
A Measurement Framework for
Analyzing Technical Lag in

Open-Source Software Ecosystems

Ahmed Zerouali

A dissertation submitted in fulfillment of the requirements of
the degree of Docteur en Sciences

Advisor: Jury:
Dr. Tom Mens
Université de Mons - Belgium

Dr. Olivier Delgrange
Université de Mons - Belgium

Dr. Alexandre Decan
Université de Mons - Belgium

Dr. Jesus Gonzalez-Barahona
Universidad Rey Juan Carlos de Madrid - Spain

Dr. Alexander Serebrenik
Eindhoven University of Technology - The Netherlands

September 2019

Acknowledgment

This work could have never been completed without the support of many people. Thus, I
apologize in advance if I forgot to mention someone important; if we have met and talked,
you are also a part of this.

First of all, I would like to express my sincere gratitude to my advisor Dr. Tom Mens
for his help throughout the years. He is a great professor who has provided me with a lot
of guidance and knowledge, and I am very privileged to have been his PhD student. He
encouraged me to surpass myself and I would like to thank him warmly for that. I address
a special thank to Bitergia for hosting me during a year and half; and in particular to
the co-advisors Dr. Jesus Gonzalez-Barahona and Dr. Gregorio Robles for their guidance
during this period of my stay in Madrid and after.

I would like to thank the members of my jury: Dr. Alexandre Decan for his advices
and help to improve my work and for following my thesis progress during these three years;
Dr. Olivier Delgrange and Dr. Alexander Serebrenik, to accept being part of my jury. I
am also grateful to my colleagues and co-authors Dr. Valerio Cosentino and Dr. Eleni
Constantinou for their precious advice.

I wish to thank my friends who offered me much joy and who regularly proved me
that there is a life apart from the thesis. Finally, my deepest gratitude goes to my family
for their unflagging love and encouragement throughout my life, and without whom, this
thesis would not have been possible.

ii

Abstract

Software development practices have evolved quite a lot since the early days of programming.
Most software projects today, especially in the open source software community, are using
distributed versioning development practices. In addition, they heavily rely on reusing
external software packages, to realize part of their functionality, rather than needing to
implement these functionalities themselves.

Frequently, reusable Open Source Software (OSS) components for major programming
languages and operating systems are available in public package repositories where they
are developed and evolved together within the same environment. Developers rely on
package management tools to automate deployments, specifying which package releases
satisfy the needs of their applications. However, these specifications may lead to deploying
package releases that are outdated or otherwise undesirable because they do not include
bug fixes, security fixes, or new functionality. In contrast, automatically updating to a
more recent release may introduce incompatibility issues. Moreover, while this delicate
problem is important at the level of individual packages, it becomes even more relevant at
the level of large distributions of software packages where packages depend, directly or
indirectly, on a large number of other packages.

The goal of this thesis is to capture and study this delicate balance between the need
of updating to the ideal release and the risk of having breaking changes. We formalize
a generic model of technical lag, a concept that quantifies to which extent a deployed
collection of components is outdated with respect to the ideal deployment. Then, we show
how to operationalise this model for different case studies and we empirically analyze its
evolution in npm, Debian and Docker ecosystems. Finally, we develop a tool to support
Docker deployers in assessing the health of the software included in their containers.

iii

Contents

Contents vii

1 Introduction 1

1.1 Context . 1

1.1.1 Empirical Software Engineering . 2

1.1.2 Free and Open-Source Software . 2

1.1.3 Software Ecosystems . 4

1.1.4 Technical Lag . 5

1.2 Goals and Contributions of the Thesis . 5

1.3 Structure of the Dissertation . 6

2 State of the Art 8

2.1 Terminology . 8

2.2 Version Management in Software Ecosystems 10

2.3 Dependency Management in Software Ecosystems 12

2.3.1 Maven . 12

2.3.2 npm . 13

2.3.3 Debian . 14

2.3.4 Docker . 14

2.3.5 Cross Ecosystem Comparison . 15

2.4 Software Vulnerability Management . 16

iv

CONTENTS

2.5 Software Outdatedness Management . 17

2.6 Towards a Notion of Technical Lag . 18

3 A Preliminary Analysis of Software Library Usage and Evolution 20

3.1 Introduction . 21

3.2 Method . 21

3.3 Research Questions . 22

3.4 Empirical Evaluation . 23

3.5 Discussion and Limitations . 30

3.6 Conclusion . 31

4 A Framework for Technical Lag 32

4.1 Introduction . 33

4.2 Technical Lag Explained . 33

4.3 Technical Lag Example . 34

4.4 Qualitative Analysis . 36

4.4.1 Semi-structured Interviews . 37

4.4.2 Online Surveys . 38

4.5 A Formal Framework for Technical Lag . 39

4.6 Conclusion . 41

5 Technical Lag in npm Packages 42

5.1 Introduction . 43

5.2 Characteristics of the npm case study . 43

5.3 Instantiating the Technical Lag Framework to npm 45

5.4 Empirical Evaluation . 49

5.5 Discussion . 64

5.6 Limitations . 65

5.7 Conclusion . 66

6 Technical Lag in Docker Containers 67

v

CONTENTS

6.1 Introduction . 68

6.2 Debian Packages in Docker Containers . 69

6.2.1 Method and Data Extraction . 69

6.2.1.1 Base Images for Debian . 70

6.2.1.2 Identifying Analyzed Images 71

6.2.1.3 Identifying Installed Packages 72

6.2.1.4 Vulnerability Reports . 73

6.2.1.5 Bug Reports . 73

6.2.2 Instantiating the Technical Lag Framework to Debian packages used
in Docker containers . 73

6.2.3 Empirical Evaluation . 77

6.2.4 Actionable Results . 93

6.2.5 Limitations . 94

6.3 npm Packages in Docker Containers . 95

6.3.1 Method and Data Extraction . 95

6.3.1.1 Identifying Candidate Images 95

6.3.1.2 Extracting npm Package Data 96

6.3.1.3 Collecting Security Vulnerabilities 96

6.3.2 Extending the Technical Lag Framework to npm packages used in
Docker containers . 96

6.3.3 Empirical Evaluation . 100

6.3.4 Limitations . 105

6.4 Discussion . 106

6.5 Conclusion . 107

7 ConPan: A Tool to Analyze Health of Software Packages in Docker
Containers 108

7.1 Introduction . 109

7.2 Overview of ConPan . 109

7.3 ConPan in Action . 110

7.3.1 Installation . 111

vi

CONTENTS

7.3.2 Use . 111

7.3.2.1 CLI . 111

7.3.2.2 API . 112

7.3.3 Reporting . 112

7.4 Summary . 114

8 Conclusion and Outlook 116

8.1 Contributions . 116

8.2 Threats to Validity . 117

8.3 Future Work . 118

8.4 Closing Summary . 121

A Interviews with Software Practitioners 122

B Online Surveys with Software Practitioners 129

C Replication Packages 130

List of Figures 134

List of Tables 136

vii

Chapter 1
Introduction

1.1 Context

Software components are being created and reused on a regular basis. Over the past years,
depending on external software components has become a common software development
practice, especially in the free, Open Source community [1]. This practice can lead to a
significant gain in productivity, due to the ability to reuse complex functionality, rather
than implementing it from scratch [2].

Because these components are usually evolving to avoid becoming obsolete [3, 4, 5],
many versions of them are being created and distributed via online package managers and
repositories everyday (e.g., npm, Maven, Debian, etc). Usually, new versions include new
features, changed requirements, improved performance, fixed bugs, etc. In general, these
changes are seen as a good sign of a well maintained software component [6]. On the other
hand, major changes may require breaking changes.

While the availability and abundance of reusable components facilitates building
software, it can also cause problems in maintenance and evolution. For example, a recent
version of an application may be outdated although not because of its own code, but
due to depending on components that were not updated to their latest versions. If this
happens, there is a higher risk of having bugs and security issues that may have been
already fixed in newly released versions [7]. On the other hand, updating to more recent
releases of reusable components is not for free, since it might lead to a risk of facing
backward incompatible changes [8], which cause conflict and problems for developers using
these components. In many cases, these problems may eventually lead to ripples through
software ecosystems [9, 1].

For individual developers, there is a balance between benefits (e.g., new functionality,
bug and vulnerability fixes, etc) and cost of updating a dependency (e.g., risk of having

1

1.1. CONTEXT

breaking changes). To represent this balance, we introduce the technical lag concept as a
measurement to capture the difference between the reusable software component version
that we want to update to and the deployed version of the same software component that
we rely on.

1.1.1 Empirical Software Engineering

Empirical software engineering is a research area concerned with the empirical observation
of software engineering artifacts and the empirical validation of software engineering tools,
theories and assumptions. Sub-fields of software engineering that are related to empirical
research include software maintenance, software evolution and software repository mining.

Two decades ago, it was rare to see a conference or journal article about a software
development tool or process that had empirical data to back up the claims. Today, in
contrast, it is common that conferences and journals publish articles where the scope
is a description of a study or evaluation. For this reason, a very successful conference
(International Symposium on Empirical Software Engineering and Measurement), a journal
(Empirical Software Engineering), and organization (International Software Engineering
Research Network) have emerged and evolved in the last two decades to focus only on the
empirical software engineering research area. Moreover, it is nowadays rare for software
engineering research works not to include some empirical studies. In fact, empirical studies
are among the top most popular topics in conferences like the ACM/IEEE International
Conference on Software Engineering.

Using several research methods and techniques, empirical software engineering has
produced a steady stream of evidence-based results concerning the factors that affect
important outcomes such as software cost and quality. The most popular methods are
surveys to collect data on some phenomenon, controlled experiments to measure the
correlation between variables and case studies to investigate contemporary phenomena.

Our research includes creation of models, tools and assumptions. For this reason,
we will rely on mixed-methods approach of empirical software engineering methods for
cross-validation. Mixed method research employs data collection and analysis techniques
associated with both quantitative and qualitative data [10]. More specifically, this thesis
makes use of case studies and surveys as two complementary methods to quantitatively
and qualitatively validate our research results.

1.1.2 Free and Open-Source Software

Free and open source software contain source code that anyone can inspect, modify, and
improve. Because of this characteristic, collaborative development of free software has

2

1.1. CONTEXT

witnessed an exponential increase in the last three decades. It represents a successful
example of software development where communities of developers work together on an
often voluntary basis, while users of the free software can generally submit bug reports
and requests for change or improvement.

The word “free” in “free open source software” refers to freedom, not monetary cost.
Though most free open source software are indeed free in price, the word “free” is referring
to the freedom to use software and edit their source code, as long as their copyright is
attributed to the individuals or organizations that created the software. Moreover, it stays
free and open source when it is distributed to others.

In fact, when the Free Software Foundation (FSF) was founded in 1985 to support
the free software movement, it was founded with the goal of promoting the universal
freedom to study, distribute, create, and modify computer software [11]. According to the
FSF, the word “free” software refers to four stages of freedom:

1. freedom to execute a software program, for any (private or commercial) usage;

2. freedom to study the software functionalities and edit its source code to adapt it to
one’s own needs;

3. freedom to redistribute copies of the program;

4. freedom to distribute the modifications made to the program.

The last freedom, which necessitates access and modifications to the source code, gives to
the whole community the opportunity to use the software and make changes to further
improve it.

Later on, in 1998, the Open Source Initiative (OSI) has been created to inform and
promote the benefits of open source. According to OSI, the promise of open source is
better quality and higher reliability, more flexibility, lower cost, and less dependence on
commercial software. However, it has been acknowledged that in many cases, definitions
of both organizations on free and open source software are equivalent [12]. Thus, the
term Open Source Software (OSS) is conventionally used to describe a software system
developed based on these notions.

In the context of this thesis, we focus on open source software systems for different
reasons: (1) the growing interest of OSS development in industry [13], government, and
academia [14]; (2) the abundance and accessibility of software projects for which historical
data is freely available; (3) the ability to publish scientific results about these systems
without breaking confidentiality agreements; (4) the ability to allow other researchers to
reproduce and verify the obtained results.

3

1.1. CONTEXT

1.1.3 Software Ecosystems

The widespread use of online collaborative development solutions surrounding distributed
version control tools (such as Git and GitHub) has led to a growing popularity of so-called
software ecosystems.

The term ecosystem is borrowed from biology where it represents a complex com-
munity of organisms and its environment functioning as an ecological unit. Software
ecosystem is a term that appeared during the last decade in the fields of software evolution
and software repository mining. Since no clear agreement existed on the definition of a
software ecosystem [15, 16], many researchers started using software ecosystems as what
Lungu et al. have proposed [17, 18], i.e., “A software ecosystem is a collection of software
projects which are developed and co-evolve in the same environment”.

According to Lungu [17], a software ecosystem should have an environment that can
host it. This environment can be physical, like in the case of a company or a research
group that has a geographical address, but can also be virtual, like the projects that are
part of an open-source community. In the context of this thesis, we focus on the virtual
environments, more specifically on software components that are surrounded by open
source software communities.

There are multiple well-known examples of open source software communities that
can be referred to as software ecosystems. For example:

- The GNU project aims at providing a fully Open Source operating system and it
consists of many software projects and packages, each providing a piece of that
operating system.

- The Debian project is an association of individuals who have defined as a common
cause to create a free operating system. Debian-based operating systems use the
Linux kernel or the FreeBSD kernel. Moreover, a large part of the basic tools that
construct the operating system come from the GNU project.

Software ecosystems tend to be very large, containing from tens to millions of software
components1 [1], that are in many cases interconnected, in the sense that they form a
dependency network. In the case of so large ecosystems, the dependency network can be
so big and complicated that it can cause problems and conflicts between dependents and
dependencies [19]. So, while assessing the problem of technical lag is important at the
level of individual components, it becomes more relevant and problematic at the level of
software ecosystems where packages depend directly and indirectly on each other.

For this reason, we consider different software ecosystems as case studies in this
thesis:

1http://www.modulecounts.com/

4

1.2. GOALS AND CONTRIBUTIONS OF THE THESIS

- GitHub Java projects that make use of popular Java testing-related libraries.

- npm, the default package repository of JavaScript packages and also the largest
package repository in the internet [1].

- Debian, one of the most popular operating systems that are based on the Linux
kernel, forming the basis for many other Linux-based distributions.

- Docker Hub, the most popular repository for the Docker containerization technol-
ogy [20].

1.1.4 Technical Lag

To quantify how outdated a deployed software package release is w.r.t. the “ideal” situation,
we present the concept of “technical lag” as the increasing lag between upstream development
and the deployed system when no corrective actions are taken. Its goal is to enable developers
to decide on a more informed basis whether or not to seize the opportunity of relying on
more recent component releases, while taking into account the increased risks that may
result from keeping one’s dependencies outdated [21].

When measuring technical lag, the first problem is to decide what is the ideal
component or version of the software we deploy. Then, we compare this ideal version with
the current used version of the same deployed software. Depending on requirements and
needs, the comparison may focus on stability, functionality, performance, or something
else.

Once the ideal version of the deployed software is defined, we still need to choose the
metric or unit of measurement to use in order to represent the lag between the ideal and
the deployed components. For example, if the focus is on security, the measurement unit
could be the number of security issues fixed in the ideal software component which have
not been fixed in the deployed system. If the focus is functionality, the measurement unit
could be the number of features implemented in the ideal component which have not been
implemented in the deployed system. Some other interesting measurement units could
be the difference in time between the ideal and deployed component release dates, or the
number of updates and version numbers changed between them.

1.2 Goals and Contributions of the Thesis

In the light of all the above, the goal of this thesis is to empirically study how software
components are used in projects and other components of open source software ecosystems
and provide support to developers of such projects by creating a technical lag framework
that can assess the health of their software. More specifically, the main contributions of

5

1.3. STRUCTURE OF THE DISSERTATION

this thesis are the following:

X We provide evidence that developers do not often switch between software testing-
related libraries that provide the same functionality, they tend to stick to one library
(Chapter 3).

X Qualitative analysis: We assess the usefulness of the technical lag concept by carrying
out surveys and interviews with software practitioners (Chapter 4).

X We define an extensible framework of technical lag in order to be able to quantify to
which extent a deployed (collection of) component(s) is outdated with respect to the
ideal deployment (Chapter 4).

X Quantitative analysis: We operationalize the technical lag framework and analyze its
evolution in three different ecosystems: npm, Debian and Docker containers. Then,
we offer actionable results and lessons learned in order to support developers in
reducing their technical lag (Chapter 5, 6).

X We provide the ConPan tool to inspect Docker containers and extract their installed
system and third-party packages and analyze how outdated they are in terms of
missing updates, vulnerabilities and bugs (Chapter 7).

1.3 Structure of the Dissertation

This introduction has provided the necessary context and described the objectives of this
thesis.

The remainder of this dissertation starts by presenting a state of the art of the
research in Chapter 2. It presents previous research results found in the scientific literature
on measuring software outdatedness in software ecosystems.

Chapter 3 presents the results of an exploratory analysis on the use of testing libraries
in Java projects. This first analysis allows us to understand some of the common practices
of library usage, which will pave the way for more extensive research.

Chapter 4 presents the concept of technical lag in more detail and introduces a
general framework for measuring the technical lag. This chapter also includes interviews
and surveys carried out with software practitioners for the sake of assessing the usefulness
of the technical lag concept.

Chapter 5 operationalizes the generic framework of technical lag for the npm packaging
ecosystem and then measures and analyzes it for the whole package dependency network
of npm.

6

1.3. STRUCTURE OF THE DISSERTATION

Chapter 6 operationalizes the generic framework of technical lag for Docker containers
and evaluates how outdated, vulnerable and buggy packages in containers are.

Chapter 7 presents the ConPan tool that inspects Docker containers for installed
system and third-party packages. This tool provides relevant information about packages:
their technical lag, outdatedness, vulnerabilities and bugs.

Finally, Chapter 8 concludes by summarizing the main contributions, limitations,
and future work.

7

Chapter 2
State of the Art

Software component reuse has been an important topic of software engineering research for
several decades [22]. Around the 2000s, with the emergence of COTS (components-off-the-
shelf), many researchers investigated how to manage dependencies and evolution [23, 24],
and advocated the need to have software ecosystems with powerful package managers and
repositories (often referred to as configuration management tools) that allow to improve
software reuse [25]. Nowadays, such package managers have become commonplace due
to the rising popularity of Open Source Software repositories, accessible through online
collaborative platforms.

In this chapter, we present a non-exhaustive summary of the related research to
this thesis. The chapter is divided into six sections. The first section presents all terms
used in this chapter. The second and third sections discuss general studies around version
and dependency management in software ecosystems. The forth and fifth sections review
previous research about software vulnerability and outdatedness management, while the
final section presents the work in which the notion of technical lag has been first introduced.

2.1 Terminology

In this chapter, different terms are used to explain the related work. Inspired by [1],
Table 2.1 introduces the main terminology used in this article. The parts of each term
that are indicated between parentheses in the first column of the table will be implicitly
assumed if they are clear from the context.

8

2.1. TERMINOLOGY

Term Meaning
(Packaging)
Ecosystem

The collection and history of all software artefacts and
community members contained a particular package repository.

Package
Manager

A collection of software tools that automates the process of
installing, configuring, upgrading or removing software packages
on a computer’s operating system in a consistent manner.

Package

A software program providing specific functionalities.
A package usually exists in many versions which are called
releases. By abuse of language, a package at time t denotes
its latest available release at time t.

(Package)
Release

A specific version of a package that can be accessed from a package
repository and installed through the package manager. It includes
what is needed to build, configure and deploy the package version,
as well as a manifest containing important metadata such
as its owner, name, description, timestamp, etc.

(Package)
Update

A new release of a package, provided by the package
manager, that succeeds (i.e., corresponds to a higher version
number or timestamp) a previous release of the same package.

(Package)
Dependency
Network
(at time t)

A graph structure in which the nodes represent all the packages
made available by the package manager at time t, and the
directed edges represent direct dependencies between the latest
available releases at time t.

Dependency

An explicitly documented reference (in the manifest of
a release) to another package that is required for its proper
functioning. Dependencies that are explicitly documented in the
release manifest, are called direct dependencies. Those that are
part of the transitive closure of the dependency network are
called transitive dependencies. Transitive dependencies that
are not direct are called indirect dependencies

(Dependency)
Constraint

A condition that is used by a dependency to restrict the supported
releases of the target package.

Required
package

A package that is the target of at least one dependency from
another package. Similarly we define transitively required.

Reverse
Dependency

Reverse dependencies are obtained by following the edges
of the dependency network in the opposite direction. As
for normal dependencies, they can be direct, transitive or indirect.

Dependent
(package)

A package that is the target of at least one reverse dependency
from another package. In a similar vein, we define transitively
dependent.

Table 2.1: Meaning of terms used in this chapter

9

2.2. VERSION MANAGEMENT IN SOFTWARE ECOSYSTEMS

2.2 Version Management in Software Ecosystems

Semantic Versioning (henceforth referred to as semver1) has become a popular policy to
recommend how to manage, assign and increment version numbers of new component
releases. It provides a simple set of rules and requirements to communicate the type
of changes made when releasing a new version of a software component. This allows
dependent software components to be informed about possible “breaking changes” [9].

A syntactic semver-compatible release uses a version number composed of a major,
minor and patch number. This format allows to order releases and indicates the importance
of each new release. For example, 1.2.3 occurs before 1.2.10 (higher patch number),
which occurs before 1.3.0 (higher minor number), which occurs before 2.1.0 (higher major
number). Backward incompatible updates should increment the major number, backward
compatible updates that may add new functionalities should increment the minor number,
while simple bug fixes or security patches should increment the patch number. Additional
labels or tags, for example for specifying pre-releases and build metadata, may be appended
to the MAJOR.MINOR.PATCH format (e.g., 1.2.3-pre1, 1.2.10-beta2, etc).

A component can restrict the releases of other components on which it depends by
specifying version constraints in the specification of the dependencies. Upon installation of
the component, the installation manager will consider these constraints to install the most
“appropriate release” for each dependency. The meaning of “appropriate release” may
vary from one package repository to another. For example, the npm package manager will
select for installation the highest available version satisfying the dependency constraints,
while in NuGet (a package manager for the .NET environment), the first version satisfying
the dependency constraints will be selected, starting from the oldest to the new released
versions.

Version constraints can be quite diverse. For example, Table 2.2 summarizes the
types of version constraints that can be used for specifying npm package dependencies,
together with the interpretation of each constraint type. Tilde (∼) and caret (∧) are the
most common version constraints. Tilde allows only new patch releases to be installed
while caret allows new patch or minor releases to be installed. In addition to these two
constraints, other constraints and logical operators can be used to specify which package
version to be used (e.g., latest, x, >, =, etc). Note that these constraints may have a
different interpretation when they are used with the unstable major version zero (0.x.y)
that is typically used for initial development.

Besides the fact that different packaging ecosystems have different variants of version
constraints and syntactic notations, they may interpret the same notation in a different
way. For example, in npm, Packagist and RubyGems, the version constraint 1.0.0 means
that 1.0.0 is the only allowed release, while in Cargo this constraint means that the whole

1https://semver.org

10

https://semver.org

2.2. VERSION MANAGEMENT IN SOFTWARE ECOSYSTEMS

Constraint Interpretation Notation Satisfied versions
strict use exactly this version 2.0.0 2.0.0
tilde (∼) the latest patch update ∼ 2.3.0 ≥ 2.3.0 ∧ <2.4.0

caret (∧) the latest minor or patch
update

∧2.3.0 ≥2.3.0 ∧ <3.0.0

latest the latest available release latest, x, x.x.x,
* or *.*.*

≥0.0.0

minimal the latest release above
this version >= 2.3.0 ≥ 2.3.0

maximal the latest release below
this version < 2.3.0 < 2.3.0

version ranges the latest release in the
specified version interval 1.2.3 - 2.3.4 ≥1.2.3 ∧ ≤2.3.4

logic operators any logic combination
of constraints 2.5.3 || >2.8.1 2.5.3 ∨ >2.8.1

wildcard allow updates to a release
compatible with the wildcard 1.2.x ≥1.2.0 ∧ <1.3.0

2.* ≥2.0.0 ∧ <3.0.0

Table 2.2: Types of dependency constraints for npm package dependencies.

range between [1.0.0, 2.0.0[is allowed to be installed.

Because of its importance, semantic versioning has been subject to many research
studies. Raemaekers et al. [26] investigated the usage of semantic versioning by Java
packages inMaven over a seven-year period. They observed that package maintainers do not
respect the semantic versioning syntax (e.g., one third of all minor releases introduce at least
one API breaking change), and that the adherence to semantic versioning only marginally
increases over time. Macho et al. [27] proposed the BuildMedic tool to automatically repair
Maven builds that break due to dependency-related issues.

In order to study how developers declare dependencies, Decan et al. [28] empirically
compared semver compliance of four software packaging ecosystems (Cargo, npm, Packagist
and Rubygems), and studied how this compliance evolves over time. They also explored
to what extent do ecosystem-specific characteristics or policies influence the degree of
compliance. Their general conclusion was that the proportion of compliant constraints
increases over time for all ecosystems, while ecosystem-specific notations, characteristics,
maturity and policy changes play an important role in the degree of such compliance.

11

2.3. DEPENDENCY MANAGEMENT IN SOFTWARE ECOSYSTEMS

2.3 Dependency Management in Software Ecosystems

Today’s software systems are increasingly depending on reusable libraries and packages
stored in online package distributions for specific programming languages (e.g., npm,
RubyGems, Maven) or operating systems (i.e., Debian and Ubuntu). The availability of such
reusable packages and releases in package repositories and managers facilitates software
development and evolution. For this reason, software dependency management is of
great importance and it has been subject to many research studies in different software
ecosystems.

2.3.1 Maven

Several related studies have focused on the Maven ecosystem of Java packages. In order
to help developers to decide when to use which library version of a software dependency,
Mileva et al. [29] proposed an approach and an associated tool based on concept of the
“wisdom of the crowds”. If a library version is used by more developers, it is more likely to
be recommended. The authors acknowledge that other context-specific factors need to
be taken into account to recommend the most appropriate version of a library, and that
a cost-benefit analysis needs to be made before deciding to switch to a new version of a
software library.

Software library migrations have also been subject to many studies. Teyton et
al. [30] proposed an approach to identify sets of similar libraries that might produce library
migrations. The results can be used for suggesting alternative libraries to developers who
want to migrate from a library to another one. In an extended work [31], they analyzed
how and why library migrations occur. They found that library migrations are relatively
rare, and only few exceptional projects have witnessed more than one migration.

Benelallam et al. [32] presented the Maven Dependency Graph, an open-source dataset
that aims at enabling the Software Engineering community to conduct large-scale empirical
studies on Maven Central. Later on, they performed a quantitative empirical analysis on
more than 1.4M artifacts that represent the versions of 73.653 Maven libraries [33]. They
found that 30% of the libraries have multiple releases that are actively used by latest
artifacts. This proportion increases in the case of popular libraries to 50%. They also
found that more than 90% of the most popular versions are not the latest releases, and
that both active and significantly popular versions are distributed across the history of
library versions.

Sulir et al. [34] studied the buildability of Java software projects that are based on
Maven and Gradle. Using a virtual environment, they tried to fully and automatically
build target archives from the source code of over 7,200 open source Java projects. They
found that more than 38% of these projects failed to build, mainly because of dependency

12

2.3. DEPENDENCY MANAGEMENT IN SOFTWARE ECOSYSTEMS

related issues, followed by Java compilation and documentation generation. They also
found that larger, older and less recently updated projects fail more often.

2.3.2 npm

Dependency-related problems have also been investigated in the default package manager
and repository for JavaScript packages, npm. Wittern et al. [35] examined the npm
ecosystem in an extensive study that covers package descriptions, the dependencies among
them, download metrics, and the use of npm packages in publicly available repositories
hosted on GitHub. One of their findings is that the number of npm packages and their
updates is growing super-linearly. They also observed that packages are depending more
and more on each other. More than 80% of npm packages have at least one direct
dependency.

Abdalkareem et al. [36] focused on potential problems caused by the huge number of
dependencies on “trivial” packages in npm. While interviewed developers did not consider
those packages as harmful, they were found to be less tested than other packages. Kula et
al. [37] studied the impact of the same category of “micro-packages” in the npm JavaScript
ecosystem. They found that some micro-packages have long dependency chains and incur
just as much usage costs as other npm packages.

Mezzetti et al. [38] presented a novel technique, type regression testing, that auto-
matically detects whether an update of an npm package contains type-related breaking
changes in the API. These changes are modifications of a library that affect the presence or
types of functions or other properties in the library interface, including renaming a public
function, moving it to another location, or changing its type signature. To validate their
technique, they conducted an experiment on 12 widely used packages. The experiment
showed that their technique can identify type-related breaking changes with high accuracy.
They observed that their evaluation was capable of detecting 26 breaking changes in 167
minor and patch updates of 5 high quality npm packages, and most of those breaking
changes could not have been detected by existing techniques.

Most of the works for the npm ecosystem or for the JavaScript packages in general
rely on the high-level metadata of software packages and their dependencies and not on a
static or dynamic source code analysis of the package content. The latter is a very valuable
fine-grained analysis but it is time-consuming. It cannot scale up to the ecosystem-level
because of the massive amount of packages and their dependencies, and because of the
large amount of newly created package versions. Zapata et al. [39] performed a manual
inspection on a total of 60 JavaScript client projects from three cases of high severity
vulnerabilities. They carried out an exploratory study at the function level and access of
the library’s API. Surprisingly, they found evidence that up to 73.3% of outdated clients
were actually safe from the threat of the high severity vulnerabilities, which means that

13

2.3. DEPENDENCY MANAGEMENT IN SOFTWARE ECOSYSTEMS

analysis, at dependency level, is an overestimation.

2.3.3 Debian

The study of software dependencies has been deeply investigated in Linux-based software
component distributions [40]. In this regard, researchers have found different types
of dependencies that may arise between software components [41], and have proposed
solutions for managing dependencies in evolving software component ecosystems and
distributions [42]. In particular, Abate et al. [43] provide a formal framework for analyzing
the future of software component repositories. They applied this framework to detect
future problems related to challenging upgrades and outdated packages, and validated it
on the Debian distribution. This approach is quite complementary to the work presented
in the current dissertation, which provides a formal framework and associated metrics for
studying the temporal evolution of outdated package dependencies.

Dependency conflicts can lead to co-installability issues when multiple versions of the
same package or different packages are not allowed to be installed at the same time. Claes
et al. [44] performed an extensive analysis on the evolution of package incompatibilities
(strong conflicts) in the Debian stable and testing distributions. One of their findings is
that packages that are always in strong conflict have a smaller survival probability than
those who are not. Moreover, using different metrics related to the duration and presence
of conflicts, they could identify several packages that have been reported as problematic
by the Debian community in the past.

2.3.4 Docker

In recent years, the way of developing software has significantly changed to cope with the
continuous changes in the product development cycle and the need to accelerate the time
to market. In this evolving scenario, containerized applications, and in particular Docker
images, play a key role, improving portability, reliability and deployment [45].

A Docker image is a lightweight, stand-alone executable piece of software, that
includes an entire runtime environment [46]. Thus, an image contains an application,
plus all its dependencies, such as system and third-party packages, libraries, binaries, and
configuration files. The build configuration of an image is declared using a Dockerfile and
consists of a list of commands grouped into hierarchical layers, each one identified by a
unique hash signature. An image can be built upon another image, automatically inheriting
its layers, and consequently its dependencies. By containerizing the application and its
dependencies, differences in operating system distributions and underlying infrastructure
are abstracted away. This promotes modularity and eases using and building new software.
Docker images are freely available on registries such as Docker Hub, one of the largest

14

2.3. DEPENDENCY MANAGEMENT IN SOFTWARE ECOSYSTEMS

registries providing a common place to build, update and share images among users. In
Docker Hub, images are distributed using repositories, that allow users to develop and
maintain several versions of different images (e.g., for different architectures), where each
image can be tagged with different names (e.g., debian:stretch and debian:buster) to ease
search and use.

Because of their importance, different studies have been conducted for Docker
containers. Cito et al. [47] conducted an empirical study on a dataset of 70,000 Dockerfiles,
and contrasted this general population with samplings containing the top 100 and top
1,000 most popular projects using Docker. Their goal was to characterize the Docker
ecosystem, discover prevalent quality issues, and study the evolution of Docker images.
Among other results, they found that the most popular projects change more often than
the rest of the Docker population, with an average of 5.81 revisions per year and 5 lines of
code changed. Furthermore, they found that, from a representative sample of 560 projects,
34% of all Docker images could not be built from their Dockerfiles.

In the Docker image building process, only the top layer is read-write while the
bottom layers are all read-only. However, temporary Dockerfiles are often used in the image
building process. Nevertheless, if a temporary file is imported and removed in different
layers by a careless developer, it will lead to a file redundancy, which will eventually lead
to larger-size images. This restricts the efficiency of image distribution and thus affects
the scalability of services. To address this problem, Lu et al. [48] termed it temporary file
smell and conducted an empirical case study to the real-world Dockerfiles on Docker Hub.
As a conclusion, they reported that this problem exists in a wide range of Dockerfiles.

Currently, a large number of reusable Docker images and repositories are available
online as open source, through services such as Docker Hub and Docker Store. Effectively
reusing these artefacts requires a good understanding of them, and semantic tags facilitate
this understanding. However, the online communities do not support tag recommendation,
and little training data is available. To address this problem, Zhou et al. [49] proposed a
semi-supervised learning based tag recommendation approach, SemiTagRec, for Docker
repositories.

2.3.5 Cross Ecosystem Comparison

Decan et al. [50] studied the evolution of huge package dependency networks in three
ecosystems, npm, CRAN, RubyGems. Among others, they observed that, in combination
with semantic versioning, dependency constraints can prevent packages from breaking due
to dependency updates. In more recent work, they compared the evolution of the npm
package dependency network with six other packaging ecosystems, and compared their
growth, changeability, reusability and fragility over time [1] . The high and increasing
number of transitive dependencies was found to be a major cause of fragility, suggesting

15

2.4. SOFTWARE VULNERABILITY MANAGEMENT

the need for better dependency management tools and policies.

