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Multiple-length-scale elastic instability mimics
parametric resonance of nonlinear oscillators
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Spatially confined rigid membranes reorganize their morphol-
ogy in response to the imposed constraints. A crumpled elastic
sheet presents a complex pattern of random folds focusing
the deformation energy1, whereas compressing a membrane
resting on a soft foundation creates a regular pattern of sinu-
soidal wrinkles with a broad distribution of energy2–8. Here, we
study the energy distribution for highly confined membranes
and show the emergence of a new morphological instability
triggered by a period-doubling bifurcation. A periodic self-
organized focalization of the deformation energy is observed
provided that an up–down symmetry breaking, induced by the
intrinsic nonlinearity of the elasticity equations, occurs. The
physical model, exhibiting an analogy with parametric reso-
nance in a nonlinear oscillator, is a new theoretical toolkit to un-
derstand the morphology of various confined systems, such as
coated materials or living tissues, for example wrinkled skin3,
internal structure of lungs9, internal elastica of an artery10,
brain convolutions11,12 or formation of fingerprints13. Moreover,
it opens the way to a new kind of microfabrication design
of multiperiodic or chaotic (aperiodic) surface topography
through self-organization.

Several theoretical approaches have been proposed to describe
the wrinkling instability for very small compression ratio, that is,
near the instability threshold2,3,7. However, the large-compression
domain remains largely unexplored, with the notable exception
of the wrinkle-to-fold transition observed in ref. 8 for an elastic
membrane on liquid and the self-similar wrinkling patterns in
skins14. In the former case, the deformation of themembrane is pro-
gressively focalized into a single fold, concentrating all the bending
energy. In contrast, for thin rigid membranes on elastomers, large
compression induces perturbations of the initial wrinkles but the
elasticity of the soft foundationmaintains a regular periodic pattern
whose complexity increases with the compression ratio.

A polydimethylsiloxane (PDMS) film, stretched and then cured
with ultraviolet radiation–ozone, or a thin polymer film bound
to an elastomer foundation, remains initially flat. Under a slight
compression, δ = (L0−L)/L0, these systems instantaneously form
regular (sinusoidal) wrinkles with a well-defined wavelength, λ0.
Increasing δ generates a continuous increase of the amplitude
of the wrinkles and a continuous shift to lower wavelength
(λ = λ0(1 − δ); see Fig. 1g). By further compression of the
sheet, more complex patterns emerge. Above some threshold,
δ > δ2 ' 0.2, we observe a dramatic change in the morphology
leading to a pitchfork bifurcation: one wrinkle grows in amplitude
at the expense of its neighbours (Fig. 1). The profile of the
membrane is no longer described by a single cosinusoid but
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requires a combination of two periodic functions, cos(2πx/λ) and
cos(2πx/2λ). The amplitude of the 2λ mode increases with the
compression ratio, whereas the λ mode vanishes. This effect is
similar to period-doubling bifurcations in dynamical systems15,16
observed in Rayleigh–Bernard convections17, dynamics of the heart
tissue18–20, oscillated granular matter21,22 or bouncing droplets on
soap film23. In contrast to previous works, we describe here a spatial
period-doubling instability which is rarely observed24. Nonlinear
coupling between two commensurate modes also appears in post-
buckling of cylindrical shells as reported in the classical work of
Koiter (see ref. 25 and references therein).

The thin inextensible membrane of length L0 is compressed
horizontally by a distance1= L0−L along the x axis and is bound
to an elastic foundation that initially fills the half-space y < 0. The
system is assumed to remain invariant in the z direction (see Fig. 1).
The projected length along the x axis, L0−1, is given by

L0−1=
∫ L0

0
d`cosφ (1)

where ` is the arc length measured along the curve. The quantity φ
is the angle between the tangent to the surface and the horizontal.
The derivative of this angle with respect to the arc length, ∂`φ, gives
the local curvature of the membrane (partial derivatives ∂/∂` are
written as ∂`). The relative compression ratio is given by δ=1/L0.

