if
a database contains distinct, key-equal atoms A and B, then only one of A or B can be
true, but we do not know which one. In this respect, the database contains uncertainty.
A database db is consistent if it does not contain two distinct atoms that are key-equal.
A repair of a database db is a maximal (under set inclusion) consistent subset of db.
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Boolean conjunctive query. A Boolean conjunctive query is a finite set q =
{R1(�x1, �y1),. . . , Rn(�xn, �yn)} of atoms.1 This set represents the first-order sentence
∃u1 . . . ∃uk

(
R1(�x1, �y1) ∧ · · · ∧ Rn(�xn, �yn)

)
where u1, . . . , uk are all the variables that occur

in �x1 �y1 . . . �xn�yn. This query q is satisfied by a database db, denoted db |= q, if there exists
a valuation θ over vars(�x1 �y1 . . . �xn�yn) such that for each i ∈ {1, . . . , n}, Ri(θ (�xi), θ (�yi)) ∈ db.
We say that q has a self-join if some relation name occurs more than once in q.

The restriction to Boolean queries simplifies the technical treatment, but is not
fundamental; Section 8 explains how to deal with nonBoolean queries. Since every
relation name has a fixed signature, relevant primary key constraints are implicitly
present in all queries; moreover, primary keys will be underlined.

Certain query answering. Let q be a Boolean conjunctive query and db a database.
We write db|=sure q if for every repair rep of db, we have rep |= q. Given a Boolean
conjunctive query q, CERTAINTY(q) is (the complexity of) the following set.

CERTAINTY(q) = {db | db is a database and db|=sure q}
CERTAINTY(q) is said to be first-order expressible if there exists a first-order sentence
ϕ such that for every database db, db ∈ CERTAINTY(q) if and only if db |= ϕ. The
formula ϕ, if it exists, is called a certain first-order rewriting for q.

Notational conventions. We will use letters A, B, C for ground atoms in a database,
and F, G, H, J for atoms appearing in a query. For F = R(�x, �y), we denote by KVars(F)
the set of variables that occur in �x, and by Vars(F) the set of variables that occur in F,
that is, KVars(F) = vars(�x) and Vars(F) = vars(�x) ∪ vars(�y).

Acyclic conjunctive queries. An intersection tree for a conjunctive query q is an edge-
labeled undirected tree whose vertices are the atoms of q; an edge between atoms F
and G is labeled by the (possibly empty) set Vars(F) ∩ Vars(G). An intersection tree for
q is called a join tree for q if it satisfies the following condition.

Connectedness Condition. Whenever the same variable x occurs in two atoms F and
G, then x occurs in each atom on the unique path linking F and G.

The term Connectedness Condition appears in Gottlob et al. [2002] and refers to the
fact that the set of vertices in which x occurs induces a connected subtree. A conjunctive
query q is acyclic if it has a join tree. The notions of join tree and acyclicity are stan-
dard [Beeri et al. 1983]. The weaker notion of intersection tree is not in the standard
literature, but is derived from the notion of intersection graph defined in Maier [1983,
page 453]. The symbol τ will be used for join trees, and ρ for intersection trees. We

write F
L
� G to denote an edge between F and G with label L.

A join tree is shown in Figure 2 (left). The query {R0(y, z, u), R1(x, y), R2(z, x, u)}
is cyclic and hence has no join tree. An intersection tree for that query is shown in
Figure 8 (left).

3. RELATED WORK

Certain (or consistent) query rewriting goes back to Arenas et al. [1999]. Fuxman and
Miller [2007] were the first ones to focus on certain first-order rewriting of conjunctive
queries under primary key constraints, with applications in the ConQuer system
[Fuxman et al. 2005]. They defined a class of conjunctive queries without self-join,
called Cforest , such that every query in that class has a certain first-order rewriting. At
the same time, however, they recognized that the query q3 = ∃x∃y(R(x, y) ∧ S(x, y)) is

1Up to Section 8, all queries are understood to be Boolean and quantifiers are omitted.
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not in Cforest and yet has a certain first-order rewriting. A larger class of conjunctive
queries (including q3) that admit certain first-order rewriting was presented in Wijsen
[2009a], where it was also shown that a join of two distinct relations outside that class
cannot have a certain first-order rewriting (but no such inexpressibility result was
obtained for joins of three or more relations). The generalization to acyclic joins of any
number of relations was made in Wijsen [2010a].

The current article focuses on conjunctive queries that are acyclic in the sense of Beeri
et al. [1983]. It follows from the proof of Corollary 5 in Wijsen [2009b] that acyclicity is
also implicit in the class Cforest .

Relatively little is known about CERTAINTY(q) for conjunctive queries q that are
cyclic and/or contain self-joins. For the query q4 = ∃x∃y

(
R(x, y) ∧ R(y, a)

)
, with self-

join, it is known that CERTAINTY(q4) is in P but not first-order expressible [Wijsen
2009b]. Fuxman and Miller [2007] claim coNP-hardness of CERTAINTY(q) for queries
q of the following form, for some m ≥ 2.

∃x1 . . . ∃xm
(
R1(x1, x2) ∧ R2(x2, x3) ∧ · · · ∧ Rm−1(xm−1, xm) ∧ Rm(xm, x1)

)
Queries of this form are cyclic if m ≥ 3. Unfortunately, these claims are based on
incorrect arguments, as remarked by Wijsen [2010b], who showed that for q5 =
∃x1∃x2

(
R1(x1, x2) ∧ R2(x2, x1)

)
(that is, for m = 2), it is the case that CERTAINTY(q5)

is in P, albeit not first-order expressible.
In Wijsen [2009b], Wijsen defined a semantic class Crooted of conjunctive queries, and

showed first-order expressibility of CERTAINTY(q) for all q ∈ Crooted . Queries in Crooted

can be cyclic and contain self-joins. However, no membership test for Crooted is known.
From the results in the current article, it follows that if an acyclic conjunctive query
without self-join has a certain first-order rewriting, then it belongs to Crooted .

It is an open conjecture that for every conjunctive query q, without self-join, it is the
case that CERTAINTY(q) is in P or coNP-complete. For queries with exactly two atoms,
such dichotomy was recently shown true [Kolaitis and Pema 2012].

Maslowski and Wijsen [2011] have studied the complexity of the counting vari-
ant of CERTAINTY(q), denoted �CERTAINTY(q). Given a database db, the problem
�CERTAINTY(q) asks to determine the exact number of repairs of db that satisfy q.
They showed that the class of conjunctive queries q without self-join exhibits a di-
chotomy: �CERTAINTY(q) is in P or �P-complete. The problem �CERTAINTY(q) is closely
related to query answering in probabilistic data models [Andritsos et al. 2006; Huang
et al. 2009; Dalvi et al. 2009]. From the probabilistic database angle, our uncertain
databases are a restricted case of block-independent-disjoint probabilistic databases
[Dalvi et al. 2009, 2011]. A block in a database db is a maximal subset of key-equal
atoms. If {R(�a, �b1), . . . , R(�a, �bn)} is a block of size n, then every atom of the block has
a probability of 1/n to be selected in a repair of db. Every repair is a possible world,
and all these worlds have the same probability. Research in probabilistic databases has
studied the complexity of computing the marginal probability of Boolean conjunctive
queries. The problem CERTAINTY(q) is to decide whether this marginal probability is
equal to 1.

The problem of certain conjunctive query answering under primary keys can be
extended in several ways. Grieco et al. [2005] have studied certain query answering
under both key and exclusion dependencies. Lembo et al. [2006] have studied certain
first-order order rewriting of unions of conjunctive queries under key dependencies.

4. ATTACK GRAPH

We compute for each intersection tree a new graph, called attack graph. Attack graphs
will be the tool used for deciding the existence of certain first-order rewritings.
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R0(x, y) = F

R1(y, x) = G R2(a, x) = H

{x, y} {x}

R0(x, y)

R1(y, x) R2(a, x)

Fig. 2. Join tree τ6 (left) and attack graph (right) for query q6. The attack graph is acyclic.

Every atom F in a query q gives rise to a functional dependency among the variables
that occur in F. For example, R(x, y, z) gives rise to {x, y} → {z}. The set K(q) defined
next collects all functional dependencies that arise in atoms of q.

Definition 4.1. Let q be a Boolean conjunctive query. We define K(q) as the following
set of functional dependencies.

K(q) = {KVars(F) → Vars(F) | F ∈ q}
Example 4.2. Let q6 denote the query whose join tree τ6 is shown in Figure 2 (left).

Then, K(q6) contains {x} → {x, y}, {y} → {x, y}, and {} → {x}. The latter functional
dependency arises in the atom R2(a, x) whose primary key value contains no variables.

To understand the statement of the following lemma, notice that a valuation over a
finite set of variables can be regarded as a tuple by treating variables as attributes. For
example, let θ be the valuation (or tuple) over {x, y, z} defined by θ = {x �→ a, y �→ b, z �→
c}. Let μ = {x �→ a, y �→ b, z �→ d}. Then, {θ, μ} satisfies the functional dependency
x → y because θ and μ agree on y. On the other hand, {θ, μ} falsifies x → z because θ
and μ agree on x but disagree on z.

LEMMA 4.3. Let q be a Boolean conjunctive query (possibly with self-joins). Let U be
the set of variables that occur in q. Let db be a consistent database. If θ, μ are valuations
over U such that θ (q), μ(q) ⊆ db, then {θ, μ} |= K(q).

PROOF. Let X → Y be an arbitrary functional dependency in K(q). We can as-
sume an atom R(�x, �y) of q such that X = vars(�x) and Y = vars(�x) ∪ vars(�y). Assume
θ [X] = μ[X]. We obviously have θ (�x) = μ(�x). From θ (q), μ(q) ⊆ db, it follows that
R(θ (�x), θ (�y)), R(μ(�x), μ(�y)) ∈ db. Since θ (�x) = μ(�x) and since db contains no two dis-
tinct key-equal atoms, we have θ (�y) = μ(�y). It follows θ [Y ] = μ[Y ].

Concerning the following definition, recall from relational database theory [Ullman
1988, page 387] that if � is a set of functional dependencies over a set U of attributes
and X ⊆ U , then the attribute closure of X (with respect to �) is the set {A ∈ U | � |=
X → A}. We say that X is closed if X is equal to the closure of X.

Definition 4.4. Let q be a Boolean conjunctive query. Let U be the set of variables
that occur in q. For every F ∈ q, we define

F+,q = {x ∈ U | K(q \ {F}) |= KVars(F) → x}.
In words, F+,q is the attribute closure of the set KVars(F) with respect to the set of

functional dependencies that arise in the atoms of q \ {F}. Note that variables play the
role of attributes in our framework.

We now define attack graphs. Every intersection tree has a unique attack graph.
The vertices of an intersection tree and its attack graph are the same. Attack graphs,
unlike intersection trees, are directed graphs. The construct of attack graph will turn
out to be a powerful tool for characterizing first-order expressibility of CERTAINTY(q).
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In particular, we will show that the following properties hold for all Boolean conjunctive
queries q without self-join

—If ρ is an intersection tree for q such that the attack graph of ρ has a cycle with exactly
two vertices, then CERTAINTY(q) is not first-order expressible. This is Theorem 5.1.

—If q is acyclic, then all join trees for q have the same attack graph. This is Theorem 6.1.
It has the important consequence that we can talk about the attack graph of an acyclic
conjunctive query q, which is obtained by computing the attack graph of any join tree
for q. Proposition 6.4 provides a basic intuition underlying the use of attack graphs.

—If q is acyclic and the attack graph of q has a cycle (of any length), then CERTAINTY(q)
is not first-order expressible. This is Theorem 7.4.

—If q is acyclic and the attack graph of q is acyclic, then CERTAINTY(q) is first-order
expressible. In this case, a certain first-order rewriting for q can be constructed from
a topological sorting of the attack graph. This is Theorem 8.13.