Kula et al. [51] proposed a model named the Software Universe Graph (SUG) Model as
a structured abstraction of the evolution of software systems and their library dependencies
over time. To show the usefulness of their model, they performed an empirical study
using 6,374 Maven artifacts and over 6,509 CRAN packages mined from their real-world
ecosystems. Their visualizations of the model on different aspects (e.g., library coexistence
pairings and dependents diffusion) showed popularity, adoption and diffusion patterns
within each software ecosystem. Their results also showed that the Maven ecosystem is
taking a more conservative approach to dependency updating than the CRAN ecosystem.

Vaidya et al. [52] presented a systematic study of security issues that plague open
source language-based ecosystems such as the npm and PyPI ecosystems. Focusing mainly
on malicious packages and how they are impacted based on the unique characteristics
of each programming language ecosystem, they found that fully automated detection
of malicious packages is likely to be unfeasible. However, tools and metrics that help
developers assess the risk of including external dependencies would go a long way toward
preventing attacks.

Bogart et al. [9] performed multiple case studies of three software ecosystems with
different tooling and philosophies toward change, Eclipse, R/CRAN, and Node.js/npm, to
understand how developers make decisions about change and change-related costs and
what practices, tooling, and policies are used. They found that the three ecosystems
differ significantly in their practices, policies, etc. As a summary, they reported that in
Eclipse, you should not break an API, in R/CRAN you reach out to affected downstream
developers, while in Node.js/npm, you increase the major version number if your update
has breaking changes.

Later on, the same researchers conducted a survey about shared values and practices
among over 2,000 developers in 18 ecosystems [6]. One of their observations was that
maintainers generally try to perform breaking changes only rarely. Most developers, across
all ecosystems, report less than one breaking change a year. It is also generally common to
bundle multiple changes together to avoid disruptions for their users. They also observed
that the frequency of breaking changes is higher in some ecosystems (npm, Rust) than
others (Perl, CRAN, Eclipse).

2.4 Software Vulnerability Management

Decan et al. [53] carried out an empirical analysis of security vulnerabilities in the npm
ecosystem by analyzing how and when these vulnerabilities are discovered and fixed,
and to which extent they affect other package releases in the ecosystem in presence of
dependencies. They observed that it often takes a long time to discover vulnerabilities since

16

2.5. SOFTWARE OUTDATEDNESS MANAGEMENT

their introduction. A non-negligible proportion of vulnerabilities (15%) are considered
to be risky since they are either fixed after public announcement of the vulnerability, or
not fixed at all. They found that the presence of package dependency constraints plays
an important role in not fixing vulnerabilities, mainly because the imposed dependency
constraints prevent fixes to be installed.

Zimmermann et al. [54] studied security risks for users of npm by systematically
analyzing dependencies between packages, the maintainers responsible for these packages,
and publicly reported security issues. They found that individual packages could impact
large parts of the entire ecosystem. They also observed that a very small number of
maintainer accounts could be used to inject malicious code into thousands of npm packages,
a problem that has been increasing over time. To reduce the risk of having more and more
vulnerable packages, they reported that solutions include trusted maintainers and code
vetting process for selected packages.

Shu et al. [55] performed a generic large scale study on the state of security vulnera-
bilities in both community and official Docker Hub repositories. They proposed the Docker
Image Vulnerability Analysis (DIVA) framework to automatically discover, download,
and analyze Docker images for security vulnerabilities. They studied a set of 356,218
images and observed that both official and community repositories contain on average
more than 180 vulnerabilities; many images had not been updated for hundreds of days,
demonstrating a strong need for more analysis and systematic methods of studying the
content of Docker containers.

Cadariu et al. [56] presented the Vulnerability Alert Service (VAS), a tool-supported
process to track known vulnerabilities in software systems throughout their life cycle. To
demonstrate its usefulness, they evaluated it in the context of external software product
quality monitoring provided by the Software Improvement Group, a software advisory
company based in Amsterdam, Netherlands. Besides showing the usefulness of the tool,
they empirically reported that using components with known security vulnerabilities is
common in practice in proprietary software systems. They also provided a description of a
process to handle alerts addressing security concerns.

2.5 Software Outdatedness Management

With the presence of large numbers of software packages and versions in package repositories,
developers are often ignoring or delaying to update their software dependencies, including
tools and other packages that they depend on. The consequences of neglecting to update
outdated dependencies can be risky, as dependencies can suffer from numerous security
issues and bugs. For this reason, researchers have conducted multiple studies on software
outdatedness.

17

2.6. TOWARDS A NOTION OF TECHNICAL LAG

Kula et al. [7] investigated the latency in adopting the latest library release for
thousands of Java libraries. They found that maintainers are less likely to adopt the latest
releases at the beginning of a project; and Maven libraries are becoming more inclined to
adopt the latest releases when introducing new libraries. In a more recent work, the same
researchers [57] empirically studied library migration for more than 4,600 GitHub projects
and 2,700 library dependencies. They observed that four out of five of the studied projects
keep their outdated dependencies. Through a survey with project maintainers, they
discovered that the large majority of them were unaware of such outdated dependencies.

Several researchers found that outdated dependencies are a potential source of security
vulnerabilities. Cox et al. [21] analyzed 75 Java projects that manage their dependencies
through Maven and introduced different metrics to quantify their use of recent versions of
dependencies. They observed that systems using outdated dependencies were four times
more likely to have security issues and backward incompatibilities than systems that are
up-to-date.

Lauinger et al. [58] studied the client-side use of JavaScript libraries. They found
that “the time lag behind the newest release of a library is measured in the order of
years” and that this is a major source of known vulnerabilities in websites using these
libraries. They also observed that “libraries included transitively [...] are more likely to be
vulnerable”.

Mirhosseini et al. [59] evaluated two mechanisms, automated pull requests and GitHub
badges generated by dependency watchers like David2, in order to see if they can encourage
and motivate developers to upgrade software dependencies. To do so, they introduced a
metric to quantify the lag before npm packages update their dependency constraints and
studied how this metric changes in projects that make use of automated pull requests and
badges. They also surveyed developers about their preferences of similar tool support.
They found that both mechanisms can help in reducing such lag, however automated pull
requests can encourage developers to update dependencies quicker and at a higher rate
than badges.

2.6 Towards a Notion of Technical Lag

All of the above works illustrate that component reuse can suffer from outdated depen-
dencies that may have important consequences such as backward incompatibilities and
security vulnerabilities, often without even being aware of them. This highlights the need
for a measure that quantifies how outdated reused software is. González-Barahona et
al. [60] introduced the concept of technical lag, to measure how outdated deployed software
systems are. They suggested many ways in which technical lag can be implemented or

2https://david-dm.org/

18

2.6. TOWARDS A NOTION OF TECHNICAL LAG

computed and could be used when deciding about upgrading software in production. For
example, lines of source code between ideal and deployed components, or the number of
commits of difference between them. They also illustrated the evolution of technical lag
for some specific packages in the Debian Linux distribution.

This thesis is inspired by, and builds further on, the work of González-Barahona
et al. [60]. More specifically, we extend the concept of the technical lag and formalise it
in a generic framework. To validate the framework, we carry out interviews and surveys
with software practitioners and we perform empirical studies to analyze the technical lag
for multiple case studies. Then, in order to support developers, we develop tools that
compute their software project’s technical lag.

19

Chapter 3
A Preliminary Analysis of Software Library
Usage and Evolution

Software systems are commonly implemented on top of frameworks and rely on
external libraries to reuse complex functionality and increase productivity [61]. In order
to understand how a particular library is used, software practitioners can rely on how the
library has been used in other projects, how the library evolves over time, and when and
why other projects have updated to a new library version.

This chapter presents an exploratory study on the use of a popular category of Java
libraries. Such analysis helps us to figure out the common practices of library use, which
will pave the way for us to do more extensive research.

The content of this chapter is mainly based on our previous publications in the
SANER 2017 and SATToSE 2017 proceedings [62, 63].

20

3.1. INTRODUCTION

3.1 Introduction

Software development practices have evolved quite a lot since the early days of programming.
Most software projects today, especially in the open source software community, are using
distributed and agile development practices. In addition, they heavily rely on reusing
external software libraries to realize part of their functionality, rather than needing to
implement these functionalities themselves.

A concrete example of a very frequently used category of software libraries is testing-
related libraries. According to a blog post [64], testing libraries (including, JUnit, TestNG
and Spring), matching libraries (Hamcrest and the more recent AssertJ) and to a lesser
extent mocking libraries (e.g., Mockito, EasyMock and their PowerMock extension) are
among the most popular Java libraries on GitHub.

Software development projects frequently rely on testing-related libraries to test the
functionality of the software product automatically and efficiently. Many such libraries
are available in different packaging ecosystems for different programming languages, and
developers face a hard time deciding which (versions of) libraries are most appropriate for
their project, when to update or migrate to a competing library.

In this chapter, we present our first exploration on the use of testing-related software
libraries. Such analysis will pave the way for us to understand how libraries and their
versions are used and how they are being replaced by other competing libraries or new
released versions. To do so, we empirically analyzed the use of twelve popular testing-
related libraries in 4,532 open source Java projects hosted on GitHub and use Maven for
their automatic build. Later on, we focus on eight of these libraries, namely those that were
found to be the most popular. We studied how frequently specific libraries are used over
time. We also identified if and when library usages are updated or replaced by competing
ones during a project’s lifetime.

Our results showed that only a small proportion of software projects have migrated
from the library they use to another competing library, while most of the projects tend to
stick to only one library, and update its version from time to time.

3.2 Method

We studied open source projects extracted from GitHub. We selected Java projects because
Java is the most popular programming language according to the TIOBE index1. We
selected GitHub as a data source because we need full access to the source code history
in order to carry out our analysis, and because it’s the largest host of Java source code
(containing over 2.4M Java repositories).

1http://www.tiobe.com/tiobe-index/ (January 2017)

21

http://www.tiobe.com/tiobe-index/

3.3. RESEARCH QUESTIONS

We decided to study the most popular testing libraries based on their number of
dependents in the Maven Central Repository2: JUnit, TestNG, Spring test, Arquillian and
Spock framework. We added the Hamcrest and AssertJ libraries that are often used as
matching frameworks to facilitate writing more complex tests by creating customized
assertions. We also considered the most used mocking libraries in Maven3: Mockito,
EasyMock, PowerMock, JMock and JMockit. Libraries for non-functional testing (such as
UI testing, performance testing, acceptance testing, load testing, etc.) were excluded, but
could be considered very easily in a similar study.

We began with the GitHub Java Corpus of 14,807 open source Java projects extracted
by Allamanis and Sutton [65] and obtained from Github Archive4. We removed 1,748
projects that were no longer available on GitHub. Based on popularity measured by number
of stars, we added 7,629 popular GitHub projects satisfying the same filters as those applied
by the GitHub Java Corpus [65], in order to have a larger corpus of projects that make use
of testing-related libraries. More specifically, we ignored projects that were never forked
or that were forks of other projects. This filtering reduces the risk of obtaining results
statistically biased by groups of strongly related individuals in the considered project
population.

This led us to 20,688 projects as potential candidates for our empirical analysis. In
September 2016, we created a local clone of the GitHub repository for each of them. We
further restricted ourselves to those projects relying on Maven, in order to be able to
identify project dependencies defined in Project Object Model files (pom.xml). We also
restricted ourselves to projects with an active lifetime of at least two years, which seems
an acceptable minimal duration for detecting potential migrations of library usage during
the projects’ lifetimes. This lead us to 6,424 remaining projects.

We analyzed monthly snapshots of each considered project, by looking at the import
statements in each Java file of the project. We found 4,532 Java projects that used at
least one of the considered Java libraries. For these projects, we analysed in total 125,580
commits, 10,033,726 Java source code files and 31,264,586 import statements related to
testing-related libraries. Table 3.1 presents descriptive statistics of the final corpus of
projects we used.

3.3 Research Questions

The research methodology and questions in this analysis are similar to the ones presented
by Goeminne et al. [66, 67], who focused on the evolution of Java database access libraries.
More specifically, we focus on the following research questions:

2https://mvnrepository.com/open-source/testing-frameworks
3https://mvnrepository.com/open-source/mocking
4https://www.githubarchive.org/

22

https://mvnrepository.com/open-source/testing-frameworks
https://mvnrepository.com/open-source/mocking
https://www.githubarchive.org/

3.4. EMPIRICAL EVALUATION

Table 3.1: Descriptive statistics of the considered project corpus

Number of Value
Projects 4,532
Commits 125K
Source files 10M
Import statements 31M

RQ1: Which are the most frequently used testing-related libraries? With this research
question, we count and compare the number of projects that make use of each one of the
considered libraries.

RQ2: When are libraries introduced in a project’s lifetime? With this research question,
we compute the time usually needed between the first commit and the commit in which
the testing library is introduced.

RQ3: Which libraries are used simultaneously in projects? Projects from the same category
of libraries are not usually used together since they might provide the same functionality.
With this research question, we identify the software libraries that have been used together
within the same software project.

RQ4: How frequently are libraries used over time? With time passing, good software
libraries gain more visibility and popularity. With this research question, we aim to know
which testing-related libraries are getting more dependents by time.

RQ5: Do projects migrate to competing libraries? Projects from the same category could
be considered as competitors. With this research question, we investigate on the software
libraries that have been replaced by other libraries from the same category.

RQ6: How long does it take before projects update their used libraries? With time passing,
new versions of software libraries are being released. With this research question, we
compute and analyze the time needed (delay) before a software library is updated to a
new released version.

3.4 Empirical Evaluation

RQ1: Which are the most frequently used testing-related libraries?

Figure 3.1 shows the relative use frequency of each of the 4,532 Java projects in our corpus
that used at least one of the considered libraries at least once during its lifetime (i.e.,
at least one Java file imported that library in at least one commit). We observe a high
imbalance. JUnit was by far the most popular: of all considered libraries, projects are
very likely (97%) to use JUnit. In comparison, the competing TestNG library is used in

23

3.4. EMPIRICAL EVALUATION

only 11.9% of the projects. Of the considered mocking libraries, Mockito was by far the
most used library, being used by 31.3% of all projects. EasyMock and PowerMock are
considerably less popular, corresponding to 9.3% and 4.7% of all projects, respectively.
The matching library Hamcrest (22.5%) is considerably more popular than its competitor
AssertJ, which can be explained by the fact that AssertJ is much more recent. However,
since its first release in March 2013 its popularity is increasing.

Overall, our findings partially agree with the previous research [64], in the sense that
testing libraries are dominant but mocking libraries are still more popular than matching
libraries.

JU
ni
t

Sp
rin
g

Te
st
N
G

A
rq
ui
ll

db
U
ni
t

Sp
oc
k

0

20

40

60

80

100

P
ro

je
ct

s
%

M
oc
ki
to

EM
oc
k

PM
oc
k

JM
oc
k

JM
oc
ki
t0

5

10

15

20

25

30

35

H
am
cr
es
t

A
ss
er
tJ

0

5

10

15

20

25

Figure 3.1: Percentage of projects in which a given library is used at least once during
its lifetime. Testing libraries are shown in blue, matching libraries in green, and mocking
libraries in red.

We decided to focus on those eight libraries that are used by a sufficient number of
projects in our corpus. Therefore, we excluded the 5 least frequent libraries in Figure 3.1:
Arquillian and Spock, two testing frameworks for writing integration tests; dbUnit, a unit
testing framework for database-driven projects; and two less popular mocking libraries
JMock and JMockit.

RQ2: When are libraries introduced in a project’s lifetime?

For each project, we analysed after how long each used library got introduced (i.e., the
time interval between the first project commit and the first commit where at least one Java
project file imported the considered library). Figure 3.2 shows that the considered libraries
are introduced early. 56% of all projects started using at least one of these libraries as
early as their first commit on GitHub. This could be explained by the fact that these
projects were already in development before coming to GitHub, or because they follow
a test-driven development process, implying that tests are introduced very early in the

24

3.4. EMPIRICAL EVALUATION

project’s lifetime.

0 2 4 6 8 10 12 14 16
months

0

10

20

30

40

50

60
P

ro
je

ct
s

%
matching
mocking
testing

Figure 3.2: Number of months between the first commit and the commit in which one of
the testing-related libraries was introduced in the project.

Unsurprisingly, we observed that JUnit and TestNG are the first libraries to be
introduced in respectively 88% and 57% of the projects in which they occur with other
libraries. AssertJ was never found to be introduced first, probably because it is a much
more recent library.

Table 3.2 compares the relative order of introduction of the different testing-related
library categories. Because of their role as the core of the testing process, testing libraries
tend to be introduced before matching (71.6%) and before mocking (57.9%) libraries
that are usually used around the testing libraries. In 41.4% cases, mocking libraries are
introduced together (within a deviation of one month) with testing libraries, and in 50.3%
cases they are introduced before matching libraries.

Table 3.2: Introduction order of testing-related library categories

A→B #projects A before B A after B A = B

testing→matching 983 71.6% 1% 27.4%
testing→mocking 1443 57.9% 0.7% 41.4%

mocking→matching 523 50.3% 21.8% 27.9%

RQ3: Which libraries are used simultaneously in projects?

We analyzed if projects use different libraries over their lifetime. The results are shown
using Venn diagrams in Figure 3.3. JUnit occurs as the only testing library in 61.3% of all
projects (2,777 in total) and 97% of all considered projects have used JUnit at least once.
TestNG is used as the only testing library much less frequently, in 2.3% (106) of all projects
using at least one of the considered libraries, while 11% of all projects have used TestNG

25

3.4. EMPIRICAL EVALUATION

at least once in their lifetime. All projects that used either Hamcrest, Spring or AssertJ
also used at least one other library during their lifetime. In the overwhelming majority of
the cases, Hamcrest and AssertJ are used in projects that have used JUnit in their lifetime.

Figure 3.3: Number of projects using different testing-related libraries at least once during
their lifetime (not necessarily simultaneously).

Of all projects that used at least two of the considered libraries during their lifetime,
we computed which pairs of libraries were actually being used simultaneously in a specific
project snapshot (not necessarily within the same Java files). Table 3.3 shows the percentage
of projects using a library A that also used library B simultaneously at least once (i.e., in
at least one commit) during their lifetime.

Nearly all projects that use Hamcrest, AssertJ, Spring, Mockito or PowerMock also
use JUnit (values >94%). Those that don’t, tend to use TestNG instead. Unsurprisingly,
JUnit is used much less frequently with its competitor TestNG: projects that use JUnit
rarely use TestNG (7%). However, more than 3 out of 5 projects that use TestNG also
used JUnit simultaneously at some point (64%). This may indicate that projects using
TestNG actually migrated away from JUnit somewhere during their lifetime. RQ5 studies
this library migration phenomenon in more detail.

Projects using Hamcrest rarely use AssertJ (7.36%). The other way round, more than
2 out of 5 projects that use AssertJ also use Hamcrest simultaneously (40.8%). This may
be a sign that many projects that use Hamcrest are in the process of migrating to AssertJ.

For mocking libraries, PowerMock is mostly used as extension of Mockito (86.5%),
and much less as an extension of EasyMock (19.1%). As expected, projects that use
Mockito rarely use EasyMock (8.23%). However, more than one out of four projects that
use EasyMock also use Mockito (27.5%). This is relatively a high percentage if we consider
that EasyMock and Mockito are competitors.

26

3.4. EMPIRICAL EVALUATION

Table 3.3: The percentage of projects using library A (rows) that also use library B

(columns) simultaneously at least once during their lifetime.

Mockito EasyMock PowerMock

JUnit 100% 7% 12% 23% 4% 32%

JUnit TestNG Spring Hamcrest AssertJ

9% 5%
TestNG 64% 100% 13% 18% 6% 33% 12% 4%
Spring 99% 12% 100% 37% 8% 53% 18% 10%

59% 10% 10%
AssertJ 95% 16% 23% 41% 100% 61%

Hamcrest 99% 9% 18% 100% 7%
11% 15%

Mockito 98% 11% 19% 42% 8% 100% 8% 13%
EasyMock 77% 14% 22% 24% 5% 28% 100% 10%

87% 19% 100%PowerMock 99% 9% 23% 47% 13%

RQ4: How frequently are libraries used over time?

Figure 3.4 (top) shows the monthly evolution over time of the usage of testing and matching
libraries. The proportion of projects using JUnit is decreasing (but remains very high),
while TestNG and Spring have a stable (but low) proportion of projects using them. The
proportional usage of Hamcrest and AssertJ is increasing over time.

2009 2010 2011 2012 2013 2014 2015 2016
0

20

40

60

80

P
ro

je
ct

s
%

AssertJ

JUnit

TestNG

Hamcrest

Spring

2009 2010 2011 2012 2013 2014 2015 2016
0

5

10

15

20

P
ro

je
ct

s
%

Mockito

EasyMock

PowerMock

Figure 3.4: Monthly evolution of the (proportion of) Java projects using testing-related
libraries.

For mocking libraries, Figure 3.4 (bottom) shows that the proportional usage of
Mockito and PowerMock has remarkably increased, whereas the usage of EasyMock is
slightly declining over time.

27

3.4. EMPIRICAL EVALUATION

RQ5: Do projects migrate to competing libraries?

We analyzed all considered libraries used by each project’s Java files once every month,
to determine if a project p permanently switches from library l1 to library l2 during its
observed lifetime. We define a permanent library migration from l1 to l2 in p, if ∃ time t1
where project p uses library l1 and does not use l2, while ∃ t2 > t1 such that ∀ t ≥ t2
project p uses l2 but does not use l1.

JUnit

TestNG Spring

EasyMock Mockito

PowerMock

Hamcrest

AssertJ

63 12
34

10

3

1

3

37

2 77

Figure 3.5: Number of migrations observed between testing libraries.

The migration graph of Figure 3.5 visualizes all permanent migrations for the
considered libraries, grouped by category. We observed a high number of permanent
migrations (63) from JUnit to TestNG, while only 34 projects permanently migrated from
TestNG to JUnit. We also observed that 50 out of these 97 projects didn’t involve a
transition phase (during which both libraries are used simultaneously) for the migration.
Only 3 migrations were performed from Spring to TestNG and it is probably because
projects that use the Spring test module are using other modules of Spring framework that
provide different functionalities, so they are kind of “forced” to stick to this framework.

We observed the highest number of permanent migrations from Hamcrest to AssertJ
(77) even if these two libraries were used together in only 90 (i.e., 1.98%) of all considered
projects. No permanent migration was observed from AssertJ to Hamcrest. For the mocking
libraries, we observe most migrations (37) from EasyMock to Mockito, most likely because
it offers more functionality.

We also found cases (not shown in the graph) of temporary library migrations. A
temporary library migration from l1 to l2 is a transition of migrations from l1 to l2 and
then from l2 to l1. Nine projects temporarily migrated from JUnit to TestNG and returned
to JUnit after some time. Four other projects performed the opposite temporary migration.
Four projects migrated from Hamcrest to AssertJ and returned to using Hamcrest.

28

3.4. EMPIRICAL EVALUATION

RQ6: How long does it take before projects update their used libraries?

To answer this question, for each project, for the first snapshot of each month of its lifetime,
we extracted the metadata available on the Maven POM file and we identified the used
versions of the considered testing-related dependencies.
Figure 3.6 shows the latency to upgrade to a new released library version. We observe
that projects that make use of TestNG, PowerMock and AssertJ update them faster. More
than 20% of these projects upgraded their testing-related dependency in the first months,
where the other ones took longer before updating to a new released version.

0.0

0.1

0.2 junit

org.springframework

org.testng

0.0

0.1

0.2 org.easymock

org.mockito

org.powermock

0 20 40 60 80 100

Latency to upgrade to a new release (in months)

0.0

0.1

0.2 org.assertj

org.hamcrest

Figure 3.6: The proportion of projections that had a latency to upgrade to a new library
release.

Moreover, we found that some versions of the same library are quickly adopted than
others. For example, in Figure 3.7, we observe that projects took more time to adopt the
first releases of the major version JUnit 4.0 than adopting the latest minor releases of the
same major version. This could be explained by the fear of the incompatible API changes
that are made on the new major release. We also observed that most of the versions of
testing libraries tend to be used for less than two years before being upgraded or before

29

3.5. DISCUSSION AND LIMITATIONS

3.7 3.8 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12
version

0

20

40

60

80

100

120
tim

e(
m

on
th

s)

Figure 3.7: Latency to upgrade to a new released JUnit version in months.

switching to another library version.

3.5 Discussion and Limitations

With this first study, we aimed to explore the evolution of how testing-related libraries are
used within software projects. We observed that library usage is imbalanced between the
set of libraries that we considered for the study. We also found that more than half of the
projects started using the testing-related libraries within their first commit. This shows
the importance of external libraries in the development of different software projects.

We observed that testing-related competing libraries are not usually used together
within the same project. In fact, we found that only a small proportion (5%) of library
migrations occurred in the development lifetime of the analyzed Java projects. This
suggests that developers do not often use or switch between different testing-related
libraries that provide the same functionality, instead they only stick to one library. For
this reason, we studied how long it takes before a used library is updated.

Focusing on the most used testing-related libraries, we noticed that major version
releases take much more time to be adopted. This is not surprising since it may require
more effort and cost to update to new major releases that are supposed to have incompatible
break changes by default [26].

Our research suffers from the same threats as other research relying on GitHub [68].
Our results may not be generalisable to non-Java projects or to closed-source industrial
projects that are typically subject to more restricted development rules. While we studied
the usage of eight testing-related Java libraries, the proposed methodology is applicable to
other categories of libraries as well. Our results may, however, be biased by the fact that
we have excluded projects with a lifetime of less than two years, as well as projects that
are no longer available in GitHub.

30

3.6. CONCLUSION

In our approach we assume that a library is being used by a Java project if one of the
project files contains specific import statements pertaining to that library. This approach
may lead to false positives, since imported classes and interfaces are not necessarily used
in the source code.

3.6 Conclusion

In this chapter, we carried out a preliminary analysis on the use of software libraries. More
specifically, we studied the use of eight popular testing, matching and mocking libraries in
a large corpus of GitHub-hosted Java projects. We observed that some libraries were found
to complement or reinforce one another (e.g., PowerMock which extends either Mockito
or EasyMock) while others are in competition (e.g., JUnit versus TestNG, Mockito versus
EasyMock, Hamcrest versus AssertJ).

We found that 5% of the considered projects are subject to library migrations, in
which a project replaces one of its used libraries by another. These migrations were mainly
permanent. For example, projects tend to migrate from EasyMock to Mockito and from
Hamcrest to AssertJ, but not the other way round. In a limited number of cases, the library
migrations were temporary, with the opposite migration being observed later on in the
project’s lifetime. We also analyzed the delay of the adoption of new available library
releases. For the case of JUnit, we noticed that it takes more than one year to update to
newer versions, and in some cases it may take years.

Our observations about when and how projects perform library updating is promising,
but requires a more in-depth analysis. Updating to a new major library release may imply
significant changes, potentially leading to an increased migration away from this particular
library (or version). In fact, we observed similar cases, e.g., the project livetribe-slp first
used JUnit 3, then migrated to TestNG, and then returned to using JUnit 4.

31

Chapter 4
A Framework for Technical Lag

In the previous chapter, we showed that developers of software projects have different
practices regarding the use of software library versions. One of these practices is that
developers tend not to update the version of their libraries. This can be harmful for the
whole software project, since outdated libraries may contain unfixed bugs and vulnerabilities.
Moreover, they may miss new functionalities and features that are included in the recent
library releases.

This chapter presents a generic model of technical lag to compute how outdated
deployed software components are compared to their ideal available versions. The content
of this chapter is mainly based on our previous publications in the ICSR 2018 proceedings
and Journal of Software Evolution and Process 2019 [69, 70].

32

4.1. INTRODUCTION

4.1 Introduction

To facilitate software reuse, many online platforms have been created for distributions of
operating systems (e.g., Linux distributions such as Debian and Ubuntu) and the most
prominent programming languages (e.g., npm for JavaScript, Maven for Java, RubyGems
for Ruby), totaling millions of reusable software component releases.

The mechanism of semantic versioning allows package maintainers to attach some
semantics to their package releases (e.g., whether it is a major release, minor release or
patch). By doing so, developers that depend on such packages can better assess the risk of
facing backward incompatible changes when upgrading their dependency to a new release.
Unfortunately, even if semantic versioning is recommended by many package management
tools, this policy is not always well-respected by package maintainers [26].

Assessing the problem of technical lag is important at the level of individual compo-
nents. It becomes even more relevant and problematic when large collections of components
are involved, such as when an application depending on many components is deployed.
For example, if a component imposes version constraints that are too strict on its direct
dependencies, it may suffer from higher technical lag. The impact of this lag becomes even
more important if transitive dependencies (a component depending on another component,
itself depending on other components) are taken into account. However, developers can
only act on how they specify direct dependencies for their components, which means that
indirect dependencies are, to some extent, beyond their control.

Therefore, a generic model of the technical lag concept is needed to capture all
cases where a deployed software component may be outdated. Since technical lag can be
measured in different ways, the mechanism of semantic versioning can help us in defining
a metric that captures the difference between two version releases, based on their ordered
version numbers.

In this chapter, we propose a formal framework for measuring technical lag. This
framework can be instantiated to specific reusable component repositories, using different
ways of measuring lag, in order to study how dependencies and other characteristics of
reusable components affect how far away deployments of applications are from the “ideal”
deployment.

4.2 Technical Lag Explained

Ideally, software systems would depend on the most “ideal” available version of their
dependencies, thus benefiting from the new features and bug fixes. In practice, however,
software projects and packages have a certain lag because many developers choose not to
update certain dependencies (“if it ain’t broke, don’t fix it”). Moreover, in many cases

33

4.3. TECHNICAL LAG EXAMPLE

1.0.1 1.1.0 2.0.01.2.1 2.1.0

Available releases
of the deployed
software

Technical lag

Ideal Version

∆ time
∆ versions
∆ vulnerabilities
∆ features

Included Software
 Version

Set of deployed
software
components

Figure 4.1: Illustration of the concept of technical lag

developers choose not to update because new major releases may include new functionality
that is not needed. Dietrich et al. [71] found that 75% of all version upgrades in 109
Java programs are not backwards compatible, but only few are actually affected by the
incompatible changes.

The concept of technical lag is related to, but different from, the metaphor of technical
debt [72, 73]. Technical debt refers to the qualitative difference between code “as it should
be” and code “as it is”. Technical lag refers to the increasing lag between the ideal available
upstream versions of packages used by a software system and those actually used in the
deployed system. Technical lag can be expressed in many ways. Figure 4.1 illustrates the
concept of technical lag in an imaginary case. Suppose that there is a software system that
deploys a set of software components. For one of this components, the system deploys its
version 1.1.0 while there is an available “ideal” version 2.0.0 (it could be the most secure,
the most stable, etc). The technical lag is the difference between these two versions (1.1.0
and 2.0.0), and it could be measured in many ways, e.g., in terms of a difference in time,
versions, vulnerabilities, features, etc.
Note that the technical lag could be aggregated for the whole set of deployed components.

4.3 Technical Lag Example

The main purpose of the example is to illustrate how and why component releases can
become outdated over time, and to illustrate different ways to quantify the extent to which
component releases can be outdated.

In the npm ecosystem, developers are invited to follow the semantic versioning
specifications by increasing their library version number each time they release a new
library version. Each version increase corresponds to patch fixes, added functionalities or
incompatible changes. Thus, in npm, the latest available version is supposed to be the
highest version and the closest one to the ideal library version that can be used.

Consider the actual software package youtube-player taken from the npm repository.

34

4.3. TECHNICAL LAG EXAMPLE

youtube-player

5.5.0 - 20-02-2018

ms

2.0.0 - 16-05-2017

missed versions:
2.1.0 - 30-11-2017
2.1.1 - 30-11-2017

load-script

1.0.0 - 08-03-2015

 debug

 2.6.9 - 22-09-2017

 missed versions:
 3.0.0 - 08-08-2017
 3.0.1 - 24-08-2017
 3.1.0 - 26-09-2017

sister

3.0.0 - 03-11-2014

^1.0.0

^2.6.6

^3.0.0

2.0.0

Figure 4.2: Transitive dependencies of version 5.5.0 of the youtube-player package at
its release date of 20-02-2018.

Figure 4.2 shows the dependency tree of the package release youtube-player 5.5.0 at
its release date. Its direct and transitive dependencies are shown in black, and correspond
to all other packages that will have a release installed when the user decides to run
npm install for youtube-player 5.5.0 at its release date. The exact release that will
be installed for each dependency is determined by the dependency constraint, shown in
Figure 4.2 on the edges of the tree. For example, the constraint ∧2.6.6 on debug specifies
that the latest minor or patch release above version 2.6.6 will be selected upon installation.
At the release date of youtube-player 5.5.0, constraint ∧2.6.6 on debug will select
debug 2.6.9 for installation. Figure 4.2 also shows some more recent releases in red. Even
if they are more recent, these releases will not be selected for installation because they do
not satisfy the dependency constraints. For example, debug 3.0.0, 3.0.1 and 3.1.0 are
not accepted by the constraint ∧2.6.6. It is because of such non-installable, more recent
releases that youtube-player 5.5.0 could be considered as outdated with respect to a
more “ideal” situation were the highest release of each dependency is installed.

Technical lag as a time difference

The notion of technical lag aims to capture the difference (or “delta”) between the current
situation and an “ideal” one. For example, assuming that we measure the technical lag as
a time difference, the lag induced by not using the latest and highest version of debug
would be 4 days (namely the delta between the release date of debug 2.6.9 and debug
3.1.0). If we assume that the aggregated time lag of youtube-player 5.5.0 is computed
as the maximum of the lags induced by all its direct dependencies, the lag will remain
4 days, because the two other dependencies on packages (sister and load-script) are
up-to-date. If we also take transitive dependencies into account, we need to consider the
lag induced by package releases at deeper levels of the dependency tree as well. Package
release ms 2.0.0 induces a technical lag because the latest available release ms 2.1.1 is

35

4.4. QUALITATIVE ANALYSIS

not accepted by the strict dependency constraint 2.0.0. Because of this, ms 2.0.0 has a
technical lag of 167 days, corresponding to the time delta between the release date of
ms 2.0.0 and ms 2.1.1. Consequently, the aggregated (maximum) time lag of the entire
(transitive) dependency tree for youtube-player 5.5.0 is 167 days.