The response of this thin membrane resting on an elastomer
substrate is determined through minimization of the energy per
unit of width,U . Two energetic contributions are to be considered:
(1) the elastic bending energy of the thin sheet,

UB=
Bm

2

∫ L0

0
d`(∂`φ)2

where the parameter Bm is the bending stiffness of the membrane
(Bm ' Emh3, Em and h being its Young modulus and thickness);
(2) the energy of deformation of the elastomer. The constraint of
inextensibility of the membrane (1) is taken into account with the
help of a Lagrangian multiplier F identified with the cross-sectional
pressure per unit length. The Euler–Lagrange equation obtained
from the energy of the system gives the equilibriumof normal forces
along the membrane and is given by

Bm∂`
4y+F∂`2y+Py = 0 (2)

where y and Py are functions describing the vertical elevation of
the membrane and the normal pressure from the elastomer acting
on the membrane, respectively. At linear order, Py = KH (∂`y),
where K is the stiffness coefficient of the foundation proportional
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Figure 1 | Evolution of morphologies, wavelengths and amplitudes with compression. a,b, System 1. A PDMS foundation is cured with ultraviolet
radiation–ozone, which modifies the elastic properties of its surface. The thickness of the membrane is about 10–20 µm depending on the irradiation time.
The wavelength, λ0, of the initial wrinkling instability is about 50–100 µm. c–e, System 2. A thin coloured stiff PDMS film is bound to a thick soft PDMS
foundation. The thickness of the membrane is about 200 µm and the initial wrinkle wavelength is about 3 mm. The compression ratios, δ, are equal to
0.165, 0.19 and 0.24 for panels c, d and e respectively. f, The systems are compressed uniaxially along the x axis. The wavelength and amplitudes of the
wrinkles are measured for successive values of the relative compression δ. g, Amplitudes (A1, A2) and wavelength, λ, as a function of the compression ratio
δ. Experimental data for system 1 are reported with bullet, filled square and filled diamond symbols for 30 min, 1 h and 2 h of irradiation respectively
whereas the open triangle is used for system 2. Results of the linear (dotted lines) and nonlinear (solid lines) theories are also reported. Before period
doubling, the expression of the amplitude A computed from equations (1) is A/λ0=

√
δ/π(1−(3δ/8)−(17δ2/128)). The wavelength λ is computed from

(7): λ/λ0= 1−δ+O(δ3,(B/λ0)2δ2), where B is the amplitude of the subharmonic mode.

to its Young modulus (K = 2E(1− σ )/(1+ σ )(3–4σ ), where σ
is the Poisson ratio) and H is the Hilbert transform. The first
nonlinear contribution due to the elastomer can be computed
for periodic deformation with one mode of wavenumber q and
equation (2) then reduces to

Bm∂`
4y+F∂`2y+Kqy+K2q2y2= 0 (3)

where K2 is also proportional to the Young modulus (K2 =

E(1–2σ )(13–16σ )/2(1+σ )(3–4σ )2; see Supplementary Informa-
tion). The expression of the nonlinearity can also be deduced
from a simple dimensional argument. From elasticity equations we
expect a quadratic nonlinearity, and as there is no characteristic
length-scale for the elastomer this term should be multiplied by
the square of the wavenumber. Owing to the quadratic nonlinearity
from the foundation, the equation (3) giving the profile of the
membrane implies an up–down symmetry breaking: vertical exten-
sion and compression along the y axis are no longer equivalent.
This equation can also be viewed as a spatial equivalent of a
nonlinear oscillator, such as a simple pendulum, with which it
shares many similarities.

Equation (3) reduces to a linear oscillator for small amplitudes
of the instability. In this regime, the period is independent of

the amplitude, in agreement with observation and usual theories.
Indeed, nonlinear terms can be ignored for small amplitudes and
the curvilinear and Cartesian coordinates coincide: `' x , φ' ∂xy .
Equation (3) admits sinusoidal solutions y(x) = A cos(2πx/λ)
provided that the pressure F and the wavelength of the wrinkling
instability are related by

F(λ)=
4π 2Bm

λ2
+
λK
2π

This relation shows that below a threshold F < Fc = 3q02Bm there
is no associated wavelength and the membrane stays flat. At the
threshold, F = Fc, the wrinkling instability emerges and a unique
and constant wavelength, λ0, is selected3,26

λ0= 2π
(
2Bm

K

) 1
3

∼ h
(
E
K

) 1
3

The selection of this particular wavelength is obtained from a
minimization of the energy through a minimization of F . The inex-
tensibility constraint (1) gives the evolution of the amplitude of the
instability as a function of the relative compression, A=±λ0

√
δ/π .

However, neither the evolution of the wavelength with δ nor the
period-doubling bifurcation are captured by this linearmodel.
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Figure 2 | Predictions of the model and comparison with experimental profiles. a,b, Evolution of the cross-sectional pressure F and of the amplitude B of
the subharmonic mode as a function of the amplitude A of the harmonic mode. Arrows indicate the path followed by the systems during compression.
Insets: Representative shapes of the membrane according to the value of F. c, Comparison between theoretical and experimental profiles of the membrane
for system 1 for two values of δ. d, Comparison between theoretical and experimental profiles of the membrane for system 2 for two values of δ.