Definition 4.5. Let ρ be an intersection tree for Boolean conjunctive query q. The
attack graph of ρ is a directed graph whose vertices are the atoms of q. There is a
directed edge from F to G if F, G are distinct atoms such that for every label L on the
unique path that links F and G in ρ, we have L � F+,q.

We write F
ρ� G if the attack graph of ρ contains a directed edge from F to G. If

F
ρ� G, we say that F attacks G (or that G is attacked by F). A cycle of size n in the

attack graph is then a sequence of edges F0
ρ� F1

ρ� F2 . . .
ρ� Fn−1

ρ� F0.

Example 4.6. Consider again join tree τ6 for query q6 in Figure 2 (left). To shorten
notation, let F = R0(x, y), G = R1(y, x), and H = R2(a, x), as indicated in Figure 2
(left). The attack graph of τ6 is shown in Figure 2 (right) and is computed as follows.
We have

K(q6 \ {F}) = {{y} → {x, y}, {} → {x}}
K(q6 \ {G}) = {{x} → {x, y}, {} → {x}}
K(q6 \ {H}) = {{x} → {x, y}, {y} → {x, y}}.

We have KVars(F) = {x}, which is already closed with respect to K(q6 \ {F}). Thus,

F+,q6 = {x}. The path from F to G in the join tree is F
{x,y}
� G. Since the label {x, y} is

not contained in F+,q6 , the attack graph contains a directed edge from F to G, that is,

F
τ6� G. The path from F to H in the join tree is F

{x}
� H. Since the label {x} is contained

in F+,q6 , the attack graph contains no directed edge from F to H.
We have KVars(G) = {y} and the closure of {y} with respect to K(q6 \ {G}) is {x, y}.

Thus, G+,q6 = {x, y}. The path from G to F in the join tree is G
{x,y}
� F. Since the label

{x, y} is contained in G+,q6 , the attack graph contains no directed edge from G to F. For
that same reason, the attack graph contains no directed edge from G to H.

Finally, we have KVars(H) = {}, which is already closed with respect to K(q6 \ {H}).
Thus, H+,q6 = {}. The path from H to G in the join tree is H

{x}
� F

{x,y}
� G. Since no label

on that path is contained in H+,q6 , the attack graph contains a directed edge from H to
G, that is, H

τ6� G. It is then obvious that the attack graph must also contain a directed
edge from H to F, that is, H

τ6� F.
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R0(x, y) = F R1(y, x) = G

R2(x, y) = H

R3(x, z) = J

R4(x, z) = K

{x, y} {x, y}

{x}

{x, z}

R0(x, y) R1(y, x)

R2(x, y)

R3(x, z)

R4(x, z)

Fig. 3. Join tree τ7 (left) and attack graph (right) for query q7. The attack graph contains a cycle.

Example 4.7. Consider join tree τ7 for query q7 in Figure 3 (left). Notice that R2 is
all-key. We have

K(q7 \ {F}) ≡ {y → x, x → z}
K(q7 \ {G}) ≡ {x → y, x → z}

K(q7 \ {H}) = K(q7 \ {J}) = K(q7 \ {K}) ≡ {x → y, y → x, x → z}.
Consequently,

F+,q7 = {x, z}
G+,q7 = {y}
H+,q7 = {x, y, z}
J+,q7 = {x, y, z}
K+,q7 = {x, y, z}.

Since no edge label is contained in G+,q7 , the atom G attacks every other atom. The
complete attack graph is shown in Figure 3 (right). It contains a cycle F

τ7� G
τ7� F

of size 2. Notice that F
τ7� G and G

τ7� J, but F
τ7�� J. So attack graphs need not be

transitive.

Definition 4.8. Let q be a Boolean conjunctive query. Let ρ be an intersection tree
for q. If F, G are distinct vertices in ρ, then [F, G]ρ denotes the set of all atoms on the
unique path in ρ linking F and G (including F and G).

LEMMA 4.9. Let q be a Boolean conjunctive query. Let ρ be an intersection tree for q.
Let F, G be distinct atoms of q.

(1) If F
ρ� G, then KVars(G) � F+,q.

(2) If F
ρ� G and H ∈ [F, G]ρ \ {F}, then F

ρ� H.
(3) If F

ρ� G, then K(q \ [F, G]ρ) |= KVars(F) → F+,q.

PROOF.

(1) Proof by contraposition. Assume KVars(G) ⊆ F+,q, that is, K(q \ {F}) |= KVars(F) →
KVars(G). Let L be the last label on the path in ρ from F to G. Since KVars(G) →
Vars(G) belongs to K(q \ {F}) and L ⊆ Vars(G), it follows K(q \ {F}) |= KVars(G) → L.

By transitivity, K(q \ {F}) |= KVars(F) → L. Then L ⊆ F+,q, hence F
ρ

�� G.
(2) Straightforward.
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(3) Assume F
ρ� G. The computation of the attribute closure F+,q by means of a

standard algorithm [Abiteboul et al. 1995, page 165] corresponds to constructing a
maximal sequence

KVars(F) = S0 H1
S1 H2

...
...

Sk−1 Hk
Sk,

where
(a) S0 � S1 � · · · � Sk−1 � Sk; and
(b) for every i ∈ {1, 2, . . . , k},

(i) Hi ∈ q\{F}. Thus,K(q \ {F}) contains the functional dependency KVars(Hi) →
Vars(Hi).

(ii) KVars(Hi) ⊆ Si−1 and Si = Si−1 ∪ Vars(Hi).
Then, Sk = F+,q. Assume towards a contradiction Hi ∈ [F, G]ρ for some i ∈
{1, 2, . . . , k}. Notice that KVars(Hi) ⊆ F+,q by the definition of Hi. By item (1) in
the current proof, F

ρ

�� Hi. By item (2) in the current proof, F
ρ� Hi, a contradic-

tion. We conclude by contradiction that Hi /∈ [F, G]ρ . It follows K(q \ [F, G]ρ) |=
KVars(F) → F+,q.

5. INEXPRESSIBILITY RESULT

This section applies to Boolean conjunctive queries without self-join, which can be
cyclic or acyclic. We provide a necessary condition for such queries to have a certain
first-order rewriting.

The following theorem is proved by using Hanf-locality of first-order logic, which is
defined in Chapter 4 of Libkin [2004]. We prefer not to copy-paste these definitions here,
because they are lengthy, and the treatment in Libkin [2004] is excellent. The following
proof is involved and applies to any conjunctive query without self-join; a particular
instance of the proof for the query {R(x, y), S(y, x)} appears in Wijsen [2010b].

THEOREM 5.1. Let q be a Boolean conjunctive query without self-join. If q has an
intersection tree ρ whose attack graph has a cycle of size 2, then CERTAINTY(q) is not
first-order expressible.

PROOF. Let U be the set of variables that occur in q. Let ρ be an intersection tree
for q whose attack graph contains a cycle of size 2. Thus, we can assume two distinct
atoms F and G such that F

ρ� G and G
ρ� F.

Assume towards a contradiction that ψ is a first-order sentence such that for every
database db, db ∈ CERTAINTY(q) if and only if db |= ψ . From Theorem 4.12 in Libkin
[2004], it follows that ψ is Hanf-local. Let d ≥ 0 be the Hanf-locality rank of ψ .

Choose integer msuch that m > d. We show the construction of two databases, called
dbyes and dbno , such that

—dbno �∈ CERTAINTY(q);
—dbyes ∈ CERTAINTY(q); and
—dbyes |= ψ ⇐⇒ dbno |= ψ .

This leads to a contradiction that concludes the proof. The following sequences of
variables are defined in the construction.
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G+↪q

F+↪q

I

1 b 1 d1 θ1

2 b 1 d2 θ2

2 b 2 d3 θ3

3 b 2 d4 θ4

3 b 3 d5 θ5

...
...

...
...

...
m b m d2m−1 θ2m−1

m+1 b m d2m θ2m

m+1 m+1 d2m+1 θ2m+1

1 b 1 h1 µ1

2 b 1 h2 µ2

2 b 2 h3 µ3

...
...

...
...

...
m b m h2m−1 µ2m−1

m+1 b m h2m µ2m

m+1 m+1 h2m+1 µ2m+1

Fig. 4. Valuations used in the construction of dbyes and dbno .

—Let �x be the variables (in some fixed order) of F+,q \G+,q. Obviously, KVars(F) ⊆ F+,q.
By item (1) in Lemma 4.9, KVars(F) � G+,q. It follows that �x contains at least one
variable.

—Let �z be the variables of G+,q \ F+,q.
—Let �y be the variables of F+,q ∩ G+,q.
—Let �u contain all other variables, that is, �u contains all variables in (U \ F+,q) \ G+,q.

If we treat variables as attributes, a valuation over U is a tuple over U (as illustrated
in the paragraph preceding Lemma 4.3). Let I be the set of valuations (or tuples) over
U shown in Figure 4. The intended meaning is that distinct letters and/or subscripts
denote distinct constants. The boxes in Figure 4 highlight where constants are reused
in different valuations. In particular, for all i, j ∈ {1, 2, . . . , 2m + 1}, for all v ∈ U ,
θi(v) = μ j(v) ⇐⇒ v ∈ vars(�y). Moreover, for all i, j ∈ {1, 2, . . . , 2m+ 1} such that i < j,
for all v ∈ U \ vars(�y),

(1) θi(v) = θ j(v) if and only if i + 1 = j and one of the following conditions is true:
—v ∈ vars(�x) and i is even; or
—v ∈ vars(�z) and i is odd.

(2) μi(v) = μ j(v) if and only if i + 1 = j and one of the following conditions is true:
—v ∈ vars(�x) and i is even; or
—v ∈ vars(�z) and i is odd.

Let

dbθ =
⋃

{θi(q) | 1 ≤ i ≤ 2m+ 1}
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θ1(F ) θ1(G)

θ2(F ) θ2(G)

θ3(F ) θ3(G)

θ2m(F ) θ2m(G)

θ2m+1(F ) θ2m+1(G)

µ1(F ) µ1(G)

µ2(F ) µ2(G)

µ3(F ) µ3(G)

µ2m(F ) µ2m(G)

µ2m+1(F ) µ2m+1(G)

db

Fig. 5. Case m = 2. The figure shows the atoms having the same relation name as F or G in db. Conflicting,
key-equal atoms are linked by a double-arrowed edge.

dbμ =
⋃

{μi(q) | 1 ≤ i ≤ 2m+ 1}
db = dbθ ∪ dbμ.

Notice that the only constants common to dbθ and dbμ occur in �b = θ1(�y). We
now show that our construction guarantees three remarkable properties. Intuitively,
Properties 5.2 and 5.3 imply that the only pairs of key-equal atoms of db are the ones
depicted in Figure 5. For Property 5.4, say that two distinct atoms A, B ∈ db are joinable
(with respect to q) if A, B ∈ ω(q) ⊆ db for some valuation ω over U . Then, Property 5.4
expresses that two distinct atoms in Figure 5 are joinable only if they appear on the
same horizontal line. That is, θi(F) and θ j(G) are joinable only if i = j; likewise, μi(F)
and μ j(G) are joinable only if i = j; finally, θi(F) and μ j(G) are not joinable.

PROPERTY 5.2.

(1) for every even number i ∈ {1, 2, . . . , 2m}, θi(F) and θi+1(F) are distinct, key-equal
atoms;

(2) for every even number i ∈ {1, 2, . . . , 2m}, μi(F) and μi+1(F) are distinct, key-equal
atoms;

(3) for every odd number i ∈ {1, 2, . . . , 2m}, θi(G) and θi+1(G) are distinct, key-equal
atoms; and

(4) for every odd number i ∈ {1, 2, . . . , 2m}, μi(G) and μi+1(G) are distinct, key-equal
atoms.