Technical lag as a version difference

Although the semver policy is not always respected by package maintainers [26], it provides
a way of telling apart releases, and provides relevant information on which upgrades of
dependent releases are more likely to cause breaking changes. We will therefore rely on
semantic version numbers to measure the version lag between npm package releases.

Reconsidering our motivating example, the sequence of available package releases (at
the release date of youtube-player 5.5.0) since debug 2.6.9 is [2.6.9, 3.0.0, 3.0.1, 3.1.0].
This sequence can be used to count the number of missed updates between the selected
one (2.6.9) and the highest available one (3.1.0), considering each version component
separately. For this particular example, the version delta will be 1 major number (the
change from version 2.6.9 to 3.0.0), 1 minor number (the change from version 3.0.1 to
3.1.0) and 1 patch number (the change from version 3.0.0 to 3.0.1). In a similar way, the
version delta between the selected package release of ms (2.0.0) and the highest available
one (2.1.1), based on the sequence [2.0.0, 2.1.0, 2.1.1], will be 0 major, 1 minor (the change
from 2.0.0 to 2.1.0) and 1 patch number (the change from 2.1.0 to 2.1.1). Based on the
above, if we would compute the aggregated version lag of youtube-player 5.5.0 as the
sum of the version lags induced by all its transitive dependencies, we would obtain a lag
of : (1 major, 1 minor, 1 patch) + (0 major, 1 minor, 1 patch) = (1 major, 2 minors, 2
patches).

Note that we could alternatively compute the version lag by ignoring the patches
and minors that are included in a missed major version. However, considering all updates
can tell us more about how much effort has been done to maintain the package we use.

4.4 Qualitative Analysis

In order to assess the usefulness of the technical lag concept, we performed structured
interviews with 5 software practitioners. Based on the interviews and on some informal
discussions with software developers, we carried out an online survey with 17 software
developers with the aim of receiving opinions about the characteristics of the most desirable
software versions. This helped us to define the notion of “ideal” version that was required
for carrying out a quantitative analysis on technical lag.

36

4.4. QUALITATIVE ANALYSIS

4.4.1 Semi-structured Interviews

Five semi-structured interviews were conducted with five software practitioners that we
encountered during the FOSDEM 2019 1 event in Brussels, Belgium. All interviews,
requiring approximately 20 minutes each, were recorded and transcribed for analysis.
Transcription of all interviews can be found in Appendix-A.

Before starting the questionnaire, we explained the purpose of the interviews and our
research goals, disclosed the public funding sources of our research and ensured that the
information provided would be treated in a confidential way. In addition, we informed the
participants about the estimated time required to complete the interview, and obtained
their informed consent. Each interview was structured into four parts: 1) profile, 2)
software characteristics, 3) updating process and 4) technical lag.

Each interview started with general information in order to profile the interviewee.
All interviewees were highly educated (Master degree or higher) and experienced software
engineers (e.g., the average number of years of experience was 10 years).

The second part was related to the software projects in which the participants were
involved. Three of the participants were involved in the development of popular open
source projects, one participant worked on an internal tool for a big IT company. The
last participant worked as a development coach. All participants agreed that their project
dependency management is important and a critical task. “The dependency management
is the hottest spot in our project”, was noted by P5.

In the third part, we asked the participants about why and how they update their
dependencies. We found that participants deal with their updating process in different
ways. Sometimes they do the updating automatically by relying on tools that provide
such service, sometimes manually, depending on the dependency they want to update. We
also found that, depending on the importance of the dependency, they decide to update
it or not. All participants agreed that not so important dependencies are pinned to “a
fixed version”, lagging behind with years sometimes. When asked about the reason behind
updating dependencies, they responded that features and security are their first concerns.
One participant (P1) elaborated saying: “For security reasons, performance, novelty, just
not to have all tools which are not used by anyone and not maintained anymore. In fact, I
think that we should use a dependency that have many people working on it, and that has
people enjoying working on it”. We also noticed that participants working on industry or
open source projects keep an eye on the outdatedness of their software. One participant
that works on an internal tool said that he does not do that, simply because the tool is
working.

1FOSDEM is a free event for software developers to meet, share ideas and collaborate.
https://fosdem.org/2019/

37

4.4. QUALITATIVE ANALYSIS

We also asked the interviewees about the most important characteristics of the ideal
software version they would like to use, and whether there is a guideline that helps them to
decide whether to update or not. None of the interviewees said that there is such guideline.
All of them agreed that the ideal software version would have a balance between level
of security and new features. Up to this point, the interviewees were not aware of the
meaning of the technical lag concept. We did not talk about it to avoid any bias in their
responses.

After these questions, we explained the technical lag concept and asked the intervie-
wees about their opinion about it. All interviewees were favorable towards the usefulness
of this concept. We asked them about the version that they would consider as the ideal. In
general, the answers that we got were a combination between the “bleeding edge” version
(i.e., the latest version) in order to benefit from the latest features, and the “most secure”
version in order to have as few vulnerabilities as possible. With respect to the most
appropriate measurement to compute the technical lag, the responses were a combination
between the number of missed versions, features and fixed vulnerabilities. P1 elaborated on
how we can use the changelog file2 as a good source to compute the difference between the
used and the ideal software versions. Similarly, P5 noted “I think there are two important
metrics, features and vulnerabilities. They can sum up everything, they are almost like a
reverse changlog”.

Throughout the interviews, the importance of updating was stressed. However,
participants acknowledged that a mix between what is missing (i.e., benefits) and the
effort (i.e., cost) needed to update would be even better than only knowing what is missing.
“But also I think what would be interesting is to know how many people had problems in
order to have the ideal update.”, was noted by P5.

4.4.2 Online Surveys

We carried out an online survey to complement the semi-structured interviews and to have
a qualitative analysis about the characteristics of the ideal software version, which will be
used to define the ideal version when quantitatively analyzing the technical lag.

The survey was designed using Google forms and shared on software developer user
groups in Facebook. The survey followed established best practices [74]: prior to asking
questions, we explained the purpose of the survey and we informed the participants about
the estimated time required to complete the survey, which was 3 minutes. The list of
questions started with demographic questions related to years of experience, technologies
used and the participant roles in the software project that they are involved in. The list of
the survey questions can be found in Appendix-B. We received 17 valid responses. The

2A changelog is a record of all notable changes made to a software project. Changelog usually includes
records of changes such as bug and vulnerability fixes, new features, etc.

38

4.5. A FORMAL FRAMEWORK FOR TECHNICAL LAG

mean number of years of professional experience of the participants was 3 years, and all
participants were highly educated (Master degree or higher).

For the question "What could be the most appropriate (ideal) version of a software
library to use?" we gave the participants a list of ideal software library versions that we
previously obtained through informal discussions and interviews with software practitioners
and researchers (e.g., latest version, most secure, most tested, etc). The participants had
the possibility to select multiple choices. Figure 4.3 shows the total number of answers for
each choice. 14 respondents chose the most stable version as the ideal version of a software
library that they would like to use. 9 participants chose the latest version, while only 4
respondents chose the most secure. Surprisingly, the most documented version received
more (7) answers than the most secure software version (4 answers), possibly because the
question related to choosing a release in general rather than selecting a more recent release
for a package that is already in use.

Least
complex

Most
tes

ted

Most
sec

ure

Most
documented

Lates
t available

Most
sta

ble

Ideal version

0

3

6

9

12

15

#
of

an
sw

er
s

Figure 4.3: The list of the most desirable software versions ordered by number of partici-
pants that chose them.

From the interviews, surveys and informal discussions with software practitioners,
we noticed that developers that work on code only, care less about their software project
security, while it is the inverse for deployers. We also noticed that, in general, there is
no unique ideal software version. Software developers or deployers prefer a combination
of different characteristics, e.g., features and security. Thus, a technical lag framework
should consider and support different measurement units.

4.5 A Formal Framework for Technical Lag

In sections 4.2 and 4.3, we have given examples to illustrate how to compute and aggregate
technical lag, reflecting the extent to which a component release is outdated, in many

39

4.5. A FORMAL FRAMEWORK FOR TECHNICAL LAG

different ways. We have also shown in section 4.4 how software practitioners think about
the concept of technical lag and its variants. It is the purpose of the technical lag framework,
proposed in this section, to capture and formalize all these variations and future variants.

In order to measure technical lag in any given repository of reusable software
components, we need a formal framework that abstracts the specifications of the various
repositories. Refining the definition of Gonzalez-Barahona et al. [60], we define technical
lag for a certain component release as the difference between that release and the ideal
release, where ideal could be interpreted in different ways: most recent, most compatible,
most stable, most secure, etc. Then, we can apply the concept to a collection of component
releases, as the aggregated lag for all of them with respect to the ideal releases for those
components. A specific situation where it is useful to apply this definition for a collection
of releases is when we install a certain component release together with the collection of
all its direct or transitive dependencies.

To formally capture the notion of technical lag in a generic way, we define a parame-
terised technical lag framework:

Definition 1. Technical lag framework

A technical lag framework is a tuple F = (C,L, ideal,delta, agg) where

• C is a set of component releases.

• L is a set of possible lag values.

• ideal : C → C is a function returning the “most preferred” component release
(according to the user desiring to deploy a component) over a given one.

• delta : C × C → L is a function computing the difference (in terms of lag induced)
between a first component release and a second one.

• agg : P(L)→ L is a function aggregating the results of a set of lag values3. Typical
examples of agg functions would be the sum, maximum, mean or median of a set of
values.

Given a technical lag framework F , we can formally define the technical lag induced
by choosing a component release instead of the ideal (i.e., most preferred) release for that
component. What this means may differ depending on the considered scenario (e.g., we
may wish to create the most stable, most recent, or most secure deployment). If we use
a component release instead of the ideal one, the induced technical lag (techlag) is the
difference (delta) between both releases.

3The notation P(L), which can alternative be written as 2L, represents the powerset of L, i.e., the set
of all possible subsets of L.

40

4.6. CONCLUSION

Definition 2. Technical lag

techlagF : C → L : c→ delta(c, ideal(c))

Similarly, we can define the aggregated technical lag induced by a set of component
releases D ⊆ C.

Definition 3. Aggregated technical lag

agglagF : P(C)→ L : D → agg({techlagF(c) | ∀c ∈ D})

The above technical lag framework definition is now ready to be operationalised to
concrete use cases. In the next chapters, we will instantiate this framework for multiple
software ecosystems and carry out empirical evaluations in order to assess if and how
software ecosystems suffer from technical lag.

4.6 Conclusion

Developers and maintainers face many limitations when they need to make decisions about
whether and how to upgrade outdated reusable software components, during development or
in production, in a certain software deployment. In many cases, those deployments are built
automatically with package managers, selecting specific component releases from software
component repositories, such as package management systems for the major programming
languages, or Linux-based software distributions. Developers are confronted with a difficult
choice. Either they stick to outdated software component versions, preventing them
to benefit from bug and security fixes and new available functionality, or they decide
to upgrade to a newer version, incurring the risk of backward incompatibilities or other
technical problems. The fact that many components have explicit or transitive dependencies
on many others, makes the risk assessment of upgrading components even more complex –
and taking rational decisions becomes even more difficult.

In this chapter, we carried out surveys and interviews with developers to ask them
about this updating problem and assess the usefulness of the technical lag concept. We
provided a necessary foundation to address this problem by defining a generic formal
framework for measuring how outdated (i.e., how far away from a certain “ideal” state) is
a given software component or its deployment. This framework is based on the notion of
technical lag for a component release in a given component repository, which intends to
measure the difference that deploying that release would cause with respect to some “ideal”
release. We formally defined the technical lag concept through a parameterised framework
that can be instantiated to a wide variety of component distributions or package managers.
In the next chapters, we will operationalize this framework and instantiate it to some
specific case studies.

41

Chapter 5
Technical Lag in npm Packages

In the previous chapter, we have shown the opinions of software practitioners about
the usefulness of the technical lag concept. We formalised this into generic framework that
can capture technical lag for software component repositories.

In this chapter, we instantiate the technical lag framework for the npm ecosystem and
we empirically compute and analyze it for the whole registry of npm packages and their
dependencies. The content of this chapter is mainly based on our previous publications in
the ICSR 2018 proceedings and Journal of Software Evolution and Process 2019 [69, 70].

42

5.1. INTRODUCTION

5.1 Introduction

Every major programming language comes with one or more package repositories and
package managers that allow developers to store, contribute, reuse and deploy reusable
software packages for this programming language. A package repository allows developers
to store and reuse packages. A package manager allows developers to access the repository
to find, install and update packages and their dependencies. With the help of package
managers (e.g., Maven for Java, pip for Python, and npm for JavaScript1), developers can
access these repositories and easily find and deploy these packages, and upgrade to newer
releases of already deployed packages.

npm is the most used package manager for reusing JavaScript components, along
with its “official” package repository with a large and active developer community [75].
JavaScript is one of the most popular programming languages nowadays. According to the
Octoverse study2, JavaScript was reported as the most popular programming language
on GitHub in 2018. According to Tiobe’s programming language index3 (February 2019),
JavaScript is the 6th most popular programming language. npm and JavaScript have also
been used as case studies by many other empirical software engineering researchers [1, 36,
58, 76, 37].

In the current chapter, we take a step further and we operationalize the technical
lag model by applying it on the npm package repository. We instantiate the technical lag
framework to the npm case study and then we empirically analyze the history of package
update practices and technical lag evolution for more than 500K packages with about 4M
package releases over a seven-year period. We consider both development and runtime
dependencies, and study both direct and transitive dependencies, taking into account the
release type and the use of version dependency constraints. We also analyze the technical
lag of external GitHub applications depending on npm packages.

5.2 Characteristics of the npm case study

To study npm we relied on the libraries.io4 dataset. This service monitors several parameters
for all (i.e., more than 3M) packages from 36 different package repositories, including npm5.
For our empirical study we used version 1.2.0 of the Libraries.io Open Source Repository
and Dependency Metadata [77], available as open access under the CC Share-Alike 4.0
license. The considered timeframe for the analysis was from 2010-11-09 (the date of the
first known npm package release) to 2018-03-13 (the date of publication of the dataset).

1Note that for npm, the name of the package manager and package repository are the same.
2octoverse.github.com
3https://www.tiobe.com/tiobe-index/
4https://libraries.io/about
5These numbers correspond to the state of libraries.io as of March 2018.

43

octoverse.github.com
https://www.tiobe.com/tiobe-index/

5.2. CHARACTERISTICS OF THE NPM CASE STUDY

The dataset comprises 698K npm packages, 4.76M package releases and 52.8M npm
dependencies.

Relevant information for each package release includes the package name, version
number, release date, and information for each dependency of the package release, such as
the name of the required package, a dependency constraint and a dependency type. The
metadata of npm package releases is stored in a package.json file6 that is available for
each release. Figure 5.1 provides an excerpt of relevant information stored in such a file.

{"name": "foo",
"version": "1.2.3",
...
"dependencies": {"bar" : ">=1.0.2 <2.1.2",

"baz" : ">1.0.2 <=2.3.4"},
"devDependencies": {"boo" : "2.0.1"},
...}

Figure 5.1: Excerpt of relevant metadata stored in a hypothetical package.json file for
package release foo 1.2.3.

npm considers different dependency types. The ones that npm packages make us
of are: i) Runtime dependencies are required to install and execute the package; ii)
Development dependencies are used during package development (e.g., for testing); and iii)
Optional dependencies will not hamper the package from being installed if the dependency
is not found or cannot be installed. The rest are Peer and Bundled dependencies. The
dataset is composed of 42.6% of runtime dependencies, 57.3% of development dependencies,
and less than 1% (355 in total) of optional dependencies. Because of this very low number
of Optional dependencies, and because we do not know which of them are actually installed
in practice (since they are optional), they are excluded from our analysis.

Through a careful manual inspection of the dataset, we found a number of packages
that should be ignored for the analysis, because they would introduce bias in the results.
We are primarily interested in packages that can be considered as reusable libraries, i.e.,
packages that have been stored on npm for the purpose of being reused by other npm
packages or external applications. For this reason, we excluded a huge set of packages that
were created automatically7 on 30th of March 2016 with the only purpose of depending on a
large set of npm runtime dependencies. Examples are the "wowdude-x" packages8, "neat-x"
packages9 and "all-packages-x" packages. We found that a large number of packages

6The structure of this file is defined in https://docs.npmjs.com/files/package.json, visited on
Feb. 13th 2019.

7https://github.com/ell/npm-gen-all
8https://libraries.io/search?q=wowdude
9https://libraries.io/npm/neat-106

44

https://docs.npmjs.com/files/package.json

5.3. INSTANTIATING THE TECHNICAL LAG FRAMEWORK TO NPM

(corresponding to more than 20K package releases) were released in May 2017 with a name
ending with "-cdn", (e.g., react-native-cdn10, webpack-cdn11, etc). All of these packages
were removed from later versions of npm, because they were considered as “spam”.

We also removed all package pre-releases (i.e., 8% of all npm package releases) from
the dataset (e.g., releases with version numbers of the form 1.0.0-alpha, 1.0.0-alpha.1,
2.1.0-beta, 2.0.0-rc1 and so on). The reason for this exclusion is that prereleases are not
recommended to be reused by a dependency because such releases are unstable and might
not satisfy the intended compatibility requirements as denoted by its associated normal
version 12.

After filtering out the above packages and releases, we obtained a sanitized dataset
containing 520K packages, 3.6M package releases, and 46M dependencies for these releases.
57.9% of these dependencies were runtime dependencies, while 42.1% were development
dependencies. We could parse and identify 98.1% of the packages expressed by these
dependencies. The other 1.9% are dependencies with local files, git URLs, unknown (e.g.,
misspelled), etc.

5.3 Instantiating the Technical Lag Framework to npm

The technical lag framework has been designed to be generally applicable to different types
of component distributions, and even in different ways for a given component distribution.
We illustrate this by instantiating the framework to the case study of the npm repository
of JavaScript package releases. We take into account the semver mechanism and the use
of version constraints on package dependencies specified by npm package releases.

Definition 4. Package releases

Let P ⊂ N ×V×T be the set of all package releases available in npm, where N is the
set of all possible package names, V ⊂ N×N×N the set of all possible version numbers, and
T the set of all possible time points. Each package release p = (pname, pversion, ptime) ∈ P
has an associated package name pname ∈ N , a version number pversion ∈ V and a release
date ptime ∈ T . We assume a total order on V and T .

We propose multiple instantiations (i.e., scenarios of use) of the framework that
mainly differ in how technical lag is computed. In a first scenario, technical lag is computed
as a time difference between two releases. In a second scenario, technical lag is computed
based on a difference between version numbers of two releases. Other scenarios could be
envisaged to explore a wider spectrum of ways to compute technical lag. This will be

10https://libraries.io/npm/react-native-cdn
11https://libraries.io/npm/webpack-cdn
12https://semver.org/#spec-item-9

45

5.3. INSTANTIATING THE TECHNICAL LAG FRAMEWORK TO NPM

included in the scope of the next study in Chapter 6.

Definition 5. Time-based instantiation of the technical lag framework

We define Fnpmtime as the function that instantiates the technical lag framework F at
time t ∈ T , as follows:

Fnpmtime(t) = (Pt,N, idealnpm,deltanpmtime, aggtime)

where:

• Pt = {p ∈ P | ptime ≤ t} is the set of npm package releases that are available at time
t.

• N is the set of possible time lag values. Intuitively, each element corresponds to a
number of days.

• idealnpm(p) = maxp′
version

{p′ ∈ Pt | p′
name = pname}. Intuitively, for a given package

release p, the function idealnpm returns the highest available version13 of a package
release with the same name as p.
(An alternative variant of idealnpm is to select the highest backward compatible
version for a given package release, restricting the selection of higher releases to
those corresponding to the same major release number only.)

• deltanpmtime(p, q) = max(0, qtime − ptime) computes the positive difference in number of
days between the release dates of two package releases p and q.

• aggtime(L) = max(L), with L ⊆ N computes the maximum of a set of lags. The
chosen aggregation function (maximum) is useful to ascertain that the lag of each
release in the collection remains below a certain threshold.
(An alternative would be to use a summation to assess the total lag for the collection
as a whole, as an estimation of the effort that would be needed to reduce the lag in
all releases of the collection.)

We can directly compute techlagFnpm
time(t)(p) in terms of the above framework instan-

tiation. This definition formalizes the time lag that we informally explained with the
motivating example in Chapter 4.

We now define a version-based instantiation of the technical lag framework for npm,
corresponding to the second scenario:

13assuming that the user does not specify an additional upper bound version constraint upon installation
of p

46

5.3. INSTANTIATING THE TECHNICAL LAG FRAMEWORK TO NPM

Definition 6. Version-based instantiation of the technical lag framework

We define Fnpmversion as the function that instantiates the technical lag framework F at
time t ∈ T , as follows:

Fnpmversion(t) = (Pt,V , idealnpm,deltanpmversion, aggversion)

where:

• Pt = {p ∈ P | ptime ≤ t} is the set of npm package releases that are available at time
t.

• V is the set of possible version lag values. Intuitively, each element corresponds to a
version number.

• idealnpm(p) = maxp′
version

{p′ ∈ Pt | p′
name = pname}.

• deltanpmversion(p, q) = (majorlag,minorlag, patchlag) where
coll = {r ∈ Pt | pversion ≤ rversion ≤ qversion ∧ pname = rname = qname}
majorlag = |{major | rversion = (major,minor, patch),∀r ∈ coll}| − 1
minorlag = |{(major,minor) | rversion = (major,minor, patch),∀r ∈ coll}| −
majorlag − 1
patchlag = |{(major,minor, patch) | rversion = (major,minor, patch),∀r ∈ coll}| −
majorlag −minorlag − 1
In this definition, coll is the set of all releases between p and q. We first find the
number of releases that increase the major number, then the number of releases
that increase the minor number while having the same major number, and finally
the number of patch releases that increase the patch number while having the same
major and minor numbers. From that, we derive the number of distinct major, minor
and patch releases that would be needed to upgrade from r1 to r2.

• aggversion(L) = ∑
v∈L v, with L ⊆ V computes the sum over a set of versions. To do

so, addition has to be defined on version numbers, e.g., as follows.
Let v, w ∈ V be two version numbers.
Assume v = (vmajor, vminor, vpatch) and w = (wmajor, wminor, wpatch)
Then v + w = (vmajor + wmajor, vminor + wminor, vpatch + wpatch)

We can directly compute techlagFnpm
version(t)(p) in terms of the above definitions. This

formalizes the version lag that we informally explained with the motivating example in
Chapter 4.

47

5.3. INSTANTIATING THE TECHNICAL LAG FRAMEWORK TO NPM

Notation 1. In the remainder of this section we use the shortcut notations techlagtime(p, t)
for techlagFnpm

time(t)(p) and agglagtime(P, t) for agglagFnpm
time(t)(P), and similarly for the

version-based variants techlagversion and agglagversion, if it is clear from the context that
we are referring to the npm instantiation of the formal framework.

In practice, when installing an npm package release, dependency relationships impose
the installation of all required package releases as well. These package releases are selected
by the npm install tool upon installation of a given package.

Definition 7. Direct and transitive dependencies

Let t ∈ T be a point in time. Let Pt be the set of npm package releases available at
time t. We define the two following functions:

depst : Pt → P(Pt) such that depst(p) returns all npm package releases satisfying
the direct dependencies of p, as selected by npm install.

deps+
t : Pt → P(Pt) such that deps+

t(p) returns all npm package releases satisfying
the transitive (i.e., direct and indirect) dependencies of p, as selected by npm install.
Alternatively, we can define deps+

t(p) as the minimal fix point such that:

depst(p) ⊆ deps+
t(p) and ∀p′ ∈ deps+

t(p) : depst(p′) ⊆ deps+
t(p)

Based on these two functions and on the definitions of agglagα for α ∈ {time, version}
in the technical lag framework, we can define the technical lag of a deployment of a package.

Definition 8. Technical lag of a package deployment

Let t ∈ T be a point in time. Let Pt be the set of npm package releases available at
time t. For α ∈ {time, version}, we define:

• deplagα(p, t) = agglagα(depst(p), t) for the direct dependencies

• deplag+
α (p, t) = agglagα(deps+

t(p), t) for the transitive dependencies

For example, deplagtime(p, t) computes the time lag of all direct dependencies of
package release p at time t as the maximum time lag of any of these direct dependencies.
Similarly, deplag+

version(p, t) computes the version lag of all transitive dependencies of
package release p at time t as the sum of all version lags of all these transitive dependencies.

48

5.4. EMPIRICAL EVALUATION

5.4 Empirical Evaluation

Research Questions

Based on the formal framework for technical lag measurement and its instantiation for the
npm case study (presented in Section 5.3), we will empirically study five research questions
for the npm package repository. In particular, we address the following research questions:

• RQ0: Which operators are most frequently used in dependency constraints? With
this preliminary research question, we aim to identify the operators and constraints
that are the most used with the npm dependencies.
• RQ1: How much technical lag is induced by direct dependencies? For all npm package
releases, we identify the package versions that are required to depend on after the
use of dependency constraints. Then, we measure over time how outdated they are
in terms of time and versions and w.r.t their highest available versions.
• RQ2: How do constraint operators impact technical lag? With this research question,
we aim to understand the relationship over time between dependency constraints
and the technical lag they induce.
• RQ3: How do external applications suffer from technical lag? We measure how

outdated external applications that are distributed via GitHub but not via npm are.
Then, we analyze the relationship between their technical lag and the dependency
constraints they use.
• RQ4: How does technical lag propagate over transitive runtime dependencies? We

quantify how outdated transitive npm dependencies are, and how this outdatedness
evolve over time and over their dependency trees.

RQ0: Which operators are most frequently used in dependency
constraints?

Although the npm community encourages developers to use the semver standard in order
to have more reliable and predictable updates 14, it is not clear to which extent they are
following this recommendation. Therefore, we studied how npm package maintainers are
using version numbers and constraints for their dependencies.

We quantified the usage of the different types of dependency constraints used by
package dependencies defined in npm package releases. If a constraint uses a combination of
different constraint types, we consider the type of the least permissive one. This occurred
in only 0.0005% of all dependencies. Table 5.1 shows the proportion of the types of
dependency constraints used for all npm package releases during the considered observation

14https://docs.npmjs.com/getting-started/semantic-versioning

49

5.4. EMPIRICAL EVALUATION

Dependencies (total) caret strict tilde latest other
Runtime (42,3%) 67.5% 16.0% 8.2% 4.0% 4.3%
Development (57,7%) 74.0% 13.4% 6.9% 3.5% 2.2%
All dataset (100%) 71.2% 14.5% 7.5% 3.7% 3.1%

Table 5.1: Proportion of dependency constraints used, grouped by operator for all npm
package releases over the considered period.

period. We observe that caret is most frequently used, covering over 71.2% (32M) of all
dependency constraints. This is in line with the fact that backward incompatible changes
are undesirable (major updates).

14.5% (6.5M) of all dependencies were specified with a strict version number, signify-
ing that package maintainers prefer a possibly older but fixed version of a dependency,
rather than benefiting from automatic updates. Anecdotal evidence suggests that this is
often the case: “I personally don’t care about bug fixes. I like of course using a bug-free
software but I prefer to rely on stable libraries and if I hit a bug I’ll check if it is fixed,
in which versions and what this version comes up with. Many times I got a new release
downloaded fixing a bug in a feature that I never used. So, I prefer strict versioning where
I install the same version every time. Version that I know it works.”15

7.5% (3.3M) of all dependencies used a tilde constraint to allow patch updates,
and 3.7% (1.7M) of the dependencies are very permissive, allowing to use the latest
available version of their dependency. All other types of dependency constraints combined
(e.g., comparison operators, wildcards like 1.*.*, etc) represent only 3.1% (1.4M) of all
dependencies.

The findings above are mixed. The majority of developers are interested in keeping
some backward compatibility, benefiting from minor and patch releases, but do not want to
worry about new major releases with incompatible changes, requiring a higher maintenance
effort. However, many developers still seem to prefer to keep all control, by imposing
a strict version constraint (14.5% of the dependencies). This will likely cause a higher
technical lag for many releases in npm, as will be shown later.

From Table 5.1 we also observe that, while the caret constraint is more widely used
for development dependencies, tilde, strict and latest constraints are more widely used
for runtime dependencies. This could be a consequence of the fact that development
dependencies are not needed to run packages but only to develop them. Hence, developers
might care less about managing them and more often use the default caret constraint
provided by npm.

15http://krasimirtsonev.com/blog/article/thoughts-on-semantic-versioning-npm-and-JavaScript-
ecosystem

50

5.4. EMPIRICAL EVALUATION

We also analyzed the dynamics of npm dependencies, observing that new releases
tend not to remove or add dependencies, but to adapt the version constraints of existing
ones. We found that adding or removing dependencies is mostly done during major
releases. In order to gain more insight about the kind of releases that change dependency
constraints, we quantified when and how version constraints are changed to another type
(e.g., from ∼1.0.0 to ∧1.0.0) or updated to another constraint of the same type (e.g., from
∧1.0.0 to ∧2.0.0).

Note that the behavior of tilde is different when used with the unstable major version
zero (0.x.y) that is dedicated for initial development. When this operator is assigned to a
0.x.y version, it will have the same behavior as the operator caret, which means that new
patch or minor releases will be allowed to be installed, as long as the version number is
still < 1.0.0.

Figure 5.2 shows box plots of the distribution of the number of dependency constraints
that are changed in new major, minor or patch releases. We observe that the third quartile
of the distribution is highest for major and minor, and lowest for patch releases. We observe
a median value of 1, 2 and 2 changed version constraints for patch, minor and major
releases, respectively. This suggests that there is higher chance to update dependencies
during minor and major releases, when a feature is added or an incompatible change
happened. This corresponds to what is advised by semver 16.

patch minor major
New released version

0

5

10

N
u

m
b

er
of

d
ep

en
d

en
ci

es

Figure 5.2: Distribution of the number of dependency constraints that are changed in new
major, minor or patch releases.

To study the technical lag, we should also know how often packages release new
versions. A package with frequent releases may be a real issue for other packages that
rely on it, since it could result in a higher than average technical lag for the dependent
packages (since they are required to update frequently if they want to keep pace with
this release rate). On the other hand, releasing new package versions is important and
breaking changes are generally expected for progress because they will enable new features,

16https://semver.org/#what-should-i-do-if-i-update-my-own-dependencies-without-changing-the-
public-api

51

5.4. EMPIRICAL EVALUATION

new requirements, less technical debt, improved performance, and fixed bugs [6]. Such
backward incompatible changes are generally considered acceptable if they are clearly
signaled as such, for example by increasing the major release number of the updated
package as stated by the semver policy [78, 9].

Releasing a new package version requires time and effort. Therefore, we studied the
time needed to release a new chronological, but not necessarily successive, version of a
given type. For example, considering the series of versions (1.0.0 (initial), 1.0.1 (patch),
1.0.2 (patch), 1.1.0 (minor), 1.1.1 (patch)), and starting with the (initial → patch) case,
we calculate the time between (1.0.0, 1.0.1). For the case of (initial→ minor), we calculate
the time between (1.0.0, 1.1.0). In a similar way we proceed for the (patch → patch) case,
we calculate the time between (1.0.1, 1.0.2) and (1.0.2, 1.1.1). For the case of (patch →
minor) we calculate the time between (1.0.2, 1.1.0), etc.

Figure 5.3 shows the distribution of days until the next chronological version is
released. As can be seen, it takes more time to release a new major version than a minor or
patch one. More specifically, on average, it takes about 19 days to release a patch version,
57 days to release a minor version and 120 days to release a major one.

Considering all types of releases of all packages, we found that 14.7% (0.7M) are
initial releases, i.e., packages released in npm for the first time. 68.8% (3.3M) are patch
releases, 13% (0.62M) are minor releases and only 3.5% (0.17M) are major releases. The
total is 4.8M releases at the dataset creation date.

The fact that major releases are rare complies with the results of a recent survey
among 2,000 developers coming from different ecosystems, where 48% of npm developers
said that they release less than one breaking change per year [6]. However, a recent
study [38] showed that breaking changes still occur in minor and patch updates of npm
packages and that the majority of the breaking changes are type-related. These are
modifications of a library that affect the presence or types of functions or other properties
in the library interface, including renaming a public function, moving it to another location,
or changing its type signature.

Summary: The way in which npm package releases use dependency constraints suggest
that package maintainers are concerned about their dependencies. We also observe,
rather unsurprisingly, that the time needed to release a new package version is related
to its release type (i.e., major, minor or patch).

RQ1: How much technical lag is induced by direct dependencies?

This research question focuses on the evolution of the technical lag of package releases
induced by their direct dependencies. To do so, we compute and analyse deplagtime(p, t)
and deplagversion(p, t) at the release dates t ∈ T of all analyzed npm package releases p.

52

5.4. EMPIRICAL EVALUATION

Figure 5.3: Distribution of the time until the next chronological version of npm package
releases.

In RQ4 we will study the same but for transitive dependencies.

We found only 11.66M (i.e., 25.8%) outdated dependencies (i.e., package releases
required by a dependency, for which techlagtime > 0), 7.94M (i.e., 68%) of them are
development dependencies and 3.72M (i.e., 32%) are runtime dependencies. On the other
hand, we found that 54.1% of the up-to-date dependencies are development dependencies,
against 45.9% of the runtime dependencies. Given that the dataset contains 42.3% runtime
dependencies and 57.7% development dependencies, the relative proportion of outdated
dependencies is higher for development dependencies. This was expected, since the presence
of outdated dependencies is more problematic for runtime dependencies, required to install
and execute the package release, than for development dependencies, used only in a local
development environment with little to no impact on the production environment.

Figure 5.4 visualizes the evolution, on a monthly basis, of the distribution of
deplagtime for all package versions released during that month, grouped by develop-
ment and runtime dependencies. We notice that deplagtime tends to increase over time
for both types of dependencies. This is likely because of the fact that more new releases
become available over time. We also observe that the median value of the distribution
never exceeded 270 days in the observation period (2011-2018). Considering the whole
observation period, we found that the median value for runtime dependencies (160 days)
is lower than for development dependencies (195 days). This corroborates our previous
observations about the difference between outdated development and runtime dependencies.