To determine the supercritical morphology, we study the
stability of the single-wavelength pattern in the weakly nonlinear
regime. We thus consider a small periodic perturbation, εu,
characterized by a wavenumber k, of the nonlinear solution for
the shape of the membrane: y→ y+ εu, ε being arbitrarily small.
The equation for the perturbation, u, in the leading order in the
amplitudeA of the instability is then given by

Bm∂`
4u+F∂`2u+Kku=−2K2kAq0cos(q0`)u (4)

The term appearing in the right-hand side of this equation is
due to the quadratic nonlinearity of the foundation. Interestingly,
this equation is similar to the Mathieu equation, describing
resonance in parametric oscillators27–30. For usual forced oscillators,
such as a simple pendulum with a variable length (the most
famous example of this resonance is given by the giant censer,
the Botafumeiro29), the unforced system is characterized by a
given period and the extra wavenumber needed to produce
a parametric resonance is provided by an external agent.
For all amplitudes of the forcing, the resonance appears
provided that forcing and oscillator wavenumbers are related
through k= q0/2.

In our system, however, we should also consider a constraint
related to the minimization of F (that is, minimization of energy
because U (δ)= L0

∫
0
δF(δ′)dδ′ where δ is the relative compression)

determining the amplitude of the forcing term at which the 2λ
mode emerges. Actually, the period-doubling instability cannot
be observed for amplitudes smaller than a threshold (that is, a
compression threshold, δ2).

Equation (4) suggests that the profile should be described by
a multimode solution of the form y(`) =

∑
∞

k=1Ck cos(kq0`/2),
where Ck are the Fourier coefficients. The numerical analysis of
equation (3), adapted to multimode periodic solutions, shows a
very good agreement with experimental amplitudes A1,2 (Fig. 1g).
The relevance of the model is further demonstrated by the excellent
agreement between experimental and calculated profiles (Fig. 2c,d).
We should emphasize that the model relies on a single parameter,
K2/K , that determines the period-doubling threshold δ2.

To preserve an explicit analysis and to capture the physics
of the model, we restrict the following discussion to the
ansatz y(`)=Acos(q0`)+Bcos(q0`/2). Substituting this ansatz in
equation (3), we obtain a system of two equations in A, B and
F , admitting two solutions. A trivial solution corresponds to the
evolution before period-doubling: F/(q02Bm) = 3 and B = 0 (A
being determined by the inextensibility constraint). The second
solution involving a subharmonicmode (B 6=0) reads

F̄ = 17/4+2Ā (5)

B̄2
= 2Ā(5+8Ā) (6)

where F̄ = F/(q02Bm), Ā = 2K2Aq0/K and B̄ = 2K2Bq0/K .
Equation (5) is no longer invariant under a change of sign of A.
Indeed, the amplitude A of the harmonic mode can be either
positive or negative because the nonlinear system is characterized
by an up–down symmetry breaking due to the quadratic non-
linearity of the foundation. Figure 2a,b shows the evolutions of
both solutions with the amplitude, Ā. The symmetry breaking
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Figure 3 | Additional consequences of the up–down symmetry breaking for wrinkled patterns. a, Evolution of amplitudes for large compressions showing
the period-quadrupling bifurcation in system 2. The solid curve is obtained numerically for K2/K=0.27. The dashed curve is added to help visualize the
second bifurcation characterizing the period-quadrupling instability. b, Wrinkled structure showing the period-quadrupling instability (δ'0.37). c, Profile
of a thin stiff PDMS membrane resting in between two identical soft PDMS foundations for a relative compression δ'0.23. d, Profile of a thin stiff PDMS
membrane bound to a soft PDMS foundation for a relative compression δ'0.23.

induces two regimes. For Ā > 0, F̄ is always larger than the
value associated with the harmonic mode alone, that is, F̄ = 3.
The corresponding shape for the membrane is forbidden and
thus not observed experimentally; see Fig. 2b. In contrast, for
Ā < 0, the emergence of a subharmonic mode is energetically
favourable (F̄ < 3) beyond a threshold value; see Fig. 2a. From
equation (6), we observe that B̄ starts to grow precisely from
this threshold. This analysis does not, however, imply that a
harmonic mode with a positive amplitude, Ā > 0, is stable
against subharmonic perturbations. Having found the energetically
favourable pattern, we can use the translation invariance to generate
equivalent patterns: y(` − π/q0) = −A cos(q0`) + B sin(q0`/2).
The sign of A being now reversed implies that a harmonic mode
with a positive amplitude is also unstable against subharmonic
perturbations above the same threshold and leads to the same
wrinkled pattern but translated.