PROOF. We show the first item; the proofs of the other items are symmetrical. Let i
be an even number in {1, 2, . . . , 2m}. Since KVars(F) ⊆ F+,q is obvious, our construction
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guarantees that θi(F) and θi+1(F) are key-equal. We show next that θi(F) and θi+1(F)
are distinct.

Let L be the first label on the path from F to G. From F
ρ� G, it follows L � F+,q. We

can assume a variable u ∈ L \ F+,q. Since u ∈ L, we have u ∈ Vars(F). Since u �∈ F+,q,
our construction ensures θi(u) �= θi+1(u). Consequently, θi(F) �= θi+1(F).

PROPERTY 5.3. For every pair of distinct, key-equal atoms A, B ∈ db, exactly one of
the following holds.

(1) for some even number i ∈ {1, 2, . . . , 2m}, {A, B} = {θi(F), θi+1(F)};
(2) for some even number i ∈ {1, 2, . . . , 2m}, {A, B} = {μi(F), μi+1(F)};
(3) for some odd number i ∈ {1, 2, . . . , 2m}, {A, B} = {θi(G), θi+1(G)}; or
(4) for some odd number i ∈ {1, 2, . . . , 2m}, {A, B} = {μi(G), μi+1(G)}.

PROOF. Assume A, B ∈ db are distinct, key-equal atoms having the same relation
name as some atom H of q. By construction (see Figure 4), KVars(H) ⊆ F+,q or
KVars(H) ⊆ G+,q (or both). Assume KVars(H) ⊆ F+,q (the case where KVars(H) ⊆ G+,q

is symmetrical).
We show that H = F or H = G. Assume, towards a contradiction, H �= F and

H �= G. Since K(q \ {F}) contains the functional dependency KVars(H) → Vars(H),
we have Vars(H) ⊆ F+,q. By our construction, the only possible way of having two
distinct key-equal atoms is then KVars(H) ⊆ vars(�y) and Vars(H) ∩ vars(�x) �= {}. From
KVars(H) ⊆ vars(�y), it follows KVars(H) ⊆ G+,q. Since K(q \ {G}) contains the functional
dependency KVars(H) → Vars(H), we have Vars(H) ⊆ G+,q. Since Vars(H) ⊆ F+,q, it
follows Vars(H) ⊆ vars(�y), hence Vars(H) ∩ vars(�x) = {}, a contradiction. We conclude
by contradiction that H = F or H = G.

Assume A, B have the same relation name as F (the case where A, B have the
same relation name as G is symmetrical). Since G

ρ� F, we have KVars(F) � G+,q

by item (1) in Lemma 4.9. Hence, we can assume a variable x ∈ KVars(F) ∩ vars(�x).
From our construction, it follows that for some even i ∈ {1, 2, . . . , 2m}, we have either
{A, B} = {θi(F), θi+1(F)} or {A, B} = {μi(F), μi+1(F)}.

By a symmetrical reasoning, if A, B are key-equal atoms with the same relation
name as G, then for some odd i ∈ {1, 2, . . . , 2m}, we have either {A, B} = {θi(G), θi+1(G)}
or {A, B} = {μi(G), μi+1(G)}.

The key-equal atoms are schematized in Figure 5.

PROPERTY 5.4. For every valuation ω over U such that ω(q) ⊆ db, there exists ζ ∈ I
such that ω(F) = ζ (F) and ω(G) = ζ (G).

PROOF. Let ω be a valuation over U such that ω(q) ⊆ db. Assume without loss of
generality i ∈ {1, 2, . . . , 2m+ 1} such that ω(F) = θi(F) (the case where ω(F) = μi(F)

is symmetrical). Assume that for some edge H
L
� J on the path between F and G in

ρ, we have ω(H) = θi(H) and ω(J) = ζ (J) for some ζ ∈ I. Since F
ρ� G and G

ρ� F, we
have L � F+,q and L � G+,q. Two cases can occur.

(1) L � F+,q ∪ G+,q. We can assume u ∈ L such that u ∈ vars(�u). Clearly, u ∈ Vars(H)
and u ∈ Vars(J). From ω(H) = θi(H), it follows ω(u) = θi(u). From ω(J) = ζ (J),
it follows ω(u) = ζ (u). Consequently, θi(u) = ζ (u). Since no two distinct tuples of I
agree on u, we have θi = ζ .

(2) L ⊆ F+,q∪G+,q. In this case, we can assume x, z ∈ L such that z �∈ F+,q and x �∈ G+,q.
That is, x ∈ vars(�x) and z ∈ vars(�z). By the same reasoning as before, θi(z) = ζ (z) and
θi(x) = ζ (x). Since no two distinct tuples of I agree on both x and z, we have θi = ζ .
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θ1(F ) α θ1(G)

θ2(F ) θ2(G)

θ3(F ) θ3(G)

θ2m(F ) θ2m(G)

θ2m+1(F ) θ2m+1(G)
β

µ1(G)
γ

µ2(F ) µ2(G)

µ3(F ) µ3(G)

µ2m(F ) µ2m(G)

µ2m+1(F )
δ

dbyes

θ1(F ) α θ1(G)

θ2(F ) θ2(G)

θ3(F ) θ3(G)

θ2m(F ) θ2m(G)

θ2m+1(F )
δ

µ1(G)
γ

µ2(F ) µ2(G)

µ3(F ) µ3(G)

µ2m(F ) µ2m(G)

µ2m+1(F ) µ2m+1(G)
β

dbno

Fig. 6. Case m = 2. The figure shows the atoms having the same relation name as F or G in dbyes (left) and
in dbno (right). Conflicting, key-equal atoms are linked by a double-arrowed edge.

We conclude ζ = θi. It follows that ω(J) = θi(J) for every atom J on the path from F
to G. In particular, ω(G) = θi(G). Thus, for every valuation ω over U , ω(q) ⊆ db implies
that for some ζ ∈ I, ω(F) = ζ (F) and ω(G) = ζ (G).

The databases dbyes and dbno are defined as follows.

dbyes = db \ {μ1(F), μ2m+1(G)}
dbno = db \ {μ1(F), θ2m+1(G)}

The difference between dbyes and dbno is in the atoms having the same relation name
as F or G, as schematized in Figure 6 for the case m = 2. We have the following.

(1) dbno �∈ CERTAINTY(q). Let rep be a repair of dbno containing as subsets both
{θ1(F), θ2(G), θ3(F), θ4(G), . . . , θ2m(G), θ2m+1(F)} and {μ1(G), μ2(F), μ3(G), μ4(F), . . . ,
μ2m(F), μ2m+1(G)}. Intuitively, with respect to dbno in Figure 6, rep never selects
two atoms that appear on the same horizontal line. It follows from Property 5.3
that such repair rep exists. By Property 5.4, rep �|= q.

(2) dbyes ∈ CERTAINTY(q). Clearly, dbθ ⊆ dbyes and every repair of dbyes contains
a repair of dbθ . It can be easily seen that for every repair rep of dbθ , there exists
i ∈ {1, 2, . . . , 2m + 1} such that θi(q) ⊆ rep. Intuitively, with respect to dbyes in
Figure 6, it is impossible to select one atom from every pair of key-equal atoms
without ending up with two atoms that appear on the same horizontal line.

Finally, we show that dbyes and dbno are indistinguishable by ψ . Notice that if
R(s1, . . . , sr) ∈ q and si is a constant or a variable in �y (1 ≤ i ≤ r), then all R-atoms of
dbyes agree on position i (likewise for dbno). Such positions, called constant positions
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1

1

2

2

m+1

m+1

d1

d2

dm+1

d2m

d2m+1

1

1

2

2

m+1

m+1

h1

h2

hm+1

h2m

h2m+1

Fig. 7. Case m = 2. Schematized Gaifman graph of I in case �y is empty. An edge between two vectors means
that every value in either vector is adjacent with each value in the other vector.

hereafter, cannot be used for distinguishing dbyes and dbno . In the following we
assume that there are no constant positions (in particular, �y is empty).

Let G(I) denote the Gaifman graph of I, which is schematized in Figure 7. For every
two constants k, l that occur in I (see Figure 4), we denote by dI(k, l) the distance be-
tween kand l in G(I). Likewise for the Gaifman graphs of dbyes and dbno . Since G(dbyes )
and G(dbno) are subgraphs of G(I), it follows dI(k, l) ≤ ddbyes

(k, l) and dI(k, l) ≤ ddbno
(k, l).

It is easy to verify that dI(�a1�c1 �d1, �am+1�cm+1 �d2m+1) = dI(�c1, �am+1) = 2m − 1. Assume
constant k such that dI(k, �a1�c1 �d1) ≤ d, where d is the Hanf-locality rank of ψ . By the tri-
angle inequality, dI(k, �am+1�cm+1 �d2m+1) ≥ 2m−1−d. From m > d (see the choice of mat the
beginning of the current proof), it follows 2m− 1 > 2d, hence dI(k, �am+1�cm+1 �d2m+1) > d.

Call two constants k and l homologous if k and l occur in the same column of I. It
can now be easily verified that each isomorphism type τ of d-neighborhood has the
same number of constants realizing τ in dbyes and dbno (intuitively, in Figure 6,
Greek letters denote positions in dbyes and dbno that are indistinguishable by ψ ; the
important thing to notice is that β and δ are swapped).

—Constants close to α. Every constant k such that dI(k, �a1�c1 �d1) ≤ d realizes the same
isomorphism type of d-neighborhood in dbyes and dbno .

—Constants close to β. Let k and l be homologous constants such that
dI(k, �am+1�cm+1 �d2m+1) = dI(l, �em+1 �gm+1 �h2m+1) ≤ d. Then, the d-neighborhood of k
in dbyes is isomorphic to the d-neighborhood of l in dbno .

—Constants close to γ . Every constant k such that dI(k, �e1 �g1 �h1) ≤ d realizes the same
isomorphism type of d-neighborhood in dbyes and dbno .

—Constants close to δ. Let k and l be homologous constants such that
dI(k, �em+1 �gm+1 �h2m+1) = dI(l, �am+1�cm+1 �d2m+1) ≤ d. Then, the d-neighborhood of k
in dbyes is isomorphic to the d-neighborhood of l in dbno .

Finally, two homologous constants not referred to in the preceding items (i.e.,
constants far removed from the positions α, β, γ , δ) realize the same isomorphism
type of d-neighborhood in dbyes and dbno . It follows dbyes �d dbno . Since d is the
Hanf-locality rank of ψ , it follows dbyes |= ψ ⇐⇒ dbno |= ψ .

Technically, the absence of constant positions is important in the aforesaid appli-
cation of Hanf-locality. Indeed, assume that all R-atoms of dbyes agree on position
i, that is, R(s1, . . . , sr), R(t1, . . . , tr) ∈ dbyes implies si = ti (1 ≤ i ≤ r). Then, for every
constant a that occurs in some R-atom of dbyes , the 2-neighborhood of a includes all
R-atoms of dbyes (likewise for dbno). To show that the theorem remains valid in the
presence of constant positions, we reason as follows. Let k be the quantifier rank of
ψ . Our results so far imply that in the absence of constant positions, the value of m
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R0(y, z, u)

R1(x, y) R2(z, x, u)

{y} {z, u}

R0(y, z, u)

R1(x, y) R2(z, x, u)

Fig. 8. Intersection tree ρ8 (left) and attack graph (right) for the cyclic query q8. The attack graph is cyclic.
Notice that ρ8 is not a join tree.

R0(y, z, u)R1(x, y)

R2(z, x, u)

{x} {z, u}

R0(y, z, u)R1(x, y)

R2(z, x, u)

Fig. 9. Another intersection tree ρ′
8 (left) and attack graph (right) for the cyclic query q8. The attack graph

is acyclic. Notice that ρ′
8 is not a join tree.

can be chosen sufficiently large such that the duplicator has a winning strategy in a
k-round Ehrenfeucht-Fraı̈ssé game on dbyes and dbno . This winning strategy can be
easily extended to deal with constant positions: if the spoiler selects a constant that
occurs at a constant position in one database, then the duplicator selects the same
constant in the other database. This concludes the proof. �

Theorem 5.1 applies to both cyclic and acyclic queries. Consider the cyclic query
q8 = {R0(y, z, u), R1(x, y), R2(z, x, u)}. Figure 8 shows an intersection tree for q8 whose
attack graph is cyclic. It follows that CERTAINTY(q8) is not first-order expressible.