To compare the distribution of deplagtime for runtime dependencies to the one for
development dependencies, we split the considered observation period into seven one-year
periods (from 2011 until 2017)17, each year includes all package versions that were released
in it. Using the Mann-Whitney U test we found a statistically significant difference (p-value
< .001) for all years except 2012 and 2016. Using Cliff’s delta we found a small effect size
that increases over time: from |d| = 0 for the first year (2011) to |d| = 0.12 for the last

17The last 3 months in 2018 were excluded from this analysis since it does not cover a full year.

53

5.4. EMPIRICAL EVALUATION

year (2017). In summary, development dependencies tend to be slightly more outdated
than runtime dependencies, especially during the last years.

2011 2012 2013 2014 2015 2016 2017 2018
0

250

500

T
im

e
la

g
in

d
ay

s

Runtime
median

mean

2011 2012 2013 2014 2015 2016 2017 2018

Development
median

mean

Figure 5.4: Monthly evolution of the distribution of deplagtime for all package releases,
grouped by runtime and development dependencies. The shaded areas correspond to the
interval between the 25th and 75th percentile.

While measuring time lag provides a good first estimate of how outdated a package
release is, it is not sufficiently precise to assess the underlying source of the lag. Package
releases (or package dependencies) with an identical time lag could have a different
evolutionary behaviour. For example, some packages have frequent updates while others
are infrequently updated; some packages may have many dependencies while others have
only a few ones; some packages primarily provide patch updates while others regularly
provide new major releases. Hence, comparing package releases only on the basis of
time-based technical lag is not sufficient.

Because of this, we also analyze the temporal evolution of deplagversion of each
package release p, computed in function of its three version components (major, minor,
patch). This version-based technical lag measurement can help to provide more insights
about the type of changes missed by a package release because of its outdated dependencies.

Considering all package releases over the entire observation period, we found a
median deplagversion of (1,1,4) for runtime dependencies and a median deplagversion of
(2,2,9) for development dependencies. Figure 5.5 visualizes the evolution, on a monthly
basis, of the distribution of deplagversion(p, t) = (Major,Minor, Patch) for all package
releases available during that month, grouped by runtime and development dependencies,
and split per version component. Like for the time lag, we notice that for both types
of dependencies the version lag is slightly increasing over time. We also clearly observe
that version lag is higher for development dependencies than for runtime dependencies.
In particular, in recent months (starting from first quarter of 2017), the version lag has
increased a lot for development dependencies. This suggests that the used development
dependencies (and their constraints, especially the caret) are less frequently updated than
runtime ones. To confirm this hypothesis, we carried out a Mann-Whitney U test between
the time needed before updating a version constraint within development and runtime
dependencies. We found a statistically significant difference (p-value < .001). Using Cliff’s

54

5.4. EMPIRICAL EVALUATION

delta we found a small effect size with |d| = 0.29, indicating that the time needed before
updating a version constraint is slightly higher within development dependencies.

0

10

M
a

jo
r

ve
rs

io
n

la
g

Runtime
median

mean

0

10

Development
median

mean

0

10

20

M
in

or
ve

rs
io

n
la

g median

mean

0

10

20
median

mean

2011 2012 2013 2014 2015 2016 2017 2018
0

50

P
at

ch
ve

rs
io

n
la

g median

mean

2011 2012 2013 2014 2015 2016 2017 2018
0

50
median

mean

Figure 5.5: Monthly evolution of the distribution of deplagversion(p) = (Major, Minor,
Patch) for all package releases, grouped by runtime and development dependencies, and
split per version component. The shaded areas correspond to the interval between the
25th and 75th percentile.

Summary: Technical lag induced by direct dependencies in npm package releases is
increasing over time due to many missed updates, including major ones. Technical lag
is higher for development dependencies: 2 out of 3 outdated dependencies in npm are
development dependencies.

RQ2: How do constraint operators impact technical lag?

In this research question, we explore to which extent the use of the different types of
dependency constraint operators is related to the presence of technical lag. For each
outdated dependency (i.e., each package release required by a dependency, for which
techlagtime > 0), we identified the operator used by the corresponding dependency
constraint. Results are presented in Figure 5.6, showing the proportion of outdated
dependencies w.r.t. the type of constraint operator being used. We observe that the
majority of outdated dependencies (15.7% and 43.5%) use the caret constraint, 26.1% (i.e.,
10.6% and 15.5%) use the strict constraint and around 11.5% (i.e., 4.1% and 7.4%) of all
outdated dependencies rely on the tilde constraint.

We expected such a high proportion of caret constraints because we observed in
Table 5.1 that they account for more than 71% of all used constraints. Because of this,

55

5.4. EMPIRICAL EVALUATION

we also computed the proportion of outdated dependencies relative to all dependencies
for each kind of constraint. We found that only 21.4% of the package releases using
caret constraints are outdated, while 40% using tilde constraints and 46.5% using strict
constraints are outdated. These findings confirm the hypothesis that the use of more
permissive constraints (caret is more permissive than tilde, which is more permissive than
strict) lowers the risk of having outdated dependencies.

caret strict tilde other
0

20

40

P
ro

p
or

ti
on

of
ou

td
at

ed
d

ep
en

d
en

ci
es Runtime

caret strict tilde other

Development

Figure 5.6: Proportion of outdated npm dependencies per constraint type, for runtime
dependencies and development dependencies respectively.

To have more insights about the use of dependency constraints in npm, we analyzed
the evolution over time of version constraint types used by dependencies at the release
date of each package release. Figure 5.7 shows this historical evolution of the constraint
type usage, for both runtime and development npm dependencies. The other constraint
type is gradually overtaken by the tilde constraint type until early 2014, suggesting that
developers are becoming increasingly aware of the backward incompatible changes that
might come with new released versions. Starting from February 2014, when the caret
constraint was introduced as the default constraint in npm18, the use of the tilde constraint
starts to be replaced by the caret constraint. The use of the strict constraint type tends
to remain more or less stable over time, representing about 20% of all constraint types.
The use of the most permissive latest constraint only represents a small proportion, and is
decreasing over time.

We observe from Figure 5.7 that the tilde constraint is progressively replaced by the
caret constraint, which implies that the constraint is becoming less restrictive, not more
restrictive. We repeated the same analysis by only considering the evolution over time of
version constraint usage by outdated dependencies in Figure 5.8. We observe that before
the introduction of the caret constraint, outdated (runtime or development) dependencies
were mainly used with the strict and tilde constraints, with tilde gradually taking over the
usage of strict constraints until 2014. With the introduction of the caret constraint, the
usage of the strict constraint stabilised over time, while caret was taking over the tilde
constraint usage. This could be the reason why we observed an increasing version lag at

18See, e.g., http://fredkschott.com/post/2014/02/npm-no-longer-defaults-to-tildes/

56

http://fredkschott.com/post/2014/02/npm-no-longer-defaults-to-tildes/

5.4. EMPIRICAL EVALUATION

2011 2012 2013 2014 2015 2016 2017 2018
0

50

100

P
ro

p
or

ti
on

of
co

n
st

ra
in

t
ty

p
es

Runtime

caret

latest

other

strict

tilde

2011 2012 2013 2014 2015 2016 2017 2018

Development

caret

latest

other

strict

tilde

Figure 5.7: Monthly evolution of version constraint usage by all package dependencies.

2011 2012 2013 2014 2015 2016 2017 2018
0

50

100

P
ro

p
or

ti
on

of
co

n
st

ra
in

t
ty

p
es

Runtime

caret

other

strict tilde

2011 2012 2013 2014 2015 2016 2017 2018

Development

caret

other

strict tilde

Figure 5.8: Monthly evolution of version constraint usage by outdated package depen-
dencies.

the same time in Figure 5.5. To confirm this, we filtered out all dependencies using a
caret constraint, and still observed an increasing major lag at the first quarter of 2014 for
both runtime and development dependencies. It should not be surprising that nearly no
major version lag could be observed before 2014: a limited number of package releases at
that time had a version number greater than or equal to 1.0.0. The proportion of such
releases went from 20% in January 2014 to 42% in January 2015. This increase coincides
with the resolution of many issues related to the use of constraints with pre-1.0.0 version
numbers19.

Summary: npm package releases are increasingly using the caret constraint over time.
Initially, the least permissive strict constraints were gradually being replaced by more
permissive tilde constraints and, since 2014 these tilde constraints were being replaced
by even more permissive caret constraints. Nevertheless, strict constraints continue to
represent a considerable proportion of about 20% of all dependencies.

19https://github.com/npm/node-semver/issues/79

57

5.4. EMPIRICAL EVALUATION

RQ3: How do external applications suffer from technical lag?

The main purpose of the npm package manager is to distribute packages, to facilitate
end-users to deploy them, and to allow external applications (that are not intended to be
distributed through npm) to depend on them. It is interesting to measure the technical
lag of such external applications depending on npm package releases, and compare their
technical lag with the one of the npm package releases themselves. Since npm packages
are supposed to be reused as libraries, their package maintainers are supposed to be more
careful than developers of external applications that just depend on these libraries, without
necessarily needing to care about other people depending on their own applications. We
therefore expect to find more technical lag in external applications than in (reusable)
package releases distributed via npm.

Definition 9. Technical lag framework instantiation for external applications
depending on npm

To allow the npm instantiation of the technical lag framework to include external
applications, we extend the set Pt (all npm package releases available at time t) to Et ∪Pt,
where Et is the set of all external applications that are developed and distributed through
GitHub20 at time t, and that depend on at least one npm package release. All other
definitions remain unchanged.

The libraries.io dataset contains references to GitHub repositories that are known to
host JavaScript applications. Based on this dataset, we identified 480K GitHub repositories,
focusing only on repositories that are not forks so that applications with many forks will not
be considered many times in the analysis. The main purpose of forks is to propose changes
to someone else’s application, thus forked repositories are not meant to be considered as
different applications21. For each of these repositories, we extracted the content of the
package.json file for their last known commit. This file contains the list of dependencies,
including the ones that target packages hosted on npm. These dependencies account for
around 6.2M dependencies.

As for the previous research questions, we distinguish between runtime and de-
velopment dependencies from external applications to npm package releases. We found
that 53.2% of these dependencies are runtime dependencies, while 46.8% are develop-
ment dependencies. 39.5% (2.5M) of these dependencies from external applications were
outdated (i.e., they referred to an npm package release q for which techlagtime(q) > 0).
Proportionally, 48.2% of these outdated dependencies were runtime dependencies and
51.8% were development dependencies.

For all these outdated dependencies originating from external applications, we
20GitHub is the main Open Source platform for JavaScript applications [79].
21https://help.github.com/articles/fork-a-repo/

58

5.4. EMPIRICAL EVALUATION

identified the operators used in their constraints. Table 5.2 shows the proportion of
these constraint types, and compares them to the proportion observed for npm package
releases. Unlike what we observed for npm package releases, where caret was the prominent
dependency constraint, external applications mostly rely on strict constraints (nearly half
of their runtime dependencies, 47.4%), while only around one quarter (25.2%) rely on the
caret constraint. A possible explanation is that external applications are not aimed to be
distributed for reuse by other packages, but mainly aim to be used in production. In this
context, pinning versions of the dependencies facilitates the replication of an environment
in which the application is known to work. This explains the higher use of strict constraints.
In fact, easing replicating environments is now directly supported by npm through the
“package-lock” file22.

Dependencies External applications npm package releases
caret tilde strict other caret tilde strict other

Runtime 25.2% 21.2% 47.4% 6.2% 49.2% 12.9% 33.2% 4.7%
Development 53.5% 29.3% 16.0% 1.2% 63.9% 10.9% 22.8% 2.4%
Both 39.8% 25.4% 31.1% 3.7% 59.2% 11.6% 26.1% 3.1%

Table 5.2: Proportion of constraint types used by outdated dependencies from external
applications to npm package releases, compared to the proportion of constraint types used
by outdated dependencies from npm package releases.

Let us now study the time-based technical lag deplagtime(p) of external applications
p ∈ Et depending on npm package releases at different time points t ∈ T . Figure 5.9
shows the evolution, on a monthly basis, of the distribution of deplagtime for all external
applications having their last known commit during that month, grouped by runtime
and development dependencies. We observe a median value of 218 days for runtime
dependencies, and 275 days for development dependencies. This is several months longer
than the median values we observed for deplagtime of npm package releases in Figure 5.4
(160 days and 195 days for runtime and development dependencies, respectively). We can
also notice that there are many applications that have not been updated in several years
(e.g., since 2011), which means that if we compute their technical lag of today, we will find
very high values.

We also observe that deplagtime is increasing over time for both runtime and
development dependencies of external applications, especially after the first quarter of
2017. This means that external applications whose last known commit is in 2017 still had
a high technical lag because of their dependencies. The figure also shows that there was no
time lag for development dependencies until mid 2011. We investigated this observation
and we found that all development dependencies before July 2011 were up-to-date (zero
technical lag).

22https://docs.npmjs.com/files/package-lock.json

59

5.4. EMPIRICAL EVALUATION

2011 2012 2013 2014 2015 2016 2017 2018
0

500

1000

T
im

e
la

g
in

d
ay

s

Runtime
median

mean

2011 2012 2013 2014 2015 2016 2017 2018

Development
median

mean

Figure 5.9: Monthly evolution of the distribution of deplagtime for all external applications,
grouped by runtime and development dependencies. The shaded areas correspond to the
interval between the 25th and 75th percentile.

Next, we compute the version-based technical lag deplagversion(p) of external ap-
plications p ∈ Et at different time points t ∈ T . Figure 5.10 visualizes the evolution,
on a monthly basis, of the distribution of deplagversion(p, t) = (Major,Minor, Patch)
for all external applications during that month, grouped by runtime and development
dependencies, and split per version component. As was the case for the time-based lag,
the version-based lag is slightly increasing over time, especially since the beginning of 2017.
Focusing on the Major version component, we see that it started increasing by mid 2014,
just like what we observed in Figure 5.5. However, it is less than what we observe for
Minor or Patch version components.

0

5

10

M
a

jo
r

ve
rs

io
n

la
g

Runtime
median

mean

0

5

10
Development

median

mean

0

20

M
in

or
ve

rs
io

n
la

g median

mean

0

20
median

mean

2011 2012 2013 2014 2015 2016 2017 2018
0

50

100

P
at

ch
ve

rs
io

n
la

g median

mean

2011 2012 2013 2014 2015 2016 2017 2018
0

50

100
median

mean

Figure 5.10: Monthly evolution of the distribution of deplagversion(p) =(Major, Minor,
Patch) for all external applications, grouped by runtime and development dependencies,
and split per version component. The shaded areas correspond to the interval between the
25th and 75th percentile.

60

5.4. EMPIRICAL EVALUATION

When we compare deplagversion(p, t) = (Major,Minor, Patch) between external
applications (p ∈ Et, Figure 5.10) and npm package releases (p ∈ Pt, Figure 5.5), we
observe a difference, especially at the level of the minor and patch component. For
external applications we found a median value of (1,3,9) for runtime dependencies and a
median value of (2,4,10) for development dependencies (compared to (1,1,4) and (2,2,9)
for deplagversion of runtime and development dependencies of npm package releases). We
hypothesize that this is due to the higher proportion of strict constraints used by external
applications that depend on npm packages.

Figure 5.11 shows the evolution of the proportion of constraint types used by external
applications for their runtime dependencies to npm packages. Compared to Figure 5.7,
we observe a much higher proportion of strict constraints, and this proportion tends to
increase over time. While the proportion of the caret constraint increased since 2014,
it “stabilised” at a high percentage of strict constraint, which was not the case for the
npm package releases. This explains the high technical lag found for external applications
relying in npm packages. We also see a tendency of a decreasing use of caret and an
increasing use of strict starting in 2017. This might explain the increased technical lag
that we observed since the first quarter of 2017.

2011 2012 2013 2014 2015 2016 2017 2018
0

25

50

75

100

P
ro

p
or

ti
on

of
co

n
st

ra
in

t
ty

p
es

Runtime
caret

latest

other

strict

tilde

Figure 5.11: Monthly evolution of the proportion of constraint types used by runtime
dependencies in external applications depending on npm packages.

Summary: The median technical lag in external GitHub applications that depend on
npm packages is much higher than the technical lag found in npm package releases, and
is increasing over time. This seems to be the consequence of the more frequent and
increasing use of strict constraints by external applications.

RQ4: How does technical lag propagate over transitive runtime
dependencies?

All previous research questions have focused on the technical lag induced by direct
dependencies (i.e., deplagtime or deplagversion) because these dependencies are the ones

61

5.4. EMPIRICAL EVALUATION

that are explicitly declared by a package maintainer, and over which they have direct
control by means of dependency constraints. However, when a package release is deployed,
not only its direct dependencies need to be installed but also all their dependencies, and
the dependencies of these dependencies, and so on. The npm package manager installs
these transitive dependencies in distinct subfolders, leading to a dependency graph that is
a tree, even when multiple distinct releases of a same package are transitively required23.
These transitive dependencies may induce additional technical lag on the package release
being installed since the technical lag can be accumulated in the dependency tree from a
level to an other (deeper level).

In this research question, we therefore quantify and analyze the transitive technical
lag of a package release induced by all its transitive dependencies. We will do so for the
time-based transitive lag deplag+

time and the version-based transitive lag deplag+
version.

While deploying a package release requires all transitive (direct and indirect) runtime
dependencies to be installed, indirect development dependencies do not need to be installed
during development. Indeed, to install development dependencies, only direct development
dependencies and their own (transitive) runtime dependencies are required. For this reason,
we restrict the analysis of RQ4 to transitive runtime dependencies only.

We computed the transitive runtime dependency tree of each available npm package
release at the beginning of each period of 4 months (quadrimester) starting from December
2010. For each quadrimester, we considered the latest available release p of each package,
and computed its time-based transitive lag deplag+

time and its version-based transitive
lag deplag+

version. For the whole considered observation period, we analyzed the technical
lag of 672, 906 package releases of 399, 522 packages having runtime dependencies. These
package releases have 163.8M transitive runtime dependencies on 308, 243 distinct package
releases, representing 45% of the whole ecosystem of npm packages.

2011 2012 2013 2014 2015 2016 2017 2018
0

500

1000

1500

T
im

e
la

g
in

d
ay

s median

mean

Figure 5.12: Quadrimestrial evolution of the distribution of deplag+
time for runtime

dependencies of all npm package releases. The shaded areas correspond to the interval
between the 25th and 75th percentile.

When analyzing time-based transitive lag deplag+
time we found 38.4% of all runtime

dependencies to be outdated. Figure 5.12 shows the quadrimestrial evolution of the
23see https://medium.com/learnwithrahul/understanding-npm-dependency-resolution-84a24180901b

62

5.4. EMPIRICAL EVALUATION

2011 2012 2013 2014 2015 2016 2017 2018

0

20

40

Patch

Minor

Major

median (left axis)

mean (right axis)

0

100

200

Figure 5.13: Quadrimestrial evolution of the the distribution of deplag+
version, split per

version component for runtime dependencies of all npm package releases.

distribution of deplag+
time from December 2010 until March 2018. The graph starts in 2011

because we could not find any technical lag in December 2010 (i.e., all runtime dependencies
were up-to-date). We observe that deplag+

time is increasing over time. The increase is
expected, since deplagtime for direct dependencies was also found to be increasing over
time (cf. Figure 5.4). Compared to the median value of time lag of deplagtime for
direct runtime dependencies (160 days, see Section 5.4), the median value of deplag+

time

for transitive runtime dependencies is much higher and it exceeded 500 days in April
2013. This should not come as a surprise, given that many package releases have a deep
transitive dependency tree [1], and that lag accumulates from one level to another one.
Next, we computed deplag+

version, the version-based lag induced by runtime transitive
dependencies of all package releases. Figure 5.13 shows, for each version component of
deplag+

version(p, t) = (Major,Minor, Patch), the evolution of the mean and median value
on a quadrimestrial basis from December 2010 until March 2018. We observe that the
transitive version-based lag is increasing over time.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Dependency tree depth

0

1000

2000

T
im

e
la

g
in

d
ay

s

Figure 5.14: Distribution of deplag+
time of the latest releases of all npm packages on 13

March 2018, grouped by transitive dependency tree depth.

We also correlated the transitive time lag deplag+
time of package releases to their

transitive runtime dependency tree depth. On the last considered snapshot (13 March
2018) we measured deplag+

time for the latest available package release. Figure 5.14 shows

63

5.5. DISCUSSION

the distribution of these values, grouped by dependency tree depth. We observe that
package releases with deeper dependency trees tend to have a higher transitive time
lag. This is due to the fact that releases with deep dependency trees are more likely to
have more outdated dependencies, and consequently they are more likely to have higher
technical lag. Also, we observed that technical lag somehow “accumulates” from one level
of the dependency tree to another one, implying that the more levels a dependency tree
has, the higher the technical lag could be.

Summary: Technical lag induced by transitive runtime dependencies is increasing over
time and is related to the depth of the transitive dependency tree. Deeper dependency
trees have more outdated dependencies, inducing a higher technical lag.

5.5 Discussion

The instantiation of the formal technical lag model to the case study of the npm package
manager allowed us to empirically analyze how the technical lag of JavaScript package
releases evolves over time. At the same time, the formalization of the concept in general
will enable comparison of this analysis with case studies of other package managers, and
other types of component-based software distributions that aim to deploy systems from
large collections of components.

Our findings show concrete evidence of technical lag induced by direct and indirect
dependencies of both npm package releases and external GitHub applications that rely on
them. This reflects the known tension between two forces that any maintainer of some
software deployment faces. On the one hand, deployments would ideally use the most
recent releases of their dependencies as soon as these become available, in order to benefit
from the latest functionality and bug fixes. On the other hand, deployments suffer from
technical lag in practice, because some dependency constraints do not allow for updating.
Moreover, maintainers sometimes consciously choose not to update because they feel they
do not need the new functionality provided by updates. In the specific case of security
vulnerabilities, it would be acceptable to keep using an older major version of a package
as long as security patches are being backported to it. In some cases, depending on the
specificities of the package manager, developers don’t even have a choice, as they need to
rely on older releases, either because upgrading would cause co-installability conflicts [80],
or because of the cost and effort required to update. Therefore, we expected to find
technical lag in npm. We quantified it in terms of aggregated time lag and version lag at
package release time, and revealed the omnipresence of technical lag.

We studied how version constraint operators are used in npm package dependencies,
and found that it had an important effect on the technical lag of package releases. By
definition, the induced technical lag is determined by the constraints imposed on the

64

5.6. LIMITATIONS

dependencies, as such constraints allow package maintainers to balance between dependency
freshness and incompatibility. Only the use of the most permissive constraint operators (e.g.
latest or *) do not increase technical lag. But this goes against the semantic versioning
principles, as it may lead to backward incompatible updates when a new major version is
released. Therefore, the use of the caret constraint (that allows for minor updates) and
the less permissive tilde constraint (that only allows for patch updates) should be more
frequently used for specifying dependency constraints. This was confirmed in previous
work [81] where it has been shown that, if dependency constraints would rely on semantic
versioning rules that enable automatic updates of backward compatible changes, nearly
one out of five package releases would no longer suffer from technical lag. Therefore,
package maintainers remain the ultimate responsible for the technical lag incurred by their
package releases.

For external GitHub applications relying on npm packages, we saw an important use
of strict constraints that could be explained by the need to pin dependency versions to
facilitate the replication of environments, but necessarily lead to a higher technical lag. The
type of dependency constraint being specified represents a package maintainer’s conscious
choice between “preferring to miss some updates and needing to update constraints
manually” versus “preferring to benefit from dependency updates, even if that implies
needing to adapt your own software to make it compatible”.

5.6 Limitations

Our empirical analysis of npm relied on the libraries.io dataset. There is no guarantee
that this dataset is complete (e.g., there may be missing package releases), but we did
not observe any missing data based on a manual inspection of the dataset. Our analysis
excluded some dependencies with packages we were unable to identify on npm, but this
only represented a small fraction of all dependencies (<3%) and is hence unlikely to affect
the results. Considering the full set of available npm packages also constitutes a threat
to validity. As explained in the data extraction in Section 5.2 we had to sanitise the
dataset by excluding a number of packages before starting the analysis. Since there is no
automatic way of identifying all of them, we may have missed some that should have been
not considered.

The way in which we processed version numbers and dependency constraints may
have influenced our results. Each dependency constraint was classified in a specific category
(e.g., caret, strict, latest) depending on the syntax used by the constraint. This is, however,
an oversimplification. For example, the following three constraints have the same meaning,
even though they use a different notation: ∼ 1.2.0, 1.2.x, and 1.2. We also did not consider
the difference between package releases with major version number 0 (e.g., 0.1.1) and those
with a major version of 1 or above. npm treats these cases differently. For example caret

65

5.7. CONCLUSION

and tilde have exactly the same meaning when evaluated against 0.y.z while this is not the
case for higher major version numbers. A large number of npm package releases (50%)
have major release number 0, and we found that 17% of the dependencies in our dataset
specified a caret or tilde version constraint to a 0.y.z version. This may have affected some
of our findings.

A similar threat relates to the use of prerelease tags on version numbers in npm
package releases. We have excluded such releases from our analysis because they should
not be treated in the same way as regular releases as they are considered to be unstable
according to the npm semver “A pre-release version indicates that the release is unstable
and might not satisfy the intended compatibility requirements as denoted by its associated
normal version”.

5.7 Conclusion

To validate the potential of the proposed technical lag measurement framework, we have
instantiated it for the case of npm, one of the largest and most used package managers.
We studied the technical lag of npm package releases, taking into account their direct
and transitive dependencies. We considered a time-based and a version-based notion of
technical lag. This required us to take into account the specificities of the npm package
manager, such as how it supports the semantic versioning policy, and how it allows to
specify version constraints on package dependencies. To evaluate how the framework
can assist in decision making, we have used it to track the evolution of technical lag of
all package releases in npm over a period of more than seven years. We also studied
how different types of dependency constraints affect the overall lag, and how developers
could reason about such information to decide which constraints they should use for their
releases. Finally, we have identified a large collection of JavaScript applications in GitHub
using npm package releases, and have studied the technical lag for them.

From this empirical study of npm, we found that technical lag induced by direct
dependencies is increasing over time, and development dependencies tend to induce more
technical lag than runtime dependencies. The main source of technical lag appears to be
the type of constraints used by the dependencies. The technical lag is increasing over time
because more dependencies are used with too strict constraints, in both npm packages
and external applications. Due to their different purpose, the technical lag of external
applications hosted on GitHub is higher than the technical lag of npm packages. We
also found that the technical lag induced by transitive dependencies can be very high
and is increasing over time. Moreover, the transitive technical lag is correlated with the
dependency tree depth of package releases. Finally, we observed some important changes
in the technical lag over time due to decisions and policy changes made in the npm package
manager.

66

Chapter 6
Technical Lag in Docker Containers

Software container images usually include a collection of software packages corre-
sponding to the used operating system, plus other third-party packages. Once an image is
built, its packages remain frozen until the image is updated. In many cases, such packages
will become outdated because of the availability of new versions that are not installed in
the containers.

In this chapter, we create different instantiations of the technical lag framework
for the Docker container ecosystem and we empirically compute and analyze it using
vulnerabilities and bugs at the level of system and third-party packages that are included
in Docker images hosted on Docker Hub.

The content of this chapter is mainly based on our previous publications in the
SANER 2019 proceedings [82, 83]. The instantiation of the technical lag framework for
Docker containers presents new, unpublished work.

67

6.1. INTRODUCTION

6.1 Introduction

Packaging software into containers has become a common practice during the last years [84].
In particular, Docker containers are a popular schema to provision multiple software
applications on a single host. A container is a running image, which includes its own
system libraries, configuration files, and software [20], providing support for both Linux-
based and other operating systems [45, 85]. Docker allows for the creation of registries,
providing a common place to share Docker images. With more than 2.1M images (April
2019), Docker Hub is one of the largest of such registries.

Images in Docker Hub are organized in repositories, each one providing a set of
versioned Docker images. Repositories can be private or public, which in turn are split into
official and community repositories. An official repository contains public and certified
images from recognized vendors (e.g., ElasticSearch, Debian, Alpine). Images in official
repositories are frequently used as the base for other Docker images, since they are supposed
to be secure and well maintained. Community repositories can be created by any user or
organization [86].

Usually, when Docker images are built with Linux-based operating systems, they
follow the packaging model for their Linux distribution of choice and include system
packages that correspond to the used distribution (e.g., Alpine or Debian). In some cases
they also include a collection of third-party packages that come from popular package
managers like npm, PyPI or CRAN (the default package managers for JavaScript, Python
and R). Once the image is built, packages remain frozen (for a certain version of that
image). From time to time, a new version of the image is built, using a newer version
of the included packages. However, the old image may continue to be in use, as it may
be deployed as a container in production. Those deployed containers corresponding to
less recent images may include outdated packages with known security vulnerabilities and
bugs, some of which are known to be fixed in newer package versions. Since the containers
may run in production, they can be exposed to exploits of those known vulnerabilities,
and problems due to those known bugs.

Nevertheless, deployers of containers may prefer to stick to older image versions,
because they are known to work well and have been tested in production for a long time.
In fact, reproducibility is one of the main characteristics of Docker containers, in the sense
that using container images provides isolation from evolving dependencies and changes in
packages that may break working systems. This is a strong incentive to stick to an older
image version because it “just works”, and upgrading to a new container image version
always involves some risk. Thus, deployers always need to carefully balance the need to
update to new image versions containing fixes of known vulnerabilities and bugs, and the
risk of breaking a working system due to unexpected or incompatible changes in upgraded
versions of the packages contained in the image.

68

6.2. DEBIAN PACKAGES IN DOCKER CONTAINERS

This compromise has been widely reported in literature. According to a 2015 survey
by Red Hat and Forrester [87], security is a top concern when deciding whether to deploy
containers. A 2016 survey by DevOps.com and RedMonk [88] revealed that users who are
more concerned by image security focused on scanning simple Common Vulnerabilities
and Exposures (CVE) on the operating system. A 2017 survey by Anchore.io focused on
the landscape of practices being deployed by container users [89]. One of the questions
was: “Other than security, what are the other checks that you perform before running
application containers?” The top answers related to software packages were: required
packages (∼ 40% of the answers); presence of bugs in major third-party software (∼ 33%);
and verifying whether third-party software versions are up-to-date (∼ 27%).

To support deployers of container images in this everyday compromise, we propose a
method to assess how outdated, vulnerable, and buggy Docker images are with respect to the
latest available releases of the system packages and third-party packages they include. The
method is based on the concept of technical lag, which we use to estimate the difference
of releases between the image deployed in production and the most ideal version of this
image. In this chapter, we instantiate the technical lag framework of Chapter 4 to the
Docker case study, and we conduct an empirical study to measure technical lag in terms
of updates, security vulnerabilities and bugs for a large set of Docker images hosted on
Docker Hub. As a case study, we focus on the Debian system and include npm third-party
packages. This choice is motivated by their popularity in Docker containers.

6.2 Debian Packages in Docker Containers

6.2.1 Method and Data Extraction

Our study is based on pulling Docker images from Docker Hub, identifying which packages
are installed in them, and computing the technical lag for the image by aggregating the
technical lag of its packages. We will measure the technical lag of individual packages in
terms of version updates, vulnerabilities, and bugs. Our initial sample is composed of all
official images in Docker Hub that are based on Debian, and the most pulled community
images based on Debian. Therefore, we only need to compute technical lag for Debian
packages.

The overall process is composed of four tasks: (1) identification of Docker Hub
base images for Debian, defining our base set; (2) identification of Docker Hub images in
our dataset, including those derived from the base set; (3) analysis of all those images,
matching their packages to a historical archive of all Debian packages; and (4) identification
of bug and vulnerability reports for those packages, based on a historical database with
those details for Debian packages.

69

6.2. DEBIAN PACKAGES IN DOCKER CONTAINERS

Figure 6.1 shows how we used the main data sources for our study. The next
subsections explain in detail how we gathered the used datasets.

Data Extraction

Container
images

Package
information

Bug
reports

Vulnerability
reports

Analysis

Figure 6.1: Process of the Docker container package analysis.

6.2.1.1 Base Images for Debian

We decided to work with Docker images based on a Linux-distribution, because packages
in such images are usually well maintained. We selected the Debian distribution of Linux
because of its maturity and widespread use1 in Docker Hub. On October 1st 2018, the
Debian repository on Docker Hub had more than 125M pulls2.

While it is possible to create Docker images from scratch, most of them are based
on others, which in the end are built on base images that do not rely on any other image
except for the Docker-reserved minimal image named “scratch”3. Since we want to deal
with images based on Debian, we first identified Debian base images4.

The Debian project maintains packages for several simultaneous release lines (Debian
distributions) [40]. The most important distributions are Testing, Stable and Oldstable.
In Testing, packages are updated frequently, when new releases have been inspected and
validated (e.g., lack of critical bugs, successful compilation, etc). At some points in time,
when Testing as a whole reaches a certain level of quality and stability, it is “frozen”, and
their packages are used to produce a new Stable distribution. Upon release of a Stable
version, the former one becomes Oldstable, and the Oldstable becomes Oldoldstable. While
updates in Testing usually come with new functionality, updates in Stable and Oldstable
include only the most important fixes or security updates. Currently, there is no security
support for Oldoldstable and older distributions. Thus, we chose to analyze Debian base
images in Docker Hub only for Testing, Stable and Oldstable. Table 6.1 shows general
information about the Debian versions considered for this work.

1https://www.ctl.io/developers/blog/post/docker-hub-top-10/
2https://registry.hub.docker.com/v2/repositories/library/debian/
3https://docs.docker.com/develop/developimages/baseimages/
4https://hub.docker.com/_/debian/

70

https://registry.hub.docker.com/v2/repositories/library/debian/

6.2. DEBIAN PACKAGES IN DOCKER CONTAINERS

Table 6.1: General information about the considered Debian versions.

Version name Version Distribution type Release date as stable
Buster Debian 10 Testing -
Stretch Debian 9 Stable 2017-06-17
Jessie Debian 8 Oldstable 2013-04-25

6.2.1.2 Identifying Analyzed Images

Images in Docker Hub are named with the name of the repository, followed by a colon
and a tag (e.g., imageRepo:Tag). Any image can be tagged more than once, and therefore
may have more than one name (e.g., debian:testing and debian:testing-20181011). In the
case of community images, the name of the repository usually starts with the name of the
organization producing the images (e.g., organizationName/ImageName). Therefore, full
image names tend to have the form organizationName/ImageName:Tag.