The threshold for Ā implies the existence of a critical compres-
sion ratio, δ2, for the onset of the period-doubling instability. Using
the relation betweenA and δ at the lowest order, we obtain

δ2=

(
5

32(K2/K )

)2

' 0.02
(1−σ )2

(1−2σ )2

This critical compression ratio, δ2, strongly decreases with the Pois-
son ratio of the elastic foundation. The values found numerically for
the ratio K2/K ∼ 0.25 yield a Poisson ratio around 0.44, close to the
value usually reported in the literature for PDMS (∼0.48).

Moreover, this model should imply that, for larger amplitudes of
the 2λ mode, a period-quadrupling bifurcation characterized by a
wavelength 4λ would appear. This behaviour is indeed observed in
Fig. 3a,b for compression ratios larger than 0.26. These observations
clearly suggest that cascades of spatial period-doubling bifurcations
can be observed for the elastic instability of a rigid membrane,
provided that the up–down symmetry is broken. Such a cascade
is known to lead to chaos after several bifurcations15,16. There is
however a geometric limitation in our system: the evolution of the
pattern saturates as soon as sharp folds appear (see Fig. 3b). Owing
to finite thickness of the membrane, we experimentally reached at
most period-quadrupling structures.

A further confirmation of our approach can be obtained.
Our interpretation of the period-doubling bifurcation in a rigid
membrane implies that the dynamics should be governed by
nonlinear terms of even order, which break the up–down
symmetry. Consequently, systems with up–down symmetry, such

as a membrane on a liquid8, do not develop a period-doubling
instability. Interestingly, we could make trilayers restoring the
symmetry. A system composed of an elastic membrane sandwiched
in between two identical soft foundations does not exhibit the
period-doubling bifurcation. Instead it develops patterns similar to
those observedwith floatingmembranes (Fig. 3b and c).

The second salient feature of the nonlinear wrinkling instability
is the continuous decrease of the wavelength with the compression
ratio δ. This effect arises from the change from curvilinear to
Cartesian coordinates. The wavelength is measured along the
horizontal x axis and the shape of the membrane is determined
in curvilinear coordinates `. For a periodic profile y(`), with a
wavelength λ`, λx ≡λ is given by

λ=

∫ λ`

0
d`cosφ=

∫ λ`

0
d`
√
1− (∂`y)2 (7)

The evolution of the wavelength along the horizontal x axis at the
leading order in the amplitude is given by

λ

λ0
= 1−

(Aπ)2

λ02
= 1−δ

in very good agreement with the experimental data in Fig. 1g.
The universal model describing the formation of wrinkled

patterns on the basis of nonlinear oscillator dynamics should
explain observations in very different fields. For example, a better
understanding of the elastic instability of rigid membranes will help
us to determine the exact mechanisms leading to the growth of
wrinkled morphology in living systems. It is also a new blueprint to
develop multiple-length-scale microfabrication techniques useful
in the design of specific topography.

Methods
Experiments were carried out using PDMS elastomer (Sylgard 184) purchased
from Dow Corning. Two different systems were studied. For system 1, a bare
elastomer of PDMS is subjected to ultraviolet radiation in the presence of oxygen.
Ozone is generated and will affect the crosslink density of the PDMS outer surface.
The rigidity of the surface drastically increases with the irradiation time to finally
yield a brittle overlayer covalently bound to the uncured elastomer. For system 2,
multilayers were prepared by a simple assembly of monolayers of different elastic
properties. The ‘rigid’ and ‘soft’ layers correspond to elastic modulus values of 1,200
and 10 kPa, respectively. To ensure a very strong adhesion between the two PDMS
films and avoid delamination during the compression, these PDMS elastomers
were assembled by contact after a plasma curing (in a Plasma Cleaner oven).
The experimental set-up was a custom-built stretching–compressing device. The
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ultraviolet/O3-modified PDMS was compressed by using stretching–curing–release
experiments. The measurements were achieved using image analysis from
microtomed slices of the samples. The bilayer PDMS assembly was compressed
by inducing a macroscopic radius of curvature. The measurements were made
from macrophotography of the cross-sections of the samples (see Supplementary
Information for further details).
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