A conjunctive query with n ≥ 2 atoms has nn−2 distinct intersection trees [Cayley
1889], and it happens that some, but not all, intersection trees have an attack graph
with a cycle of size 2. This is illustrated in Figure 9, which shows that the query q8 also
has an intersection tree with an acyclic attack graph. Nevertheless, the focus in the
remainder of this article will be on intersection trees that satisfy the Connectedness
Condition, also called join trees. We will show hereafter that if a conjunctive query q
has a join tree (and hence is acyclic), then all join trees for q have the same attack
graph. What is more, we will show that for acyclic queries, a stronger converse of
Theorem 5.1 is true: if an acyclic Boolean conjunctive query q, without self-join, has no
certain first-order rewriting, then each join tree for q has an attack graph with a cycle
of size 2 (all these attack graphs are actually identical). This will eventually lead to a
test for first-order expressibility of CERTAINTY(q) that runs in quadratic time in the
length of q.

6. ATTACK GRAPHS OF ACYCLIC CONJUNCTIVE QUERIES

From now on, we focus on conjunctive queries that have a join tree, which are called
acyclic in the literature [Beeri et al. 1983]. In general, an acyclic conjunctive query can
have different join trees; we show that all these join trees have the same attack graph.

THEOREM 6.1. Let q be an acyclic Boolean conjunctive query. Let τ1 and τ2 be two
join trees for q. The attack graphs of τ1 and τ2 are identical.

PROOF. Let F, G be distinct atoms of q such that F τ1� G. We show F τ2� G. The proof
runs by induction on the size of [F, G]τ1 .
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For the induction basis, let [F, G]τ1 = {F, G}. Thus, the join tree τ1 contains an edge
between F and G. Since F τ1� G, we can assume a variable x ∈ Vars(F) ∩ Vars(G) such
that x �∈ F+,q. By the Connectedness Condition, the variable x is an element of every
label on the unique path between F and G in τ2. It follows F τ2� G.

For the induction step, assume that the size of [F, G]τ1 is k with k > 2. Let H ∈ [F, G]τ1

such that τ1 contains an edge between H and G. That is, H is the atom on the path
between F and G in τ1 such that H is incident with G. Notice the following.

—Since F τ1� G, we can assume a variable x ∈ Vars(H) ∩ Vars(G) such that x �∈ F+,q.
By the Connectedness Condition, the variable x is an element of every label on the
unique path between H and G in τ2.

—By item (2) in Lemma 4.9, F τ1� H. By the induction hypothesis, F τ2� H. Thus, every
label on the unique path between F and H in τ2 contains a variable that does not
belong to F+,q.

Consequently, every label on the unique path between F and G in τ2 contains a variable
that does not belong to F+,q. It follows F τ2� G.

By symmetry, for all distinct atoms F, G of q, F τ2� G implies F τ1� G. Thus, the attack
graphs of τ1 and τ2 contain the same directed edges. This concludes the proof.

Theorem 6.1 has the important consequence that we can unambiguously talk about
the attack graph of an acyclic Boolean conjunctive query, in the sense of the following
definition.

Definition 6.2. Let q be an acyclic Boolean conjunctive query. The attack graph of q
is defined as the attack graph of any join tree τ for q.

We will write F
q� G if the attack graph of q contains a directed edge from F to G. If

q is clear from the context, we write F � G instead of F
q� G.

We now provide a strong intuition underlying attack graphs, by showing an equiv-
alence between edges in the attack graph and the existence of particular databases,
called witness databases.

Definition 6.3. Let q be an acyclic Boolean conjunctive query, without self-join,
containing distinct atoms F = R(�x, �y) and G = S(�u, �w). Let U be the set of variables
that occur in q. A witness database for (F, G) is a database db with two distinct, key-
equal R-atoms (call them A1 and A2) and two S-atoms (call them B1 and B2) that are
not key-equal such that:

(1) db has exactly two repairs, namely db \ {A1} and db \ {A2}, both satisfying q;
(2) there exists a valuation θ1 over U such that A1, B1 ∈ θ1(q) ⊆ db;
(3) there exists a valuation θ2 over U such that A2, B2 ∈ θ2(q) ⊆ db; and
(4) there exists no valuation μ over U such that A1, B2 ∈ μ(q) ⊆ db or A2, B1 ∈ μ(q) ⊆

db.

The last three items in Definition 6.3 say that A1 “joins” with B1 but not with B2; and
that A2 “joins” with B2 but not with B1. For example, given the query q6 of Figure 2, a
witness database for

(
R0(x, y), R1(y, x)

)
is {R0(a, 1), R0(a, 2), R1(1, a), R1(2, a), R2(a, a)}.
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PROPOSITION 6.4. Let q be an acyclic Boolean conjunctive query, without self-join. Let
F, G be two distinct atoms of q. The following two statements are equivalent.

(1) F attacks G.
(2) There exists a witness database for (F, G).

PROOF. Let U be the set of variables that occur in q.
1 ⇒ 2 Let θ1, θ2 be valuations over U such that for every x ∈ U , θ1(x) = θ2(x) if

and only if x ∈ F+,q. Let db = θ1(q) ∪ θ2(q). Let A1 = θ1(F), A2 = θ2(F), B1 = θ1(G),
and B2 = θ2(G). We prove that db is a witness database for (F, G), by showing that it
satisfies all conditions in Definition 6.3.

(1) Since KVars(F) ⊆ F+,q is obvious, A1 and A2 are key-equal. Since F � G, Vars(F) �
F+,q. It follows A1 �= A2. Let H ∈ q such that H �= F. Two cases can occur.
—If KVars(H) ⊆ F+,q, then Vars(H) ⊆ F+,q, hence θ1(H) = θ2(H).
—If KVars(H) � F+,q, then θ1(H) and θ2(H) are not key-equal. In particular, since

F � G, we have KVars(G) � F+,q by Lemma 4.9. Thus B1 and B2 are not key-
equal.

Consequently, A1 and A2 are the only distinct, key-equal atoms of db. It follows
that db\{A1} and db\{A2} are the two repairs of db. Both repairs satisfy q, because
θ2(q) ⊆ db \ {A1} and θ1(q) ⊆ db \ {A2}.

(2) Obviously, A1, B1 ∈ θ1(q) ⊆ db.
(3) Obviously, A2, B2 ∈ θ2(q) ⊆ db.
(4) Assume that μ is a valuation such that A1 ∈ μ(q) ⊆ db. We show that μ(G) =

B1. Let τ be a join tree for q. Let F = H0

L1

� H1

L2

� H2 . . .
Ln

� Hn = G be the
path in τ between F and G. We show by induction on increasing i that for each
i ∈ {0, 1, . . . , n}, μ(Hi) = θ1(Hi). The induction basis, i = 0, holds obviously. For
the induction step, i → i + 1, the induction hypothesis is μ(Hi) = θ1(Hi). Since
F τ� G, we can assume x ∈ Li+1 = Vars(Hi) ∩ Vars(Hi+1) such that x �∈ F+,q, hence
θ1(x) �= θ2(x). From μ(Hi) = θ1(Hi), it follows μ(x) = θ1(x). If μ(Hi+1) = θ2(Hi+1), then
μ(x) = θ2(x), a contradiction. We conclude by contradiction that μ(Hi+1) = θ1(Hi+1),
so the induction step holds. For i = n, we obtain μ(G) = B1.
By symmetry, if μ is a valuation such that A2 ∈ μ(q) ⊆ db, then μ(G) = B2.

So it is correct to conclude that db is a witness database for (F, G).
2 ⇒ 1 Let db0 be a witness database for (F, G). We can assume valuations θ1 and

θ2 as in Definition 6.3, with A1 = θ1(F), A2 = θ2(F), B1 = θ1(G), and B2 = θ2(G). It is
obvious that db = θ1(q) ∪ θ2(q) is a witness database for (F, G). Let q′ = q \ {F} and
db′ = db \ {A1, A2}. Since db′ is consistent by the first item in Definition 6.3 and since
θ1(q′), θ2(q′) ⊆ db′, it follows by Lemma 4.3 that {θ1, θ2} |= K(q′).

Assume towards a contradiction F �� G. Let τ be a join tree for q. We can assume
an edge e with label L on the unique path in τ between F and G such that L ⊆ F+,q.
Let τF and τG be the two join trees obtained from τ by removing the edge e, such that
F ∈ τF and G ∈ τG. This corresponds to the situation depicted in Figure 12. Let μ be
the valuation over U such that for every x ∈ U ,

μ(x) =
{

θ1(x) if x occurs in τF
θ2(x) if x occurs in τG.

Notice that if x occurs in both τF and τG, then, by the Connectedness Condition, x
occurs in L. Since A1 and A2 are key-equal, θ1 and θ2 agree on KVars(F). From {θ1, θ2} |=
K(q \ {F}), it follows that θ1 and θ2 agree on F+,q. Since L ⊆ F+,q, valuations θ1 and
θ2 agree on each x ∈ L. Thus, μ is well-defined. We have μ(F), μ(G) ∈ μ(q) ⊆ db with
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R0(x, y, z) = F

R1(x, y) = G R2(z, x) = H

{x, y} {x, z}

R0(x, y, z) = F

R1(x, y) = G R2(z, x) = H

Fig. 10. Join tree τ9 (left) and attack graph (right) for query q9. The attack graph is cyclic.

μ(F) = A1 and μ(G) = B2, contradicting the fourth item in Definition 6.3. We conclude
by contradiction F � G.

7. ACYCLIC CONJUNCTIVE QUERIES WITH CYCLIC ATTACK GRAPHS

It is important to understand that the attack graph of an acyclic conjunctive query can
be cyclic (see Figure 3) or acyclic (see Figure 2). In this section, we show that if the
attack graph of an acyclic conjunctive query has a cycle, then it has a cycle of size 2.

Definition 7.1. Let q be an acyclic Boolean conjunctive query. Let F0 � F1 �
F2 . . . � Fn−1 � F0 be a cycle (of size n) in the attack graph of q. This cycle is said to be
shortest if the attack graph of q contains no cycle of (strictly) smaller size.

Example 7.2. Consider the join tree τ9 of query q9 shown in Figure 10 (left). The
attack graph of q9 is shown at the right. The cycles G � H � G and F � H � F, both
of size 2, are shortest. The cycle F � H � G � F of size 3 is not shortest.

The proof of the following lemma is given in Appendix A.

LEMMA 7.3. Let q be an acyclic Boolean conjunctive query. Every shortest cycle in the
attack graph of q has size 2.

THEOREM 7.4. Let q be an acyclic Boolean conjunctive query without self-join. If the
attack graph of q is cyclic, then CERTAINTY(q) is not first-order expressible.

PROOF. If the attack graph of q is cyclic, it must contain a shortest cycle of some size
n. By Lemma 7.3, n = 2. The desired result then follows by Theorem 5.1.

8. ACYCLIC CONJUNCTIVE QUERIES WITH ACYCLIC ATTACK GRAPHS

We show that the inverse of Theorem 7.4 is also true. That is, if an acyclic conjunctive
query q, without self-join, has an acyclic attack graph, then q has a certain first-order
rewriting. Moreover, we show how such first-order rewriting can be constructed.

We relax our assumption that all variables in a conjunctive query q are (implic-
itly) existentially quantified. Hereafter, the notation q(x1, x2, . . . , xn) is used to indicate
that variables x1, x2, . . . , xn are free in q (while all other variables of q remain existen-
tially quantified). The notion of certain first-order rewriting naturally extends to such
nonBoolean queries with free variables.