Each image is composed of one or many intermediate images called layers. Each
layer is related to a change caused by commands that happened in the Dockerfile5 used to
produce the image, and has a unique hash signature.

For example, the Dockerfile of the debian:stretch image is:
FROM scratch
ADD rootfs.tar.xz /
CMD ["bash"]

When building the image with this Dockerfile, a single layer is produced:

debian:stretch Layers: ["sha256:e1df5dc88d2cc2cd9a1b1680ec3cb"]

This image can be used by other Dockerfiles as their base image using “FROM
debian:stretch”. Each image produced from those Dockerfiles will contain the layer(s) of
the base image. For example, debian:stretch-backports is produced with this Dockerfile:

FROM debian:stretch
RUN echo ’deb http://deb.debian.org/debian stretch-backports main’
> /etc/apt/sources.list.d/backports.list

The resulting debian:stretch-backports image includes the layer found in debian:stretch,
its base image:

5https://docs.docker.com/engine/reference/builder/

71

6.2. DEBIAN PACKAGES IN DOCKER CONTAINERS

debian:stretch-backports Layers: [
"sha256:e1df5dc88d2cc2cd9a1b1680ec3cb",
"sha256:4c1b8d4c6076530dcd195cbc309e5"]

Therefore, we can identify Docker images derived from Debian base images by checking
if they contain their layers. Using the Docker Hub API we extracted in March 2018 all
available image names from the 124 official repositories, and those with at least 500 pulls
from the top 30,000 community repositories (by number of pulls). Using the skopeo tool6
we inspected images corresponding to all those image names, identifying unique images,
and retrieving those that included layers from the set of Debian base images. From 14,653
image names in official repositories, we found 2,453 unique images (i.e., 4,769 names)
based on our set of Debian images. From 30,000 community repositories, we found 4,927
unique images derived from our Debian set. All of them together compose our dataset of
7,380 images. Table 6.2 shows the number of images found for each Debian version.

Table 6.2: Number of Docker images per Debian distribution.

Containers Buster / Testing Stretch / Stable Jessie / Oldstable Total
Official 150 620 1,683 2,453

Community 86 1,248 3,593 4,927
Total 236 1,868 5,276 7,380

6.2.1.3 Identifying Installed Packages

Docker containers based on Debian include specific versions of Debian binary packages.
Binary packages are produced from source packages. They are needed to find vulnerabilities
and bug reports.

For tracking binary packages and finding their metadata (including the name and
version of the source package from which they were produced), we extracted daily snapshots
of all amd64 binary packages for Oldstable (Jessie), Stable (Stretch) and Testing (Buster)
distributions from the official and security Debian Snapshot repositories7. Then, we pulled
each Docker image in our image dataset, and identified their packages using regular Debian
tools (dpkg -l). We matched them to our dataset obtained from Debian Snapshot, finding
in it more than 99% of the packages in our image dataset (1,379,163 package versions in
official images, and 561,982 in community images). We found a median number of 190
and 261 installed packages in official and community images, respectively.

6skopeo is a utility which inspects a repository on a Docker registry: https://github.com/
containers/skopeo

7snapshot.debian.org/archive/debian/ and snapshot.debian.org/archive/debian-security/

72

https://github.com/containers/skopeo
https://github.com/containers/skopeo
snapshot.debian.org/archive/debian/
snapshot.debian.org/archive/debian-security/

6.2. DEBIAN PACKAGES IN DOCKER CONTAINERS

6.2.1.4 Vulnerability Reports

To find out known security vulnerabilities for the Debian packages in our image dataset, we
used the Debian Security Bug Tracker8 as of 2018-03-18. For each package, the status of
known vulnerabilities is maintained by the Debian Security Team, using data from different
data sources (CVE database9, National Vulnerability Database "NVD"10, etc).

The Debian tracker maintains information about vulnerabilities at the source package
level. A Debian vulnerability report contains information about affected source packages,
severity, status, Debian bug id (if available), affected distributions, fixed version (if
available), etc. Using it we can link vulnerabilities to source packages, and from there
(using the Debian Snapshot dataset) to binary packages in our container images of interest.
For each reported vulnerability for a package version present in one of the analyzed image
versions, we say that the corresponding package version is vulnerable if the vulnerability is
still open, or if the vulnerability has been fixed in a more recent package version than the
one installed in the analyzed image version.

6.2.1.5 Bug Reports

For bug reports we relied on the Ultimate Debian Database11 to query for known bugs
in the package versions installed in our container image versions. UDD is a continuously
updated system that gathers a variety of Debian data in the same SQL database [90]:
bugs, packages, upload history, maintainers, etc.

UDD contains information about all bug reports, including those that were archived.
To identify if a package version is “buggy", we queried UDD for all bug reports for that
package. For each reported bug we checked if the specific package version was higher or
equal to the version where the bug was first found. In case the bug report is resolved, we
also verified if the package version is lower than the one fixing the bug.

6.2.2 Instantiating the Technical Lag Framework to Debian
packages used in Docker containers

In Chapter 5, we applied the technical lag concept to npm dependencies used in npm
packages. In this chapter, the analysis focuses on package releases that are used in Docker
containers. To do so, we instantiate the technical lag framework to Debian package releases
installed in Docker container images.

8security-tracker.debian.org/tracker/data/json
9cve.mitre.org/cve/

10nvd.nist.gov
11udd.debian.org/bugs/

73

security-tracker.debian.org/tracker/data/json
cve.mitre.org/cve/
nvd.nist.gov
udd.debian.org/bugs/

6.2. DEBIAN PACKAGES IN DOCKER CONTAINERS

As explained in 6.2.1.1, the Debian project maintains packages for several simultaneous
distribution lines. Therefore, each package version is released within a specific Debian
distribution. With time passing, these package releases encounter different kind of issues
(e.g., vulnerabilities, stability bugs, performance bugs, etc).

Definition 10. Package releases

Let P ⊂ N ×V ×T ×D be the set of all package releases available in Debian, where
N is the set of all possible package names, V is the set of all possible version numbers, T is
the set of all possible time points and D is the set of all available Debian distributions (e.g.,
Buster, Stretch, Jessie, etc). Each package release p = (pname, pversion, ptime, pdistro) ∈ P
has an associated package name pname ∈ N , a version number pversion ∈ V , a release date
ptime ∈ T and a Debian distribution pdistro ∈ D. Based on Debian specifications12, we
assume a total order on T and V .

∀d ∈ D and ∀t ∈ T , we will denote by Pd = {p ∈ P | pdistro = d} the set of all package
releases available in a given Debian distribution d ∈ D, and by Pt = {p ∈ P | ptime ≤ t}
the set of all package releases available at a given time t ∈ T .

Definition 11. Package release issues

security : P × T → N such that security(p, t) corresponds to the number of
reported vulnerabilities of p at time t. This information can be extracted from the Debian
Security Tracker.

stability : P × T → N such that stability(p, t) corresponds to the number of
reported bugs of p at time t. This information can be extracted from the Ultimate Debian
Database.

Note that a package release can have issues (i.e., bugs or vulnerabilities) with different
severity levels. We could take into account the severity level in the definitions above,
by using a weighted sum that assigns different weights to different severity levels. For
simplicity, we have ignored this severity, attaching an equal weight to each bug or to each
vulnerability.

Definition 12. Packages installed in a container

In practice, software containers include a set of installed system package releases.
In the case of Docker containers that are based on Debian, they include Debian package
releases.

Let C be the set of all possible Debian-based software containers, where each container
c ∈ C has an associated build date ctime ∈ T . We define:

installed : C → P(P) such that installed(c) corresponds to all Debian package
12https://www.debian.org/doc/debian-policy/ch-controlfields.html#version

74

https://www.debian.org/doc/debian-policy/ch-controlfields.html#version

6.2. DEBIAN PACKAGES IN DOCKER CONTAINERS

releases installed in the container c.

available : C → P(P) such that available(c) = {p ∈ P | ∃p′ ∈
installed(c), pname = p′

name ∧ pdistro = p′
distro ∧ ptime ≤ ctime} corresponds to all available

releases of the installed package versions installed(c) at the container’s build date ctime,
within the same Debian distribution.

We aim to empirically study how outdated Debian package releases in Docker contain-
ers are with respect to the latest available, the most secure and the most stable package
releases. To do so, we need to define three different instantiations of the technical lag
framework: version-based, security-based and stability-based.

Definition 13. Version-based instantiation of the technical lag framework.

We define FDebianversion as the function that instantiates the technical lag framework F
for a given container c ∈ C:

FDebianversion(c) = (A,N, idealversion,deltaversion, aggversion)

where:

• A = available(c), is the set of all available package releases of the container c.

• N is the set of possible version lag values. Intuitively, each element corresponds to a
number of missed releases.

• idealversion(p) = maxp′
version

{p′ ∈ A | p′
name = pname}.

Intuitively, the function idealversion mimics the choice of the Debian package manager
APT, i.e., it returns the highest available version in A of a given package.

• deltaversion(p, q) =| coll |, where:
coll = {r ∈ A | pversion < rversion ≤ qversion ∧ pname = rname = qname}
In this definition, the lag is the number of all releases between p and q. For the sake
of simplicity, we do not distinguish between version types 13.

• aggversion(L) =| {x ∈ L|x > 0} |, where L ⊆ N is a set of version lags. Intuitively,
the aggregation corresponds to the number of outdated package versions.

Definition 14. Security-based instantiation of the technical lag framework.

We define FDebiansecurity as the function that instantiates the technical lag framework F
for a given container c ∈ C:

13https://www.debian.org/doc/debian-policy/ch-controlfields.html#version

75

https://www.debian.org/doc/debian-policy/ch-controlfields.html#version

6.2. DEBIAN PACKAGES IN DOCKER CONTAINERS

FDebiansecurity(c) =
(
A,N, idealsecurity,deltasecurity, aggsecurity

)
where:

• A = available(c), is the set of all available package releases of the container c.

• N is the set of possible security lag values. Intuitively, each element corresponds to
a number of reported vulnerabilities.

• idealsecurity(p) = maxp′
version

{p′ ∈ A | pname = p′
name ∧ ∀r ∈ A,

rname = p′
name =⇒ security(p′, ctime) ≤ security(r, ctime)}

Intuitively, for a given package release p, the function idealsecurity returns the package
release with the highest version (within the same Debian distribution as p) having
the lowest number of vulnerabilities .

• deltasecurity(p, q) = security(p, ctime)− security(q, ctime) computes the difference
between the number of vulnerabilities of package releases p and q.

• aggsecurity(L) = ∑
x∈L x, with L ⊆ N, computes the sum over a set of lags.

Definition 15. Stability-based instantiation of the technical lag framework.

We define FDebianstability as the function that instantiates the technical lag framework F
for a given container c ∈ C:

FDebianstability(c) =
(
A,N, idealstability,deltastability, aggstability

)
where:

• A = available(c), is the set of all available package releases of the container c.

• N is the set of possible stability lag values. Intuitively, each element corresponds to
a number of reported bugs.

• idealstability(p) = maxp′
version

{p′ ∈ A | pname = p′
name ∧ ∀r ∈ A,

rname = p′
name =⇒ stability(p′, ctime) ≤ stability(r, ctime)}

Intuitively, for a given package release p, the function idealstability returns the package
release with the highest version (within the same Debian distribution as p) with the
lowest number of bugs.

• deltastability(p, q) = stability(p, ctime)− stability(q, ctime) computes the difference
between the number of bugs of package releases p and q.

76

6.2. DEBIAN PACKAGES IN DOCKER CONTAINERS

• aggstability(L) = ∑
x∈L x, with L ⊆ N, computes the sum over a set of lags.

Now, we can directly compute techlagFDebian
α (c)(p) and agglagFDebian

α (c)(P) (i.e., the
instantiation of Definitions 2 and 3 in Chapter 4) in terms of the above definitions, where
α ∈ {version, security, stability}.

Notation 2. In the remainder of this section we use the shortcut notations
techlagDebianα (p, c) for techlagFDebian

α (c)(p) and agglagDebianα (P, c) for
agglagFDebian

α (c)(P), where α ∈ {version, security, stability}.

Based on the above definitions, we can define the technical lag of a container
deployment.

Definition 16. Technical lag of a container deployment

For α ∈ {version, security, stability}, we define:

contlagDebianα : C → N : c→ agglagDebianα (installed(c))

Given a container c ∈ C, contlagDebianα (c) returns the aggregated lag of all Debian
package releases installed in it. For example, suppose that in March 2018 there was a Debian
Stretch container c that was using only two package releases imagemagick 8:6.9.7.4+dfsg-11
and cups 2.2.1-8, where imagemagick 8:6.9.7. 4+dfsg-11 had 132 security vulnerabilities
and cups 2.2.1-8 had 4 security vulnerabilities. Assume that these packages had many
other available releases in Debian Stretch at that time. The most secure of these package
releases (i.e., idealsecurity(imagemagick 8:6.9.7.4+dfsg-11) and idealsecurity(cups 2.2.1-8))
were 8:6.9.7.4+dfsg-11+deb9u4 with 58 security vulnerabilities and 2.2.1-8+deb9u1 with
3 security vulnerabilities, respectively.

Therefore, techlagDebiansecurity(imagemagick 8:6.9.7.4+dfsg-11, c) = 132− 58 = 74
and techlagDebiansecurity(cups 2.2.1-8, c) = 4− 3 = 1. Consequently, the aggregated technical
lag for container c is contlagDebian

security(c) = 74 + 1 = 75 vulnerabilities, which is the sum of
lags of all installed package releases.

6.2.3 Empirical Evaluation

Research Questions

In this section, we empirically analyze Debian system packages that are installed in Docker
containers. We report results about the technical lag, security vulnerabilities and bugs
for 2, 453 official and 4, 927 community Docker Hub images based on the Debian Linux
distribution.

The research questions that we address in this study are:

77

6.2. DEBIAN PACKAGES IN DOCKER CONTAINERS

RQ0: How often are Docker images updated? With this preliminary research question, we
aim to know first when Docker images were last updated and how often they got updated.

RQ1: How outdated are container packages? We identify Debian package releases that are
installed in the analyzed Docker images and we compute their technical lag in terms of
versions w.r.t the highest available versions in the Debian archive.

RQ2: To which extent do containers suffer from security vulnerabilities in packages? For
all installed Debian packages, we quantify the number of reported vulnerabilities they have
in the Debian security tracker.

RQ3: How vulnerable are container package releases compared to the least vulnerable
versions? For all images, we compute the technical lag that their installed package releases
suffer from in terms of number of vulnerabilities w.r.t the least vulnerable versions in
Debian.

RQ4: To which extent do containers suffer from bugs in packages? For all installed Debian
package releases, we quantify the number of reported bugs in the Debian bug tracker.

RQ5: How buggy are container package releases compared to the least buggy versions? For
all images, we compute the technical lag that their installed package releases suffer from
in terms of number of bugs w.r.t the least buggy versions in Debian.

RQ6: How long do bugs and security vulnerabilities remain unfixed? With this research
question, we aim to shed some light on the time needed before vulnerabilities and bug
reports are fixed and closed.

RQ0: How often are Docker images updated?

In order to analyze the technical lag of Docker container packages, it is essential to know
how often Docker maintainers update their images and when they were last updated, since
images that have not been updated in a long time may have more outdated packages.
This allows us to have a better understanding and carry out a fair comparison between
the content of different containers.

In September 2017, Anchore.io, which is a company dedicated to container deployers,
analyzed the official Docker images update history14 and found that operating system
images like Debian, Alpine or Ubuntu update images less often than non-OS images like
Redis, MySQL or Postgres. They also noticed that Debian images are updated every month,
which is the average compared to other OS images. Moreover, they observed that on some
days many repositories push updates at the same time. Investigating this phenomenon,
they found that in many cases this occurs the day after their base image debian:latest was
updated.

14anchore.com/blog/look-often-docker-images-updated/

78

anchore.com/blog/look-often-docker-images-updated/

6.2. DEBIAN PACKAGES IN DOCKER CONTAINERS

Figure 6.2 shows the number of images that were last updated per each year. We
observe that the number of official images that were updated in 2018 is less than those that
were updated in 2017, for the images that make use of the Oldstable version Jessie (Debian
8), while it is the opposite for the community images. Another important observation that
should be taken into account for the rest of the study is that 48% of the community images
and 66% of the official images were last updated before 2018. This can be explained by
the number of images per repository: while official repositories have many images with
different operating systems (i.e., including slim and full) and for different architectures,
community repositories have predominantly only one unique image (latest) with different
tags. Thus, in official repositories new images emerge while others stop being updated;
and community repositories tend to keep updating their images without creating new ones.

2015 2016 2017 2018
Community images last update year

0

1000

#
of

D
oc

ke
r

im
ag

es

jessie stretch buster

2015 2016 2017 2018
Official images last update year

0

500

Figure 6.2: Year of last update of Docker images, grouped by Debian distribution and
image type (community or official).

Findings: More than half of the Docker images have not been updated for four months.

RQ1: How outdated are container packages?

RQ1 investigates how outdated the packages in Docker containers are, based on a quan-
tification of their technical lag. Therefore, we start by exploring how many packages
within containers are outdated (i.e., contlagDebian

version). Figure 6.3 shows the proportion
of up-to-date and outdated packages in both official and community Docker containers,
grouped by their Debian version. We observe that, regardless of the Debian version, most
packages are up-to-date. The median proportion of up-to-date packages per container is
82% of all installed packages. We also notice that packages inside community containers
are slightly more up-to-date (median 85%) than packages inside official containers (median
78%).

We statistically confirm this observation using a non-parametric Mann-Whitney
U test. The null hypothesis assumes that the up-to-date package distributions of the
community and official containers, grouped by their Debian version, are identical. For each
pair of groups (Official-Jessie, Community-Jessie), (Official-Stretch, Community-Stretch),

79

6.2. DEBIAN PACKAGES IN DOCKER CONTAINERS

and (Official-Buster, Community-Buster), we rejected H0 with statistical significance
(p < 0.01) when comparing the distributions of up-to-date packages of two groups of
containers. However, for each comparison, we only found a small effect size (|d| ≤ 0.28)
using Cliff’s Delta, a non-parametric measure quantifying the difference between two
groups of observations.

When restricting our analysis to recent images only (i.e., those that were last updated
in 2018), we found that packages in official containers are slightly more up-to-date than
packages in community containers. Since community images are based on official images,
this means that from all available official images, Docker community deployers tend to use
the most recently updated ones, or they manually update all outdated packages inherited
from old official images. We also found that the median proportion of up-to-date packages
per container, in all cases, increased to 98% of all installed packages.

jessie stretch buster
Official container’s Debian version

0

50

100

p
ac

ka
ge

ve
rs

io
n

s
%

jessie stretch buster
Community container’s Debian version

0

50

100

Outdated Up-to-date

Figure 6.3: Proportion of up-to-date and outdated packages in Docker containers, grouped
by their Debian version.

To quantify how outdated Debian packages are, we compute their technical lag, using
the version-based instantiation of the technical lag framework in Section 6.2.2.

For all containers, we measured their packages’ techlagDebianversion. Figure 6.4 shows
the distribution of techlagDebianversion of packages installed in Docker containers, grouped by
the container’s installed Debian version. At first sight, we observe that the distributions
are highly skewed. However, the distribution for the containers using Stretch is more
highly skewed than the others. Table 6.3 shows that the median version lag for both
Jessie and Stretch containers is 1, while it is 2 versions for Buster. This small difference
is related to the state of the Debian release. Because Buster is now in the Testing phase,
many containers prefer not to depend on its packages since they are still subject to many
changes, making it hard to keep up with its updating process. However, we can conclude
that, in general, package releases in Docker containers are either up-to-date or lagging
behind with a median of 1 to 2 versions.

Since we found that the proportion of up-to-date installed packages per container is
high, we decided to investigate the used package releases and when they were created, in

80

6.2. DEBIAN PACKAGES IN DOCKER CONTAINERS

jessie stretch buster
Container’s Debian version

0

5

P
ac

ka
ge

ve
rs

io
n

L
ag

Official Community

Figure 6.4: Violin plots of the distribution of techlagDebianversion induced by outdated packages
in Docker containers.

Table 6.3: Mean and median of packages’ techlagDebianversion, grouped by Debian version and
container type.

Containers Official Community
mean median mean median

Jessie 2.13 1 1.93 1
Stretch 1.36 1 1.24 1
Buster 2.71 2 3.05 2

order to know how the updating process of Debian is working. This way we can know if
images are keeping up with frequent updates of Debian or they simply make use of package
releases that are no longer updated by Debian.

Considering only the up-to-date package releases this time, we traced back the
date when they were first seen in Debian. Figure 6.5 shows the cumulative proportion
of up-to-date package releases used in containers. We found that most of the package
releases are old (i.e., they have been released many months ago). Moreover, we found that
exactly 80% of the used Stretch package releases and 90% of the Jessie package releases
were created before 2017-06-18, the release date of the Stable version of Stretch. We also
found that 63% of the used Jessie package releases were created before the release date of
the Stable version of Jessie (i.e., 2015-04-25). This means that used package releases tend
to remain up-to-date because of the way in which Debian maintainers are creating and
updating their packages.

Findings:
- One out of five installed package releases in containers is outdated.
- Authors of community containers tend to use recently updated official images.
- Outdated installed package releases are lagging behind one to two versions.

81

6.2. DEBIAN PACKAGES IN DOCKER CONTAINERS

2013-06

2013-12

2014-06

2014-12

2015-06

2015-12

2016-06

2016-12

2017-06

2017-12

First time seen on Debian

0

25

50

75

100

C
u

m
u

la
ti

ve
%

of
p

ac
ka

ge
ve

rs
io

n
s

buster

jessie

stretch

Figure 6.5: Cumulative number of used up-to-date package releases, by date of first
appearance in Debian.

RQ2: To which extent do containers suffer from security vulnerabilities in
packages?

Verifying a software container for security vulnerabilities is important, since such vulnera-
bilities could be exploited to abuse the system. With RQ2, we analyze if the presence of
vulnerabilities in Docker containers is related to the presence of outdated package releases
in the containers.

We found that only 12.2% (i.e., 488 out of 3,975) of all unique installed package re-
leases (from both official and community containers) had security vulnerabilities. Figure 6.6
shows the distribution of vulnerabilities by their severity (not assigned, unimportant, low,
medium or high) and status (open, resolved and undetermined). We found that 49.9%
(i.e., 12,806) of all vulnerabilities are resolved, while 48.6% (i.e., 12,479) are still open. A
small proportion of 1.6% (i.e., 401) are undetermined. We also observe that the majority
of vulnerabilities has a medium (37.2%), unimportant (20.2%) or high (18.3%) severity.
However, we found that all containers are affected by these severity vulnerabilities. In fact,
96% of all containers are affected by all types of vulnerabilities, except for the not assigned
vulnerabilities. This means that this small proportion of 12.2% of package releases causes
the vulnerability of nearly all Docker containers.

Next, we computed the number of vulnerabilities per container. We obtained a mean
value of 1,336 vulnerabilities and a median of 601. The important difference between mean
and median signals a heavily skewed distribution. Indeed, we found a container with a
maximum of 7,338 vulnerabilities. Using a Mann-Whitney U test we found statistically
significant differences (p < 0.01) in the number of vulnerabilities per container between
official and community distributions. However, the effect size was small (|d| < 0.3).
Table 6.4 shows more details about the distribution of the number of vulnerabilities in
Docker containers.

82

6.2. DEBIAN PACKAGES IN DOCKER CONTAINERS

not assigned unimportant low medium high
Severity

0

10

20
P

ac
ka

ge
vu

ln
er

ab
ili

ti
es

%

Status: open resolved undetermined

Figure 6.6: Proportion of vulnerabilities found in package releases in Docker containers,
grouped by severity and status of the vulnerability.

Table 6.4: Minimum, median and maximum number of vulnerabilities per container,
grouped by Debian version and container type.

Containers
Debian

Official Community
min median max min median max

Jessie 155 658 7,106 155 916 7,338
Stretch 85 242 3,498 75 336 4,729
Buster 34 134 659 41 183 1,035

To study the relation between the outdated package releases in containers and the
vulnerability of the container, we compared the number of outdated package releases
and number of vulnerabilities per container. Considering both official and community
containers, and without differentiating between vulnerabilities by severity or status, we
plot the numbers in a scatter plot for different Debian versions (Figure 6.7). We visually
observe a certain relationship between both metrics, especially for the Jessie containers:
when the number of outdated package releases increases, the number of vulnerabilities
tends to increase as well.

To verify our observations, we calculated Pearson’s correlation coefficient R and
Spearman’s ρ over all package releases, using the following thresholds : 0 < very weak ≤
0.2 < weak ≤ 0.4 < moderate ≤ 0.6 < moderately strong ≤ 0.8 < strong ≤ 1. A
moderately strong increasing correlation (0.6 < R ≤ 0.8 and 0.6 < ρ ≤ 0.8) for Jessie and
Buster, and only a moderate one for Stretch (R = 0.53 and ρ = 0.42) exists.

If we consider that the need for updating an outdated package release only arises
when a fix for a known vulnerability is available, it is preferable to focus on the category
of resolved vulnerabilities. We found a mean value of 347 resolved vulnerabilities per
container, and a median value of 102. Repeating the above correlation analysis reveals
a strong correlation between the number of resolved vulnerabilities and the number of

83

6.2. DEBIAN PACKAGES IN DOCKER CONTAINERS

0 20 40 60 80 100 120 140
outdated packages

0

1000

2000

3000

4000

5000

#
vu

ln
er

ab
ili

ti
es

jessie

stretch

buster

Figure 6.7: Number of outdated packages and vulnerabilities per container.

outdated package releases (0.8 < R ≤ 0.9 and ρ > 0.9).

Table 6.5 shows the top 5 vulnerable official and community images with their number
of vulnerabilities (i.e., #vulns), number of installed packages (i.e., #pkgs) and age. For the
official images, only the top vulnerable image in a repository is presented. For example, the
perl repository has many images with a high number of vulnerabilities; summed together,
perl would be in the top 5. However, since these images provide the same functionality,
we report only one: the most vulnerable image. A common characteristic about the top
vulnerable containers is that they have not been updated for more than two years, and
their number of installed packages is higher than the median over all containers. Thus, it
is not surprising that these containers have high number of severity vulnerabilities.

Table 6.6 shows the top 5 most and least vulnerable source packages, with their
number of vulnerabilities and the proportion of containers that make use of them. The
three most vulnerable source packages linux, chromium-browser and imagemagick seem
to have high number of binary packages: 433, 419 and 327, respectively. We did not
observe any significant relation between the number of binary packages and the number
of vulnerabilities. For instance, the source packages mono and libreoffice have 241 and
195 binary packages, but they have only 1 and 9 vulnerabilities, respectively. We also
found some vulnerable packages (e.g., audit and bzip2) that are used by all containers,
explaining why nearly all containers are affected by vulnerable packages.

84

6.2. DEBIAN PACKAGES IN DOCKER CONTAINERS

Table 6.5: Top 5 vulnerable official and community Docker images. (Age in months.)

Official images # vulns # pkgs age
perl:5.12.5-threaded 7,106 406 36.0
node:0.8.28 6,889 369 32.9
erlang:18.2.1 6,713 372 28.4
ruby:2.1.8 6,426 372 25.9
sentry:7.5.0 5,742 384 35.9

Community images # vulns # pkgs age
weboaks/chromium-xvfb-node 7,338 448 27.8
jmoifutu/almakioski-processor-base 7,282 407 35.2
suitupalex/node-composer 7,167 384 26.2
youdowell/php-fpm-for-wordpress 7,155 339 25.5
newsdev/github-keys 7,106 405 35.5

Table 6.6: Top 5 vulnerable Debian source packages.

Most vulnerable package #vulnerabilities used by
linux 433 54.51%
chromium-browser 419 0.43%
imagemagick 327 28.13%
php5 186 2.3%
firefox-esr 139 0.09%

Least vulnerably package #vulnerabilities used by
audit 1 100.0%
bzip2 1 100.0%
db5.3 1 100.0%
pam 1 100.0%
sensible-utils 1 98.97%

Findings:
- Nearly half of the vulnerabilities have no fix.
- All containers have high severity vulnerabilities.
- The number of vulnerabilities depends on the Debian release used.
- The most vulnerable containers have not been updated for more than 2 years.
- The number of outdated packages in a container is strongly correlated to the number
of resolved vulnerabilities that the same container suffer from.

85

6.2. DEBIAN PACKAGES IN DOCKER CONTAINERS

RQ3: How vulnerable are container package releases compared to their most
secure versions?

In the previous research question, we found that Docker containers suffer from security
vulnerabilities coming from Debian packages. To answer the current research question, we
use the security-based instantiation of the technical lag framework in 6.2.2. This way, we
can report the technical lag in terms of vulnerabilities that would be reduced if container
deployers installed the most secure (i.e., least vulnerable) package releases.

Figure 6.8 shows contlagDebian
security, grouped by container Debian version. We observe

that the aggregated security lag is related to the Debian version in the sense that containers
with old package releases have a higher lag. Without distinguishing between image types,
we found that the median security lag is 65, 1 and 2 severity vulnerabilities for Jessie, Stretch
and Buster, respectively. This could be explained by the fact that Jessie package releases
are older, they might have had more time to accumulate more reported vulnerabilities.
We also observe a small difference between containers of official and community images.
Official images tend to have a higher security lag. This is not surprising since we found that
package releases are more up-do-date in community images than in official images, even if
we found that community images have more vulnerabilities. The number of vulnerabilities
is related to the number of installed packages, hence it is expected that community images
have more vulnerabilities. This shows again that there is a relation between outdated
package releases and the vulnerabilities they may induce.

jessie stretch buster
Debian release

0

200

400

S
ec

u
ri

ty
vu

ln
er

ab
ili

ty
la

g

Official

Community

Figure 6.8: contlagDebian
security induced by installed packages in Docker containers

However, since we did not find a very strong correlation between outdated package
releases and all kinds of vulnerabilities in containers, we expect that in order to have the
most secure package versions and reduce the security lag, deployers may need to downgrade
their package releases. Indeed, to have the most secure package release, we found that
2.5% of the package releases installed in Docker container need to be downgraded and
22.5% of them need to be upgraded. The rest (75%) does not require any change, they are
already having the most secure version (i.e., techlagDebiansecurity = 0 at the containers build
date, March 2018).

86

6.2. DEBIAN PACKAGES IN DOCKER CONTAINERS

As a consequence of the previous findings, we also found that in order to reduce
security lag, package releases in official images require more upgrades or downgrades than
in community images.

Findings:
- Debian Jessie containers have a higher security lag than other containers.
- Official images have higher security lag than community images.
- Some package releases need to be downgraded in order to reach the most secure
version.

RQ4: To which extent do containers suffer from bugs in packages?

This question concerns the presence of non-security-related bugs in Docker container
package releases, and the relation between bugs and outdated package releases. Considering
all package releases for both community and official images, we found that 50.1% (1,994
out of 3,975) of all unique installed source package releases have bugs. We also discovered
that all containers have “buggy” package releases.

Figure 6.9 shows the distribution of bugs grouped by status (pending, forwarded,
fixed) and severity (wishlist, minor, normal, important, high). The high category combined
three different severity types: serious, grave and critical. We found that 65.5% (12,863) of
all bugs are still pending, 7.3% (3,460) are forwarded and only 27.2% (30,922) are fixed.
With respect to the severity, only 2.9% of all bugs are high, 27.7% are important, 50.2%
are normal and the rest is minor or still in the wishlist.

wishlist minor normal important high
Severity

0.0

0.2

P
ac

ka
ge

B
u

gs
% fixed

forwarded

pending

Figure 6.9: Proportion of bugs grouped by severity and status.

Since the majority of bugs are still pending – nearly two out of three bugs in package
releases (65.5%) are without a fix, and one out of two package releases (50.1%) has a
bug – we would expect the number of bugs per container to be higher than the number
of vulnerabilities. Including both official and community containers, we found a mean
value of 2,081 and a median value of 2,163 bugs per container. Focusing on fixed bugs

87

6.2. DEBIAN PACKAGES IN DOCKER CONTAINERS

only, i.e., bugs that have been fixed in another release, we found a mean value of 678 and
a median value of 729 fixed bugs per container. While these numbers may appear high,
this is normal for Debian, that typically has thousands of open bugs at any point in time.

When comparing the number of bugs in official and community containers, we
obtained a statistically significant difference (p < 0.01) using Mann-Whitney U test. The
effect size was small (|d| < 0.2) for Buster and Stretch, and medium (|d| = 0.28) for Jessie.
The number of reported bugs decreases with more recent versions of Debian. Table 6.7
shows details about the distribution of the number of bugs in Docker containers.

Table 6.7: Min, median and max of bugs per container grouped by Debian version and
container type.

Containers
Debian

Official Community
min median max min median max

Jessie 1,307 2,201 3,415 1,296 2,450 5,628
Stretch 962 1,683 2,665 828 1,759 3,285
Buster 213 560 776 278 561 1,098

We also studied the relation between the presence of outdated package releases and
bugs in containers. Considering both official and community containers, and without
differentiating between bug status or severity, Figure 6.10 shows a scatter plot, for different
Debian versions, of the relation between the number of outdated package releases and the
number of bugs found in each container. Opposite to what we observed for vulnerabilities
in Figure 6.7, there only appears to be a relation between the number of bugs and number
of outdated package releases for Buster.

To statistically verify our observations, we computed Pearson’s R and Spearman’s
ρ correlation for all packages. For Jessie and Stretch, the correlation was weak to very
weak (R ≤ 0.2 and ρ ≤ 0.22). For Buster, a moderate increasing correlation (R = 0.58 and
ρ = 0.55) was observed. This is because Buster contains many new package releases, which
still get new bug notifications. Jessie and Stretch, on the other hand, contain mainly stable
and old package releases, that mainly contain old bugs. Indeed, 90% of Jessie bugs were
created before July 2016, and 78% of Stretch bugs were created before its Stable release in
June 2017.

88

6.2. DEBIAN PACKAGES IN DOCKER CONTAINERS

0 10 20 30 40 50 60 70
outdated packages

0

1000

2000

3000

4000

#
b

u
gs

jessie stretch buster

Figure 6.10: Number of outdated package releases and bugs per container.

Findings:
- All containers have buggy package releases.
- 65% of bugs in installed package releases are without a fix.
- The number of bugs is negatively correlated with the used Debian version.
- There is a weak correlation between the number of bugs and the number of outdated
package releases in containers relying on the Stable and Oldstable Debian release.

RQ5: How buggy are container package releases compared to their most stable
versions?

Having found evidence that Docker containers suffer from other kind of bugs induced
by installed Debian packages, we will now analyze and compute the stability lag as the
difference in number of bugs between two package releases. To do so, we use the stability-
based instantiation of the technical lag framework in 6.2.2. This way, we can report the
technical lag in terms of the number of bugs that would be reduced if container deployers
installed the most stable (i.e., least buggy) package releases.

Figure 6.8 shows contlagDebian
stability, grouped by container Debian version. We observe

that contrary to what we found about the aggregated security lag, the aggregated stability
lag is not related to the Debian version order. Debian Stretch is more recent than Jessie
and older than Buster, however containers that make use of this Debian distribution have

89

6.2. DEBIAN PACKAGES IN DOCKER CONTAINERS

less stability lag than other containers. Without distinguishing between image types, we
found that the median stability lag is 187, 103 and 148 bugs for Jessie, Stretch and Buster,
respectively. We also observe that community images have a slightly higher stability lag,
even if they are more up-to-date. This is expected since we could not find a correlation
between bugs and outdated package releases in the previous research question.

In order to reduce the stability lag in Docker containers, 22.4%, 12.3% and 27.5 % of
the packages in Jessie, Stretch and Buster would need to be downgraded while only 6%,
4.4% and 6.3% of the package releases would need to be upgraded, respectively.

jessie stretch buster
Debian release

0

100

200

B
u

g
la

g

Official Community

Figure 6.11: contlagDebian
stability induced by installed package releases in Docker containers

Findings:
- Debian Stretch containers have a lower stability lag than other containers.
- To have the most stable package releases, a small proportion of package releases
require release changes. Most of these changes are release downgrades.

RQ6: How long do bugs and security vulnerabilities remain unfixed?

Since nearly half of all vulnerabilities are still open and 65% of all bugs are still pending,
this question investigates how long it takes for a bug to get fixed. To do so, for all bugs, we
compute the time interval between the bug report creation date and the last modification
date of the bug, considering that this corresponds to the bug fix date, in case a fix was
observed.

We rely on the statistical technique of survival analysis based on the non-parametric
Kaplan-Meier statistic estimator commonly used to estimate survival functions [91]. It has
been widely used in software engineering research [92, 93, 94]. Figure 6.12 shows survival
curves per severity level for the event “bug is fixed” w.r.t. the bug report creation date.
We observe that the time to fix a bug does not always depend on its severity level. High
severity bugs are fixed faster than other kind of bugs. For example, it takes 53.8 and 33.5
months so that 50% of all normal and minor bugs get fixed, respectively, while it only

90

6.2. DEBIAN PACKAGES IN DOCKER CONTAINERS

takes 3 months to fix high severity bugs. It seems like Debian maintainers prefer to start
with easy bugs that are trivial to fix rather than normal ones. Nonetheless, bugs that
may have an impact on releasing the package with the Stable release of Debian (i.e., high
severity15) have the highest priority.

To find out if there are statistically significant differences between the survival curves
per severity, we carried out log-rank tests for each severity pair. The differences were
statistically confirmed (p < 0.01 after Bonferroni correction) except for the pairs (normal,
important) and (minor, wishlist) where the null hypothesis could not be rejected.

0 50 100 150 200
delay (in months)

0.0

0.5

1.0

su
rv

iv
al

p
ro

b
ab

ili
ty wishlist

minor

high

important

normal

Figure 6.12: Survival probability for event “bug is fixed” w.r.t. the bug report creation
date.

Findings:
- Half of the normal and minor bugs require more than 53.8 and 33.5 months
respectively to be fixed.

- High severity bugs are fixed faster than other kind of bugs.

Similar to the bug survival analysis, we analyzed the survival of security vulnerabilities
over time. Using the Debian security tracker we extracted the debianbug id for each
vulnerability. With this id, we searched in the UDD for the creation and last modification
date of the corresponding bug. We only found 62% of all vulnerabilities with a corresponding
debianbug id. This proportion of vulnerabilities is responsible for 93% of all container
vulnerabilities. For this subset we carried out a survival analysis for the event “security
vulnerability is fixed” w.r.t. the bug report creation date. Figure 6.13 shows the Kaplan-
Meier survival curves for each severity level found on the security tracker (as opposed to
the severity of the bug reported in the UDD).

We observe that vulnerabilities are fixed faster than bugs. It takes 5.9 months
15https://www.debian.org/Bugs/Developer.en.html#severities

91

https://www.debian.org/Bugs/Developer.en.html#severities

6.2. DEBIAN PACKAGES IN DOCKER CONTAINERS

0 10 20 30 40
delay (in months)

0.0

0.5

1.0
su

rv
iv

al
p

ro
b

ab
ili

ty not assigned

low

high

medium

Figure 6.13: Survival probability per severity level for event “security vulnerability is fixed”
w.r.t. the date of the bug arrival.

for not assigned severity vulnerabilities, 2.4 months for medium severity vulnerabilities,
and 2.1 months for high severity vulnerabilities. Low severity vulnerabilities take much
more time to fix: 27 months to fix 50% of them. We could not include the unimportant
vulnerabilities since only 0.5% of them are fixed. We carried out log-rank tests to compare
whether there are statistically significant differences between the survival curves depending
on the severity of the bug. We could reject the null hypothesis assuming the similarity
between the survival analysis curves with statistical significance (p < 0.01 after Bonferroni
correction), except for high and medium severity vulnerabilities.

The fact that only 0.5% of the unimportant vulnerabilities are fixed could be expected
since those vulnerabilities do not affect the binary package, but only materials and files
that are not built (e.g., doc/foo/examples/16). To investigate this further, we identified
the bug severity of the low severity vulnerabilities inside the Debian bug tracker (i.e., from
the UDD), and found that 77.5% of these vulnerabilities have an important or normal bug
severity. This correlates with the previous findings in RQ4 and explains the results for the
low vulnerabilities. However, we also observed that 51% of the high severity vulnerabilities
are labeled as important bugs and 45% of them are considered as high (i.e., serious, grave
or critical) bugs. This means that an upstream high vulnerable package can have a
different priority downstream, depending on the downstream maintainers assessment (i.e.,
how a package is compiled, how it is integrated into the distribution, etc.).

Findings:
- High and medium severity vulnerabilities are fixed faster than low severity vulnera-
bilities.

- Vulnerability reports upstream might have different severity downstream.

16https://security-team.debian.org/security_tracker.html

92

6.2. DEBIAN PACKAGES IN DOCKER CONTAINERS

6.2.4 Actionable Results

In RQ1, we found that, in general, Debian packages used in stable releases are old and
up-to-date (i.e., having the latest available fix). This implies that it should be easy for
developers to keep up with the Debian updating process and reduce the version lag, since
package maintainers are not releasing often. Moreover, new package releases in the Stable
and Oldstable Debian releases are only about security patches, so from a semantic point of
view, there is little to fear of breaking changes. For the Testing release, however, things
are different: deployers should be aware of how the Debian project works.

Actionable result: Container deployers should be aware that the optimal update
frequency of their base images and installed packages depends on the base Debian version.

In RQ2, we found that the number of vulnerabilities is related to the number of
outdated package releases per Debian-based container. This shows that containers could
benefit from better updating procedures, allowing them to avoid security issues coming
from their installed packages. Moreover, we found that the number of vulnerabilities is
related to the Debian release.

Actionable result: Deployers who prefer stability to new functionalities are recom-
mended to use the Stable and Oldstable versions that include only the most important
corrections or security updates. To have a lower number of severe vulnerabilities, container
deployers using the Oldstable Debian release should upgrade to the Stable release.

We found that all Docker containers are vulnerable and contain package releases
with a high number of vulnerabilities and bugs. Since we did not discover a high version
lag in containers, we do not think it is the responsibility of Docker deployers to avoid all
vulnerabilities. Even containers with up-to-date package releases still may have a high
number of vulnerabilities.

Lesson learned: No release is devoid of vulnerabilities, so deployers cannot avoid them
even if they deploy the most recent packages.

We could not find a significant relation between the number of outdated package
releases and the number of bugs. However, we observed that the number of bugs is related
primarily to the Debian release. This means that deployers that care about bugs and
new functionality and not about stability, should definitely upgrade to the Debian Testing
release, since the updates in Stable and Oldstable releases are primarily about security
bugs (i.e., severity vulnerabilities).

Actionable result: Container deployers concerned with having as few non-security bugs
as possible should upgrade to the Testing release, at the expense of having a lower package
stability.

When we analyzed the technical lag while considering different variants for the ideal
software version, we found that the actions required to reduce the technical lag are related

93

6.2. DEBIAN PACKAGES IN DOCKER CONTAINERS

to the chosen ideal version. We observed that in some cases, and in order to have the ideal
version (i.e., most secure, most stable), the software package releases in use would need
to be downgraded. However, in general, most of the package releases do not require any
changes. This implies that the latest available version is perhaps not the most secure or
stable version but it seems to be a good mix between stability, security and features.

Based on a survival analysis, we concluded that security vulnerabilities take less time
to fix than other kind of bugs. The relation between vulnerabilities, bugs and outdated
package releases shows that container deployers should give a high priority to updating
when checking their container packages.

Actionable result: High security bugs are first priority for Debian maintainers; they
are fixed faster than other kind of bugs. Container deployers should be aware of the
newly available versions of their installed package releases and keep technical lag to the
minimum to avoid this type of bugs.

Comparing our results about vulnerabilities to previous observations [55], we found
Debian-based Docker containers to have an average number of vulnerabilities (i.e., 460)
that is above the average for all Docker containers (i.e., 120). However, the number of
vulnerabilities depends on the number of installed packages found. For example, it is not
fair to compare vulnerabilities between Debian containers and Alpine17 containers, unless
we compare their size as well (in terms of number of installed packages).

6.2.5 Limitations

Our study was focused on Docker containers that make use of the Testing, Stable or
Oldstable versions of Debian. The results of our analysis can therefore not be generalized
to other base images in Docker. The analysis itself, however, can be easily replicated on
other base images.

We chose to use the technical lag as a measurement. We only compared the used
package release with the latest available version of the package within the same Debian
release and without considering co-installability issues. Our results may differ when
comparing with the latest available package release from the latest (e.g., Stable, Testing or
Unstable) Debian releases, or when comparing with the latest installable package version
that has no conflicts with other installed package versions.

It is not trivial to identify which package releases are affected by bugs or severity
vulnerabilities. For example, the way in which we computed vulnerabilities and bugs was
different. For vulnerabilities we relied only on the fixed version, since this is the way it is
done in companies such as CoreOS or Anchore.io. For bugs, we relied on two sources of

17Alpine is a minimal image based on the security-oriented, lightweight Alpine Linux distribution with a
complete package index of only 8 Mb.

94

6.3. NPM PACKAGES IN DOCKER CONTAINERS

information: the bug report creation date and its last modification date. Counting bugs
in the same way as vulnerabilities would result in more bugs than the ones considered in
this analysis.

Also, when searching for vulnerabilities in the Debian security tracker, the debianbug
id was not found for 38% of the vulnerability reports. This may have influenced our survival
analysis results. However, the missing proportion of vulnerability reports is responsible for
only 7% of all analyzed container vulnerabilities.

6.3 npm Packages in Docker Containers

In addition of the operating system packages, containers might have other types of
packages installed on them, for example npm packages. Such packages can be outdated
and vulnerable as well [95, 53, 58]. In this section, we analyze official Docker Hub images
that are based on Node, in order to assess the state of the npm packages installed on them.

6.3.1 Method and Data Extraction

This section describes the steps followed to obtain the dataset used in our study: (1)
identifying candidate Docker images, (2) extracting npm package data, (3) collecting
security vulnerabilities, and (4) computing technical lag. For step (1), we relied on the
official Node image18, which contains Node.js. We focused on Node images that are based
on the Debian or Alpine base images, since the use of the corresponding Linux distributions
is widespread in Docker19. In step (2), we pulled and ran the candidate images locally
and identified the installed npm package versions. In steps (3) and (4), based on the npm
packages found, we computed their technical lag and identify the security vulnerabilities
that affect their versions.

6.3.1.1 Identifying Candidate Images

Our empirical analysis relies on the official Node image as the base to retrieve the Docker
images that include npm package dependencies. As a consequence of Docker’s layering
mechanism (as explained in Section 6.2.1), if a Docker image is based on the Node image,
then all the layers of this Node image will be included in it.

We extracted all available images (i.e., latest and tagged ones) from the 124 official
repositories through the Docker API. We remotely inspected them using skopeo. We found
that 961 out of 8,891 unique official images make use of Node and are based on the Debian
or Alpine operating system. All these images are coming from only three repositories: node,

18https://hub.docker.com/_/node/
19https://www.ctl.io/developers/blog/post/docker-hub-top-10/

95

6.3. NPM PACKAGES IN DOCKER CONTAINERS

ghost20 and mongo-express21. Table 6.8 shows the number of images considered for this
analysis per repository and operating system.

Table 6.8: Number of analyzed images grouped by repository and operating system.

OS Debian Alpine
Repository node ghost mongo-express node ghost

Images 785 40 17 84 35

6.3.1.2 Extracting npm Package Data

When installing a JavaScript package from npm, a package.json22 file is created locally
on the machine, containing information such as the package name, version, description,
etc. To inspect which packages are installed in each image, we pulled and ran the image
locally, and then located all package.json files in it. Next, we identified package names
and versions found in the files. To determine if a package release is outdated, we relied
on the dataset extracted from libraries.io on March 13th 2018 [96]. This dataset contains
metadata from the manifest of each package, based on the list of packages provided by
the official registry of npm.

6.3.1.3 Collecting Security Vulnerabilities

To identify security vulnerabilities that affect installed npm package releases, we manually
gathered from Snyk.io all 1,099 security reports that were published before May 3rd 201823.
Each security report contains vulnerability information about the affected package, the
range of affected releases, its severity, its type (i.e., how vulnerable it is), the date of its
disclosure, and the date when it was published in the database. For each security report,
we identified the name and list of packages releases affected using the dataset of libraries.io
[96].

6.3.2 Extending the Technical Lag Framework to npm packages
used in Docker containers

In Chapter 5, we used the technical lag framework to compute the dependency version and
time lag for npm package releases. Now, we extend the framework to support vulnerabilities
of npm package releases installed in Docker containers.

Definition 17. Package releases
20Ghost is a free and open source blogging platform written in JavaScript
21Mongo-express is Web-based MongoDB interface, written with express
22https://docs.npmjs.com/files/package.json
23https://snyk.io/vuln?type=npm

96

6.3. NPM PACKAGES IN DOCKER CONTAINERS

Let P ⊂ N ×V×T be the set of all package releases available in npm, where N is the
set of all possible package names, V ⊂ N×N×N the set of all possible version numbers, and
T the set of all possible time points. Each package release p = (pname, pversion, ptime) ∈ P
has an associated package name pname ∈ N , a version number pversion ∈ V and a release
date ptime ∈ T . We assume a total order on V and T .

Definition 18. Package release security

security : P × T → N such that security(p, t) corresponds to the number of
reported vulnerabilities that p has at time t.

In some cases, a package release can have vulnerabilities with different severities. The
number of vulnerabilities of a package release p can be computed using different weights
for different severities. In our case, we assign the same weight to each vulnerability.

Definition 19. Package releases installed in a container

In practice, software containers might include a set of installed third-party package
releases. In the case of Docker containers that are based on Node, they include npm
package releases.

Let C be the set of all possible Node-based software containers, where each container
c ∈ C has an associated build date ctime ∈ T . We define:

installed : C → P(P) such that installed(c) corresponds to all npm package releases
installed in the container c.

available : C → P(P) such that available(c) = {p ∈ P | ∃p′ ∈
installed(c), pname = p′

name ∧ ptime ≤ ctime} corresponds to all available releases of the
installed npm package versions installed(c) at the container’s build date ctime.

The goal of our empirical analysis is to study how outdated npm package releases in
Docker containers are with respect to the latest available and the most secure package
releases. For this reason, we consider three instantiations of the technical lag framework:
time, version and security-based.

Definition 20. Time-based instantiation of the technical lag framework.

We define Fnpmtime as the function that instantiates the technical lag framework F for
a given container c ∈ C:

Fnpmtime(c) = (A,N, idealtime,deltatime, aggtime)

where:

• A = available(c), is the set of all available package releases of the container c.

• N is the set of possible time lag values. Intuitively, each element corresponds to a

97

6.3. NPM PACKAGES IN DOCKER CONTAINERS

number of days.

• idealtime(p) = maxp′
version

{p′ ∈ Pt | p′
name = pname}. Intuitively, for a given package

release p, the function idealnpm returns the highest available version of a package
release with the same name as p.

• deltatime(p, q) = max(0, qtime − ptime) computes the positive difference in number of
days between the release dates of two package releases p and q.

• aggtime(L) = ∑
x∈L x, with L ⊆ N computes the sum over a set of time lags.

Definition 21. Version-based instantiation of the technical lag framework.

We define Fnpmversion as the function that instantiates the technical lag framework F
for a given container c ∈ C:

Fnpmversion(c) = (A,V , idealversion,deltaversion, aggversion)

where:

• A = available(c), is the set of all available package releases of the container c.

• V is the set of possible version lag values. Intuitively, each element corresponds to a
version number.

• idealversion is defined in the same way as for Fnpmtime

• deltaversion(p, q) is defined as (majorlag,minorlag, patchlag) where
coll = {r ∈ Pt | pversion ≤ rversion ≤ qversion ∧ pname = rname = qname}
majorlag = |{major | rversion = (major,minor, patch),∀r ∈ coll}| − 1
minorlag = |{(major,minor) | rversion = (major,minor, patch),∀r ∈ coll}| −
majorlag − 1
patchlag = |{(major,minor, patch) | rversion = (major,minor, patch),∀r ∈ coll}| −
majorlag −minorlag − 1
In this definition, coll is the set of all releases between p and q. We then find the
number of releases that increase the major number, then the number of releases
that increase the minor number while having the same major number, and finally
the number of patch releases that increase the patch number while having the same
major and minor numbers. From that, we derive the number of distinct major, minor
and patch releases that would be needed to upgrade from r1 to r2.

• aggversion(L) = ∑
x∈L x, with L ⊆ V computes the sum over a set of versions.

98

6.3. NPM PACKAGES IN DOCKER CONTAINERS

Definition 22. Security-based instantiation of the technical lag framework.

We define Fnpmsecurity as the function that instantiates the technical lag framework F
for a given container c ∈ C:

Fnpmsecurity(c) =
(
A,N, idealsecurity,deltasecurity, aggsecurity

)
where:

• A = available(c), is the set of all available package releases of the container c.

• N is the set of possible security lag values. Intuitively, each element corresponds to
a number of reported vulnerabilities.

• idealsecurity(p) = maxp′
version

{p′ ∈ A | pname = p′
name ∧ ∀r ∈ A,

rname = p′
name =⇒ security(p′, ctime) ≤ security(r, ctime)}

Intuitively, for a given package release p, the function idealsecurity returns the highest
version with the lowest number of vulnerabilities.

• deltasecurity(p, q) = security(p, ctime) − security(q, ctime) computes the difference
between the number of vulnerabilities of package releases p and q.

• aggsecurity(L) = ∑
x∈L x, with L ⊆ N, computes the sum over a set of lags.

Now, we can directly compute techlagFnpm
α (c)(p) and agglagFDebian

α (c)(P) (by in-
stantiating definitions 2 and 3 in Chapter 4) in terms of the above definitions, where
α ∈ {time, version, security}.

Notation 3. In the remainder of this section we use the shortcut notations
techlagnpmα (p, c) for techlagFnpm

α (c)(p) and agglagnpmα (P, c)
for agglagFnpm

α (c)(P), where α ∈ {time, version, security}.

Based on the above definitions, we can define the technical lag of a deployment of a
Node-based container.

Definition 23. Technical lag of a Node-based container deployment

Let c ∈ C be a Node-based software container. For α ∈ {time, version, security}, we
define contlagnpmα (c) = agglagnpmα (installed(c)).

In other words, contlagnpmα (c) corresponds to the aggregated lag of all npm package
releases installed in a container c.

99

6.3. NPM PACKAGES IN DOCKER CONTAINERS

6.3.3 Empirical Evaluation

Research Questions

In this section, we analyze third-party JavaScript packages that are installed in Docker
containers. We report the results of the analysis about the technical lag in terms of updates
and security vulnerabilities for 961 official Docker Hub images based on the Node image.
The research questions that we address in this study are:

RQ1: How outdated are npm packages used in Docker images? We analyze the technical
lag induced by npm packages within official Docker images by comparing these images at
the date of their last update and at the date of data extraction.

RQ2: How vulnerable are npm packages in Docker images? We use a dataset of npm
vulnerability reports to identify which and how many vulnerable packages are present in
images.

RQ3: How vulnerable are npm packages in Docker containers compared to their most secure
versions? With this research question, we compute the technical lag in terms of security
between the containers now and the most secure containers that would be possible to
create using the same set of used npm packages.

RQ1: How outdated are npm packages used in official Docker images?

To answer the first research question we analyze the technical lag of npm packages in
Docker images based on (1) the date of the last available image update and (2) the time
when we performed the analysis (March 13th 2018). This will provide insights about the
state of npm packages while their images were still being maintained, and their state at a
later time, when they possibly accumulated more technical lag.

However, before answering our research questions, we investigated on the distribution
of the number of installed npm packages per container. We found that node containers
had a lower number of installed packages than the others, while ghost containers have
the highest number of installed packages. This should be expected, since ghost is offering
the service provided by the npm package ghost24 and mongo-express is providing services
of two packages mongodb25 and express26, and both of these images are built on top of
node. Considering both operating systems, we found that the median number of installed
packages is 200, 419 and 959 for node, mongo-express and ghost, respectively.

24https://www.npmjs.com/package/ghost
25https://www.npmjs.com/package/mongodb
26https://www.npmjs.com/package/express

100

6.3. NPM PACKAGES IN DOCKER CONTAINERS

a) Technical lag at the date of the last update

Packages that are up-to-date have no technical lag. Therefore, we first started by exploring
how many packages are outdated. We found that the majority of the used npm packages
are up to date. The median proportion of up-to-date packages is 64% for Debian images and
57% for Alpine images. These proportions are still fairly risky and show a high potential
of problems due to outdated package releases.

Figure 6.14 shows packages techlagnpmtime distribution of all considered Docker images,
grouped by year and operating system (Alpine and Debian). We found a statistically
significant difference (p < 0.001) when comparing the distributions of Alpine and Debian
for each year using the Mann-Whitney U test. However, the difference between the time
lag of outdated packages was small, according to the effect size (|d| = 0.16) computed
with Cliff’s delta, a non-parametric measure quantifying the difference between two groups
of observations. We also notice that the time lag is increasing over time, which could be
a consequence of old images that have been re-uploaded to Docker Hub without having
updated their contained npm packages.

2014 2015 2016 2017 2018

Image last update year

0

30

60

90

P
ac

ka
ge

ti
m

e
L

ag
(i

n
m

on
th

s)

Debian Alpine

Figure 6.14: Violin plots showing yearly distribution of techlagnpmtime (measured at the
date of the images last update) for all outdated packages in Docker container, grouped by
operating system.

Figure 6.15 shows packages techlagnpmversion distribution of all considered Docker images,
grouped by the image’s last update year. The version lag seems to remain quite stable
over time. When considering all packages in the images, we found that the median version
lag is (0 major, 0 minor, 1 patch). Thus, at the time of the images last update, outdated
npm packages were mainly missing patch updates, which is expected since patch updates
are released frequently [69].

b) Technical lag at the date of the analysis

We computed the technical lag of used npm packages on March 13th 2018. Compared
to the proportions at the date of the last update, we found that up-to-date packages

101

6.3. NPM PACKAGES IN DOCKER CONTAINERS

2014 2015 2016 2017 2018

Image last update year

0

5

10
P

ac
ka

ge
ve

rs
io

n
L

ag
major minor patch

Figure 6.15: Box plots showing yearly distribution of techlagnpmversion (measured at the date
of images last update) for all outdated packages in Docker images.

2014 2015 2016 2017 2018

Image last update year

0

10

20

P
ac

ka
ge

ve
rs

io
n

L
ag

major minor patch

Figure 6.16: Box plots of yearly distribution of techlagnpmversion (calculated at the date of
March 13th 2018) for all outdated packages in images.

decreased to 41% and 34% for Debian and Alpine images, respectively. Figure 6.16 shows
the distribution of techlagnpmversion at the date of the analysis. The lag appears to decrease
over time with different rates for patch (clearly visible), minor or major updates. Packages
of images last updated in 2014 have a median version lag of (1 major, 1 minor, 4 patch).
Images last updated in 2018 have a lower median version lag of (0 major, 1 minor, 1 patch).
This is expected since newly updated images will have more recent package releases.

Findings: Docker deployers that use old Node images might be missing updates, including
one major update.

RQ2: How vulnerable are npm packages in official Docker images?

A security vulnerability is a fault that could be exploited to breach the system. They are
the most important bugs and require more experienced developers to fix them [97]. With

102

6.3. NPM PACKAGES IN DOCKER CONTAINERS

Table 6.9: The top 5 vulnerability types found for npm packages in Docker containers.

Vulnerability type % affected
containers

unique
affected packages

ReDoS 100 29
Uninitialized Memory Exposure 100 7
Prototype Pollution 100 4
Access Restriction Bypass 100 1
Prototype Override Protection Bypass 79 1

this research question, we evaluate to which extent Docker images have vulnerabilities
caused by npm packages.

After identifying which of the installed npm packages are affected by the vulnerabilities
reported on Snyk.io, we found that from 1,099 known vulnerabilities, only 74 are affecting
the npm packages in Docker images. These vulnerabilities are affecting 3.7% (i.e., 52) of all
(i.e., 1,412) unique installed packages. However, all images are affected by these vulnerable
packages. We found that most of the vulnerabilities (54%) were disclosed between 2017
and 2018. 40% of the vulnerability reports have medium severity, 35% have high severity
and 25% have low severity.

We identified the type of affecting vulnerabilities so that maintainers can assess the
severity of the vulnerabilities depending on their proper use of the containers. We found
27 types of vulnerabilities in total, affecting 52 unique packages, of which the ReDoS
(Regular Expression Denial of Service) vulnerability type was responsible for affecting
55.7% of the packages. Table 6.9 shows the frequency for the top 5 vulnerability types
affecting npm packages in Docker images.

There is a mean of 16.6 vulnerabilities per container and a median value of 10.
Figure 6.17 shows a scatterplot of the last update dates of images against the number
of vulnerabilities found in them. It shows that recently updated images have less vul-
nerabilities than older ones. However, for low severity vulnerabilities the evolution is
different. We computed Pearson’s R and Spearman’s ρ correlation between the number of
vulnerabilities and the date of the last update. We found that the number of low severity
vulnerabilities has a weak positive correlation with the last update of an image (R = 0.16,
ρ = 0.25). medium severity vulnerabilities have strong negative correlation (R = −0.74,
ρ = −0.8) while high severity vulnerabilities have a weak to moderate negative correlation
(R = −0.28, ρ = −0.58). Ignoring the unimportant (i.e., low severity) vulnerabilities, we
conclude from this that the number of vulnerabilities per image is higher for older images
than for more recent ones.

103

6.3. NPM PACKAGES IN DOCKER CONTAINERS

20
14

-0
5

20
14

-1
2

20
15

-0
8

20
16

-0
4

20
16

-1
1

20
17

-0
7

20
18

-0
3

Image last update

0

5

10

15

20

V
u

ln
er

ab
ili

ti
es

low medium high

Figure 6.17: Number of vulnerabilities w.r.t to images last update date.

Findings: All official Node-based images have vulnerable npm packages, with an average
of 16 security vulnerabilities per image. Older images are more likely to have more
vulnerabilities.

RQ3: How vulnerable are npm packages in Docker images compared to their
most secure versions?

After identifying all vulnerable packages installed in Docker containers, we computed the
difference in number of vulnerabilities between the used and the most secure package
versions (i.e., techlagnpmsecurity). Then, we investigated on how much vulnerabilities Docker
containers would avoid by changing their packages to the most secure package versions
(i.e., contlagnpm

security).

To answer this research question, we started by computing the number of vulnerabil-
ities for all npm package versions, without distinguishing between their types. Then, we
chose the most secure and recent version of all npm packages found installed in Docker
images. Figure 6.18 shows the distribution of the proportion of packages that require a
change to have the most secure npm package versions in a Docker container. The figure
shows that official Docker images only have a small proportion of packages being used
with the most secure version. In fact, we found that only 9.3% of all package versions used
in containers are from the most secure npm package versions (i.e., they do not require any
changes). The rest needs to be updated to have the most secure versions (i.e., 50.2% need
to be upgraded and 40.5% need to be downgraded). This is surprising and shows that
many older package versions are not affected by the reported vulnerabilities.

Now, we suppose that Docker deployers concerned by npm packages security would
follow our instructions to have the most secure package versions. We compute the security
lag contlagnpm

security that they would be reducing from their containers. We find that

104

6.3. NPM PACKAGES IN DOCKER CONTAINERS

the number of vulnerabilities would reduce from a mean of 16.7 vulnerabilities to 0.6
vulnerabilities per container. The median of contlagnpm

security that would be reduced is 10
vulnerabilities.

upgrade no-change downgrade

Required package change

0

20

40

60

80

P
ro

p
or

to
n

of
co

nt
ai

n
er

p
ac

ka
ge

s

Figure 6.18: Proportion of packages that require changes in order have the most secure
npm package versions in a Docker images

Findings: Recent package releases are not necessarily more secure than older package
releases. To reduce security technical lag, two out of five installed npm packages need to
be downgraded.

6.3.4 Limitations

In this analysis, we only focused on official Docker images, which are expected to be
more secure and well maintained since they are the base images of other official and
community images. Thus, the number of vulnerabilities found in the analyzed images is an
underestimation of the real number of vulnerabilities that might be found in community
images that depend on them (without updating) and where more dependencies, activity
and development are expected. Hence, the results cannot be generalized to community
images.

In a similar vein, we only analyzed Node-based images. Other official images that are
not based on the Node image might have npm packages installed on them. Our findings
cannot be generalized to them. Finally, our results cannot be generalized to packages in
other languages (or package managers). However, the methodology itself can be applied
easily to such types of packages.

Our findings might be biased by the limited (and low) number of security reports that
were available on Snyk.io for npm packages. Our results are therefore an underestimation of
the actual number of npm package vulnerabilities in Docker images, as it is very likely that
many vulnerabilities are unknown or not reported. However, even with a small number of
vulnerability reports we could find a relation between outdated images and their number
of npm vulnerabilities.

105

6.4. DISCUSSION

Also, because of the lack of vulnerability reports data, we only analyzed the presence
of vulnerabilities in Docker images at the date of the analysis. To show if packages were
vulnerable when images were last updated, a time-related analysis similar to the one
considered in 6.3.3-A could be performed.

6.4 Discussion

If containers would always depend on the most recent available version of their used
packages, they would benefit from the latest functionality, security updates and bug fixes.
However, maintainers might be more focused on other software characteristics such as
package stability, or they just choose not to upgrade certain packages because of the
considerable effort that may be involved in doing so. For this reason, we studied the
presence of technical lag in Docker containers, and related it to the presence of bugs and
severity vulnerabilities.

As highlighted before, it is important to verify not only vulnerabilities, but also
other bugs. Indeed, bugs make the system behave in unexpected ways, resulting in faults,
wrong functionality or reduced performance. Researchers already found that performance
bugs are similar to security bugs, in that they require more experienced developers to fix
them [97]. Hence, it is essential to include bug analysis tools into existing automated scan
and security management services such as Anchore.io or Quay.io.

Moreover, most research and tools around Docker focus on system packages. However,
we found that even on the basis of the small number of vulnerability reports that we
analysed for npm packages, potential security vulnerabilities are frequently present in
the packages used in Docker images. Thus, a detailed analysis of such packages should
definitely be considered in the future to advance in the state of the art and to provide
more complete services.

The Anchore.io survey [89] showed that container deployers care more about package
vulnerabilities than having packages up-to-date. However, we found that less outdated
containers have less vulnerabilities, for both cases (i.e., npm and Debian). Thus, we believe
that including the technical lag as a measure of how outdated packages are, can empower
automated scan and security management tools to give better insights about the security
of Docker containers.

Recommendation: Docker scan and security management tools should improve their
platforms by adding data about other kind of bugs and include the measurement of
technical lag to offer deployers information of when to update, for both third-party and
system packages used in containers.

106

6.5. CONCLUSION

6.5 Conclusion

This chapter presented two empirical analysis of the state of system and third-party
packages in public Docker containers. We studied how outdated container packages
are and how this relates to the presence of bugs and severity vulnerabilities. For both
analysis, our approach aimed at proposing and using an automated method for tracking
and identifying package bugs and vulnerabilities from trusted data sources.

In the first analysis, we studied 7,380 popular unique images that are based on
Linux-based Debian distribution while considering both official and community images.
We observed that most container packages have the latest fix available in Debian, even for
old packages (e.g., Stable). However, we found that all containers have vulnerable and
buggy packages. Studying outdated packages in more detail, we found that their number
is correlated with the number of vulnerabilities found in a container.

We observed that in Debian, taking care of security vulnerabilities is more important
than taking care of bugs, in the sense that vulnerabilities are fixed faster than other kinds
of bugs. This results a high number of open bugs for the Stable and Oldstable releases.
Therefore, even up-to-date installed package versions could be affected by these open bugs.

These findings indicate that container deployers whose major concerns are stability
and security need to rely on better updating procedures. In contrast, container deployers
that care more about functionality and bugs should rely on the newest Debian releases.

In the second analysis, we focused on the use of JavaScript packages in official Docker
images based on the Node image for Debian and Alpine Linux distributions. 961 unique
images were retrieved and analyzed against 1,099 security reports extracted from Snyk.io,
a well-known registry of vulnerabilities for npm JavaScript packages. We also studied the
impact of the presence of third-party packages on the technical lag and security of Docker
images.