Definition 8.1. Let q(x1, x2, . . . , xn) be a conjunctive query with free variables
x1, x2, . . . , xn. We say that a first-order formula ϕ(x1, x2, . . . , xn) is a certain first-order
rewriting for q(x1, x2, . . . , xn) if for every database db, for all constants a1, a2, . . . , an,

db|=sure q(a1, a2, . . . , an) ⇐⇒ db |= ϕ(a1, a2, . . . , an).

Definition 8.3 introduces our “rewrite function” Rewrite(F, q) for any Boolean con-
junctive query q containing atom F. The definition assumes that we already know a
certain first-order rewriting ϕ(�v) for the smaller, nonBoolean query q \ {F} whose free
variables are Vars(F). In front of Theorem 8.13, we will argue that ϕ(�v) can be obtained
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by recursive application of the same rewrite function. Lemma 8.6 states that, under
some condition, our rewrite function produces a certain first-order rewriting for q.

The first-order sentence ϕ1 shown in Section 1 was obtained by our rewrite function.
More technical details are illustrated by the following example.

Example 8.2. Consider the Boolean singleton query {R(x, x, y, y, a)} where a is a
constant. Obviously, this query is true in every repair of a database db if and only if
for some constant b, db contains an R-atom with primary key value b such that for
every R-atom R(b, c1, c2, c3, c4) of db, it is the case that c1 = b (matching variable x)
and c2 = c3 (matching variable y) and c4 = a. This condition is obviously expressed by
the following first-order sentence ϕ.

ϕ = ∃x∃z1∃z2∃z3∃z4

(
R(x, z1, z2, z3, z4)

∧∀z1∀z2∀z3∀z4

(
R(x, z1, z2, z3, z4) → (

z1 = x ∧ z3 = z2 ∧ z4 = a
)))

Clearly, the beginning of the formula can be simplified to closer reflect the original
query.

ϕ ≡ ∃x∃y
(

R(x, x, y, y, a)

∧∀z1∀z2∀z3∀z4

(
R(x, z1, z2, z3, z4) → (

z1 = x ∧ z3 = z2 ∧ z4 = a
)))

Notice that there is no need for a new variable z2, because the variable y can be “reused”
instead.

ϕ ≡ ∃x∃y
(

R(x, x, y, y, a)

∧∀z1∀y∀z3∀z4

(
R(x, z1, y, z3, z4) → (

z1 = x ∧ z3 = y ∧ z4 = a
)))

The general intuition behind the rewrite function of Definition 8.3 goes as follows.
Let F = R(�x, y1, y2, . . . , yn), an atom of q. It is easy to see that db|=sure q if database db
contains an R-atom R(�b, �c) such that:

—there exists a (unique) valuation θ over vars(�x) such that θ (�x) = �b; and
—for each R-atom R(�b, c1, c2, . . . , cn) in db, we can extend θ to a valuation θ+ over

Vars(F) such that θ+(yi) = ci for 1 ≤ i ≤ n and such that db|=sure θ+(q′), where
q′ = q \ {F}. We assume that R does not occur in q′ (no self-join).

Concerning the latter item, to determine whether valuation θ can be extended from
vars(�x) to Vars(F), we sequentially inspect θ+(y1), θ+(y2), θ+(y3), . . . in that order. As-
sume that the value of θ+ has already been settled for y1, y2, . . . , yi−1. Then, two cases
are possible for yi.

(1) If yi is a variable that does not occur in 〈�x, y1, . . . , yi−1〉, then we will simply let
θ+(yi) be identical to ci. Correspondingly, in the first item of Definition 8.3, we will
let yi and zi be identical. In Example 8.2, this happens when y replaces z2.

(2) Otherwise yi is a variable that occurs in 〈�x, y1, . . . , yi−1〉 or yi is a constant. We
distinguish three subcases.
—If yi ∈ vars(�x), then θ maps yi to a constant. Then θ+ does not exist unless

ci = θ (yi). In Example 8.2, this case leads to the equality z1 = x.
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—If yi is a variable that occurs in 〈y1, . . . , yi−1〉 but not in �x, then θ+(yi) has already
been settled and it must be the case that ci = θ+(yi). In Example 8.2, this case
leads to the equality z3 = y.

—If yi is a constant, then it must be the case that ci = yi, because every valuation is
the identity on constants. In Example 8.2, this case leads to the equality z4 = a.

All three subcases are covered by the condition zi = yi in the second item of
Definition 8.3.

Definition 8.3. Let q be a Boolean conjunctive query without self-join. Let R(�x, �y)
be an atom of q, and let �y = 〈y1, y2, . . . , yn〉. Notice that �y can contain constants and
repeated variables. Let �z = 〈z1, z2, . . . , zn〉 be a sequence of distinct variables and let C
be a conjunction of equalities constructed as follows for 1 ≤ i ≤ n,

(1) if yi is a variable that does not occur in the sequence 〈�x, y1, y2, . . . , yi−1〉, then zi is
identical to yi;

(2) otherwise zi is a new variable and C contains zi = yi.

Let �v be a sequence of variables that contains exactly once each variable that occurs in
R(�x, �y). Let ϕ(�v) be a certain first-order rewriting for q′(�v), where q′(�v) is the nonBoolean
conjunctive query whose set of atoms is q \ {R(�x, �y)} (and whose free variables are �v).2
Obviously, if q′ is empty, then ϕ = true. We define

Rewrite(R(�x, �y), q) = ∃�v
(

R(�x, �y)

∧∀�z
(

R(�x, �z) → (
C ∧ ϕ(�v)

)))
.

If q′(�v) has no certain first-order rewriting, then the value of Rewrite(R(�x, �y), q) is
undefined.

Example 8.4. Let q be a Boolean conjunctive query without self-join. Let F =
R(x, x, y, y, a) be an atom of q, where a is a constant. The nonprimary key values
in F are 〈x, y, y, a〉. The sequence �z of Definition 8.3 becomes 〈z1, y, z3, z4〉 and C equals
z1 = x ∧ z3 = y ∧ z4 = a. Notice that there is no variable z2; the variable y is “reused”
instead.

Let ϕ(x, y) be a certain first-order rewriting for q′(x, y), where q′(x, y) is the non-
Boolean conjunctive query whose set of atoms is q \ {F}. Then,

Rewrite(F, q) = ∃x∃y
(

R(x, x, y, y, a)

∧∀z1∀y∀z3∀z4

(
R(x, z1, y, z3, z4) → (

z1 = x ∧ z3 = y ∧ z4 = a ∧ ϕ(x, y)
)))

.

Our rewrite function Rewrite(F, q) starts with an existential quantification over
the variables in KVars(F), whose model-theoretic interpretation leads to the following
definition.

Definition 8.5. Let q be a Boolean conjunctive query. An atom F of q is said to be
reifiable if for every database db, db|=sure q implies db|=sure θ (q) for some valuation θ
over KVars(F).

LEMMA 8.6. Let q be a Boolean conjunctive query without self-join. Let F be a reifiable
atom of q. If Rewrite(F, q) is defined, then it is a certain first-order rewriting for q.

2In front of Theorem 8.13, it will be argued that the same rewrite function applies to nonBoolean queries by
treating free variables as constants.
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PROOF. Assume Rewrite(F, q) is defined. Let F = R(�x, �y). Let �z, �v, C, ϕ(�v), and q′(�v)
as in Definition 8.3. Let db be an arbitrary database. We show that db|=sure q implies
db |= Rewrite(F, q) (the converse direction is obvious).

Assume db|=sure q. Since F is reifiable, we can assume a valuation θ over vars(�x) such
that db|=sure θ (q). Then, for some valuation μ over vars(�y)\vars(�x), R(θ (�x), μ◦ θ (�y)) ∈ db
and for every valuation ζ over vars(�z), if R(θ (�x), ζ (�z)) ∈ db, then

there exists a valuation ω over vars(�y)\vars(�x) such that ω◦θ (�y) = ζ (�z)
and db|=sure ω ◦ θ (q′). (1)

Notice that, since �z is a sequence of distinct variables, every atom R(θ (�x), �b) can be
written as R(θ (�x), ζ (�z)) with ζ (�z) = �b. Notice also that the foregoing reasoning relies
on the fact that relation name R does not occur in q′(�v) (no self-join). Under these
definitions, we show the following property.

PROPERTY 8.7. Statement (1) implies both ζ ◦ θ (C) and db|=sure ζ ◦ θ (q′).

PROOF. By Definition 8.3, vars(�v) = vars(�x) ∪ vars(�y) and vars(�y) ⊆ vars(�x) ∪ vars(�z).
Since vars(�v) ⊆ vars(�x) ∪ vars(�z), all free variables of q′ are replaced by constants in
ζ ◦ θ (q′). Furthermore, ζ ◦ θ (C) is variable-free, because every variable that occurs in C
belongs to vars(�x) ∪ vars(�z). Assume statement (1).

We first show that ζ ◦ θ (C) holds. Assume C contains zi = yi for some i ≥ 1. Then, by
Definition 8.3, either yi is a constant or yi is a variable that occurs in 〈�x, y1, y2, . . . , yi−1〉.
We need to show

ζ (zi) = ζ ◦ θ (yi). (2)

Since ω ◦ θ (�y) = ζ (�z) by (1), it follows

ω ◦ θ (yi) = ζ (zi). (3)

Three cases can occur.

—Case yi is a constant. Then ω ◦ θ (yi) = yi. By (3), ζ (zi) = yi, which implies (2).
—Case yi is a variable that occurs in �x. Then, ω ◦ θ (yi) = θ (yi). By (3), ζ (zi) = θ (yi),

which implies (2).
—Case yi is a variable that occurs in 〈y1, y2, . . . , yi−1〉 but not in �x. In this case θ (yi) = yi.

We can assume an integer j ∈ {1, 2, . . . , i − 1} such that yi and yj are identical, and
yj does not occur in 〈�x, y1, . . . , yj−1〉. By Definition 8.3, zj and yj are identical.
Since ω◦θ (�y) = ζ (�z) by (1), it follows ω◦θ (yj) = ζ (zj). Since yi, yj , and zj are identical,
ω ◦ θ (yi) = ζ (yi). By (3), ζ (zi) = ζ (yi), which implies (2).
For the reasoning in the next paragraph, notice also that from (3) and ω◦θ (yi) = ω(yi),
it follows ω(yi) = ζ (zi), hence ω(yi) = ζ (yi).

So it is correct to conclude that all equalities in ζ ◦ θ (C) are true.
We next show db|=sure ζ ◦ θ (q′). Since db|=sure ω ◦ θ (q′) by (1), it suffices to show that

for every y ∈ vars(�y) \ vars(�x), ω(y) = ζ (y). Assume i ≥ 1 such that yi is a variable
that does not occur in �x. We need to show ω(yi) = ζ (yi). Two cases occur: if yi occurs
in 〈y1, y2, . . . , yi−1〉, then the desired result follows from the third case given earlier; if
yi does not occur in 〈y1, y2, . . . , yi−1〉, then zi and yi are identical, hence ω(yi) = ζ (yi)
by (3).

Putting it all together, we have

for some valuation θ over vars(�x),
for some valuation μ over vars(�y) \ vars(�x),

R(θ (�x), μ ◦ θ (�y)) ∈ db and

ACM Transactions on Database Systems, Vol. 37, No. 2, Article 9, Publication date: May 2012.



9:22 J. Wijsen

for every valuation ζ over vars(�z), if R(θ (�x), ζ (�z)) ∈ db,
then ζ ◦ θ (C) and db|=sure ζ ◦ θ (q′).

Since ϕ(�v) is a certain first-order rewriting for q′(�v), we have that db|=sure ζ ◦θ (q′) implies
db |= ϕ(ζ ◦ θ (�v)). Consequently, db |= Rewrite(F, q). �

Since Lemma 8.6 only applies to queries q that contain a reifiable atom F, it is
important to recognize reifiable atoms. The construct of attack graph is helpful here:
Corollary 8.11 states that an atom F of q is reifiable if F is not attacked.