For both analysis, the findings reveal the presence of outdated packages in Docker
images and the risk of potential security vulnerabilities. We found that the technical lag
and the number of vulnerabilities are related to the last update date of images, which
suggests that Docker users should keep up with the updating process of their base images
and installed packages.

107

Chapter 7
ConPan: A Tool to Analyze Health of
Software Packages in Docker Containers

Software containers may include buggy and vulnerable packages that put at risk the
environments in which the containers have been deployed. Existing quality and security
monitoring tools provide only limited support to analyze Docker containers, thus forcing
practitioners to perform additional manual work or develop ad-hoc scripts when the
analysis goes beyond security purposes. This limitation also affects researchers desiring
to empirically study the evolution dynamics of Docker containers and their contained
packages.

In this chapter, we present ConPan, an automated tool to inspect the characteristics
of packages in Docker containers, such as their outdatedness (technical lag) and other
possible flaws (e.g., bugs and security vulnerabilities). ConPan comes with a command-line
interface and API, and the analysis results can be presented to the user in a variety of
formats. The content of this chapter is mainly based on a publication in the MSR 2019
conference proceedings [98].

108

7.1. INTRODUCTION

7.1 Introduction

In Chapter 6, we have shown that despite being largely adopted, Linux-based Docker
images often contain buggy or vulnerable releases of packages which may have been fixed
in more recent package releases, thus exposing the production environment where they
have been deployed to potential risks [55, 99].

Docker users can rely on a limited number of tools to scan and monitor their images,
primarily for security vulnerabilities. For instance, Anchore.com [100] inspects container
security using CVE-based security vulnerability reports, while Dagda [101] relies on the
OWASP [102], Red Hat Oval [103] and the Offensive Security exploit database [104].
Finally, Snyk [105], an Open Source security platform, does not only scan and monitor, but
also suggest fixes for detected vulnerabilities. Docker Hub provides its own tool, Docker
Trusted Registry which scans each layer and checks the results against a periodically
updated vulnerability database. If practitioners wish to evaluate other aspects than
security vulnerabilities, such as evaluating the outdatedness (e.g., in terms of version or
time lag) or quality issues of a container (e.g., in terms of the bugs [106] of its system
and third-party packages), they are forced to develop ad-hoc scripts which may be time-
consuming and error-prone. This limitation also affects empirical research in software
container mining and analysis [107, 108, 109], requiring scholars to re-invent the wheel
because of the need to retrieve and analyze the data by themselves.

In this chapter, we present ConPan, a tool that we developed to simplify the analysis of
Docker Hub images and their installed packages. ConPan gathers and processes information
about security vulnerabilities, bugs and technical lag of installed packages, leveraging on
different publicly available databases. ConPan is an easy-to-use open source tool that: (i)
allows to track and retrieve data about packages in containers from multiple sources in
an easy and consistent way; (ii) has been designed to be extensible to cover new data
sources; and (iii) provides the possibility to output its results to external analysis and/or
visualization tools thanks to its flexible output formats (e.g., pandas dataframes [110]).

7.2 Overview of ConPan

ConPan aims to support both practitioners and researchers desiring to analyze Docker
containers. Its goal is to collect and fetch data about software packages that are installed
in Docker containers, leaving the tasks of storing and analysing the data to other tools.
It can be used either as a command-line tool or as a Python library. Release 1.0.0 of
ConPan supports the analysis of Debian packages included in Docker images based on the
the corresponding Linux distribution.

The overall structure of ConPan is summarized in Figure 7.1. Its core is composed of
five tasks: (i) pulling and running Docker images; (ii) identifying the installed packages; (iii)

109

7.3. CONPAN IN ACTION

Pull and run Identify Track Search Output

Figure 7.1: Overview of ConPan. The user interacts with the tool via either the command
line or through its API. Once the tool is initialized, the target Docker image is pulled, the
contained packages are extracted and traced back to the corresponding package managers,
and vulnerabilities and other bugs are identified and returned as output (as pandas
dataframes, JSON documents and/or charts).

tracing them back to their package managers; (iv) searching for their known vulnerability
reports or other reported bugs and quality issues; (v) reporting the results in a specific
output format. ConPan also provides general information about the analyzed Docker Hub
image, fetched from the Docker Hub registry using its API 1.

To be able to trace back installed packages to their package managers, ConPan
relies on datasets containing historical information about where and when packages were
released. For example, the dataset corresponding to Debian packages is obtained via the
Debian archive [111], which contains daily snapshots of all Debian packages from the official
and security Debian Snapshot repositories. ConPan can easily include other datasets of
popular package repositories (e.g., npm2 and PyPI3) by relying on freely available services.
ConPan downloads the latest Debian dataset and, using regular Debian tools (dpkg -l) in
the container, identifies the installed packages and compares them to the latest releases to
assess how outdated they are.

To search for known package vulnerabilities and bugs, ConPan relies on the method
used in Chapter 6, using the Debian security tracker [112] and the Ultimate Debian
Database [90].

7.3 ConPan in Action

This section describes how to install and use ConPan, highlighting its main features.
1https://docs.docker.com/registry/spec/api/
2https://www.npmjs.com/
3https://pypistats.org/api/

110

7.3. CONPAN IN ACTION

7.3.1 Installation

ConPan has been developed and tested mainly on GNU/Linux platforms. It is very likely
to work out of the box on any Linux-like (or Unix-like) platform, provided that the right
version of Python is available (i.e., Python 3.5). ConPan can be cloned via GitHub and then
installed using Python’s pip package manager. Listing 7.1 shows how to install ConPan
from its source code.

There are other required dependencies that are outside PyPI like Docker and the
package apt_pkg, all of them can be found on github.com/neglectos/ConPan, together
with further installation instructions.

Listing 7.1: How to download and install ConPan
Installation from source code using pip
$ pip3 install git+https :// github .com/ neglectos / ConPan
To uninstall
$ pip3 uninstall conpan

7.3.2 Use

Once installed, ConPan can be used through a command-line interface (CLI) or through
the API of a Python library. We showcase these two types of executions below.

7.3.2.1 CLI

Using ConPan as a CLI does not require much effort. Listing 7.2 shows how easy it is
to call ConPan on a Docker Hub image. Three parameters are required: i) the type of
packages (Debian packages in this case); ii) the Docker image to be analyzed; and iii) the
path to the historical package dataset extracted from Debian archive. The latter dataset is
provided with the tool. In other cases where ConPan relies on online APIs such as the
npm registry, the data path is not needed.

Listing 7.2: How to use the ConPan CLI
Call ConPan from command line
$ conpan -p debian -c <Docker image >:<tag > -d path/to/data

The output of the execution of Listing 7.2 would be the general information about
the analyzed Docker image, plus the number of installed packages, vulnerabilities and bugs.
The output also includes three figures showing the proportions of the outdated packages,
plus the proportion of vulnerabilities and bugs grouped by their severity.
A concrete example of the output of ConPan will be shown in subsection 7.3.3.

111

github.com/neglectos/ConPan

7.3. CONPAN IN ACTION

7.3.2.2 API

The API of ConPan can be accessed from within any Python script with minimal effort,
assuming the user knows how to program in Python. Listing 7.3 shows how to use the
ConPan API. The ConPan module is imported at the beginning of the file, then the package
kind, Docker image and path to the historical data (if needed) parameters are set and
used in order to call ConPan. The generated output consists of one JSON file and four
pandas dataframes, which are summarized below.

• general info: a JSON file containing general information about the analyzed Docker
image, such as size, architecture, number of pulls, among others.

• installed_packages: a dataframe containing the set of all installed packages.

• tracked_packages: a dataframe containing the set of installed packages that are
coming from the package manager and were not installed from external sources.

• vulnerabilities: a dataframe containing the set of all vulnerabilities with their severity,
status, corresponding packages, etc.

• bugs: a dataframe containing the set of all bugs with their severity, status, corre-
sponding packages, etc.

Listing 7.3: How to use ConPan as a python library
#! /usr/bin/env python3
from conpan . conpan import ConPan
Parameters
kind = ’debian ’
image = <Docker image name >
dir_data = ’path/to/data/’
Call ConPan
cp = ConPan (packages =kind , image=image , dir_data = dir_data)

Results
(general_info , installed_packages , tracked_packages ,
vulnerabilities , bugs) = cp. analyze ()

7.3.3 Reporting

The output generated by ConPan can be exploited directly using pandas, one of the most
commonly used Python libraries for data analytics and dataframes [110]. The reported data
can be visualized by means of matplotlib [113] or seaborn [114] libraries, or by converting
the dataframes to JSON files and storing them to a persistent NoSQL document-based

112

7.3. CONPAN IN ACTION

storage, such as an ElasticSearch database [115], or as raw data in a CSV format. Jupyter
notebooks [116] can be used for data analysis and early prototyping of data visualization
in a transparent way, since they allow to store both the results and the code needed to
reproduce them.

The ConPan library can be very useful for researchers desiring to analyze container
packages. The tool can be used to extract data about a large number of Docker containers
and to create datasets to be used in empirical research. The dataset contains different
information related to software packages installed in containers, thus providing a powerful
basis to perform empirical studies. We have relied on ConPan ourselves in Chapter 6 to
empirically analyze installed system packages in a large dataset of Docker Hub images that
are based on the Debian Linux distribution.

For deployers desiring to monitor their Docker containers, they can use the tool’s
CLI or integrate its functionalities in the automation of their Docker image builds. For
instance, Listing 7.4 shows the output of ConPan executed from the CLI on the community
Docker Hub image google/mysql4, which is an image of MySQL server for Google Compute
Engine. The listing includes general information such as the description, the number of
pulls and stars, and the last time the image was updated. The output shows that the
image was not updated sine November 2015.

Listing 7.4: General information about the Docker image google/mysql
Results:
General information about the Docker image: google /mysql
- description: MySQL server for Google Compute Engine
- star_count: 18
- pull_count: 46692
- full_size: 96687899
- last_updated: 2015 -11 -13 T01:19:18 .235940

Results about installed packages in: google /mysql
installed packages: 144
tracked packages: 81
vulnerabilities: 240
bugs: 474

Figure 7.2 shows the pie charts generated by ConPan to highlight the percentage
of outdated packages, vulnerabilities and bugs. We observe that the image has a high
proportion of outdated packages (93.8%), and a high number of vulnerabilities (240) and
bugs (474). We also observe from the breakdown in severity that most vulnerabilities are
medium and high.

4https://hub.docker.com/r/google/mysql

113

7.4. SUMMARY

Out of date 93.8%

Up to date6.2%

Installed Packages
high**

27.5%

low

9.2%
low**

4.6%

medium**

45.1%
not yet assigned

2.0% unimportant
11.8%

Package Vulnerabilities

grave0.8%

important
10.8%

minor

12.3%normal
37.6%

serious

1.2%

wishlist

37.2%

Package Bugs

Figure 7.2: Statistics about Debian packages in the community Docker Hub image
google/mysql

7.4 Summary

Deploying applications and services using containerization technologies is becoming a
popular practice in software engineering, thanks also to the increasing popularity of
Docker containers. They offer isolation, portability and reusability by providing all needed
artifacts and dependencies shipped in one package. However, as shown in previous chapters,
Docker containers may contain vulnerable and outdated packages that may put at risk the
environments where the containers are deployed. Nevertheless, little support is given to
practitioners and researchers desiring to assess the status of their containers, thus forcing
them to resort to the tedious task of writing error-prone ad-hoc scripts.

For this reason, we developed ConPan, a tool that simplifies the monitoring and
analysis of software packages installed in Docker containers, by reporting how outdated,
vulnerable and buggy they are. ConPan can be used stand-alone as a CLI or integrated
through its Python API with other processes (e.g., empirical studies or automation of
Docker image builds). The output of ConPan has been conceived to cover a wide spectrum
of technologies such as Python libraries for data processing and visualization (e.g., pandas,

114

7.4. SUMMARY

matplotlib), NoSQL document-based databases, JSON and CSV formats.

Besides the software packages of the host operating system, a container may include
third-party packages that are needed at runtime or for the development of other included
applications. Two of the most popular third-party packages are JavaScript and Python
packages that are hosted in the npm and PyPI package repositories, respectively. We aim
to extend ConPan to support this kind of packages. This should be easy to achieve. In fact,
we have already started to support npm packages by relying on basic npm commands5.
After extracting the list of all npm installed package versions we can assess how outdated
they are with respect to their latest available releases by relying on the npm registry API6.

5https://docs.npmjs.com/cli/ls.html
6http://registry.npmjs.org/

115

Chapter 8
Conclusion and Outlook

This dissertation started by presenting the research context and goals of the thesis. The
main goals were to empirically analyze how software components are reused by other
components of open source software ecosystems, and to provide support to developers by
creating a technical lag framework that can assess the health of an ecosystem’s software
components. In this chapter we recall the contributions of this thesis and discuss the
limitations of our research. Finally, we present future research opportunities opened by
the contributions of this thesis.

8.1 Contributions

In Chapter 3, we performed an exploratory analysis on the use of testing-related Maven
libraries in Java projects. We found that testing-related libraries have been used in
Java software projects since the first commit in their GitHub repository. This shows the
importance of external libraries. We also observed that software projects tend to stick to
the use of a specific library, since only 5% of the projects performed a migration to another
competing library. As a consequence updating the library remains the only possibility for
software projects to benefit from new testing-related functionalities. If software projects
do not update the libraries they rely on, they might suffer from technical lag.

In Chapter 4, we gave examples where technical lag is present and we investigated
the usefulness of technical lag as the difference between the versions of a collection of
deployed software components and the most available ideal versions of the same collection
of components. We carried out interviews and surveys with software practitioners to ask
them about the technical lag concept. We found that all interviewees were favorable
towards the idea. To be able to compute and analyse technical lag, we defined a generic
formal framework of technical lag for component-based software repositories.

In Chapter 5, we operationalised the framework of technical lag to the npm case

116

8.2. THREATS TO VALIDITY

study. We instantiated it based on version lag and time lag. We computed such lag for the
whole registry of npm package releases and their dependencies and for GitHub applications
that make use of npm packages. We found an increase of technical lag over time. One
of the causes of technical lag appears to be the use of too strict package dependency
constraints, disallowing packages and applications to benefit from more recent releases
of their dependencies. We also observed that the technical lag induced by transitive
dependencies can be very high and it is related to the dependency tree depth of package
releases. Finally, we observed some changes in the technical lag over time due to policy
changes made in the npm package manager.

In Chapter 6, we analyzed technical lag for system and third-party packages included
in Docker images, by computing and instantiating it based on version, time, security
vulnerabilities and other bugs. We computed technical lag using different variants of the
ideal package version (i.e., most secure, least buggy, latest) and we found that technical
lag is present in Docker containers in all cases. We observed that technical lag is weakly
related to the chosen ideal version. In fact, we only found a small proportion of package
versions that needed to be downgraded to obtain the ideal version. In most of the cases,
the latest version is the most secure and the least buggy version. We provided many
findings and actionable results to help Docker deployers in deploying the most preferred
package version.

To be able to reproduce our analysis in Chapters 5 and 6, we provided replication
packages in Appendix-C. Finally, in Chapter 7, we presented a tool that can support
Docker deployers in assessing the health of their containers by analyzing how outdated,
buggy and vulnerable their included packages are.

8.2 Threats to Validity

Each chapter presented the limitations related to the work and analysis performed in it.
However, one of the major limitations of this thesis is the potential lack of generalization
of the results. For example, the empirical studies presented in chapters 3, 5 and 6 need
to be reproduced on other component-based software ecosystems to assess whether the
findings can be generalized. A future topic of research would be to compare the results
and findings across different component-based software ecosystems.

The proposed formal framework for measuring technical lag aimed to be as generic as
possible, hence it should be applicable to any type of software repository as well as to other
ways of measuring technical lag. The specific instantiations of this framework to the npm,
Debian and Docker case studies are, however, only partially generalizable, since different
repositories may use different notations and ways for expressing and interpreting version
numbers and version constraints, and may provide different ways to support the semantic

117

8.3. FUTURE WORK

versioning specification. As a result, the findings we have obtained for each empirical
study cannot be generalized to other software ecosystems, since they inevitably depend on
repository-specific factors such as the policies, tools, practices and values adopted by the
community (cf. Bogart et al. [9]).

The concrete way in which we instantiated the technical lag framework in our case
studies, and the way we have aggregated technical lag, has a direct effect on our observed
findings. We do not consider this as a real threat to validity, since the purpose of the
technical lag framework is to define and explore different useful ways of measuring technical
lag, each of which may provide different results that should be interpreted differently.

8.3 Future Work

Topics of research:

Our results open the door for more research on technical lag and its measurement in reusable
software libraries of other kinds, ranging from Linux-based deployments to embedded
systems built with reusable components. We also expect that a better understanding of
technical lag can be used to improve how dependency constraints are defined and managed
over time, so that the overall technical lag for a whole repository can be reduced. Of course,
this needs the collaboration and training of a large fraction of component developers, but
given the high potential benefits we believe this is feasible once i) the theoretical model
has been more thoroughly evaluated in other real case studies and ii) suitable tools are
provided.

As mentioned in Chapter 3, technical lag can be seen as an extension of the concept
of technical debt. The metaphor of “technical debt” was introduced in 1992 [73]. It tries
to capture the problems caused by not writing the best possible code, requiring code
improvements later on. The difference between code “as it should be” and code “as it is”
is a kind of debt for the developing team. If technical debt increases, code becomes more
difficult to maintain. A similar concept is “design debt”, which extends the concept to the
design of software components [117]. A possible direction could be to study this relation
between technical debt and technical lag as the difference between “how dependencies are”
specified, and how they “should be” specified in the ideal situation.

According to Conway’s law, software mimics the organizational-social structure
around it [118]. Understanding and taking into consideration this socio-technical con-
gruence can be beneficial to improve software engineering practices. A possible topic of
research that goes into this direction would be to translate technical lag to address social
aspects, through the formal definition of some notion of “social lag”. A similar analogy has
already been undertaken by translating the idea of “technical debt” to “social debt” [119].

118

8.3. FUTURE WORK

From a research point of view, our technical lag framework can be used to explore
different ways of measuring technical lag, taking into account security vulnerabilities,
closed issues, pull requests, etc. More precise lag measurements could rely on change
logs as more detailed information about what changed in a software component. Another
possibility would be to involve dynamic analysis of the actual source code to uncover the
presence of breaking changes and security vulnerabilities. This can be very challenging for
a dynamically typed and interpreted language such as JavaScript, but solutions are being
proposed [38]. Having obtained more detailed information about the causes of technical
lag, it should become possible to provide estimation models of the effort required to reduce
it.

It is also useful to compare the extent of technical lag across different software
component repositories and different package managers, in order to assess which policies,
practices, culture and tools lead to the best compromise. Inspired by the work of Lauinger
et al. [58] on the client-side use of JavaScript libraries, we would also like to include other
types of external applications to our analysis, like deployed websites.

In a recent work, Valiev et al. [5] have conducted a mixed-methods study on the
PyPI ecosystem in order to identify the factors affecting the sustainability of open-source
Python projects. They found that the number of connections and the relative position in
the dependency network of PyPI are significant factors affecting the chances of a project
becoming dormant; the practice of producing backwards compatible releases does not
appear to influence project dormancy, etc. Inspired by this study, we aim to investigate
more on the factors behind software developers updating practices.

When studying how outdated Docker images are, we did not differentiate between
specific container characteristics such as their size, service, targeted audience, or provided
functionality. Moreover, we did not differentiate between package release types (e.g., patch,
minor or major) when calculating technical lag. In future work we would like to consider
other measures of technical lag while considering container and package characteristics and
all available releases in a project. For instance, in many cases vulnerability fixes are first
done in the Testing or Unstable releases before entering the Stable and Oldstable releases
Debian distribution. Besides the operating system packages, containers have other types
of packages installed on them, for instance, PyPI and npm packages. Such packages can
be vulnerable as well [95, 53, 58]. In this thesis, we have carried out an empirical study
for npm packages. In future studies, we aim to include other types of packages. We also
plan to carry out a comparison with other operating systems and other base images.

Tooling:

Regardless of the preferred choice, it is important to offer proper measurement and
recommendation tools to developers that indicate when, where and why technical lag

119

8.3. FUTURE WORK

increases, and whether it introduces breaking changes in the code. Such support should
be part of more extensive monitoring tools (preferably part of a continuous integration
process) that also take into account the presence of bugs and security vulnerabilities,
unmaintained packages, known incompatibility issues, transitive dependencies, technical
debt, among others. Such a tool could additionally provide suggestions on how to reduce
technical lag by making certain dependency constraints more permissive. Tools could offer
as well support in the opposite direction to make maintainers of reusable libraries aware of
the technical lag in the software that depends on them. For this reason, we plan to include
technical lag in open source software data analytic tools such as GrimoireLab [120].

For the npm repository in particular, an example of a useful tool for finding and
selecting reusable packages is npms.io 1. It allows developers to search for packages with
similar functionality, and select the most appropriate one among those, by relying on
useful characteristics such as the package quality, maintenance or popularity. The concept
of technical lag could be added easily.

An assessment of technical lag at the level of the entire package repository is also
useful, in order to understand how the structure of the repository as well as the practices
of the used package manager influence technical lag. Indeed, we observed that the policies
adopted by a package manager can push toward more or less technical lag. For example,
the decision taken by npm to change the default use of tilde by the use of caret resulted
in a growth of technical lag because of the increased use of a more strict constraint. A
technical lag measurement tool could therefore be helpful to carry out “what if” scenarios,
in order to assess upfront how particular changes in the package manager policy may affect
current and future technical lag in the package repository.

In chapter 7, we presented a tool ConPan that analyzes Debian system packages
installed in Docker containers. However, a container may include other third-party packages
that are needed at runtime or for the development of other included applications. Two of
the most popular third-party packages are JavaScript and Python packages that are hosted
in the npm and PyPI package repositories, respectively. For this reason, it is important to
extend ConPan to support this kind of packages. We have designed the ConPan architecture
to be easily extended and include this feature.

We have already started the extension of ConPan to npm JavaScript packages. In
future work and for third-party Python packages, we will collect all names and versions of
the installed Python packages in the target Docker container. Then, we will use the PyPI
registry API to see how outdated they are by comparing them with their latest available
releases. To search for any known vulnerabilities of the installed packages, for both npm
and PyPI packages, we will rely on available open source vulnerability databases like npm
Security advisories2.

1See https://npms.io and https://docs.npmjs.com/getting-started/searching-for-packages
2https://www.npmjs.com/advisories

120

https://npms.io
https://docs.npmjs.com/getting-started/searching-for-packages

8.4. CLOSING SUMMARY

We also plan to improve the visualization part of the ConPan CLI by providing
a variety of charts to show the distribution of the number of vulnerabilities, bugs and
missed updates for each installed package. Finally, we aim to evaluate the tool by asking
developers to what extent ConPan meets their expectations and to what extent it helps
them to achieve their goals.

8.4 Closing Summary

Open source software component repositories are constantly evolving and increasing in size.
Not updating to the ideal available release of component dependencies may negatively
affect software development by not benefiting from new functionality, vulnerability and
bug fixes available in other versions. On the other hand, automatically updating to other
releases may introduce incompatibility issues.

The main goal of this thesis has been to develop a new formal framework that can
be instantiated to support software practitioners in assessing technical lag as an aspect of
the health of the software components they depend on. To validate the framework, we
carried out empirical studies on different software ecosystems and we provided several
actionable results in order to reduce technical lag when deploying or developing software
systems. More specifically, we empirically analyzed technical lag for the whole registry of
npm packages and their direct and indirect dependencies, and for system and third-party
packages installed in Docker containers hosted on Docker Hub. We also developed a tool
to assess how outdated, buggy and vulnerable packages included in Docker containers are.

The findings and developed tools aim to guide and help open source software
developers and deployers to keep their software in a healthy shape. The thesis highlights
the risk of having bugs and vulnerabilities and missing new functionalities through outdated
dependencies. We expect that the proposed technical lag framework can be made even
more useful by building specific tools that developers and people deploying software
and maintaining those deployments can include in their continuous integration systems.
Our observed findings can be turned into actionable guidelines, and with time, be made
applicable to software package and container managers.

121

Appendix A
Interviews with Software Practitioners

In order to assess the usefulness of the technical lag concept, we carried out interviews
with software practitioners during the gathering of open source software developers in
FOSDEM 20191. Each interview was grouped into 4 parts:

• Profile: To gather demographic information about the interviewee such as his or
her background and experience.

• Software Characteristics: To collect information about the software projects that
the interviewee is involved in.

• Updating Process: To obtain information about the current updating process and
policy that is followed in the software project in which the interviewee is involved.

• Technical lag: After explaining the concept of technical lag to the interviewee, we
ask him/her about its expected usefulness.

This appendix includes all answers to all questions that have been asked during the
interviews to all participants.

Profile:

Question: What is your role in the software project(s) you are involved in?
P1: I am a development coach. I am not involved in coding but I am working as a mentor
to developers.
P2: I am the only developer.
P3: I am the leader of the team.

1https://fosdem.org/2019/

122

P4: I am a developer.
P5: My role is a developer advocate and I come from an operations background. For my
company, I am helping people to use and operate our technology.

Question: Which professional experience do you have?
P1: As a developer I have 5 years experience, and as a coach I have 9 months. I also did
some mentoring and computer science and machine learning training.
P2: I have 5 years of experience in programming, however, as a professional experience I
have only 9 months, that’s because I have just graduated my masters.
P3: I started working in computer engineering in 2003, that’s 15 years now. I also worked
in a research group for some years.
P4: I have 3 to 4 years of development, plus 4 years of research.
P5: More than 20 years.

Software Characteristics:

Question: Which kind of project is your software project? e.g, library, appli-
cation, open source, industrial, etc.
P1: I am working on a pretty big project. The functionalities that the tool provides are
mainly services. The tool is not open source.
P2: I am working on a tool that is a developer activity tracker. It is an internal tool that
is not open sourced yet.
P3: The project is open source and it is mainly a library.
P4: The tool is more like an open source platform, it can be used as an application or as
a library.
P5: It is an open source application.

Question: To which domain is your deployment dedicated?
P1: We mainly do infrastructure work.
P2: The tool is for my team and it is purely for management. Our team members
contribute to open software projects and my tool tracks their contributions. So it is
dedicated for managers, team leaders and also developers.
P3: The tool is for IT, data extraction, data analysis, etc.
P4: The tool is for IT practitioners, for data processing, data management.
P5: It is used by software IT companies. It is for deploying containers.

Question: What is the size of your software project?
P1: We are five to twelve people working full time on the project.
P2: I do not think it is a big project. In terms of lines of codes, we have 2000 lines of
code.
P3: The project is pretty big, we have separate modules that can be used individually,
but they can be used as one project as well. In general, I think we have about 6000 lines

123

of code.
P4: It is medium size, we are 4 people working on it (only development), but one or two
people can hold all the knowledge.
P5: The project is pretty big and it is a popular one in the world.

Question: Which technology do you use for the development/deployment of
the software project?
P1: We use Python with many other technologies, e.g. Docker, Ansible, etc
P2: The tool is developed in Python and for the front-end I use some of JavaScript, mostly
Angular.
P3: We use Python for the programming language, we use other technologies like
JavaScript, Flask, Docker, ElasticSearch and many others.
P4: We use Python, MySQL, JavaScript, and frameworks like Django, Angular, etc.
P5: For the main application, we use Go, and for another software that we use to deploy
our software, we use a mix of Go and Ruby.

Question: How critical is the dependency management in your software?
P1: We use many libraries. So I think that the dependency management is pretty critical
in our case.
P2: Some of the dependencies are not that important, but some of them are contributing
to the main functionalities of the tool.
P3: It is very important, for example Kibana and ElasticSearch are always changing and
our tool is based on them, so we have to keep up with their updating. Sometime it is hard
for us to update from a major version to an other one, because new major versions have
breaking changes.
P4: It depends on the type of dependencies. Our tool is built on top of another tool, so
we try to keep an eye on its new releases. However, we also have dependencies that are
not core ones, so we do not update these dependencies.
P5: The dependency management is the hottest spot in our project.

Updating Process:

Question: When and how do you update the software you depend on?
P1: It is a trade-off, sometimes we do the updating manually, sometimes we do it
automatically. Like, if you do it manually, it may take some time to do it, but if you do
it automatically, you may have a new update that has breaking changes. Also, doing it
automatic means that you will always be in the bleeding edge, which means if a break
happens you will need to deal with it every six months maybe, the effort will be distributed
and will not be noticed by the business. While if you do it manually, maybe you will
need to say that you need a six months of dependency refactoring. Anyway, it is always a
trade-off.

124

P2: Actually, I did not update them in a while. But that is because I did not face any
issues yet.
P3: Our dependencies are pinned to one specific version. In the case where there is a
known vulnerability, we update the dependencies manually because we have to test them.
For the main technologies that we use, we try to keep up with their updating process.
We also have a case where we use an outdated but stable version of a dependency. The
dependency is not so important for us, it only has one task. That’s why we do not care
about updating it.
P4: We always do the updating manually. When we know that there is a new release
of one of the core dependencies that we use, we schedule a date of when we can do the
migration/updating. Still, sometimes we can’t keep up with the updating pace of the tools
that we depend on. We are not a big team to be able to keep an eye and also keep up
with the updating process of our dependencies.
P5: The tool that manages our dependencies looks for new updates and asks us if we
update, so just one click and then everything is updated automatically. So, I can say it
is automatic with a bit of human interaction. For some dependencies, even if we get a
notification of a new available dependency release, we do not update.

Question: Why do you update?
P1: For security reasons, performance, novelty, just not to have all tools which are not
used by anyone and not maintained anymore. In fact, I think that we should use a
dependency that have many people working on it, and that has people enjoying working
on it.
P2: I would update if there is some important vulnerability fix or some very good new
feature.
P3: We mainly update for features.
P4: We do it for features.
P5: Mostly for security purposes, just to make sure that there are no open vulnerabilities.

Question: Do you keep tracking if your software dependency is outdated?
P1: I keep tracking the software for security updates. I sometime track features but not
as important as security updates.
P2: No, I don’t really do it.
P3: We are in contact with the developers of the core dependencies, so we receive
notifications from time to time about the new releases.
P4: We are always having an eye on the tools that we use. But we don’t have some
automatic tracking.
P5: Yes, we have our tool that tracks the dependencies we use.

Question: Is there any guideline that tells you, when and how you have to
update?
P1: I think it is quite psychological. I think the good thing for me is to see benefits of it.

125

P2: No there is no such guideline.
P3: No we don’t, but yes, we always have that feeling, because the developers of the
tools that we depend on are always adding many things and we are always asking these
questions of should we update? and what are we going to gain if we update? and how
much time we will need for that? We also have many transitive dependencies that need to
be updated also if we update other tools, so yes we are always looking for metrics that tell
us why we should update.
P4: No, we don’t actually have any measurement that tells us how outdated we are.
P5: I don’t think that we have any automated guideline for that. Even for our costumers
we do not ask them to update our tool, because they are just two to three versions behind,
so that’s fine. So I can say that our guideline is that "update when you can". Obviously, if
someone is lagging behind with one year then "good luck".

Question: Do you contact or consult with other people before updating?
P1: When you do something, you should always talk about it.
P2: I am the only developer.
P3: Yes, we contact each other to ask about each others opinions.
P4: Yes, nobody does the updating alone.
P5: I just do it. Because I have my own development environment.

Question: How much time does the updating take? Person time and real time
(Human effort vs Computer effort)?
P1: I remember downgrading a dependency for availability purposes and because the
version that we downgraded to was a good version. It took about one to two hours.
P2: Until now it is not important, it is just a matter of running the pip manager.
P3: Sometimes it takes just some minutes, and in some cases it really takes weeks because
of the refactoring work behind.
P4: For the core tools, it takes so much time from starting to finishing the updating,
sometimes it takes even months. The time needed is more about machine effort, to update
we have to migrate some data and that’s the part where it takes so much time.
P5: I would say, usually about 10 minutes of my time and a couple of hours for the
services to download all requirements.

Question: Which are the most important characteristics of more recent ver-
sions for you to decide to which version to upgrade? Example: stability,
absence of bugs, fixes of security vulnerabilities, backward compatibility, new
functionality, performance, etc
P1: Security, that’s for sure. Features, maybe performance but that’s less relevant for me.
If a new version has only new features but I will not need them, then I do not think I will
update to it.
P2: I don’t like to spend a lot of time in the front-end, so I think if there are some new
features that will make my work easier, I would use it. Security is not an issue for me

126

since the tool is just internal, for now.
P3: Security is always important, especially when we work with critical and personal
information. We have one case when we did a major update that took us a lot of time for
security reasons. However, new features are important.
P4: The most important characteristics would be new functionalities. In some cases, the
most stable one (absence of bugs) is also desirable.
P5: I think security is important. And also just getting access to the new features.
For me the latest is more important than security, since it will have fixes for the open
vulnerabilities. However, I think sometimes new vulnerabilities are emerged within the
latest version.

Technical lag:

Before starting the questions of this part, we explained the technical lag concept and we
gave examples similar to the ones presented in chapter 4.

Question: There are many different cost and benefit measurements that could
be used when computing the technical lag, for example: new functionalities,
resolved bugs, fixed vulnerabilities, lines of code, commits, version numbers,
time, conflicts, etc. Which ones do you think are the most interesting to
consider?
P1: I would consider the changelog between versions, what is new and what changed
between the versions.
P2: I think intuitively, one should look for how many versions is the dependency missing,
but I think it is a mix between all units, features, breaking changes and fixed vulnerabilities.
Number of commits is also important because it shows how much effort people are putting
into the project.
P3: Usually vulnerabilities, but of course bugs. Also, it depends on the tools, sometimes
some bugs are not critical so you can live with them.
P4: In general, I think security is more important. So the number of vulnerabilities is
more important.
P5: I think there are two important metrics, features and vulnerabilities. They can sum
up everything, they are almost like a reverse changelog. But also I think what would be
interesting is to know how many people had problems in order to have the ideal update.
So it is kind of effort vs benefits.