We first show that if an atom F is not attacked, then for each database db, for all
repairs r and s of db, there exists a repair rep of r ∪ s (and hence of db) such that
for every valuation θ over KVars(F), rep |= θ (q) implies r |= θ (q) and s |= θ (q). The
construction of such repair rep is specified next.

Definition 8.8. Let q be a Boolean conjunctive query without self-join. Let U be the
set of variables that occur in q. Let rep be a repair of some database. For an atom F of
q, we define

Reify(q, F, rep) = {θ | θ is a valuation over KVars(F) and rep |= θ (q)}.
We say that an atom A ∈ rep is relevant for q in rep if for some valuation θ over U ,
A ∈ θ (q) ⊆ rep. Let r, s be two repairs of the same database db. A uniformization of
[r, s] is a maximal sequence

[r, s] = [r0, s0], [r1, s1], . . . , [rn, sn]

where for each i ∈ {0, 1, . . . , n− 1}, there exist atoms A ∈ ri and B ∈ si such that A and
B are key-equal and A �= B, and one of the following conditions is true.

—A is relevant for q in ri and ri+1 = (ri \ {A}) ∪ {B} and si+1 = si; or
—B is relevant for q in si and ri+1 = ri and si+1 = (si \ {B}) ∪ {A}.
That is, in a uniformization we repeatedly replace a relevant atom in either repair with
its key-equal (but distinct) atom in the other repair.

Example 8.9. Let q3 = {R(x, y), S(x, y)} and

r0 = {R(a, b), S(a, b), R(c, 1), S(c, 2), R(e, f ), S(e, f )},
s0 = {R(a, 1), S(a, 1), R(c, d), S(c, d), R(e, f ), S(e, f )}.

Since R(a, b) is relevant for q3 in r0, it is replaced with R(a, 1), giving

r1 = {R(a, 1), S(a, b), R(c, 1), S(c, 2), R(e, f ), S(e, f )},
s1 = {R(a, 1), S(a, 1), R(c, d), S(c, d), R(e, f ), S(e, f )}.

Since S(a, 1) is relevant for q3 in s1, it is replaced with S(a, b), giving

r2 = {R(a, 1), S(a, b), R(c, 1), S(c, 2), R(e, f ), S(e, f )},
s2 = {R(a, 1), S(a, b), R(c, d), S(c, d), R(e, f ), S(e, f )}.

Since R(c, d) is relevant for q3 in s2, it is replaced with R(c, 1), giving

r3 = {R(a, 1), S(a, b), R(c, 1), S(c, 2), R(e, f ), S(e, f )},
s3 = {R(a, 1), S(a, b), R(c, 1), S(c, d), R(e, f ), S(e, f )}.

The uniformization terminates, because the relevant atoms R(e, f ) and S(e, f ) are the
same in r3 and s3. It is easy to see that every uniformization must eventually terminate
because the cardinality of ri ∪ si decreases at each step.

The proof of the following lemma appears in Appendix B.
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LEMMA 8.10. Let q be an acyclic Boolean conjunctive query without self-join. Let
F ∈ q such that for every G ∈ q \ {F}, G �� F. Let r, s be two repairs of the same
database db. Let [rn, sn] be the last element in a uniformization of [r, s]. Then,

(1) rn is a repair of db; and
(2) Reify(q, F, rn) ⊆ Reify(q, F, r) ∩ Reify(q, F, s).

COROLLARY 8.11. Let q be an acyclic Boolean conjunctive query without self-join. Let
F ∈ q such that for every G ∈ q \ {F}, G �� F. Then F is reifiable.

PROOF. Let db be an arbitrary database. By Lemma 8.10, there exists a repair rep of
db such that Reify(q, F, rep) ⊆ ⋂{Reify(q, F, rep′) | rep′ is a repair of db}; the latter
intersection is finite, because the number of repairs is finite. We distinguish two cases.

—Reify(q, F, rep) �= {}. Then, we can assume a valuation θ over KVars(F) such that for
each repair rep′ of db, rep′ |= θ (q). It follows db|=sure θ (q).

—Reify(q, F, rep) = {}. Then, for every valuation θ over KVars(F), rep �|= θ (q). It follows
rep �|= q. Since rep is a repair of db, db�|=sure q.

Since db is arbitrary, it follows that F is reifiable in q.

The full proof of Theorem 8.13 appears in Appendix C. It relies on two main argu-
ments. First, since every directed acyclic graph contains a vertex without an incoming
edge, it follows that an acyclic attack graph contains a nonattacked atom, which is reifi-
able by Corollary 8.11 and thus allows the application of Lemma 8.6. Second, construct-
ing certain first-order rewritings for nonBoolean conjunctive queries q(x1, x2, . . . , xn) is
no more difficult than for Boolean queries (always without self-join). Let c1, c2, . . . , cn be
n new constants. Let q′ be the query obtained from q by replacing all occurrences of xi
with ci (1 ≤ i ≤ n). Assume we know how to construct a certain first-order rewriting ϕ
for the Boolean conjunctive query q′. A certain first-order rewriting for q(x1, x2, . . . , xn)
can then be obtained from ϕ by replacing all occurrences of ci with xi (1 ≤ i ≤ n). This
is obviously the case because our rewrite function treats constants as generic.

Example 8.12. For q3 = {R(x, y), S(x, y)}, the atom R(x, y) is not attacked. A certain
first-order rewriting for q3 is shown next.

Rewrite(R(x, y), q3) = ∃x∃y
(

R(x, y)

∧∀y
(
R(x, y) → ϕ(x, y)

))

Here, ϕ(x, y) is a certain first-order rewriting for the query q′(x, y) = {S(x, y)}, in which
x and y are free variables. The formula ϕ(x, y) is obtained by treating x and y as
constants in our rewrite function.

ϕ(x, y) = S(x, y) ∧ ∀z
(
S(x, z) → z = y

)
It can be verified that Rewrite(R(x, y), q3) is satisfied by some database db if and only
if for some constants a and b, the following three conditions are satisfied: the database
db contains R(a, b) and S(a, b); db contains no R-atom that is distinct but key-equal
to R(a, b); and db contains no S-atom that is distinct but key-equal to S(a, b).

THEOREM 8.13. Let q be an acyclic Boolean conjunctive query without self-join. If the
attack graph of q contains no cycle, then CERTAINTY(q) is first-order expressible.

Finally, by combining Theorems 7.4 and 8.13, we obtain the following result.
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R1(x, y, u)
R2(u, y) R3(z, v, v, y)

R4(z, v, y, w)

Fig. 11. Witness graph of R1(x, y, u).

COROLLARY 8.14. Let q be an acyclic Boolean conjunctive query without self-join.
Then the following two statements are equivalent.

(1) CERTAINTY(q) is first-order expressible.
(2) The attack graph of q is acyclic.

9. THE COMPLEXITY OF DECIDING FIRST-ORDER EXPRESSIBILITY

In this section, we show the following result.

THEOREM 9.1. Let q be an acyclic Boolean conjunctive query without self-join. First-
order expressibility of CERTAINTY(q) can be tested in quadratic time in the length of
q.

We first give an alternative characterization of attack graphs and then we provide
Algorithm QuadAttack that proves Theorem 9.1.

9.1. Witness Graphs

We show a theoretical result that explains how attack graphs can be built without
constructing join trees. The following definition is relative to an acyclic Boolean con-
junctive query q without self-join. We also assume a strict linear order, denoted ≺,
on the atoms of q. In Algorithm QuadAttack, atoms will be represented by integers
1, . . . , n.

Definition 9.2. Let U be the set of variables that occur in query q. For every u ∈ U ,
we define cycle(u) = {(G1, G2), (G2, G3), . . . , (G�−1, G�), (G�, G1)} where G1 ≺ G2 ≺ · · · ≺
G� are all the atoms of q in which u occurs, that is, {G ∈ q | u ∈ Vars(G)} = {G1, . . . , G�}.
From a graph perspective, cycle(u) is a directed cycle graph through all atoms of q that
contain u.

For F ∈ q, the witness graph of F, denoted Witness(F), is the following directed
graph:

—the vertices of Witness(F) are the atoms of q; and
—the set of edges of Witness(F) is

⋃{cycle(u) | u ∈ U \ F+,q}.

Example 9.3. It can be verified that q10 = {R1(x, y, u), R2(u, y), R3(z, v, v, y),
R4(z, v, y, w)} is acyclic. Let F = R1(x, y, u) and U = {u, v, w, x, y, z}, the variables
in q10. We have U \ F+,q10 = {u, v, w, z}. For each variable in {u, v, w, z}, the witness
graph of F contains a cycle traversing the atoms that contain that variable. Since v
and z occur in exactly the same atoms, their cycles coincide. The witness graph of F is
shown in Figure 11.

Since distinct edges in the witness graph of F can be associated to distinct occurrences
of variables in q, the size of F ’s witness graph is linearly bounded in the length of q.
For example, the self-loop in Figure 11 is associated to the occurrence of the variable
w in R4(z, v, y, w). The following theorem establishes an equivalence between attacks
by F and reachability by F in the witness graph of F.
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THEOREM 9.4. Let q be an acyclic Boolean conjunctive query without self-join,
equipped with a linear order on its atoms. For all F, G ∈ q with F �= G, the follow-
ing two conditions are equivalent.

(1) F attacks G.
(2) There is a directed path from F to G in Witness(F).

PROOF. Let U be the set of variables that occur in q. Let τ be a join tree for q.

1 ⇒ 2 Assume F � G. Let H
L
� J be an edge on the unique path in τ that links

F and G. We can assume x ∈ L such that x ∈ U \ F+,q. Since x ∈ Vars(H) ∩ Vars(J),
the graph Witness(F) contains a cycle that contains H and J. Thus, for every edge

H
L
� J on the path in τ between F and G, there exists a directed path from H to J in

Witness(F). It follows that there is a directed path from F to G in Witness(F).
2 ⇒ 1 Assume there is a directed path (G0, G1, . . . , Gn) in Witness(F) with G0 = F

and Gn = G. We can assume without loss of generality that for 0 ≤ i < j ≤ n, Gi �= Gj .
Let i ∈ {1, . . . , n}. Since (Gi−1, Gi) is a directed edge in Witness(F), we can assume a
variable xi ∈ U \ F+,q such that (Gi−1, Gi) ∈ cycle(xi). Since xi ∈ Vars(Gi−1) ∩ Vars(Gi),
by the Connectedness Condition for join trees, xi occurs in every atom on the unique
path in τ that links Gi−1 and Gi. Since i is an arbitrary element of {1, . . . , n}, it can
now be easily shown by induction on increasing j that F � Gj for all j ∈ {1, . . . , n}. It
follows F � G.

9.2. Quadratic-Time Algorithm

By Corollary 8.14 and Lemma 7.3, given an acyclic conjunctive query q without self-
join, CERTAINTY(q) is first-order expressible if and only if q’s attack graph contains
no cycle of size 2. Algorithm QuadAttack builds the attack graph of q and tests the
existence of a cycle of size 2. It does so without computing a join tree for q (but we know
that such join tree exists if q is acyclic). We will argue that Algorithm QuadAttack runs
in quadratic time in the length of q.

The length of q is the number of symbols used to represent q. Algorithm QuadAttack
uses the following representation: variables are represented by integers 1, . . . , m, and
atoms by integers 1, . . . , n; KEY and NONKEY are arrays of lists that store for each
atom F the variables of KVars(F) and Vars(F) \ KVars(F) respectively. Hereinafter, the
length of this encoding will be denoted by len(q). Notice that len(q) is a lower bound
for the size of more detailed representations that keep track of constants or duplicate
occurrences of the same variable. Also, converting any other representation into the
algorithm’s representation should not take more than quadratic time in the length of
the original encoding.

Example 9.5. For q10 = {R1(x, y, u), R2(u, y), R3(z, v, v, y), R4(z, v, y, w)}, assume
that each Ri-atom is represented by i (1 ≤ i ≤ 4). Assume that variables u, v, w, x, y, z
are represented by 1, 2, 3, 4, 5, 6 respectively. Then, Algorithm QuadAttack uses the
following representation for q (for readability, references to atoms are typeset in bold).

KEY[1] = (4, 5)
KEY[2] = (1)
KEY[3] = (2, 6)
KEY[4] = (6)

NONKEY[1] = (1)
NONKEY[2] = (5)
NONKEY[3] = (5)
NONKEY[4] = (2, 3, 5)

Note incidentally that there is no need to know that v also occurs at a nonprimary key
position in the third atom.
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ALGORITHM QuadAttack: Build attack graph and test for its acyclicity
Input: acyclic Boolean conjunctive query q without self-join
Result: the attack graph of q is computed in the adjacency matrix ATTACK. The Boolean

variable FO indicates whether CERTAINTY(q) is first-order expressible.
Data:
The following data structures encode all information of q needed in the computation.
—Atoms are encoded by integers 1, 2, . . . , n.
—Variables are encoded by integers 1, 2, . . . , m.
—KEY[1 : n] is an array of lists of variables such that for 1 ≤ F ≤ n, entry KEY[F] contains all

variables that occur in the primary key of atom F.
—NONKEY[1 : n] is an array of lists of variables such that for 1 ≤ F ≤ n, entry NONKEY[F]

contains all variables that occur in atom F but do not occur in the primary key of F.

The following data structures will be filled in by the program.

—KEYCOUNT[1 : n] is an array of integers such that for 1 ≤ F ≤ n, entry KEYCOUNT[F] is the
number of distinct variables in the primary key of atom F. KEYCOUNT remains unchanged
after initialization.

—COUNT[1 : n] is an array of integers.
—KEYCO[1 : m] is an array of lists of atoms such that for 1 ≤ u ≤ m, entry KEYCO[u] contains

all atoms in which variable u occurs at some primary key position. KEYCO remains
unchanged after initialization.

—CO[1 : m] is an array of lists of atoms such that for 1 ≤ u ≤ m, entry CO[u] contains the atoms
in which variable u occurs. CO remains unchanged after initialization.

—WITNESSF[1 : n] is an adjacency list representation of a directed graph whose vertices are the
atoms of q. For 1 ≤ G ≤ n, entry WITNESSF[G] holds the atoms to which G has an outgoing
edge. For each atom F of q, this data structure is reused to store the witness graph of F.

—ATTACK[1 : n, 1 : n] is an adjacency matrix representing a directed graph whose vertices are
the atoms of q. Entry ATTACK[F, G] is 1 if there is a directed edge from F to G, and is 0
otherwise. This data structure is used to store the attack graph of q.

begin
Initialization;
BuildAttackGraph;

end

The Initialization procedure fills in the following two data structures, obviously in
O(len(q)) time: an array CO of lists that stores for each variable u the atoms in which
u occurs; an array KEYCO of lists that stores for each variable u the atoms in which u
occurs at some primary key position.

Example 9.6. For the query q10 of Example 9.5, these data structures look as follows
(see Example 9.5 for the numbering of atoms and variables).

CO[1] = (1, 2)
CO[2] = (3, 4)
CO[3] = (4)
CO[4] = (1)
CO[5] = (1, 2, 3, 4)
CO[6] = (3, 4)

KEYCO[1] = (2)
KEYCO[2] = (3)
KEYCO[3] = ()
KEYCO[4] = (1)
KEYCO[5] = (1)
KEYCO[6] = (3, 4)

For every atom F, the Initialization procedure also sets KEYCOUNT[F] to the number
of distinct variables in KVars(F). The attack graph will be computed in the variable
ATTACK using an adjacency matrix representation [Dasgupta et al. 2008, page 81]. All
entries of ATTACK are initialized to 0 in quadratic time in the length of q.
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Procedure Initialization
foreach u ← 1 to m do

KEYCO[u] ← ∅;
CO[u] ← ∅;

end
foreach F ← 1 to n do

i ← 0;
foreach u in KEY[F] do

add F to KEYCO[u];
i ← i + 1;

end
KEYCOUNT[F] ← i;
foreach u in KEY[F] ∪ NONKEY[F] do

add F to CO[u];
end
foreach G ← 1 to n do

ATTACK[F, G] ← 0;
end

end
FO ← true;

Algorithm QuadAttack exploits Theorem 9.4 in a straightforward manner. After the
Initialization procedure, the BuildAttackGraph procedure loops through all atoms of
the input query q. For each atom F, the witness graph of F is computed in the variable
WITNESSF using an adjacency list representation [Dasgupta et al. 2008, page 82].

Example 9.7. The witness graph of Figure 11 is represented by the following array
of adjacency lists (see Example 9.5 for the numbering of atoms).

WITNESSF[1] = (2)
WITNESSF[2] = (1)
WITNESSF[3] = (4)
WITNESSF[4] = (3, 4)

The last entry, for example, indicates that atom 4 has outgoing edges to atoms 3 and 4.

For every atom G that is distinct but reachable from F in the witness graph of F,
a directed edge from F to G is added to the attack graph, and it is checked whether
this new edge causes a cycle of size 2 in the attack graph. Whenever such cycle occurs,
CERTAINTY(q) is not first-order expressible.

To obtain a quadratic-time algorithm, at most a linear amount of time can be spent
per atom in the main loop that constitutes the BuildAttackGraph procedure. Since the
witness graph of F has size O(len(q)), once its adjacency list representation WITNESSF
is filled in, the atoms reachable from F can be obtained in linear time using a standard
graph traversal algorithm [Dasgupta et al. 2008, page 84]. For each atom reached from
F, it takes only constant time to add an edge to the adjacency matrix ATTACK. So it
suffices now to show that for each atom F, it takes only linear time to compute the
adjacency list representation of F ’s witness graph.

In order to compute the witness graph of F, we need to know F+,q. The computation of
F+,q uses a slightly adapted version of the LINCLOSURE algorithm [Beeri and Bernstein
1979, Algorithm 2; Maier 1983, page 66]. The set F+,q is constructed in the variable
FPLUS, which is initialized to KEY[F]. Then, for every atom G �= F with KVars(G) = {},
all variables of NONKEY[G] are added to FPLUS. The further computation relies on a
counter COUNT[G] for each atom G, which is initialized to the cardinality of KVars(G).
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Procedure BuildAttackGraph
foreach F ← 1 to n do

FPLUS ← KEY[F]; // variable FPLUS is used to compute F+,q

foreach G ← 1 to n do
WITNESSF[G] ← ∅;
COUNT[G] ← KEYCOUNT[G];
if KEYCOUNT[G] = 0 and G �= F then

FPLUS ← FPLUS ∪ NONKEY[G];
end

end
COUNT[F] ← m+ 1; // high value that will never be decremented to 0
UPDATE ← FPLUS;
while UPDATE �= ∅ do

choose a variable u in UPDATE;
UPDATE ← UPDATE \ {u};
foreach G in KEYCO[u] do

COUNT[G] ← COUNT[G] − 1;
if COUNT[G] = 0 then

ADD ← NONKEY[G] \ FPLUS;
FPLUS ← FPLUS ∪ ADD;
UPDATE ← UPDATE ∪ ADD;

end
end

end
foreach u in {1, . . . , m} \ FPLUS do // construct the witness graph of F

Encode the edges of cycle(u) in WITNESSF, as follows. If G1, G2, . . . , G� are the atoms in
CO[u] in increasing order, then add G1 to WITNESSF[G�], and for 1 ≤ i < �, add Gi+1 to
WITNESSF[Gi].

end
foreach atom G �= F that is reachable from F in the graph represented by WITNESSF do

ATTACK[F, G] ← 1;
if ATTACK[G, F] = 1 then

FO ← false;
end

end
end

The computation of F+,q loops exactly once through each variable u that has been or
will be inserted into FPLUS, and decrements COUNT[G] for every atom G in KEYCO[u].
If COUNT[G] reaches 0 for some G �= F, then we know that all variables of KVars(G)
belong to F+,q, so we add each variable of NONKEY[G] to FPLUS (if not already present).
Rather than testing G �= F whenever the counter of some G goes to 0, we initialize
the counter of F to some high value so that it never gets decremented to 0. Using the
same argumentation as for LINCLOSURE [Beeri and Bernstein 1979; Maier 1983], it can
be shown that F+,q is correctly computed in the variable FPLUS in O(len(q)) time.

Once F+,q is known, the witness graph of F is computed in the variable WITNESSF.
For each variable u that is not in F+,q, we encode in WITNESSF the cycle graph through
the atoms in the list CO[u]. Since every edge in every cycle graph can be one-to-one re-
lated to some occurrence of some variable in q, filling in WITNESSF takesO(len(q)) time.

10. CONCLUDING REMARKS

The complexity of the problem CERTAINTY(q) for conjunctive queries q has received
a growing research interest in recent years. It is a special case of consistent query
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F G

τF τG

L

Fig. 12. Join tree τ in the premise of Lemma A.1.

answering, where the only constraints are primary keys. In this article, we provided
a syntactic characterization of the frontier between first-order expressible and not
first-order expressible cases of CERTAINTY(q) when q ranges over the class of acyclic
conjunctive queries without self-join. This result is of practical interest, because if
CERTAINTY(q) is first-order expressible, then CERTAINTY(q) can be expressed in SQL
and solved using standard database technology. The attack graph turns out to be a
useful, novel construct.

Some issues for further research are as follows.

—Can we extend the results to conjunctive queries that are cyclic and/or contain self-
joins? Although Theorem 5.1 applies to cyclic queries, it only provides a necessary
condition for first-order expressibility of CERTAINTY(q) when q is cyclic.

—Can we find a syntactic characterization of the frontier between tractable and
intractable cases of CERTAINTY(q) when q ranges over the class of conjunc-
tive queries without self-join? Such characterization is known for queries with
exactly two atoms [Kolaitis and Pema 2012] and for the counting variant of
CERTAINTY(q) [Maslowski and Wijsen 2011].

APPENDIXES

A. PROOF OF LEMMA 7.3

We will use two helping lemmas. Lemma A.1 is technical. The situation required by
the premise is illustrated in Figure 12: the join tree τ consists of two join trees, τF and
τG, linked by an edge with label L; the atom F occurs in τF , and G in τG.

LEMMA A.1. Let q be a Boolean conjunctive query. Let τ be a join tree for q. Let F, G
be distinct atoms of q. Let e be an edge with label L on the path between F and G. Let
τF and τG be the join trees obtained from τ by cutting the edge e, such that F ∈ τF and
G ∈ τG. Let UG be the set of variables that occur in τG. For every q′ ⊆ q, for every S ⊆ UG,
if K(q′) |= KVars(F) → S, then K(q′) |= L → S.

PROOF. Let U be the set of variables that occur in q. The computation of the set
{x ∈ U | K(q′) |= KVars(F) → x} by means of a standard algorithm [Abiteboul et al.
1995, page 165] corresponds to constructing a maximal sequence (see also the proof of
Lemma 4.9)

KVars(F) = S0 H1
S1 H2

...
...

Sk−1 Hk
Sk

where

(1) S0 � S1 � · · · � Sk−1 � Sk; and
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(2) for every i ∈ {1, 2, . . . , k}, we have Hi ∈ q′ such that KVars(Hi) ⊆ Si−1 and Si =
Si−1 ∪ Vars(Hi).

Then, for every x ∈ U , K(q′) |= KVars(F) → x if and only if x ∈ Sk. We show by induction
on increasing i that for every 0 ≤ i ≤ k, K(q′) |= L → Si ∩ UG.

The induction basis, i = 0, holds because KVars(F) ∩ UG ⊆ L by the Connectedness
Condition on join trees. For the induction step, i → i + 1, we distinguish two cases.