Question: In the case of the software projects you are involved in: What do
you think is the ideal dependency version that you would like to use?
P1: The ideal version that we would use is the most secure, however, we only use the
bleeding edge version (i.e. the latest version), because it is easy.
P2: I think the one that is working and stable is pretty fine for me. I just want the

127

development to be as easy as possible for me.
P3: Well, since I am the leader, what I told you is what we do. However, in general I
think it is a balance between the most secure and the latest versions.
P4: In our case, we prefer the latest versions (features).
P5: I think the latest major stable version would be good, but if you have appetite for
security then do patches as well.

Question: What do you think of the concept of technical lag?
P1: I like it. I would consider cost. And I think it also motivates me to update or not.
For example, knowing the most secure version and the features that I would miss if I use
it is interesting. But also I would like to talk about the cost and benefits part, if you just
go to the minor version, maybe you will get only minor stuff, but the updating will be
easy. While if you go to a major version maybe you will have more stuff but the updating
will require more cost, and more work.
P2: It is interesting. I think it would be more interesting to give different metrics when
reporting the lag.
P3: I think it is good to know this kind of balance.
P4: I think it is helpful. If we know the ideal version that we can target, we can consider
the concept of technical lag. Depending on the projects, it can be a motivation to update.
P5: I think it is great. It is definitely something we are missing. For the larger enterprise
customers, the more we can say to them "this is why you should keep being up to date
versus 10 years old version", the more is better.

128

Appendix B
Online Surveys with Software Practitioners

In order to understand the characteristics of the most desirable software versions we
created a Google form and shared it on Facebook groups of software developers (e.g.,
DevOps Engineers Group, etc). This appendix includes the list of questions asked in the
survey.

Survey Questions:

Q: Did you contribute to the development of any software project before?
Options: Yes or No.

Q: Years of experience.
Options: From 1 to 10 years

Q: Which programming languages did/do you use?
Options: multiple choices (Java, Python, JavaScript, PHP, Android, Other)

Q: What is your role in the software project?

Q: Are/Were you in charge of updating the used software libraries in your project?

Q: In your opinion, what is the most appropriate version of a library to use?
Options: multiple choices (latest available, most stable, has many contributors, least
complex, most tested, most documented, most secure, has the minimum size)

129

Appendix C
Replication Packages

To be able to reproduce the analyses in Chapters 5 and 6, we have created replication
packages. They contain Jupyter notebooks [116], scripts and data and they require Python
3.5+ to be installed, as well as all the dependencies listed in “requirements.txt“.

All code and data required to reproduce the empirical analysis in Chapter 5 about
npm package dependencies are available on https://doi.org/10.5281/zenodo.1420075

All code and data required to reproduce the empirical analysis in Chapter 6 about
Debian packages used in Docker containers are available on https://doi.org/10.5281/
zenodo.2350504.

The data is under the Creative Commons Attribution Share-Alike 4.0 license, while
the source code is under the GNU General Public License.

130

https://doi.org/10.5281/zenodo.1420075
https://doi.org/10.5281/zenodo.2350504
https://doi.org/10.5281/zenodo.2350504

List of Figures

3.1 Percentage of projects in which a given library is used at least once during
its lifetime. Testing libraries are shown in blue, matching libraries in green,
and mocking libraries in red. 24

3.2 Number of months between the first commit and the commit in which one
of the testing-related libraries was introduced in the project. 25

3.3 Number of projects using different testing-related libraries at least once
during their lifetime (not necessarily simultaneously). 26

3.4 Monthly evolution of the (proportion of) Java projects using testing-related
libraries. 27

3.5 Number of migrations observed between testing libraries. 28

3.6 The proportion of projections that had a latency to upgrade to a new library
release. 29

3.7 Latency to upgrade to a new released JUnit version in months. 30

4.1 Illustration of the concept of technical lag 34

4.2 Transitive dependencies of version 5.5.0 of the youtube-player package
at its release date of 20-02-2018. 35

4.3 The list of the most desirable software versions ordered by number of
participants that chose them. 39

5.1 Excerpt of relevant metadata stored in a hypothetical package.json file for
package release foo 1.2.3. 44

5.2 Distribution of the number of dependency constraints that are changed in
new major, minor or patch releases. 51

131

LIST OF FIGURES

5.3 Distribution of the time until the next chronological version of npm package
releases. 53

5.4 Monthly evolution of the distribution of deplagtime for all package releases,
grouped by runtime and development dependencies. The shaded areas
correspond to the interval between the 25th and 75th percentile. 54

5.5 Monthly evolution of the distribution of deplagversion(p) = (Major, Minor,
Patch) for all package releases, grouped by runtime and development de-
pendencies, and split per version component. The shaded areas correspond
to the interval between the 25th and 75th percentile. 55

5.6 Proportion of outdated npm dependencies per constraint type, for runtime
dependencies and development dependencies respectively. 56

5.7 Monthly evolution of version constraint usage by all package dependencies. 57

5.8 Monthly evolution of version constraint usage by outdated package depen-
dencies. 57

5.9 Monthly evolution of the distribution of deplagtime for all external appli-
cations, grouped by runtime and development dependencies. The shaded
areas correspond to the interval between the 25th and 75th percentile. . . . 60

5.10 Monthly evolution of the distribution of deplagversion(p) =(Major, Minor,
Patch) for all external applications, grouped by runtime and development
dependencies, and split per version component. The shaded areas correspond
to the interval between the 25th and 75th percentile. 60

5.11 Monthly evolution of the proportion of constraint types used by runtime
dependencies in external applications depending on npm packages. 61

5.12 Quadrimestrial evolution of the distribution of deplag+
time for runtime

dependencies of all npm package releases. The shaded areas correspond to
the interval between the 25th and 75th percentile. 62

5.13 Quadrimestrial evolution of the the distribution of deplag+
version, split per

version component for runtime dependencies of all npm package releases. . 63

5.14 Distribution of deplag+
time of the latest releases of all npm packages on 13

March 2018, grouped by transitive dependency tree depth. 63

6.1 Process of the Docker container package analysis. 70

6.2 Year of last update of Docker images, grouped by Debian distribution and
image type (community or official). 79

132

LIST OF FIGURES

6.3 Proportion of up-to-date and outdated packages in Docker containers,
grouped by their Debian version. 80

6.4 Violin plots of the distribution of techlagDebianversion induced by outdated pack-
ages in Docker containers. 81

6.5 Cumulative number of used up-to-date package releases, by date of first
appearance in Debian. 82

6.6 Proportion of vulnerabilities found in package releases in Docker containers,
grouped by severity and status of the vulnerability. 83

6.7 Number of outdated packages and vulnerabilities per container. 84

6.8 contlagDebian
security induced by installed packages in Docker containers 86

6.9 Proportion of bugs grouped by severity and status. 87

6.10 Number of outdated package releases and bugs per container. 89

6.11 contlagDebian
stability induced by installed package releases in Docker containers . 90

6.12 Survival probability for event “bug is fixed” w.r.t. the bug report creation
date. 91

6.13 Survival probability per severity level for event “security vulnerability is
fixed” w.r.t. the date of the bug arrival. 92

6.14 Violin plots showing yearly distribution of techlagnpmtime (measured at the
date of the images last update) for all outdated packages in Docker container,
grouped by operating system. 101

6.15 Box plots showing yearly distribution of techlagnpmversion (measured at the
date of images last update) for all outdated packages in Docker images. . . 102

6.16 Box plots of yearly distribution of techlagnpmversion (calculated at the date of
March 13th 2018) for all outdated packages in images. 102

6.17 Number of vulnerabilities w.r.t to images last update date. 104

6.18 Proportion of packages that require changes in order have the most secure
npm package versions in a Docker images 105

7.1 Overview of ConPan. The user interacts with the tool via either the
command line or through its API. Once the tool is initialized, the target
Docker image is pulled, the contained packages are extracted and traced
back to the corresponding package managers, and vulnerabilities and other
bugs are identified and returned as output (as pandas dataframes, JSON
documents and/or charts). 110

133

LIST OF FIGURES

7.2 Statistics about Debian packages in the community Docker Hub image
google/mysql . 114

134

List of Tables

2.1 Meaning of terms used in this chapter . 9

2.2 Types of dependency constraints for npm package dependencies. 11

3.1 Descriptive statistics of the considered project corpus 23

3.2 Introduction order of testing-related library categories 25

3.3 The percentage of projects using library A (rows) that also use library B
(columns) simultaneously at least once during their lifetime. 27

5.1 Proportion of dependency constraints used, grouped by operator for all npm
package releases over the considered period. 50

5.2 Proportion of constraint types used by outdated dependencies from exter-
nal applications to npm package releases, compared to the proportion of
constraint types used by outdated dependencies from npm package releases. 59

6.1 General information about the considered Debian versions. 71

6.2 Number of Docker images per Debian distribution. 72

6.3 Mean and median of packages’ techlagDebianversion, grouped by Debian version
and container type. 81

6.4 Minimum, median and maximum number of vulnerabilities per container,
grouped by Debian version and container type. 83

6.5 Top 5 vulnerable official and community Docker images. (Age in months.) . 85

6.6 Top 5 vulnerable Debian source packages. 85

6.7 Min, median and max of bugs per container grouped by Debian version and
container type. 88

135

LIST OF TABLES

6.8 Number of analyzed images grouped by repository and operating system. . 96

6.9 The top 5 vulnerability types found for npm packages in Docker containers. 103

136

Bibliography

[1] Alexandre Decan, Tom Mens, and Philippe Grosjean. An empirical comparison of
dependency network evolution in seven software packaging ecosystems. Empirical
Software Engineering, pages 1–36, February 2018.

[2] Charles W Krueger. Software reuse. ACM Computing Surveys (CSUR), 24(2):131–
183, 1992.

[3] Laszlo A. Belady and Meir M Lehman. A model of large program development.
IBM Systems journal, 15(3):225–252, 1976.

[4] Meir M Lehman, Juan F Ramil, Paul D Wernick, Dewayne E Perry, and Wladyslaw M
Turski. Metrics and laws of software evolution-the nineties view. In Proceedings
Fourth International Software Metrics Symposium, pages 20–32. IEEE, 1997.

[5] Marat Valiev, Bogdan Vasilescu, and James Herbsleb. Ecosystem-level determinants
of sustained activity in open-source projects: A case study of the pypi ecosystem. In
Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages
644–655. ACM, 2018.

[6] Christopher Bogart, Anna Filippova, Christian Kästner, and James Herbsleb. Survey
of ecosystem values. http://breakingapis.org/survey/. accessed: 28/10/2017.

[7] R. G. Kula, D. M. German, T. Ishio, and K. Inoue. Trusting a library: A study of
the latency to adopt the latest Maven release. In Int’l Conf. on Software Analysis,
Evolution, and Reengineering, pages 520–524, March 2015.

[8] Shaikh Mostafa, Rodney Rodriguez, and Xiaoyin Wang. Experience paper: a study
on behavioral backward incompatibilities of java software libraries. In Proceedings of
the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis,
pages 215–225. ACM, 2017.

137

BIBLIOGRAPHY

[9] Christopher Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. How to
break an API: Cost negotiation and community values in three software ecosystems.
In Int’l Symp. Foundations of Software Engineering, pages 109–120. ACM, 2016.

[10] Forrest Shull, Janice Singer, and Dag IK Sjøberg. Guide to advanced empirical
software engineering. Springer, 2007.

[11] Richard Stallman. Free software, free society: Selected essays of Richard M. Stallman.
Lulu.com, 2002.

[12] Richard Stallman. Why “free software” is better than “open source”. 1998. Available
in http://www.gnu.org/philosophy/free-software-for-freedom.html, 2002.

[13] Ron Goldman and Richard P Gabriel. Innovation happens elsewhere: Open source
as business strategy. Morgan Kaufmann, 2005.

[14] Katherine Stewart and Tony Ammeter. An exploratory study of factors influencing
the level of vitality and popularity of open source projects. ICIS 2002 Proceedings,
page 88, 2002.

[15] Konstantinos Manikas and Klaus Marius Hansen. Software ecosystems–a systematic
literature review. Journal of Systems and Software, 86(5):1294–1306, 2013.

[16] Alexander Serebrenik and Tom Mens. Challenges in software ecosystems research. In
Proceedings of the 2015 European Conference on Software Architecture Workshops,
page 40. ACM, 2015.

[17] Mircea F Lungu. Reverse engineering software ecosystems. PhD thesis, Università
della Svizzera italiana, 2009.

[18] Mircea Lungu, Romain Robbes, and Michele Lanza. Recovering inter-project de-
pendencies in software ecosystems. In Proceedings of the IEEE/ACM international
conference on Automated software engineering, pages 309–312. ACM, 2010.

[19] Cyrille Artho, Kuniyasu Suzaki, Roberto Di Cosmo, Ralf Treinen, and Stefano
Zacchiroli. Why do software packages conflict? In Proceedings of the 9th IEEE
Working Conference on Mining Software Repositories, pages 141–150. IEEE Press,
2012.

[20] Dirk Merkel. Docker: lightweight Linux containers for consistent development and
deployment. Linux Journal, 2014(239):2, 2014.

[21] J. Cox, E. Bouwers, M. van Eekelen, and J. Visser. Measuring dependency freshness
in software systems. In International Conference on Software Engineering, pages
109–118, 2015.

138

BIBLIOGRAPHY

[22] Ali Mili, Rym Mili, and Roland T Mittermeir. A survey of software reuse libraries.
Annals of Software Engineering, 5(1):349–414, 1998.

[23] Neil A Maiden and Cornelius Ncube. Acquiring cots software selection requirements.
IEEE software, 15(2):46–56, 1998.

[24] Shawn A Bohner. Extending software change impact analysis into cots components.
In 27th annual NASA Software engineering workshop, pages 175–182. IEEE, 2002.

[25] William B Frakes and Kyo Kang. Software reuse research: Status and future.
Transactions on Software Engineering, 31(7):529–536, 2005.

[26] S. Raemaekers, A. van Deursen, and J. Visser. Semantic versioning versus breaking
changes: A study of the Maven repository. In International Conference on Source
Code Analysis and Manipulation, pages 215–224, September 2014.

[27] Christian Macho, Shane McIntosh, and Martin Pinzger. Automatically repairing
dependency-related build breakage. In International Conference on Software Analysis,
Evolution and Reengineering, pages 106–117. IEEE, 2018.

[28] Alexandre Decan and Tom Mens. What do package dependencies tell us about
semantic versioning? IEEE Transactions on Software Engineering, 2019.

[29] Yana Momchilova Mileva, Valentin Dallmeier, Martin Burger, and Andreas Zeller.
Mining trends of library usage. In International Workshop on Principles of Software
Evolution, pages 57–62. ACM, 2009.

[30] Cédric Teyton, Jean-Rémy Falleri, and Xavier Blanc. Mining library migration
graphs. In Working Conf. Reverse Engineering (WCRE), pages 289–298, 2012.

[31] Cédric Teyton, Jean-Rémy Falleri, Marc Palyart, and Xavier Blanc. A study of library
migrations in Java. Journal of Software: Evolution and Process, 26(11):1030–1052,
2014.

[32] Amine Benelallam, Nicolas Harrand, César Soto Valero, Benoit Baudry, and Olivier
Barais. The maven dependency graph: a temporal graph-based representation of
maven central. arXiv preprint arXiv:1901.05392, 2019.

[33] César Soto-Valero, Amine Benelallam, Nicolas Harrand, Olivier Barais, and Benoit
Baudry. The emergence of software diversity in maven central. arXiv preprint
arXiv:1903.05394, 2019.

[34] Matúš Sulír and Jaroslav Porubän. A quantitative study of java software buildability.
In Proceedings of the 7th International Workshop on Evaluation and Usability of
Programming Languages and Tools, pages 17–25. ACM, 2016.

139

BIBLIOGRAPHY

[35] Erik Wittern, Philippe Suter, and Shriram Rajagopalan. A look at the dynamics
of the JavaScript package ecosystem. In Int’l Conf. Mining Software Repositories
(MSR), pages 351–361. IEEE, 2016.

[36] Rabe Abdalkareem, Olivier Nourry, Sultan Wehaibi, Suhaib Mujahid, and Emad
Shihab. Why do developers use trivial packages? An empirical case study on npm.
In International Symposium on Foundations of Software Engineering, pages 385–395.
ACM, 2017.

[37] Raula Gaikovina Kula, Ali Ouni, Daniel M German, and Katsuro Inoue. On the
impact of micro-packages: An empirical study of the npm JavaScript ecosystem.
arXiv preprint arXiv:1709.04638, 2017.

[38] Gianluca Mezzetti, Anders Moller, and Martin Toldam Torp. Type regression
testing to detect breaking changes in node. js libraries. In European Conference on
Object-Oriented Programming (ECOOP), 2018.

[39] Rodrigo Elizalde Zapata, Raula Gaikovina Kula, Bodin Chinthanet, Takashi Ishio,
Kenichi Matsumoto, and Akinori Ihara. Towards smoother library migrations: A look
at vulnerable dependency migrations at function level for npm javascript packages.
In 2018 IEEE International Conference on Software Maintenance and Evolution
(ICSME), pages 559–563. IEEE, 2018.

[40] Jesus M Gonzalez-Barahona, Gregorio Robles, Martin Michlmayr, Juan José Amor,
and Daniel M German. Macro-level software evolution: a case study of a large
software compilation. Empirical Software Engineering, 14(3):262–285, 2009.

[41] Pietro Abate, Roberto Di Cosmo, Jaap Boender, and Stefano Zacchiroli. Strong de-
pendencies between software components. In International Symposium on Empirical
Software Engineering and Measurement, pages 89–99. IEEE Computer Society, 2009.

[42] Pietro Abate, Roberto Di Cosmo, Ralf Treinen, and Stefano Zacchiroli. Dependency
solving: a separate concern in component evolution management. Journal of Systems
and Software, 85(10):2228–2240, 2012.

[43] Pietro Abate, Roberto Di Cosmo, Ralf Treinen, and Stefano Zacchiroli. Learning
from the future of component repositories. Science of Computer Programming,
90:93–115, 2014.

[44] Maëlick Claes, Tom Mens, Roberto Di Cosmo, and Jérôme Vouillon. A historical
analysis of Debian package incompatibilities. In Working Conf. Mining Software
Repositories, pages 212–223, 2015.

[45] James Turnbull. The Docker Book: Containerization is the new virtualization. 2014.

140

BIBLIOGRAPHY

[46] Docker Inc. Docker - build, ship, and run any app, anywhere.
https://www.docker.com/. accessed: 01/11/2018.

[47] Jürgen Cito, Gerald Schermann, John Erik Wittern, Philipp Leitner, Sali Zumberi,
and Harald C Gall. An empirical analysis of the Docker container ecosystem on
GitHub. In 14th Intl Conf on Mining Software Repositories, pages 323–333. IEEE
Press, 2017.

[48] Zhigang Lu, Jiwei Xu, Yuewen Wu, Tao Wang, and Tao Huang. An empirical case
study on the temporary file smell in dockerfiles. IEEE Access, 2019.

[49] Jiahong Zhou, Wei Chen, Guoquan Wu, and Jun Wei. Semitagrec: A semi-supervised
learning based tag recommendation approach for docker repositories. In International
Conference on Software and Systems Reuse, pages 132–148. Springer, 2019.

[50] Alexandre Decan, Tom Mens, and Maëlick Claes. An empirical comparison of
dependency issues in OSS packaging ecosystems. In International Conference on
Software Analysis, Evolution and Reengineering, pages 2–12. IEEE, 2017.

[51] Raula Gaikovina Kula, Coen De Roover, Daniel M German, Takashi Ishio, and
Katsuro Inoue. A generalized model for visualizing library popularity, adoption, and
diffusion within a software ecosystem. In 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER), pages 288–299. IEEE,
2018.

[52] Ruturaj K Vaidya, Lorenzo De Carli, Drew Davidson, and Vaibhav Rastogi. Security
issues in language-based sofware ecosystems. arXiv preprint arXiv:1903.02613, 2019.

[53] Alexandre Decan, Tom Mens, and Eleni Constantinou. On the impact of security
vulnerabilities in the npm package dependency network. In International Conference
on Mining Software Repositories, 2018.

[54] Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, and Michael Pradel.
Small world with high risks: A study of security threats in the npm ecosystem.
Technical Report 1902.09217v1, arxiv, February 2019.

[55] Rui Shu, Xiaohui Gu, and William Enck. A study of security vulnerabilities on
Docker Hub. In International Conference on Data and Application Security and
Privacy, pages 269–280. ACM, 2017.

[56] M. Cadariu, E. Bouwers, J. Visser, and A. van Deursen. Tracking known security
vulnerabilities in proprietary software systems. In International Conference on
Software Analysis, Evolution, and Reengineering (SANER), pages 516–519, March
2015.

141

BIBLIOGRAPHY

[57] Raula Gaikovina Kula, Daniel M. German, Ali Ouni, Takashi Ishio, and Katsuro
Inoue. Do developers update their library dependencies? Empirical Software
Engineering, May 2017.

[58] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robertson, Christo
Wilson, and Engin Kirda. Thou shalt not depend on me: Analysing the use of
outdated JavaScript libraries on the web. In NDSS Symposium, 2017.

[59] Samim Mirhosseini and Chris Parnin. Can automated pull requests encourage
software developers to upgrade out-of-date dependencies? In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering, pages
84–94. IEEE Press, 2017.

[60] Jesus M Gonzalez-Barahona, Paul Sherwood, Gregorio Robles, and Daniel Izquierdo.
Technical lag in software compilations: Measuring how outdated a software deploy-
ment is. In IFIP International Conference on Open Source Systems, pages 182–192,
2017.

[61] S. Moser and O. Nierstrasz. The effect of object-oriented frameworks on developer
productivity. Computer, 29(9), 1996.

[62] Ahmed Zerouali and Tom Mens. Analyzing the evolution of testing library usage in
open source java projects. In 2017 IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pages 417–421. IEEE, 2017.

[63] Ahmed Zerouali. Analysis and observations of the evolution of testing library usage.
In 2017 the Seminar Series on Advanced Techniques and Tools for Software Evolution
(SATToSE), 2017.

[64] Alex Zhitnitsky. We analyzed 60,678 libraries on github - here are the top
100. http://blog.takipi.com/we-analyzed-60678-libraries-on-github-here-are-the-top-
100/, April 2015.

[65] Miltiadis Allamanis and Charles Sutton. Mining source code repositories at massive
scale using language modeling. In Working Conf. Mining Software Repositories,
pages 207–216. IEEE, 2013.

[66] Mathieu Goeminne, Alexandre Decan, and Tom Mens. Co-evolving code-related
and database-related changes in a data-intensive software system. In CSMR-WCRE,
pages 353–357, 2014.

[67] M. Goeminne and T. Mens. Towards a survival analysis of database framework
usage in Java projects. In Int’l Conf. Software Maintenance and Evolution, pages
551–555, September 2015.

142

BIBLIOGRAPHY

[68] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M. Germán,
and Daniela Damian. The promises and perils of mining GitHub. In Working Conf.
Mining Software Repositories, pages 92–101, 2014.

[69] Ahmed Zerouali, Eleni Constantinou, Tom Mens, Gregorio Robles, and Jesús
González-Barahona. An empirical analysis of technical lag in npm package de-
pendencies. In International Conference on Software Reuse, pages 95–110. Springer,
2018.

[70] Ahmed Zerouali, Tom Mens, Jesus Gonzalez-Barahona, Alexandre Decan, Eleni
Constantinou, and Gregorio Robles. A formal framework for measuring technical
lag in component repositories — and its application to npm. Journal of Software:
Evolution and Process, page e2157, 2019.

[71] J. Dietrich, K. Jezek, and P. Brada. Broken promises: An empirical study into
evolution problems in Java programs caused by library upgrades. In CSMR-WCRE,
pages 64–73, 2014.

[72] Georgios Digkas, Mircea Lungu, Alexander Chatzigeorgiou, and Paris Avgeriou. The
evolution of technical debt in the apache ecosystem. In ECSA, pages 51–66. Springer,
2017.

[73] Ward Cunningham. The wycash portfolio management system. ACM SIGPLAN
OOPS Messenger, 4(2):29–30, 1993.

[74] Robert M Groves, Floyd J Fowler Jr, Mick P Couper, James M Lepkowski, Eleanor
Singer, and Roger Tourangeau. Survey methodology, volume 561. John Wiley &
Sons, 2011.

[75] Eleni Constantinou and Tom Mens. An empirical comparison of developer retention
in the RubyGems and npm software ecosystems. Innovations in Systems and Software
Engineering, 13(2-3):101–115, 2017.

[76] Asher Trockman, Shurui Zhou, Christian Kästner, and Bogdan Vasilescu. Adding
sparkle to social coding: An empirical study of repository badges in the npm ecosys-
tem. In Proceedings of the 40th International Conference on Software Engineering,
pages 511–522. ACM, 2018.

[77] Andrew Nesbitt and Benjamin Nickolls. Libraries.io open source repository and
dependency metadata (version 1.2.0) [data set]. Zenodo, March 2018.

[78] Christopher Bogart, Christian Kästner, and James Herbsleb. When it breaks, it
breaks: How ecosystem developers reason about the stability of dependencies. In
Automated Software Engineering Workshop, pages 86–89. IEEE, 2015.

143

BIBLIOGRAPHY

[79] Valerio Cosentino, Javier L Cánovas Izquierdo, and Jordi Cabot. A systematic
mapping study of software development with github. IEEE Access, 5:7173–7192,
2017.

[80] Jérôme Vouillon and Roberto Di Cosmo. On software component co-installability.
ACM Trans. Softw. Eng. Methodol., 22(4):34:1–34:35, October 2013.

[81] Alexandre Decan, Tom Mens, and Eleni Constantinou. On the evolution of technical
lag in the npm package dependency network. In International Conference on Software
Maintenance and Evolution. IEEE, 2018.

[82] Ahmed Zerouali, Tom Mens, Gregorio Robles, and Jesus M Gonzalez-Barahona. On
the relation between outdated docker containers, severity vulnerabilities, and bugs.
In 2019 IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 491–501. IEEE, 2019.

[83] Ahmed Zerouali, Valerio Cosentino, Tom Mens, Gregorio Robles, and Jesus M
Gonzalez-Barahona. On the impact of outdated and vulnerable javascript packages
in docker images. In 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 619–623. IEEE, 2019.

[84] David Bernstein. Containers and cloud: From LXC to Docker to Kubernetes. IEEE
Cloud Computing, 1(3):81–84, 2014.

[85] Adrian Mouat. Using Docker: Developing and Deploying Software with Containers.
O’Reilly Media, Inc., 2015.

[86] Carl Boettiger. An introduction to Docker for reproducible research. ACM SIGOPS
Operating Systems Review, 49(1):71–79, 2015.

[87] Anthony Bettini. Vulnerability exploitation in docker container en-
vironments. https://www.blackhat.com/docs/eu-15/materials/eu-15-Bettini-
Vulnerability-Exploitation-In-Docker-Container-Environments-wp.pdf, 2015. ac-
cessed: 01/01/2018.

[88] Fintan Ryan. Containers in production - is security a barrier? a dataset from An-
chore. http://redmonk.com/fryan/2016/12/01/containers-in-production-is-security-
a-barrier-a-dataset-from-anchore/, December 2016. accessed: 01/01/2018.

[89] Anchore.io. Snapshot of the container ecosystem. https://anchore.com/wp-
content/uploads/2017/04/Anchore-Container-Survey-5.pdf, April 2017. accessed:
01/01/2018.

144

BIBLIOGRAPHY

[90] Lucas Nussbaum and Stefano Zacchiroli. The ultimate Debian database: Consoli-
dating bazaar metadata for quality assurance and data mining. In Working Conf.
Mining Software Repositories (MSR), pages 52–61, 2010.

[91] Manish Kumar Goel, Pardeep Khanna, and Jugal Kishore. Understanding survival
analysis: Kaplan-meier estimate. International journal of Ayurveda research, 1(4):274,
2010.

[92] Ioannis Samoladas, Lefteris Angelis, and Ioannis Stamelos. Survival analysis on the
duration of open source projects. Information and Software Technology, 52(9):902–
922, 2010.

[93] Giuseppe Scanniello. Source code survival with the Kaplan Meier estimator. In
International Conference on Software Maintenance and Evolution, pages 524–527.
IEEE, 2011.

[94] Bin Lin, Gregorio Robles, and Alexander Serebrenik. Developer turnover in global,
industrial open source projects: Insights from applying survival analysis. In Interna-
tional Conference on Global Software Engineering, pages 66–75. IEEE, 2017.

[95] Jeremy Valance. Improving open source security with anchore and snyk.
https://anchore.com/blog/improving-open-source-security-with-anchore-snyk. ac-
cessed: 21/12/2018.

[96] Andrew Nesbitt and Benjamin Nickolls. Libraries.io open source repository and
dependency metadata. March 2018.

[97] Shahed Zaman, Bram Adams, and Ahmed E Hassan. Security versus performance
bugs: a case study on Firefox. In 8th Working Conference on Mining Software
Repositories, pages 93–102. ACM, 2011.

[98] Ahmed Zerouali, Valerio Cosentino, Gregorio Robles, Jesus M Gonzalez-Barahona,
and Tom Mens. A tool to analyze packages in software containers. In Mining
Software Repositories 2019 (MSR), 2019.

[99] Jayanth Gummaraju, Tarun Desikan, and Yoshio Turner. Over 30% of
official images in docker hub contain high priority security vulnerabilities.
https://banyanops.com/blog/analyzing-docker-hub/, 2015.

[100] Anchore. Anchore.io, jan 2019.

[101] Elias Grande. Dagda, jan 2019.

[102] OWASP. Owasp, jan 2019.

145

BIBLIOGRAPHY

[103] Matthew Wojcik, D Proulx, J Baker, and R Roberge. Introduction to oval. The
MITRE Corporation, 2005.

[104] ExploitDB. Offensive security exploit database, jan 2019.

[105] Snyk.io. Synk.io. https://snyk.io/features/container-vulnerability-management/,
March 2019. accessed: 10/03/2019.

[106] Kevin Crowston, Hala Annabi, and James Howison. Defining open source software
project success. Int’l Conf. Information Systems (ICIS), page 28, 2003.

[107] Thanh Bui. Analysis of docker security. arXiv preprint arXiv:1501.02967, 2015.

[108] Antony Martin, Simone Raponi, Théo Combe, and Roberto Di Pietro. Docker
ecosystem–vulnerability analysis. Computer Communications, 122:30–43, 2018.

[109] Tianyin Xu and Darko Marinov. Mining container image repositories for software
configuration and beyond. In Proceedings of the 40th International Conference on
Software Engineering: New Ideas and Emerging Results, pages 49–52, 2018.

[110] Wes McKinney et al. Data structures for statistical computing in python. In
Proceedings of the 9th Python in Science Conference, volume 445, pages 51–56.
Austin, TX, 2010.

[111] Debian. snapshot.debian.org. https://snapshot.debian.org/. accessed: 25/01/2019.

[112] Debian. Security bug tracker. https://security-tracker.debian.org/tracker/. accessed:
25/01/2019.

[113] John D Hunter. Matplotlib: A 2d graphics environment. Computing in science &
engineering, 9(3):90–95, 2007.

[114] Michael Waskom. seaborn: statistical data visualization. https://seaborn.pydata.org.
accessed: 25/01/2019.

[115] Clinton Gormley and Zachary Tong. Elasticsearch: The Definitive Guide: A Dis-
tributed Real-Time Search and Analytics Engine. " O’Reilly Media, Inc.", 2015.

[116] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Jason
Grout, Sylvain Corlay, et al. Jupyter Notebooks-a publishing format for reproducible
computational workflows. 2016.

[117] Joshua Kerievsky. Refactoring to patterns. Pearson Deutschland GmbH, 2005.

[118] Melvin E Conway. How do committees invent. Datamation, 14(4):28–31, 1968.

146

BIBLIOGRAPHY

[119] Damian A Tamburri, Philippe Kruchten, Patricia Lago, and Hans Van Vliet. Social
debt in software engineering: insights from industry. Journal of Internet Services
and Applications, 6(1):10, 2015.

[120] Bitergia. Grimoirelab: Free, libre, open source tools for software development
analytics. https://chaoss.github.io/grimoirelab/. accessed: 28/01/2019.

147

	Contents
	Introduction
	Context
	Empirical Software Engineering
	Free and Open-Source Software
	Software Ecosystems
	Technical Lag

	Goals and Contributions of the Thesis
	Structure of the Dissertation

	State of the Art
	Terminology
	Version Management in Software Ecosystems
	Dependency Management in Software Ecosystems
	Maven
	npm
	Debian
	Docker
	Cross Ecosystem Comparison

	Software Vulnerability Management
	Software Outdatedness Management
	Towards a Notion of Technical Lag

	A Preliminary Analysis of Software Library Usage and Evolution
	Introduction
	Method
	Research Questions
	Empirical Evaluation
	Discussion and Limitations
	Conclusion

	A Framework for Technical Lag
	Introduction
	Technical Lag Explained
	Technical Lag Example
	Qualitative Analysis
	Semi-structured Interviews
	Online Surveys

	A Formal Framework for Technical Lag
	Conclusion

	Technical Lag in npm Packages
	Introduction
	Characteristics of the npm case study
	Instantiating the Technical Lag Framework to npm
	Empirical Evaluation
	Discussion
	Limitations
	Conclusion

	Technical Lag in Docker Containers
	Introduction
	Debian Packages in Docker Containers
	Method and Data Extraction
	Base Images for Debian
	Identifying Analyzed Images
	Identifying Installed Packages
	Vulnerability Reports
	Bug Reports

	Instantiating the Technical Lag Framework to Debian packages used in Docker containers
	Empirical Evaluation
	Actionable Results
	Limitations

	npm Packages in Docker Containers
	Method and Data Extraction
	Identifying Candidate Images
	Extracting npm Package Data
	Collecting Security Vulnerabilities

	Extending the Technical Lag Framework to npm packages used in Docker containers
	Empirical Evaluation
	Limitations

	Discussion
	Conclusion

	ConPan: A Tool to Analyze Health of Software Packages in Docker Containers
	Introduction
	Overview of ConPan
	ConPan in Action
	Installation
	Use
	CLI
	API

	Reporting

	Summary

	Conclusion and Outlook
	Contributions
	Threats to Validity
	Future Work
	Closing Summary

	Interviews with Software Practitioners
	Online Surveys with Software Practitioners
	Replication Packages
	List of Figures
	List of Tables