(1) Hi+1 belongs to τF . By the Connectedness Condition, Vars(Hi+1) ∩ UG ⊆ L. Thus,
Si+1 ∩ UG ⊆ (Si ∩ UG) ∪ L. Since K(q′) |= L → Si ∩ UG by the induction hypothesis,
K(q′) |= L → (Si ∩ UG) ∪ L. Consequently, K(q′) |= L → Si+1 ∩ UG.

(2) Hi+1 belongs to τG, hence Vars(Hi+1) ⊆ UG. We have Si+1 ∩ UG = (Si ∩ UG) ∪
Vars(Hi+1). Since K(q′) |= L → Si ∩ UG by the induction hypothesis, it suffices to
show K(q′) |= L → Vars(Hi+1).
Since KVars(Hi+1) ⊆ Si ∩ UG and K(q′) |= L → Si ∩ UG by the induction hypoth-
esis, we have K(q′) |= L → KVars(Hi+1). Since Hi+1 ∈ q′, the set K(q′) contains
KVars(Hi+1) → Vars(Hi+1). Consequently, K(q′) |= L → Vars(Hi+1).

Consequently, K(q′) |= L → Sk ∩ UG. This concludes the proof.

LEMMA A.2. Let q be an acyclic Boolean conjunctive query. Let F, G, H be distinct
atoms of q. If F � G and G � H, then F � H or G � F.

PROOF. Assume F � G and G � H. Let τ be a join tree for q. We distinguish three
cases.

Case H ∈ [F, G]τ . By item (2) in Lemma 4.9, F τ� H.
Case F ∈ [G, H]τ . By item (2) in Lemma 4.9, G τ� F.
Case H �∈ [F, G]τ and F �∈ [G, H]τ . Thus, for some J �∈ {F, H}, the join tree τ must
contain a subtree of the following form, where straight lines denote paths of some
unspecified length. Notice that J = G is possible.

F
G

H

J

Assume towards a contradiction F
τ

�� H and G
τ

�� F.

Since F τ� G and F
τ

�� H, we can assume an edge e0 with label L0 on the path be-
tween J and H such that K(q \ {F}) |= KVars(F) → L0. From item (3) in Lemma 4.9,
it follows K(q \ {F, G}) |= KVars(F) → L0, hence

K(q \ {G}) |= KVars(F) → L0. (4)

Likewise, since G τ� H and G
τ

�� F, we can assume an edge e1 with label L1 on the
path between J and F such that

K(q \ {G}) |= KVars(G) → L1. (5)

The positions of e0 and e1 are schematized in the following picture.

F
G

H

JL1

L0
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From (4) and Lemma A.1, it follows K(q \ {G}) |= L1 → L0. Then, by (5) and transi-

tivity, K(q \ {G}) |= KVars(G) → L0. But then G
τ

�� H, a contradiction. We conclude
by contradiction that F τ� H or G τ� F.

Thus, the desired result holds in all cases.

The proof of Lemma 7.3 is given next.

PROOF OF LEMMA 7.3. Assume that F0 � F1 � F2 . . . � Fn−1 � F0 is a shortest
cycle of size n in the attack graph of q. We need to show n = 2. Assume, towards a
contradiction, n ≥ 3. We distinguish two cases.

Case F1 � F0. Then F0 � F1 � F0 is a cycle of size 2, contradicting that some
shortest cycle has size at least 3.
Case F1 �� F0. By Lemma A.2, F0 � F2. Then F0 � F2 . . . � Fn−1 � F0 is a cycle
of size n − 1 in the attack graph of q, again a contradiction.

We conclude n = 2 by contradiction.

B. PROOF OF LEMMA 8.10

We use the following helping lemma.

LEMMA B.1. Let q be an acyclic Boolean conjunctive query without self-join. Let F ∈ q
such that for every G ∈ q\{F}, G �� F. Let rep be a repair of some database. Let A ∈ rep
such that Ais relevant for q in rep. Let B be key-equal to Aand repB = (rep \ {A})∪{B}.
Then, Reify(q, F, repB) ⊆ Reify(q, F, rep).

PROOF. The proof is obvious if A has the same relation name as F. Assume next that
relation names in A and F are different.

Let ζ be a valuation over KVars(F) such that repB |= ζ (q). Let U be the set of variables
that occur in q. We can assume a valuation ζ+ over U such that ζ+[KVars(F)] =
ζ [KVars(F)] and ζ+(q) ⊆ repB. Thus, ζ+ extends ζ to U . We need to show rep |= ζ (q),
which is obvious if B �∈ ζ+(q). Assume next B ∈ ζ+(q). Since A is relevant for q in rep, we
can assume a valuation μ over U such that A ∈ μ(q) ⊆ rep. We can assume G ∈ q such
that A, B have the same relation name as G. Thus, G �= F, A = μ(G), and B = ζ+(G).
Let q′ = q \ {G}. Let rep′ = repB \ {B} = rep \ {A}. Since q′ contains no atom with
the same relation name as G (no self-join), ζ+(q′) ⊆ rep′ and μ(q′) ⊆ rep′. Moreover,
ζ+[KVars(G)] = μ[KVars(G)], because A and B are key-equal. Let τ be a join tree for q.

Since G
τ

�� F, we can assume an edge e with label L on the unique path in τ between G
and F such that L ⊆ G+,q. Since K(q \ {G}) = K(q′), we have K(q′) |= KVars(G) → L. By
Lemma 4.3, ζ+[L] = μ[L]. Let τG, τF be the two join trees obtained from τ by cutting
the edge e with label L, where τG contains G, and τF contains F. This corresponds to
the situation depicted in Figure 12. Let κ be the valuation over U such that for every
x ∈ U ,

κ(x) =
{

μ(x) if x occurs in τG
ζ+(x) if x occurs in τF .

Notice that if x occurs in both τG and τF , then, by the Connectedness Condition, x occurs
in L, hence μ(x) = ζ+(x). Obviously, κ(q) ⊆ rep. It follows rep |= ζ (q).

The proof of Lemma 8.10 is given next.

PROOF OF LEMMA 8.10. The proof of the first item is straightforward. We next prove
the second item. From Lemma B.1 and by using induction on the length of the
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uniformization, we obtain:

Reify(q, F, rn) ⊆ Reify(q, F, r), and (6)
Reify(q, F, sn) ⊆ Reify(q, F, s). (7)

We show Reify(q, F, rn) ⊆ Reify(q, F, sn). Let θ be a valuation over KVars(F) such that
rn |= θ (q). Let U be the set of variables that occur in q. We can assume a valuation θ+
that extends θ to U such that θ+(q) ⊆ rn. Then, every atom in θ+(q) is relevant for q in
rn. By our uniformization construction, θ+(q) ⊆ sn. It follows sn |= θ (q). Consequently,
Reify(q, F, rn) ⊆ Reify(q, F, sn), hence Reify(q, F, rn) ⊆ Reify(q, F, s) by (7).

C. PROOF OF THEOREM 8.13

We make use of the following helping lemmas.

LEMMA C.1. Let q be an acyclic Boolean conjunctive query with an acyclic attack
graph. Let x be a variable that occurs in q. Let q′ be the query obtained from q by
replacing each occurrence of x with some constant c that does not occur in q. Then q′ is
an acyclic conjunctive query with an acyclic attack graph.

PROOF. Let τ be a join tree for q. Let τ ′ be the graph obtained from τ by replacing,
in all vertices, each occurrence of x with c (and by deleting x from each edge label).
Obviously, τ ′ is a join tree for q′. It suffices to show that the attack graph of τ ′ is acyclic.

Let θ be the valuation defined by θ = {x �→ c}. For every atom F ∈ q, let F ′ = θ (F). We
first show that for every F ∈ q, we have F+,q \ {x} ⊆ (F ′)+,q′

. The computation of the at-
tribute closure F+,q by means of a standard algorithm [Abiteboul et al. 1995, page 165]
corresponds to constructing a maximal sequence (see also the proof of Lemma 4.9)

KVars(F) = S0 H1
S1 H2

...
...

Sk−1 Hk
Sk

where

(1) S0 � S1 � · · · � Sk−1 � Sk; and
(2) for every i ∈ {1, 2, . . . , k}, we have Hi ∈ q \ {F} such that KVars(Hi) ⊆ Si−1 and

Si = Si−1 ∪ Vars(Hi).

Then, Sk = F+,q. We can construct a corresponding sequence for q′, as follows.

KVars(F ′) = S0 \ {x} H′
1

S1 \ {x} H′
2

...
...

Sk−1 \ {x} H′
k

Sk \ {x}
Obviously, for every i ∈ {1, 2, . . . , k}, we have

—H′
i ∈ q′ \ {F ′},

—KVars(H′
i ) ⊆ Si−1 \ {x}, and

—Si \ {x} = (Si−1 \ {x}) ∪ Vars(H′
i ).

This corresponding sequence shows F+,q \ {x} ⊆ (F ′)+,q′
.
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F

F1 F2 Fk

τ1 τ2 τk. . .

{}
{}

{}

Fig. 13. Join tree τF in Lemma C.2.

Let F, G be distinct atoms of q such that F
τ

�� G. Then, for some edge H
L
� J on

the path between F and G in τ , we have L ⊆ F+,q. Obviously, the path between F ′

and G′ in τ ′ contains an edge H′ L′

� J′ with L′ = L \ {x}. From L \ {x} ⊆ F+,q \ {x} and

F+,q \ {x} ⊆ (F ′)+,q′
, it follows L′ ⊆ (F ′)+,q′

. Consequently, F ′ τ ′

�� G′. It follows that the
attack graph of τ ′ must be acyclic.

LEMMA C.2. Let q be an acyclic Boolean conjunctive query with an acyclic attack
graph. Let F be a ground atom that belongs to q. Then q \ {F} is an acyclic conjunctive
query with an acyclic attack graph.

PROOF. Let τ be a join tree for q. Let τF be the directed rooted join tree obtained
from τ by selecting F as the root. Let F1, F2, . . . , Fk be the children of F in τF .
For i ∈ {1, 2, . . . , k}, let τi be the vertex-induced subtree of τF induced by Fi and all
descendants of Fi. The situation is depicted in Figure 13. Clearly, if e is an edge
adjacent to F, then the label of e is the empty set. Let τ ′ be the tree that contains τ1,

τ2, . . . , τk and additional edges F1

{}
� F2, F2

{}
� F3, . . . , Fk−1

{}
� Fk. It is straightforward

that τ ′ is a join tree for q \ {F} and that the attack graph of τ ′ is acyclic.

The proof of Theorem 8.13 is given next.

PROOF OF THEOREM 8.13. The proof runs by induction on the length of q. The result
is obvious for q = {}. For the induction step, assume q �= {}. Assume that the attack
graph of q is acyclic. Let R1(�x1, �y1), R2(�x2, �y2), . . . , Rn(�xn, �yn) be a topological sorting of
the atoms of q with respect to the attack graph. R1(�x1, �y1) is reifiable by Corollary 8.11.

Let �v = 〈v1, v2, . . . , vn〉 be a sequence of distinct variables containing each variable
in vars(�x1) ∪ vars( �y1). Let q′(�v) be the nonBoolean conjunctive query whose set of atoms
is q \ {R1(�x1, �y1)}. Let �c = 〈c1, c2, . . . , cn〉 be a sequence of n new constants. Let q′ �v �→�c be
the query obtained from q′ by replacing each vi with ci. It follows from Lemmas C.1
and C.2 that q′ �v �→�c is an acyclic conjunctive query with an acyclic attack graph. By the
induction hypothesis, q′ �v �→�c has a certain first-order rewriting ϕ̃. Let ϕ(�v) be the formula
obtained from ϕ̃ by replacing all occurrences of ci with vi (1 ≤ i ≤ n). Since ϕ(�v) is a
certain first-order rewriting for q′(�v), the desired result follows by Lemma 8.6.
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